
DESIGN AND VERIFICATION OF APPLICATION AND
TRANSACTION LAYERS OF PCI-EXPRESS

A Major Project submitted in partial fulfillment of the requirements for the award of the

degree of

MASTER OF ENGINEERING
IN

ELECTRONICS AND COMMUNICATION
ENGINEERING

Delhi University, Delhi

Submitted By

ALLAMUDI SREEKANTH (16/E&C/04)
Delhi University Roll no . 8721

Under the guidance of
Mr.O.P.VERMA

Assistant Professor
Department of Electronics & Communication Engineering

DCE,Delhi

Department of Electronics & Communication Engineering
DELHI COLLEGE OF ENGINEERING

Bawana Road, Delhi - 110042
JUNE -2006

CERTIFICATE
 This is to certify that this thesis work entitled “DESIGN AND

VERIFICATION OF APPLICATION AND TRANSACTION LAYER OF PCI-

EXPRESS” is the bonafide work carried out by ALLAMUDI SREEKANTH

(16/E&C/04, D.U.Roll no 8721) who carried out the major project work under my

supervision, and submitted in partial fulfillment of the requirements for the award of the

degree of Master of Engineering, during the year 2004-2006.

 Mr.O.P.VERMA

 Assistant Professor,

 Dept of ECE

 DCE,DELHI

 2

Acknowledgements

 Behind every achievement of a student lies the unflinching effort of

his teachers without who, as students we could never know the liveliness of

hardwork.And to this day and to the day we certainly feel it as our worldly pleasure to get

living to this day of thinking them.

 I would like to express my gratitude and sincere thanks to our

project guide Mr.O.P.VERMA Assistant Professor ,department of Electronics &

communications engineering, Delhi College of engineering for his esteemed guidance

and incessant support given in presenting this project report successfully.

 I would thank our head of the department Prof.Asok Bhattacharyya

for his kind co-operation in bringing out this project work successfully.

 I also take this opportunity to express my deep sense of gratitude

and sincere thanks to the staff of our Department, Dr.Kulkarni ,Mr Raghav Mrs Indu

,Mrs Rajeshwari pandey, for their unstinted co-operation.

 I would also like to thank Mr.Jitendra Puri and his team of nSys

Design Systems Pvt Ltd., for providing opportunity to work on the project .

I am equally grateful and indebted to our beloved Principal Dr.P.B.Sharma for

providing us all the pre-requisite facilities.

ALLAMUDI SREEKANTH

16/E&C/04
D.U.Roll no 8721

 3

Abstract

 With ever-increasing network traffic, bottlenecks are Inevitable in

the existing parallel, multi-drop architecture of the Peripheral Component Interconnect

(PCI) bus and its second-generation version, the PCI Extended (PCI-X) bus. Today, those

bottlenecks can be alleviated with the much higher performance of the third generation

PCI Express architecture, which uses a 2.5-GHz clocked serial Input/Output (I/O)

structure to provide higher bandwidth and far better scalability than its predecessor I/O

architectures. PCI Express is a layer based protocol classified as Transaction layer, data

link layer, physical layer.

 This thesis provides an overview of the new PCI Express bus

architecture and explains an approach to design the Transaction Layer and Application

layer of PCI-Express also gives a brief verification strategy to verify serial buses,

Implementation is done using Verilog – HDL .

 4

CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF FIGURES
LIST OF TABLES

1. INTRODUCTION……………………………………………………………….........1

2. LITERATURE REVIEW……………………………………………………………..2

2.1. The original PCI bus……………………………………………………………...2
2.2. PCI-Architecture…………………………………………………….....................3
2.3. PCI-X Architecture………………………………………………….....................5
2.4. PCI-Express Architecture………………………………………………………...7

3. PCI-EXPRESS LAYERING OVER VIEW ………...12

3.1.Transaction Layer ……………………………………………………………….13
3.2.Data Link Layer………………………………………………………………….15
3.3.Physical Layer…………………………………………………………................16
3.4.Why Serial …………………………………………………………....................20

4. TRANSACTION LAYER…………………………………………………………...22

4.1. Transaction Layer Overview……………………………………………………24
4.2. Packet Format Overview………………………………………………………..25
4.3. Transaction Layer Protocol – Packet……………………………………………27
4.4. Handling of Received TLPs……………………………………………..............44
4.5. Transaction Ordering……………………………………………………………51
4.6. Ordering and Receive Buffer Flow Control…………………………………….52
4.7. Data Integrity……………………………………………………………………54

5. IMPLEMENTATION………………………………..58

5.1. PCIe Block Diagram…………………………………………………………….58
5.2. Application Bus Function Model(ABFM)………………………………………59
5.3. Abfm- Monitor…………………………………………………………………..62
5.4. Abfm-Checker…………………………………………………………………..62
5.5. Functionality of PCIe block ………………………………………….................64
5.6. Design for Transmission Transaction Layer (TTL)……………………..............66
5.7. Design for Receive Transaction Layer (RTL)…………………………..............70
5.8. Verification Environment .……………………………………………...............76
5.9. Results and Observations………………………………………………..............78

6. SUMMARY AND CONCLUSION ………………………………………………..79

FUTURE SCOPE……………………………………………………………………80

APPENDIX

REFERENCES

 5

List of Figures

Figure 2-1 33 MHz PCI Bus Based Platform ………………………………………….....3

Figure 2-2 Hub Architecture with 66.6 MHz Bus Segments……………………………...4

Figure 2-3 Overview of PCI-X DDR/QDR Platform: Highest Performance……………..6

Figure 2-4 PCI-Express Link ……………………………………………………………..7

Figure 2-5 PCI-Express Topology ………………………………………………………..8

Figure 2-6 PCI – Express Switch …………………………………………………………9

Figure 3-1 PCI-Express Layered structure ……………………………………………...10

Figure 3-2 TLP operation at different layers…………………………………………….12

Figure 3-3 Packet disassembly operation………………………………………………..14

Figure 3-4 Packet Flow from Transaction layer to Link…………………………………15

Figure 3-5 Link Between two devices…………………………………………………...17

Figure 3-6 Serial Bit stream transmission on to different lanes…………………………18

Figure 3-7 PCI-Express Cross Link lanes ……………………………………………….19

Figure 3-8 Serial Vs Parallel communication …………………………………………...20

Figure 4-1 Transaction Layer Overview………………………………………………...22

Figure 4-2 software Layers operating on PCI-Express Layers…………………………..23

Figure 4-3 PCI Express Packet format overview………………………………………..26

Figure 4-4 PCI Express Packet in detail………………………………………………...26

Figure 4-4 Fields Present in all TLP……………………………………………………..29

Figure 4-5 64-bit Address Routing…………………………………………………......32

Figure 4-6 32-Bit Address Routing……………………………………………………...32.

Figure 4-7 ID Routing with 4 DW Header……………………………………………...34

Figure 4-8 ID Routing with 3 DW Header………………………………………………34

Figure 4-9 Byte Enables………………………………………………………………….35

Figure 4-10 Transaction Id……………………………………………………………….36

Figure 4-11 Attributes Field of Transaction Descriptor ………………………………...37

Figure 4-12 Request Header Format for 64-bit Addressing of Memory………………...38

Figure 4-13 Request Header Format for I/O Transactions ……………………………..39

Figure 4-14 Completion Header Format…………………………………………………43

Figure 4-15 Completer ID ………………………………………………………………43

 6

Figure 4-16 Flowchart for Handling of Received TLPs ……………………………….45

Figure 4-17 Flow Chart For Switch Handling Of Tlps…………………………………47

Figure 4-19 Relationship Between Requester and Ultimate Completer……………….53

Figure 4-20 Calculation Of 32-Bit Ecrc For Tlp End To End Data Integrity Protection.56

Figure 5-1 PCIe block Diagram……………………………………………………….. 58

Figure 5-2 Block Diagram of Application Bus Function Mode……………………… .59

Figure 5-3 Transaction with data payload…………………………………………… ..63

Figure 5-4 Transaction with DPl clock description …………………………………...63

Figure 5-5 Block Diagram Transmission Transaction Layer………………………… .66

Figure 5-6 TLP with 3DW Hdr, DW aligned data, 1DW data valid in last slot Packet

transmission from TTL to TDL ………………………………………………………..69

Figure 5-7 Block Diagram of Receive Transaction Layer ……………………………70

Figure 5 -8 TLP transfer from RDL to User Logic without Error …………………….75

Figure 5-9 TLP transfer from RDL to User Logic without Error……………………...76

Figure 5-10 Verification Environment…………………………………………………77

Figure 5-11 Verification Pyramid……………………………………………………...77

 7

List of Tables

Table 2-1 PCI Bus Bandwidth and Add-in Card Slot Limitation ……………………… 5

Table 2-2 Comparison of different Buses ………………………………………………11

Table 4-2 Fmt[1:0] Field Values ………………………………………………………..29

Table 4-3 Fmt[1:0] and Type[4:0] Field Encodings ……………………………… …...30

Table 4-4 Length[9:0] Field Encoding …………………………………………………31

Table 4-5 Address Field Mapping ……………………………………………………...33

Table 4-6 Transaction Id ………………………………………………………………..40

Table 4-7 Power management Messages ……………………………………………….40

Table 4-8 Error Signaling Messages ……………………………………………………41

Table 4-9 Completion status…………………………………………………………….43

Table 4-9 Calculating Byte Count from Length and Byte Enables …………………….50

Table 4-10 Calculating Lower Address from 1st DW BE ………………………………50

Table 4-11 Ordering Rules Summary Table …………………………………………….52

Table 4-10 Flow Control Credit Types …………………………………………………54

 8

Chapter 1

Introduction

 Peripheral Component Interconnect (PCI) Express is a scalable,

standards-based, high-bandwidth I/O interconnect technology incorporating recent

advances in high-speed, point-point interconnects. PCI Express architecture is

Compatible with the PCI addressing model, load-store architecture with a flat address

space, software interfaces are maintained to ensure that all existing applications and

drivers operate unchanged. Where as parallel bus implementation of PCI is replaced by a

highly scalable, fully serial interface in PCIe. PCI Express provides significantly higher

performance, reliability, and enhanced capabilities—at a lower cost—than the previous

PCI and PCI-X standards.

 PCI Express Architecture is specified in layers. It is classified into

three layers namely Transaction layer, data link layer, and physical layer. PCI Express

configuration uses standard mechanisms as defined in the PCI Plug-and-Play

specification. The software layers will generate read and write requests that are

transported by the transaction layer to the I/O devices using a packet-based, split-

transaction protocol. The link layer adds sequence numbers and CRC to these packets to

create a highly reliable data transfer mechanism. The basic physical layer consists of a

dual-simplex channel that is implemented as a transmit pair and a receive pair. The initial

speed of 2.5 Giga transfers/sec/direction provides a 200MB/s communications channel

that is close to twice the classic PCI data rate.

 This thesis is organized as follows. chapter 2 gives the overview of

PCI–Express Architecture ,chapter 3 explains the functionality of Transaction Layer of

PCIe ,chapter 4 describes different verification strategies Chapter 5 describes the

Implementation .chapter 6 gives conclusion and presents a summary of work done and

future work .

 9

Chapter 2
Literature Review

 The processor communicates with other peripherals in the PC through a

path of data called bus. Since the release of the first PC, in 1981, up to the present day,

several types of bus have been developed in order to allow the communication between

the processor and input and output peripherals. We can name the following buses already

launched:

• ISA

• EISA

• MCA

• VLB

• PCI

• AGP

• PCI Express

The main difference among the several types of bus is in the number of bits that can be

transmitted at a time, and in the operating frequency used. Nowadays the two fastest

types of PC expansion bus are the PCI and the AGP. The PCI-X bus is an extension of

the PCI bus designed to the market of network servers.

The Original PCI Bus

 The original concept of PCI was chip-to-chip interconnection

developed by Intel Corporation. Indeed, PCI is an acronym for peripheral component

interconnects. Prior to the public release of the PCI bus specification, it was modified to

include add-in card slots. With the addition of add-in card slots Intel made a decision in

the early 1990s to focus on PCI, to depart from the bus standards of their Multi Bus I and

II buses, and the other industrial bus standard VESA. As the PCI bus protocol was

included in platforms it eventually replaced the ISA and EISA buses in personal

computers and servers. The implementation of the PCI bus in both high-end personal

computers and servers placed demands on the PCI bus to provide higher levels of

 10

performance; consequently, the PCI bus evolved from 32 to 64 data bits and its clock

reference from 33.3 megahertz to 66.6 megahertz.

2.1 PCI Architecture

The PCI bus was released by Intel in June, 1992. Since then, almost all PC expansion

peripherals, such as hard disks, sound cards, LAN cards, and video cards have been using

the PCI bus. PCI Protocol was a Parallel Protocol.

PCI Platform Architecture and Performance

PCI/PCI
Bridge

PCI/PCI
Bridge

PCI
Device

PCI Bus (1)

PCI Bus (2)

PCI Bus (0)

PCI
Device

PCI
Device

North Bridge

South Bridge

AGP

Modem
&

Audio

Boot
ROM

Platform
Memory

Video

KeyBd/Mouse

Floppy

COM Ports

RTC

ISA Bus Segment

CPU CacheCPU

HOST Bus Segment

PC Compat.
Functions

.......

Other PCI
Devices

IDE

USB
Port

CD

PCI
Device

Figure 2-1 33 MHz PCI Bus Based Platform

• PCI platforms evolved into North and South bridges represented by Memory and

I/O Controller Hubs.

• Primary concept is that high performance resources are connected to the Memory

Controller Hub and the lower performance resources are connected to the I/O

Controller Hub.

 11

• Within the lower performance resources of the I/O Controller Hub, some require a

high performance connection (e.g. CD) and others can used a shared PCI bus

segment (e.g. Ethernet and SCSI)

AGP

IDE

USB
Port

CD
Modem

&
Audio

Boot
ROM

Platform
Memory

Video

KeyBd/Mouse

Floppy

COM Ports

RTC

CPU CacheCPU

HOST Bus Segment

PC Compat.
Functions

.......

Memory Controller Hub

I/O Controller Hub

Other PCI
Devices

PCI Bus (0)

PCI 64 bits/66.6 MHz Bus Segments

PCI
Hub

PCI
Hub

High
Performance
PCI Devices

High
Performance
DISC Devices

Fig 2-2 Hub Architecture with 66.6 MHz Bus Segments

PCI is designed to support a variety of devices residing on each bus segment.

This design approach has several advantages for desktop systems such as:

• Traces on the motherboard reduced to a single set because of shared buses.

• A single protocol (PCI) used for all embedded devices, add-in cards, and chipset

components connected to the bus segment.

• As technology evolved there was a greater need to support more high

performance resources. The I/O Controller Hub did not provide sufficient

performance for all high performance resources relative to Platform Memory.

Additional high performance PCI segments were added to the Memory Controller

• In addition to the connection to the Memory Controller Hub, the PCI bus segment

size and frequency was increased.

• At 64 data bits PCI achieves bandwidths of 532.8 Megabytes/second.

 12

Table 2-1 lists the data bus widths, number of signal lines, reference clock frequencies,

maximum bandwidth, and the maximum number of connectors supported by PCI.

Table 2-1 PCI Bus Bandwidth and Add-in Card Slot Limitation

 It is also possible to integrate the two Hubs into a single Host/PCI Bridge. The

balance of this tutorial will assume a single HOST/PCI or HOST/PCI-X Bridge.

2.2 PCI-X Architecture

• PCI-X was developed to extend performance beyond PCI.

• The HOST/PCI-X Bridge in this discussion represents a consolidation of the Hub

controllers into a single bridge structure.

• PCI-X initially simply increased the CLK signal line frequency over PCI to

increase bus segment bandwidth. Eventually, PCI-X DDR and QDR provided

source synchronous strobes to improve bus segment bandwidth. “D” and “Q”

refers to the two and four strobe points within a single CLK signal line period,

respectively. Under future consideration is PCI-X 3.0 with source synchronous.

• The increase in bus segment bandwidth greatly reduces the number of add-in card

slot per bus segment.

 13

KeyBd/Mouse
Floppy

COM Ports
RTC

HOST/PCI-X
Bridge

Platform
Memory

PCI-X Bus Segment

PCI-X/PCI
BridgeDDR

QDR

Boot
ROM

PC Compat.
Functions

Video

PCI Bus Segment

PCI-X
Device

PCI-X/PCI-X
Bridge

CPU CacheCPU

HOST Bus Segment

......

DDR
QDR

PCI-X/PCI-X
Bridge

DDR
QDR

DDR
QDR

DDR
QDR

High
Performance

PCI-X Devices

High
Performance

PCI-X Devices

High
Performance

PCI-X Devices

High
Performance

PCI-X Devices

High
Performance
DISC Devices

Fig 2-3 Overview of PCI-X DDR/QDR Platform: Highest Performance.

• The resulting higher performance PCI-X DDR and QDR results in point-to-point

interconnections. At 64 data bits PCI-X achieves bandwidths over 8524.8

Megabytes/second. This a 16 times improvement over PCI.

• The large signal line count defined for a bus segment shared among several PCI-

X devices is impractical for point-to-point interconnections.

 The thing is, the PCI bus maximum transfer rate - 133 MB/s – proved to be

insufficient for modern 3D applications and it represented a limitation to the development

of more sophisticated video cards. In order to solve that issue, Intel created a new bus,

called AGP, to increase the transfer rate of video cards – now they wouldn’t have to be

installed in the PCI bus anymore, but in the AGP bus, which is faster. Then the PCI was

not so “busy” anymore, since video cards were the great responsible for the intense traffic

in the PCI bus. Even AGP could not solve the Problem as it needs so many pins which

was so robust in the mother boards . so finally in March 2002 Intel came out with a

solution named PCI-Express highly scalable high Performance third generation I/O

Interconnect.

 14

2.3 PCI-Express Architecture

 PCI Express provides a high-speed, high-performance, point-to-point, dual

simplex, differential signaling Link for interconnecting devices. Data is transmitted from

a device on one set of signals, and received on another set of signals.

PCI Express Link

A Link represents a dual-simplex communications channel between two components.

The fundamental PCI Express Link consists of two, low-voltage, differentially driven

signal pairs: a Transmit pair and a Receive pair as shown in Figure 2-4.

Fig 2-4 PCI-Express Link

Differential Signaling

PCI Express devices employ differential drivers and receivers at each port. This uses

differential electrical characteristics of a PCI Express signal. A positive voltage

difference between the D+ and D- terminals implies Logical 1. A negative voltage

difference between D+ and D- implies a Logical 0. No voltage difference between D+

and D- means that the driver is in the high-impedance tri-state condition, which is

referred to as the electrical-idle and low-power state of the Link.

The PCI Express Differential Peak-to-Peak signal voltage at the transmitter ranges from

800 mV - 1200 mV, while the differential peak voltage is one-half these values. The

common mode voltage can be any voltage between 0 V and 3.6 V. The differential driver

is DC isolated from the differential receiver at the opposite end of the Link by placing a

 15

capacitor at the driver side of the Link. Two devices at opposite ends of a Link may

support different DC common mode voltages. The differential impedance at the receiver

is matched with the board impedance to prevent reflections from occurring.

2.3.1 PCI Express Fabric Topology

 A fabric is composed of point-to-point Links that interconnect a set of components

– an example fabric topology is shown in Figure 1-2. This figure illustrates a single fabric

instance referred to as a hierarchy – composed of a Root Complex (RC), multiple

Endpoints (I/O devices), a Switch, and a PCI Express-PCI Bridge, all interconnected via

PCI Express Links.

Fig 2-5 PCI-Express Topology

Before going into further discussion of PCI-Express must know some acronyms

A Requester is a device that originates a transaction in the PCI Express fabric. Root

complex and endpoints are requester type devices.

A Completer is a device addressed or targeted by a requester. A requester reads data

from a completer or writes data to a completer. Root complex and endpoints are

completer type devices.

 16

A Port is the interface between a PCI Express component and the Link. It consists of

differential transmitters and receivers.

An Upstream Port is a port that points in the direction of the root complex.

A Downstream Port is a port that points away from the root complex.

An endpoint port is an upstream port. A root complex port(s) is a downstream port.

An Ingress Port is a port that receives a packet.

An Egress Port is a port that transmits a packet.

 A Root Complex (RC) denotes the root of an I/O hierarchy that connects

the CPU/memory subsystem to the I/O. As illustrated in Figure 2-5, a Root Complex

may support one or more PCI Express Ports. Each interface defines a separate hierarchy

domain. Each hierarchy domain may be composed of a single Endpoint or a sub-

hierarchy containing one or more Switch components and Endpoints.

 A Endpoint refers to a type of device that can be the Requester or

Completer of a PCI Express transaction either on its own behalf or on behalf of a distinct

non-PCI Express device (other than a PCI device or Host CPU), e.g., a PCI Express

attached graphics controller or a PCI Express-USB host controller. Endpoints are

classified as either legacy, PCI Express, or Root Complex Integrated Endpoints.

 A PCI Express Endpoint must be a device with a Type 00h

Configuration Space header. It must support Configuration Requests as a Completer,

must not depend on operating system allocation of I/O resources claimed through

BAR(s).

 A PCI Express Endpoint must not generate I/O Requests, must not

support Locked Requests as a Completer or generate them as a Requestor. PCI Express-

compliant software drivers and applications must be written to prevent the use of lock

semantics when accessing a PCI Express Endpoint. A PCI Express Endpoint operating as

the Requester of a Memory Transaction is required to be capable of generating addresses

greater than 4 GB.

Switch
A Switch is defined as a logical assembly of multiple virtual PCI-to-PCI Bridge devices

as illustrated in Figure 1-3. All Switches are governed by the following base rules.

 17

Fig 2-6 PCI – Express Switch

Switches are implemented in systems requiring multiple devices to be interconnected.

Switches can range from a 2-port device to an n-port device, where each port connects to

a PCI Express Link. A switch may be incorporated into a Root Complex device (Host

bridge or North bridge equivalent), resulting in a multi-port root complex.

Switches appear to configuration software as two or more logical PCI-to-PCI Bridges.

• A Switch forwards transactions using PCI Bridge mechanisms; e.g., address

based routing.

• Except as noted in this document, a Switch must forward all types of

Transaction Layer Packets between any set of Ports.

• Locked Requests must be supported as specified in Section 6.5. Switches are not

required to support Downstream Ports as initiating Ports for Locked requests.

• Each enabled Switch Port must comply with the flow control specification

specified in PCI-Express base specification.

• A Switch is not allowed to split a packet into smaller packets, e.g., a single

packet with a 256-byte payload must not be divided into two packets of 128

bytes payload each.

• Arbitration between Ingress Ports (inbound Link) of a Switch may be

implemented using round robin or weighted round robin when contention occurs

 18

on the same Virtual Channel. This is described in more detail later within the

specification.

• Endpoint devices (represented by Type 00h Configuration Space headers) must

not appear to configuration software on the switch’s internal bus as peers of the

virtual PCI-to-PCI Bridges representing the Switch Downstream Ports.

PCI Express-PCI Bridge
 A PCI Express-PCI Bridge provides a connection between a PCI

Express fabric and a PCI/PCI-X hierarchy.

Bus Clock
Number of

bits
Data per

Clock Cycle
Maximum

Transfer Rate
PCI 33 MHz 32 1 133 MB/s
PCI 66 MHz 32 1 266 MB/s
PCI 33 MHz 64 1 266 MB/s
PCI 66 MHz 64 1 533 MB/s

PCI-X
64

66 MHz 64 1 533 MB/s

PCI-X
133

133
MHz

64 1 1.066 MB/s

PCI-X
266

133
MHz

64 2 2.132 MB/s

PCI-X
533

133
MHz

64 4 4.266 MB/s

AGP x1 66 MHz 32 1 266 MB/s
AGP x2 66 MHz 32 2 533 MB/s
AGP x4 66 MHz 32 4 1.066 MB/s
AGP x8 66 MHz 32 8 2.133 MB/s
PCIe 250Mhz 2 64 2.5 Gbits/sec

Table 2-2 Comparison of different Buses

 19

Chapter 3
PCI Express Layering Overview

Overview
 The PCI Express has a layered architecture for device. The layers

consist of a Transaction Layer, a Data Link Layer and a Physical layer. The layers can be

further divided vertically into two, a transmit portion that processes outbound traffic and

a receive portion that processes inbound traffic. However, a device design does not have

to implement a layered architecture as long as the functionality required by the

specification is supported.

Fig 3-1 PCI-Express Layered structure

The goal of this section is to describe the function of each layer and to describe the flow

of events to accomplish a data transfer. Packet creation at a transmitting device and

packet reception and decoding at a receiving device are also explained.

Transmit Portion of Device Layers.

 Consider the transmit portion of a device. Packet contents are formed in

the Transaction Layer with information obtained from the device core and application.

The packet is stored in buffers ready for transmission to the lower layers. This packet is

referred to as a Transaction Layer Packet (TLP), The Data Link Layer concatenates to the

 20

packet additional information required for error checking at a receiver device. The packet

is then encoded in the Physical layer and transmitted differentially on the Link by the

analog portion of this Layer. The packet is transmitted using the available Lanes of the

Link to the receiving device which is its neighbor.

Receive Portion of Device Layers

 The receiver device decodes the incoming packet contents in the

Physical Layer and forwards the resulting contents to the upper layers. The Data Link

Layer checks for errors in the incoming packet and if there are no errors forwards the

packet up to the Transaction Layer. The Transaction Layer buffers the incoming TLPs

and converts the information in the packet to a representation that can be processed by

the device core and application.

Device Layers and their Associated Packets

 Three categories of packets are defined, each one is associated with

one of the three device layers. Associated with the Transaction Layer is the Transaction

Layer Packet (TLP). Associated with the Data Link Layer is the Data Link Layer Packet

(DLLP). Associated with the Physical Layer is the Physical Layer Packet (PLP). These

packets are introduced next.

3.1 Transaction Layer
 The upper Layer of the architecture is the Transaction Layer. The

Transaction Layer’s primary responsibility is the assembly and disassembly of

Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as

read and write, as well as certain types of events. The Transaction Layer is also

responsible for managing credit-based flow control for TLPs. Every request packet

requiring a response packet is implemented as a split transaction. Each packet has a

unique identifier that enables response packets to be directed to the correct originator.

The packet format supports different forms of addressing depending on the type of the

transaction (Memory, I/O, Configuration, and Message). The Packets may also have

attributes such as No Snoop and Relaxed Ordering. The transaction Layer supports four

address spaces: it includes the three PCI address spaces (memory, I/O, and configuration)

 21

and adds a Message Space. This specification uses Message Space to support all prior

sideband signals, such as interrupts, power-management requests, and so on, as in-band

Message transactions. You could think of PCI Express Message transactions as “virtual

wires” since their effect is to eliminate the wide array of sideband signals currently used

in a platform implementation.

3.1.1 Transaction Layer Packets (TLPs)

 PCI Express transactions employ TLPs which originate at the

Transaction Layer of a transmitter device and terminate at the Transaction Layer of a

receiver device. This process is represented in Fig 2-8 . The Data Link Layer and

Physical Layer also contribute to TLP assembly as the TLP moves through the layers of

the transmitting device. At the other end of the Link where a neighbor receives the TLP,

the Physical Layer, Data Link Layer and Transaction Layer disassemble the TLP

TLP Packet Assembly

 A TLP that is transmitted on the Link appears as shown below.

.

Fig 3-2 TLP operation at different layers

The software layer/device core sends to the Transaction Layer the information required to

assemble the core section of the TLP which is the header and data portion of the packet.

Some TLPs do not contain a data section. An optional End-to-End CRC (ECRC) field is

calculated and appended to the packet. The ECRC field is used by the ultimate targeted

device of this packet to check for CRC errors in the header and data portion of the TLP.

 22

TLP Packet Disassembly

 A neighboring receiver device receives the incoming TLP bit stream. As

shown in Fig 2-8 the received TLP is decoded by the Physical Layer and the Start and

End frame fields are stripped. The resultant TLP is sent to the Data Link Layer. This

layer checks for any errors in the TLP and strips the sequence ID and LCRC field.

Assume there are no LCRC errors, and then the TLP is forwarded up to the Transaction

Layer. If the receiving device is a switch, then the packet is routed from one port of the

switch to an egress port based on address information contained in the header portion of

the TLP. Switches are allowed to check for ECRC errors and even report the errors it

finds and error. However, a switch is not allowed to modify the ECRC that way the

targeted device of this TLP will detect an ECRC error if there is such an error.

Fig 3-3 Packet disassembly operation

3.2 Data Link Layer
 The middle Layer in the stack, the Data Link Layer, serves as an

intermediate stage between the Transaction Layer and the Physical Layer. The primary

responsibilities of the Data Link Layer include Link management and data integrity,

including error detection and error correction. The transmission side of the Data Link

Layer accepts TLPs assembled by the Transaction Layer, calculates and applies a data

protection code and TLP sequence number, and submits them to Physical Layer for

transmission across the Link. The receiving Data Link Layer is responsible for checking

the integrity of received TLPs and for submitting them to the Transaction Layer for

further processing. On detection of TLP error(s), this Layer is responsible for requesting

 23

retransmission of TLPs until information is correctly received, or the Link is determined

to have failed.

3.2.1 Data Link Layer Services
 The Data Link Layer is responsible for reliably exchanging information with

its counterpart on the opposite side of the Link.

 Initialization and power management services:

 Accept power state Requests from the Transaction Layer and convey to the

Physical Layer

 Convey active/reset/disconnected/power managed state to the Transaction Layer

 Data protection, error checking, and retry services:

 CRC generation

 Transmitted TLP storage for Data Link level retry

 Error checking

 TLP acknowledgment and retry Messages

 Error indication for error reporting and logging

3.3 Physical Layer
 The Physical Layer includes all circuitry for interface operation,

including driver and input buffers, parallel-to-serial and serial-to-parallel conversion,

PLL(s), and impedance matching circuitry. It includes also logical functions related to

interface initialization and maintenance. The Physical Layer exchanges information with

the Data Link Layer in an implementation-specific format. This Layer is responsible for

converting information received from the Data Link Layer into an appropriate serialized

format and transmitting it across the PCI Express Link at a frequency and width

 24

Device
Core

Transaction
Layer

Data Link
Layer

Physical
Layer

Transactions:
Memory Req., I/O Req., Config. Req.,

Completer & Message Req.

Transaction Ordering

Parallel to Serial Conversion

TLP

Header Data Digest

Physical Packet

DLLP
or LLTP

RX TX

Link
and Switches

LLTP

Seq# TLP LCRC

DLLP

Link
Management

Link
Management

Link Packet

CRC

FRAMING FRAMING

Fig 3-4 Packet Flow from Transaction layer to Link

compatible with the device connected to the other side of the Link. The PCI Express

architecture has “hooks” to support future performance enhancements via speed upgrades

and advanced encoding techniques. The future speeds, encoding techniques or media may

only impact the Physical Layer definition.

 25

Fig 3-5 Link Between two devices

3.3.1 Physical Layer Services

Interface initialization, maintenance control, and status tracking:

 Reset/Hot-Plug control/status

 Interconnect power management

 Width and Lane mapping negotiation

 Polarity reversal

Symbol and special ordered set generation:

 8-bit/10-bit encoding/decoding

 Embedded clock tuning and alignment

Symbol transmission and alignment:

 Transmission circuits

 Reception circuits

 Elastic buffer at receiving side

 Multi-Lane de-skew (for widths > x1) at receiving side

 System DFT support features

 26

Fig 3-6 Serial Bit stream transmission on to different lanes

 The bandwidth of a PCI Express link may be linearly scaled by

adding signal pairs to form multiple lanes. The physical layer supports x1, x2, x4, x8,

x12, x16 and x32 lane widths and splits the byte data as shown in Figure 9. Each byte is

transmitted, with 8b/10b encoding, across the lane(s). This data disassembly and

reassembly is transparent to other layers. During initialization, each PCI Express link is

set up following a negotiation of lane widths and frequency of operation by the two

agents at each end of the link. No firmware or operating system software is involved. The

PCI Express architecture comprehends future performance enhancements via speed

upgrades and advanced encoding techniques. The future speeds, encoding techniques or

media would only impact the physical layer.

Fig 3-7 PCI-Express Cross Link lanes

 27

3.4 Why serial?

Fig 3-8 Serial Vs Parallel communication

The serial communication differs from the parallel one for only transmitting a bit at a

time, while in the parallel communication several bits are transmitted per time. That

makes the parallel communication faster than the serial one.

That statement, however accepted by most people, is not totally true. The serial

communication may be faster than the parallel one, all you need is that the bits leave

the transmitting device at a much higher speed. An example of such is the ATA

Serial port that however serial can reach a transfer rate of up to 150 MB/s, while the

traditional IDE port gets to reach 133 MB/s at the most.

There are several reasons to make the devices migrate from the parallel communication

to the serial one. In the parallel communication, since several bits are transmitted per

time, a wire is required per each bit. For instance, in a 32 bit communication (as it is

the case of the PCI slot) 32 wires are required just for the data transmission, not to

mention the additional control signals that are necessary. The higher the quantity of bits

being transmitted per time, the more wires are used, making the creation of cables and the

construction of boards difficult. In the serial communication, only two wires are required,

making it much easier to project the communication between two devices.

The higher the transfer rate, the bigger the problem with the electromagnetic

interference. Each wire becomes an antenna in potential, capturing a lot of noise from

 28

the environment, which may corrupt the data transmitted. In the parallel communication,

since many wires are used, the problem of the electromagnetic interference is a serious

one. In the serial communication, on the other hand, since only two wires are used, that

problem is much more easily solved, by simply protecting the two wires used.

There is yet another problem, a not much discussed one. Even though we say that in the

parallel communication all the bits are transmitted at the same time, the bits do not get to

the receiver exactly at the same time. If in low performance devices the small time

difference in the reception of the several bits of data is not important, in high-speed

devices that difference in the reception time of the several bits makes the device wastes

time having to wait for all the bits to arrive, which may represent a significant fall in

performance, since the data transmission operation happens in very short times.

 Another difference between the parallel communication and the serial one is that

the parallel communication is half-duplex, while the serial one is full-duplex. In

plain English, that means simply the following: in the parallel communication, the only

path between the transmitter and the receiver is used both for the transmission and for the

reception of the data. Since there is only one path, it is not possible to transmit and

receive data at the same time. In the serial communication, on the other hand, since it

only uses two wires, the manufacturers usually make four wires available, two for the

transmission and two for the reception of data. In other words, a path just for the

transmission of data, and another one only for its reception. That makes it possible for the

simultaneous transmission and reception of data. Such architectural difference alone

makes the serial communication potentially twice as fast as the parallel communication,

if we compare two communications that have the same transfer rate.

 29

Chapter 4
Transaction Layer

4.1 Transaction Layer Overview

Fig 4-1 Transaction Layer Overview
At a high level, the key aspects of PCI Express associated with the Transaction Layer are:

 A pipelined full split-transaction protocol

 Mechanisms for differentiating the ordering and processing requirements of

Transaction Layer Packets (TLPs)

 Credit-based flow control

 Optional support for data poisoning and end-to-end data integrity detection.

The Transaction Layer comprehends the following:

 TLP construction and processing

 Association of PCI Express transaction-level mechanisms with device resources

including:

1. Flow Control

2. Virtual Channel management

 Rules for ordering and management of TLPs

 30

• PCI/PCI-X compatible ordering

• Including Traffic Class differentiation

This chapter specifies the behaviors associated with the Transaction Layer.

The transaction layer receives read and write requests from the software layer and creates

request packets for transmission to the link layer. All requests are implemented as split

transactions and some of the request packets require a response packet. The transaction

layer also receives response packets from the link layer and matches these with the

original software requests. Each packet has a unique identifier that enables response

packets to be directed to the correct originator. The packet format offers 32-bit memory

addressing and extended 64-bit memory addressing. Packets also have attributes such as

“no-snoop,” “relaxed ordering,” and “priority,” which may be used to route these packets

optimally through the I/O subsystem.

Fig 4-2 software Layers operating on PCI-Express Layers

The transaction layer provides four address spaces – three PCI address spaces (memory,

I/O and configuration) and message space. PCI 2.2 introduced an alternate method of

propagating system interrupts called message signaled interrupt (MSI). Here a special-

format memory-write transaction was used instead of a hard-wired sideband signal, as an

optional capability in a PCI 2.2 system. The PCI Express specification reuses the MSI

concept as a primary method for interrupt processing and uses a message space to accept

all prior sideband signals, such as interrupts, power-management requests, and resets, as

 31

in-band messages. Other “special cycles” within the PCI 2.2 specification, such as

interrupt acknowledge, are also implemented as in-band messages. You could think of

PCI Express messages as “virtual wires” because their effect is to eliminate the wide

array of sideband signals currently used in a platform implementation.

4.1.1. Address Spaces, Transaction Types, and Usage
 Transactions form the basis for information transfer between a

Requester and Completer. Four address spaces are defined within the PCI Express

architecture, and different Transaction types are defined, each with its own unique

intended usage, as shown in Table below.

Table 4-1 Address Spaces and their usage

The different kinds of transactions in PCI-Express are classified as

4.1.1.1. Memory Transactions

Memory Transactions include the following types:

 Read Request/Completion

 Write Request

Memory Transactions use two different address formats:

 Short Address Format: 32-bit address

 Long Address Format: 64-bit address

 32

4.1.1.2. I/O Transactions

 PCI Express supports I/O Space for compatability with legacy devices which

require their use.Future revisions of this specification are expected to depreciate the use

of I/O Space.

I/O Transactions include the following types:

 Read Request/Completion

 Write Request/Completion

I/O Transactions use a single address format:

 Short Address Format: 32-bit address

4.1.1.3. Configuration Transactions

Configuration Transactions are used to access configuration registers of PCI Express

devices.

Configuration Transactions include the following types:

 Read Request/Completion

 Write Request/Completion

4.1.1.4. Message Transactions

The Message Transactions, or simply Messages, are used to support in-band

communication of events between PCI Express devices.

In addition to the specified Messages, PCI Express provides support for vendor-defined

Messages using specified Message codes. This establishes a standard framework within

which vendors can specify their own vendor-defined Messages tailored to fit the specific

requirements of their platforms.

4.2 Packet Format Overview
Transactions consist of Requests and Completions, which are communicated using

packets. Figure 3-2 shows a high level serialized view of a Transaction Layer Packet

(TLP), consisting of a TLP header, a data payload (for some types of packets), and an

optional TLP digest. Figure 2-3 shows a more detailed view of the TLP. The following

sections of this chapter define the detailed structure of the packet headers and digest

 33

Fig 4-3 PCI-Express Packet Format View

PCI Express conceptually transfers information as a serialized stream of bytes as shown

in Figure 3-6. Note that at the byte level, information is transmitted/received over the

interconnect with byte 0 being transmitted/received first. For details on how individual

bytes of the packet are encoded and transmitted over the physical media. Detailed layouts

of the TLP header and TLP digest (presented in generic form in Figure 2-9) are drawn

with the lower numbered bytes on the left rather than on the right as has traditionally

been depicted in other PCI specifications. The PCI Express header layout is optimized for

performance on a serialized interconnect, driven by the requirement that the most time

critical information be transferred first. For example, within the PCI Express TLP header,

the most significant byte of the address field is transferred first so that it may be used for

early address decode.

Fig 4-4 PCI Express Packet in detail

Payload data within a TLP is depicted with the lowest addressed byte (byte J in Figure 3-

3) shown to the upper left. This retains the traditional PCI byte layout with the lowest

 34

addressed byte shown on the right. Regardless of depiction, all bytes are conceptually

transmitted over the Link in increasing byte number order.

Depending on the type of a packet, the header for that packet will include some of the

following types of fields:

 Format of the packet

 Type of the packet

 Length for any associated data

 Transaction Descriptor, including:

 Transaction ID

 Attributes

 Traffic Class

 Address/routing information

 Byte Enables

 Message encoding

 Completion status

4.3. Transaction Layer Protocol - Packet
Definition

PCI Express uses a packet based protocol to exchange information between the

Transaction Layers of the two components communicating with each other over the Link.

PCI Express supports the following basic transaction types: Memory, I/O, Configuration,

and Messages. Two addressing formats for Memory Requests are supported: 32 bit and

64 bit.

 Transactions are carried using Requests and Completions. Completions are

used only where required, for example, to return read data, or to acknowledge

Completion of I/O and Configuration Write Transactions. Completions are associated

with their corresponding Requests by the value in the Transaction ID field of the Packet

header.

 All TLP fields marked Reserved (sometimes abbreviated as R) must be filled with

all 0’s when a TLP is formed. Values in such fields must be ignored by Receivers and

 35

forwarded unmodified by Switches. Note that for certain fields there are both specified

and reserved values – the handling of reserved values in these cases is specified

separately for each case.

4.3.1. Common Packet Header Fields
All Transaction Layer Packet (TLP) headers contain the following fields .

• Fmt[1:0] – Format of TLP (see Fig 3-3) – bits 6:5 of byte 0

• Type[4:0] – Type of TLP – bits 4:0 of byte 0

The Fmt and Type fields provide the information required to determine the size of the

remaining part of the header, and if the packet contains a data payload following the

header.

The Fmt, Type ,TD, and Length fields contain all information necessary to determine the

overall size of the TLP itself. The Type field, in addition to defining the type of the TLP

also determines how the TLP is routed by a Switch. Different types of TLPs are discussed

in more detail in the following sections.

 Permitted Fmt[1:0] and Type[4:0] field values are shown in Table 2-3.

• All other encodings are reserved.

 TC[2:0] – Traffic Class (see fig 3-4) – bits [6:4] of byte 1

 Attr[1:0] – Attributes (see fig 3-4) – bits [5:4] of byte 2

 TD – 1b indicates presence of TLP digest in the form of a single DW at the end

of the TLP– bit 7 of byte 2

 EP – indicates the TLP is poisoned (see fig 3-4) – bit 6 of byte 2 10

 Length[9:0] – Length of data payload in DW (see Table 2-4) – bits 1:0 of byte 2

concatenated with bits 7:0 of byte 3

 TLP data must be 4-byte naturally aligned and in increments of 4-byte Double

Words (DW).

 Reserved for TLPs that do not contain or refer to data payloads, including Cpl,

CplLk, and Messages (except as specified)

 36

Fig 4-4 Fields Present in all TLPs

Table 4-2 Fmt[1:0] Field Values

The Fmt Type in the header is an identifier which specifies the transaction as classified

in the Table 4-3.

The Packets at the most hierarchy classified into two categories namely the TLP WITH

DATA PAYLOAD and TLP WITH OUT DATA PAYLOAD

These Packets are further classified into three categories

• Non-Posted Requests –

• MRD (Memory Read Request)

• I/O-RD (I/O Read Request)

• I/O-WR(I/O Write Request)

• Posted Requests --

• MWR (Memory Write Request)

• Completion Type Requests –

• CPL(Completion with out data)

• CPLD(Completion With Data)

 37

Table 4-3 : Fmt[1:0] and Type[4:0] Field Encodings

 38

Table 4-4: Length[9:0] Field Encoding

4.3.2 TLPs with Data Payloads - Rules

• Length is specified as an integral number of DW

• Length[9:0] is reserved for all Messages except those which explicitly refer to a

Data Length .

• The Transmitter of a TLP with a data payload must not allow the data payload

length as given by the TLP’s Length [] field to exceed the length specified by the

value in the Max_Payload_Size field of the Transmitter’s Device Control register

taken as an integral number of DW .

• For an Upstream Port associated with a multi-function device whose

Max_Payload_Size settings are identical across all functions, a transmitted TLP’s

data payload must not exceed the common Max_Payload_Size setting.

• For an Upstream Port associated with a multi-function device whose

Max_Payload_Size

• settings are not identical across all functions, a transmitted TLP’s data payload

must not exceed a Max_Payload_Size setting whose determination is

implementation specific.

• Transmitter implementations are encouraged to use the Max_Payload_Size setting

from the function that generated the transaction, or else the smallest

Max_Payload_Size setting across all functions.

• Software should not set the Max_Payload_Size in different functions to different

values unless software is aware of the specific implementation.

 39

4.3.3 TLP Digest Rules

• For any TLP, a value of 1b in the TD field indicates the presence of the TLP

Digest field including an ECRC value at the end of the TLP

• A TLP where the TD field value does not correspond with the observed size

(accounting for the data payload, if present) is a Malformed TLP

 This is a reported error associated with the Receiving Port.

4.3.4. Routing and Addressing Rules
There are three principal mechanisms for TLP routing: address, ID, and implicit. This

section defines the rules for the address and ID routing mechanisms. Implicit routing is

used only with Message Requests, and is covered in later discussions.

4.3.4.1. Address Based Routing Rules

 Address routing is used with Memory and I/O Requests.

 Two address formats are specified, a 64-bit format used with a 4 DW header

 and a 32-bit format used with a 3 DW header

Fig 4-5 64-bit Address Routing

Fig 4-6 32-Bit Address Routing

Address mapping to the TLP header is shown in Table 4-5.

 40

Table 4-5 Address Field Mapping

• Memory Read Requests and Memory Write Requests can use either format.

• For Addresses below 4 GB, Requesters must use the 32-bit format.

• I/O Read Requests and I/O Write Requests use the 32-bit format.

• All PCI Express Agents must decode all address bits in the header - address

aliasing is not allowed.

4.3.4.2 ID Based Routing Rules

• ID routing is used with Configuration Requests, optionally with Vendor_Defined

Messages, and with Completions

• ID routing uses the Bus, Device, and Function Numbers to specify the destination

Device for the TLP

• Bus, Device, and Function Number to TLP header mapping is shown in Table 4-6

• Two ID routing formats are specified, one used with a 4 DW header and one

used with a 3 DW header

• Header field locations are the same for both formats, and are given in

Figure 4-7.

Table 4-6 Transaction Id

 41

Fig 4-7 ID Routing with 4 DW Header

Fig 4-8 ID Routing with 3 DW Header

4.3.5 First/Last DW Byte Enables Rules
Byte Enables are included with Memory, I/O, and Configuration Requests. This section

defines the corresponding rules. Byte Enables, when present in the Request header, are

located in byte 7 of the header .

Fig 4-9 Byte Enables

The 1st DW BE[3:0] field contains Byte Enables for the first (or only) DW referenced by

a Request.

 If the Length field for a Request indicates a length of greater than 1 DW, this field

must not equal 0000b.

 The Last DW BE[3:0] field contains Byte Enables for the last DW of a Request.

 42

 If the Length field for a Request indicates a length of 1 DW, this field must equal

0000b.

 If the Length field for a Request indicates a length of greater than 1 DW, this

field must not equal 0000b.

 For each bit of the Byte Enables fields:
 A value of 0b indicates that the corresponding byte of data must not be written or,

if non prefetchable, must not be read at the Completer.

 A value of 1b indicates that the corresponding byte of data must be written or read

at the Completer.

 Non-contiguous Byte Enables (enabled bytes separated by non-enabled bytes) are

permitted in the 1st DW BE field for all Requests with length of 1 DW.

 Non-contiguous Byte Enable examples: 1010b, 0101b, 1001b, 1011b, 1101b

 Non-contiguous Byte Enables are permitted in both Byte Enables fields for QW

aligned

Memory Requests with length of 2 DW (1 QW).

 All non-QW aligned Memory Requests with length of 2 DW (1 QW) and

Memory Requests with length of 3 DW or more must enable only bytes that are

contiguous with the data between the first and last DW of the Request.

 Contiguous Byte Enables examples:

 1st DW BE: 1100, Last DW BE: 0011

 1st DW BE: 1000, Last DW BE: 0111

 Table 4-7 shows the correspondence between the bits of the Byte Enables fields, their

location in the Request header, and the corresponding bytes of the referenced data.

 43

4.3.6. Transaction Descriptor

Overview

The Transaction Descriptor is a mechanism for carrying Transaction information between

the Requester and the Completer. Transaction Descriptors are composed of three fields:

 Transaction ID – identifies outstanding Transactions 15

 Attributes field – specifies characteristics of the Transaction

 Traffic Class (TC) field – associates Transaction with type of required service

Figure 2-10 shows the fields of the Transaction Descriptor. Note that these fields are

shown together to highlight their relationship as parts of a single logical entity. The fields

are not contiguous in the packet header.

Fig 4-10 Transaction Id

• Tag[7:0] is a 8-bit field generated by each Requestor, and it must be unique for all

outstanding Requests that require a Completion for that Requester.

• By default, the maximum number of outstanding Requests per device/function

shall be limited to 32, and only the lower 5 bits of the Tag field are used with the

remaining upper 3 bits required to be all 0’s.

• If the Extended Tag Field Enable bit is set, the maximum is increased to 256, and

the entire Tag field is used Receiver/Completer behavior is undefined if multiple

Requests are issued non-unique tag values.

• If Phantom Function Numbers are used to extend the number of outstanding

requests, the combination of the Phantom Function Number and the Tag field must be

unique for all outstanding Requests that require a Completion for that Requester.

 44

• For Requests that do not require a Completion (Posted Requests), the value in the

Tag[7:0] field is undefined and may contain any value. for exceptions to this rule for

certain Vendor Defined Messages.

• For Posted Requests, the value in the Tag[7:0] field must not affect Receiver

processing of the Request .

• Requester ID and Tag combined form a global identifier, i.e., Transaction ID for

each Transaction within a Hierarchy.

 Transaction ID is included with all Requests and Completions.

 The Requester ID is a 16-bit value that is unique for every PCI Express function

within a Hierarchy.

4.3.6.1 Transaction Descriptor – Attributes Field

The Attributes field is used to provide additional information that allows modification of

the default handling of Transactions. These modifications apply to different aspects of

handling the Transactions within the system, such as:

• Ordering

• Hardware coherency management (snoop)

Fig 4-11 Attributes Field of Transaction Descriptor

4.3.6.2 Transaction Descriptor – Traffic Class Field

The Traffic Class (TC) is a 3-bit field that allows differentiation of transactions into eight

traffic classes. Together with the PCI Express Virtual Channel support, the TC

mechanism is a fundamental element for enabling differentiated traffic servicing. Every

PCI Express Transaction Layer Packet uses TC information as an invariant label that is

carried end to end within the PCI Express fabric.

 45

As the packet traverses across the fabric, this information is used at every Link and

within each Switch element to make decisions with regards to proper servicing of the

traffic. A key aspect of servicing is the routing of the packets based on their TC labels

through corresponding Virtual Channels. Section 2.5 covers the details of the VC

mechanism.

4.3.7 Memory, I/O, and Configuration Request Rules
The following rule applies to all Memory, I/O and Configuration Requests. Additional

rules specific to each type of Request follow.

• All Memory, I/O and Configuration Requests include the following fields in

addition to the common header fields:

• Requester ID[15:0] and Tag[7:0], forming the Transaction ID

• Last DW BE[3:0] and 1st DW BE[3:0]

For Memory Requests, the following rules apply:

• Memory Requests route by address, using either 64-bit or 32-bit

Addressing

• For Memory Read Requests, Length must not exceed the value specified

by Max_Read_Request_Size

Requests must not specify an Address/Length combination which causes a Memory

Space access to cross a 4-KB boundary.

• Receivers may optionally check for violations of this rule. If a Receiver

implementing this check determines that a TLP violates this rule, the TLP is a

Malformed TLP.

• If checked, this is a reported error associated with the Receiving Port

Fig 4-12 Request Header Format for 64-bit Addressing of Memory

 46

 For I/O Requests, the following rules apply:

• I/O Requests route by address, using 32-bit Addressing I/O Requests have the

following restrictions:

• TC[2:0] must be 000b

• Attr[1:0] must be 00b

• Length[9:0] must be 00 0000 0001b

• Last DW BE[3:0] must be 0000b

• Receivers may optionally check for violations of these rules. If a Receiver

implementing these checks determines that a TLP violates these rules, the TLP is a

Malformed TLP

Fig 4-13 Request Header Format for I/O Transactions

For Configuration Requests, the following rules apply:

• Configuration Requests route by ID, and use a 3 DW header

• In addition to the header fields included in all Memory, I/O, and Configuration

Requests and the ID routing fields, Configuration Requests contain the following

additional field

• Register Number[5:0]

• Extended Register Number[3:0]

• Configuration Requests have the following restrictions:

• TC[2:0] must be 000b

• Attr[1:0] must be 00b

• Length[9:0] must be 00 0000 0001b

• Last DW BE[3:0] must be 0000b

 47

Receivers may optionally check for violations of these rules. If a Receiver implementing

these checks determines that a TLP violates these rules, the TLP is a Malformed TLP.

4.3.8 Power Management Messages
These Messages are used to support PCI Express power management, which is described

in detail in The following rules define the Power Management Messages:

• Table 3-7 defines the Power Management Messages.

• Power Management Messages do not include a data payload (TLP Type is Msg).

• The Length field is reserved.

• Power Management Messages must use the default Traffic Class designator

(TC0). Receivers must check for violations of this rule. If a Receiver determines that

a TLP violates this rule, it must handle the TLP as a Malformed TLP.

Ta

Table 4-7 Power management Messages

The initiator of the Message is identified with the Requester ID of the Message header.

The Root Complex translates these error Messages into platform level events. Refer to

Section 6.2 for details on uses for these Messages.

 48

4.3.8.1 Error Signaling Messages

Error Signaling Messages are used to signal errors that occur on specific transactions and

errors that are not necessarily associated with a particular transaction. These Messages

are initiated by the agent that detected the error.

• Table 3-18 defines the Error Signaling Messages.

• Error Signaling Messages do not include a data payload (TLP Type is Msg).

• The Length field is reserved.

• Error Signaling Messages must use the default Traffic Class designator (TC0)

Receivers must check for violations of this rule. If a Receiver determines that a TLP

violates this rule, it must handle the TLP as a Malformed TLP.

Table 4-8 Error Signaling Messages

 49

4.3.9. Completion Rules
All Read Requests and Non-Posted Write Requests require Completion. Completions

include a Completion header that, for some types of Completions, will be followed by

some number of DW of data. The rules for each of the fields of the Completion header

are defined in the following sections.

 Completions route by ID, and use a 3 DW header

Note that the routing ID fields correspond directly to the Requester ID supplied with

the Corresponding Request. Thus for Completions these fields will be referred to

collectively as the Requester ID instead of the distinct fields used generically for ID

routing.

 In addition to the header fields included in all TLPs and the ID routing fields,

Completions contain the following additional fields Completer ID[15:0] – Identifies

the Completer – described in detail below.

 Completion Status[2:0] – Indicates the status for a Completion .

 Rules for determining the value in the Completion Status[2:0] field are discussed.

 BCM – Byte Count Modified – this bit must not set by PCI Express Completers,

and may only be set by PCI-X completers

 Byte Count[11:0] – The remaining byte count for Request

 The Byte Count value is specified as a binary number, with 0000 0000 0001b

indicating 1 byte, 1111 1111 1111b indicating 4095 bytes, and 0000 0000 0000b

indicating 4096 bytes

 For Memory Read Completions, Byte Count[11:0] is set according to the rules .

For all other types of Completions, the Byte Count field must be 4.

 Tag[7:0] in combination with the Requester ID field, corresponds to the

Transaction ID

 Lower Address[6:0] – lower byte address for starting byte of Completion

 For Memory Read Completions, the value in this field is the byte address for the

first enabled byte of data returned with the Completion

 This field is set to all 0’s for all types of Completions other than Memory Read

Completions

 50

Fig 4-14 Completion Header Format

Table 4-9 completion status

The Completer ID[15:0] is a 16-bit value that is unique for every PCI Express function

within a Hierarchy

Fig 4-15 Completer ID

Functions must capture the Bus and Device Numbers supplied with all Type 0

Configuration Write Requests completed by the function, and supply these numbers in

the Bus and Device Number fields of the Completer ID for all Completions generated by

the device/function.

 If a function must generate a Completion prior to the initial device Configuration

Write Request, 0’s must be entered into the Bus Number and Device Number fields

 51

 Note that Bus Number and Device Number may be changed at run time, and so it

is necessary to re-capture this information with each and every Configuration Write

Request.

 Exception: The assignment of bus numbers to the logical devices within a Root

Complex may be done in an implementation specific way.

In some cases, a Completion with the UR status may be generated by a multi-function

device without associating the Completion with a specific function within the device – in

this case, the Function Number field is Reserved.

 Example: A multi-function device receives a Read Request which does not target any

resource associated with any of the functions of the device – the device generates a 5

Completion with UR status and sets a value of all 0’s in the Function Number field of the

Completer ID

 Completion headers must supply the same values for the Requester ID, Tag,

Attribute and Traffic Class as were supplied in the header of the corresponding Request.

 The Completion ID field is not meaningful prior to the software initialization and

configuration of the completing device (using at least one Configuration Write Request),

and the Requestor must ignore the value returned in the Completer ID field.

 A Completion including data must specify the actual amount of data returned in that

Completion, and must include the amount of data specified.

 It is a TLP formation error to include more or less data than specified in the Length

field, and the resulting TLP is a malformed TLP.

Note: This is simply a specific case of the general rule requiring TLP data payload length

match the value in the Length field

3.4 Handling of Received TLPs
This section describes how all Received TLPs are handled when they are delivered to the

Receive Transaction Layer from the Receive Data Link Layer, after the Data Link Layer

has validated the integrity of the received TLP. The rules are diagramed in the flowchart

shown in Figure 3-16.

 Values in Reserved fields must be ignored by the Receiver.

 All Received TLPs which use undefined Type field values are Malformed TLPs.

 52

 This is a reported error associated with the Receiving Port

 All Received Malformed TLPs must be discarded.

 Received Malformed TLPs that are ambiguous with respect to which buffer to

release or are mapped to an uninitialized virtual channel must be discarded without

updating Receiver Flow Control information.

 All other Received Malformed TLPs must be discarded, optionally not updating

Receiver Flow Control information.

 Otherwise, update Receiver Flow Control tracking information

 If the value in the Type field indicates the TLP is a Request, handle according to

Request Handling Rules, otherwise, the TLP is a Completion – handle according to

Completion handling Rules (following sections)

Fig 4-16 Flowchart for Handling of Received TLPs

Switches must process both TLPs which address resources within the Switch as well as

TLPs which address resources residing outside the Switch. Switches handle all TLPs

 53

which address internal resources of the Switch according to the rules above. TLPs which

pass through the Switch, or which address the Switch as well as passing through it, are

handled according to the following rules (see Figure 3-17)

 If the value in the Type field indicates the TLP is not a Msg or MsgD Request, the

TLP must be routed according to the routing mechanism used .

 Switches route Completions using the information in the Requester ID field of the

Completion.

If the value in the Type field indicates the TLP is a Msg or MsgD Request, route the Request

according to the routing mechanism indicated in the r[2:0] sub-field of the Type field

• If the value in r[2:0] indicates the Msg/MsgD is routed to the Root Complex (000b),

the Switch must route the Msg/MsgD to the Upstream Port of the Switch

• It is an error to receive if a Msg/MsgD Request specifying 000b routing at the

Upstream Port of a Switch. Switches may check for violations of this rule – TLPs in

violation are Malformed TLPs. If checked, this is a reported error associated with the

Receiving Port

• If the value in r[2:0] indicates the Msg/MsgD is routed by address (001b), the Switch

must route the Msg/MsgD in the same way it would route a Memory Request by address

• If the value in r[2:0] indicates the Msg/MsgD is routed by ID (010b), the Switch

must route the Msg/MsgD in the same way it would route a Completion by ID

• If the value in r[2:0] indicates the Msg/MsgD is a broadcast from the Root Complex

(011b), the Switch must route the Msg/MsgD to all Downstream Ports of the Switch .It

is an error to receive a Msg/MsgD Request specifying 011b routing at the Downstream

Port of a Switch. Switches may check for violations of this rule – TLPs in violation are

Malformed TLPs. If checked, this is a reported error associated with the Receiving Port

• If the value in r[2:0] indicates the Msg/MsgD terminates at the Receiver (100b or a

reserved value), or if the Message Code field value is defined and corresponds to a

Message which must be comprehended by the Switch, the Switch must process the

Message according to the Message processing rules

 54

Fig 4-17 Flow Chart For Switch Handling Of Tlps

4.4.1 Data Return for Read Requests
 Individual Completions for Memory Read Requests may provide less than the full amount

of data Requested so long as all Completions for a given Request when combined return

exactly the amount of data Requested in the Read Request.

• Completions for different Requests cannot be combined.

• I/O and Configuration Reads must be completed with exactly one Completion.

 The Completion Status for a Completion corresponds only to the status associated with the

data returned with that Completion

• A Completion with status other than Successful Completion terminates the

Completionsfor a single Read Request . In this case, the value in the Length field is

undefined, and must be ignored by the Receiver.

• Completions must not include more data than permitted by the Max_Payload_Size

parameter. Receivers must check for violations of this rule.

 55

Note: This is simply a specific case of the rules which apply to all TLPs with data

payloads

 Memory Read Requests may be completed with one, or in some cases, multiple

Completions

 The Read Completion Boundary (RCB) parameter determines the naturally aligned

address boundaries on which a Read Request may be serviced with multiple Completions

• For a Root Complex, RCB is 64 bytes or 128 bytes

• This value is reported through a configuration register (see Section 7.8)

Note: Bridges and Endpoints may implement a corresponding command bit which may

be set by system software to indicate the RCB value for the Root Complex, allowing the

Bridge/Endpoint to optimize its behavior when the Root Complex’s RCB is 128 bytes.

• For all other system elements, RCB is 128 bytes

• Completions for Requests which do not cross the naturally aligned address

boundaries at integer multiples of RCB bytes must include all data specified in the

Request

Requests which do cross the address boundaries at integer multiples of RCB bytes may

be completed using more than one Completion, but the data must not be fragmented

except along the following address boundaries:

 The first Completion must start with the address specified in the Request, and

must end at one of the following:

• The address specified in the Request plus the length specified by the

Request (i.e., the entire Request)

• An address boundary between the start and end of the Request at an

integer multiple of RCB bytes

• The final Completion must end with the address specified in the Request

plus the length specified by the Request

• All Completions between, but not including, the first and final

Completions must be an integer multiple of RCB bytes in length

 56

 Receivers may optionally check for violations of RCB. If a Receiver

implementing this check determines that a Completion violates this rule, it must

handle the Completion as a Malformed TLP

• This is a reported error associated with the Receiving Port

• Multiple Memory Read Completions for a single Read Request must return data in

increasing address order.

• For each Memory Read Completion, the Byte Count field must indicate the

remaining number of bytes required to complete the Request including the number of

bytes returned with the Completion, except when the BCM field is 1 .

 The total number of bytes required to complete a Memory Read Request is calculated as

shown in Table 3-9 .

• If a Memory Read Request is completed using multiple Completions, the Byte

Count value for each successive Completion is the value indicated by the preceding

Completion minus the number of bytes returned with the preceding Completion.

For all Memory Read Completions, the Lower Address field must indicate the lower bits

of the byte address for the first enabled byte of data returned with the Completion

• For the first (or only) Completion, the Completer can generate this field from the

least significant five bits of the address of the Request concatenated with two bits of

byte-level address formed as shown in Table 3-9

• For any subsequent Completions, the Lower Address field will always be zero

except for Completions generated by a Root Complex with an RCB value of 64

bytes. In this case the least significant 6 bits of the Lower Address field will always

be zero and the most significant bit of the Lower Address field will toggle according

to the alignment of the 64-byte data payload.

 57

 Table 4-9 Calculating Byte Count from Length and Byte Enables

Table 4-10 Calculating Lower Address from 1st DW BE

 58

When a Read Completion is generated with a Completion Status other than Successful

Completion:

• No data is included with the Completion

• The Cpl (or CplLk) encoding is used instead of CplD (or CplDLk)

• This Completion is the final Completion for the Request.

• The Completer must not transmit additional Completions for this Request.

• Example: Completer split the Request into four parts for servicing; the second

completion had a Completer Abort Completion Status; the Completer terminated

Servicing for the Request, and did not transmit the remaining two Completions.

• The Byte Count field must indicate the remaining number of bytes that would be

required to complete the Request (as if the Completion Status were Successful

Completion)

• The Lower Address field must indicate the lower bits of the byte address for the

first enabled byte of data that would have been returned with the Completion if the

Completion Status were Successful Completion

4.5 Transaction Ordering
4.5.1. Transaction Ordering Rules

Table 4-11 defines the ordering requirements for PCI Express Transactions. The rules

defined in this table apply uniformly to all types of Transactions on PCI Express

including Memory, I/O, Configuration, and Messages. The ordering rules defined in this

table apply within a single Traffic Class (TC). There is no ordering requirement among

transactions with different TC labels.

Note: that this also implies that there is no ordering required between traffic that flows

through different Virtual Channels since transactions with the same TC label are not

allowed to be mapped to multiple VCs on any PCI Express Link.

For Table 4-11, the columns represent a first issued transaction and the rows represent a

subsequently issued transaction. The table entry indicates the ordering relationship

between the two transactions.

 59

The table entries are defined as follows:

• Yes–the second transaction (row) must be allowed to pass the first (column) to

avoid deadlock. (When blocking occurs, the second transaction is required to pass the

first transaction. Fairness must be comprehended to prevent starvation.)

• Y/N–there are no requirements. The second transaction may optionally pass the

first transaction or be blocked by it.

• No–the second transaction must not be allowed to pass the first transaction. This

is required to support the Producer-Consumer strong ordering model.

Table 4-11 Ordering Rules Summary Table

4.6 Ordering and Receive Buffer Flow Control

Flow Control (FC) is used to prevent overflow of Receiver buffers and to enable compliance

with the ordering rules defined in Section 2.4. Note that the Flow Control mechanism is

used by the Requester to track the queue/buffer space available in the Agent across the Link

as shown before. That is, Flow Control is point-to-point (across a Link) and not end-to-end.

Flow Control does not imply that a Request has reached its ultimate Completer.

 60

Fig 4-19 Relationship Between Requester and Ultimate Completer

• Flow Control is orthogonal to the data integrity mechanisms used to implement

reliable information exchange between Transmitter and Receiver. Flow Control can treat

the flow of TLP information from Transmitter to Receiver as perfect, since the data

integrity mechanisms ensure that corrupted and lost TLPs are corrected through

retransmission

• Each Virtual Channel maintains an independent Flow Control credit pool. The FC

information is conveyed between two sides of the Link using DLLPs. The VC ID field

of the DLLP is used to carry the Virtual Channel Identification that is required for

proper flow-control credit accounting.

• Flow Control mechanisms used internally within a multi-function device are outside

the scope of this specification. Flow Control is handled by the Transaction Layer in

cooperation with the Data Link Layer.

• The Transaction Layer performs Flow Control accounting functions for Received

TLPs and “gates” TLP Transmissions based on available credits for transmission.

In this and other sections of this specification, rules are described using conceptual

“registers” that a PCI Express device could use in order to implement a PCI Express

compliant design. This description does not imply or require a particular implementation and

is used only to clarify the requirements.

• Flow Control information is transferred using Flow Control Packets (FCPs), which

are a type of DLLP

• The unit of Flow Control credit is 4 DW for data

• For headers, the unit of Flow Control credit is one maximum-size header plus TLP

digest

• Each Virtual Channel has independent Flow Control

• Flow Control distinguishes three types of TLPs (note relationship to ordering rules •

Posted Requests (P) – Messages and Memory Writes

 61

 Non-Posted Requests (NP) – All Reads, I/O, and Configuration Writes

 Completions (CPL) – Associated with corresponding NP Requests

 In addition, Flow Control distinguishes the following types of TLP information within

each of the three types:

 Headers (H)

 Data (D)

Table 4-10 Flow Control Credit Types

4.7 Data Integrity

 The basic data reliability mechanism in PCI Express is contained within

the Data Link Layer, which uses a 32-bit CRC (LCRC) code to detect errors in TLPs on a

Link-by-Link basis, and applies a Link-by-Link retransmit mechanism for error recovery. A

TLP is a unit of data and transaction control that is created by a data-source at the “edge” of

the PCI Express domain (such as an Endpoint or Root Complex), potentially routed

through intermediate components (i.e., Switches) and consumed by the ultimate PCI

Express recipient. As a TLP passes through a Switch, the Switch may need to change some

control fields without modifying other fields that should not change as the packet traverses

the path. Therefore, the LCRC is regenerated by Switches. Data corruption may occur

internally to the Switch, and the regeneration of a good LCRC for corrupted data masks the

existence of errors. To ensure end-to-end data integrity detection in systems that require

high data reliability, a Transaction Layer end-to-end 32-bit CRC (ECRC) can be placed in the

TLP Digest field at the end of a TLP. The ECRC covers all fields that do not change as the

TLP traverses the path (invariant fields). The ECRC is generated by the Transaction Layer in

the source component, and checked in the destination component. A Switch that supports

ECRC checking checks ECRC on TLPs that are destined to a destination within the Switch

 62

itself. On all other TLPs a Switch must preserve the ECRC (forward it untouched) as an

integral part of the TLP. In some cases, the data in a TLP payload is known to be corrupt at

the time the TLP is generated, or may become corrupted while passing through an

intermediate component, such as a Switch. In these cases, error forwarding, also known as

data poisoning, can be used to indicate the corruption to the device consuming the data.

4.7.1. ECRC Rules
The capability to generate and check ECRC is reported to software, and the ability to do

so is enabled by software

 If a device is enabled to generate ECRC, it must calculate and apply ECRC for

all TLPs originated by the device

 Switches must pass TLPs with ECRC unchanged from the Ingress Port to the

Egress Port

 If a device reports the capability to check ECRC, it must support Advanced Error

Reporting

 If a device is enabled to check ECRC, it must do so for all TLPs received by the

device including ECRC

 Note that it is still possible for the device to receive TLPs without ECRC, and

these areprocessed normally – this is not an error

 Note that a Switch may perform ECRC checking on TLPs passing through the

Switch. ECRC

 Errors detected by the Switch are reported but do not alter the TLPs passage

through the Switch.

 A 32-bit ECRC is calculated for the entire TLP (header and data payload) using

the following algorithm and appended to the end of the TLP

 The ECRC value is calculated using the following algorithm

 The polynomial used has coefficients expressed as 04C1 1DB7h

 The seed value (initial value for ECRC storage registers) is FFFF FFFFh

 All invariant fields of the TLP header and the entire data payload (if present) are

included in the ECRC calculation, all bits in variant fields must be set to 1 for ECRC

calculations.

 63

• Bit 0 of the Type field is variant The EP field is variant all other fields are

invariant

• ECRC calculation starts with bit 0 of byte 0 and proceeds from bit 0 to bit 7 of
each byte of the TLP

Fig 4-20 Calculation Of 32-Bit Ecrc For Tlp End To End Data Integrity Protection

 64

4.7.2 Completion Timeout Mechanism
In any split transaction protocol, there is a risk associated with the failure of a Requester to

receive an expected Completion. To allow Requesters to attempt recovery from this

situation in a standard manner, the Completion Timeout mechanism is defined. This

mechanism is intended to be activated only when there is no reasonable expectation that the

Completion will be returned, and should never occur under normal operating conditions.

Note that the values specified here do not reflect expected service latencies, and must not

be used to estimate typical response times.

PCI Express devices that issue Requests requiring Completions must implement the

Completion Timeout mechanism. An exception is made for Configuration Requests (see

below). The Completion Timeout mechanism is activated for each Request that requires

one or more Completions when the Request is transmitted. Since PCI Express Switches do

not autonomously initiate Requests that need Completions, the requirement for

Completion Timeout support is limited only to Root Complexes, PCI Express-PCI Bridges,

and Endpoint devices.

This specification defines the following range for the minimum/maximum acceptable timer

values for the Completion Timeout mechanism:

• The Completion Timeout timer must not expire (i.e., cause a timeout event) in less

than 50 µs. It is strongly recommend that unless an application requires this level of

timer granularity the minimum time should not expire in less than 10 ms.

• The Completion Timeout timer must expire if a Request is not completed in 50 ms.

‘

 65

Chapter 5
IMPLEMENTATION

5.1 PCIe Block Diagram

Fig 5-1 PCIe block Diagram

 In this thesis an approach to design the Transaction layer of PCI Express is given

and it is implemented using Verilog- HDL and it is verified by designing a configurable

Application Layer named as Application Bus Function Model (ABFM) .

 66

5.2 APPLICATION BUS FUNCTION MODEL(ABFM)
 The user interface for PCI Express is named as ABFM . It describes

interface signals for sending transactions from User Logic to core as well as receiving

from core to User Logic. This module interacts with the Transaction Layer . As you see

from the Block diagram above It shows the Transaction Layer divided into two parts

namely

 Transmit Transaction Layer (TTL)

 Receive Transaction Layer (RTL)

 In the same way the Application Layer is also divided into two Parts namely ,

 Application Bus Function - Master

 ABFM – Slave.

APPLICATION BUS FUNCTION MODEL

C
O

M
PL

ETIO
N

PO

O
L

ABFM -MASTER

CMD

POOL

Expected

Data
pool

Tag
Queue

ABFM SLAVE

CMD
FIFO

CPL
FIFO

MEM
64

BAR
MEM

64
BAR

MEM
BAR

32

I/O
BAR

Fig 5-2 Block Diagram of Application Bus Function Model

 67

5.2.1 ABFM –MASTER

 This block Interacts with TTL ,ABFM-MASTER is responsible to initiate

transactions on to TTL .ABFM- Master transmits the Header and Data on to TTL .This Is

also responsible to transmit the Completion packets prepared by ABFM-Slave .

ABFM master maintains a queue named TAG_QUEUE which is used to store the

assigned TAG to the non-posted Packets transmitted by ABFM-Master .This also

maintains a QUEUE where the expected data to be returned by the device standing at the

far end Is stored for data –checking purpose when a READ transaction followed by a

WRITE transaction is Transmitted by ABFM-MASTER.

Description :

 Initially the command to be fired onto the TTL is given to ABFM-

MASTER through Test cases which calls the Tasks (a Verilog construct just like a

function in C …but task cant written a value while a function a can return a value)

written inside the ABFM-Master. This specifies the job to be done by the Master .

A task named do_cmd is used to specify the command,

Syntax : do_cmd (parameter_name, Parameter value) ;

Example – do_cmd (`TLP_TYPE,MWR);

 This specifies the TLP to be fired is Memory Write

A task named do_cfg is used to configure packets transmitted by master.

Syntax : do_cfg (Parameter_name,Parameter_value) ;

Example- do_cfg (`TLP_BYTE_COUNT,20);

 This configures the TLP header should have the length as 5DW.

A task named do_pkt is used to set the data along with the TLP.

Example : do_pkt(TLP_DATA,INCR);

 This specifies the data to be transmitted should be incremental.

Command Pool

 This is a data structure implemented which has a configurable storage

space, It is basically used here as a FIFO (First in First out).It has a 32-bit registers.All

the commands passed through test cases by using do_cmd and do_cfg’s are stored inside

this pool in the same order in which they are called .later one after the other are used by

ABFM-Master to prepare Packets.

 68

Tag queue

 This is also a FIFO .According to PCI-Express All the non-posted requests

namely MRD and IORD are assigned a unique Tag which is a 7-bit field specified inside

the header of all TLP’s .To maintain uniqueness the Tag queue is used to store the value

of tag whenever assigned.

Expected data queue

 This is basically a queue which is used for verification purpose.

Whenever a non-posted type request is fired by ABFM then the data return from the

device connected on the other side is written inside the Expected data queue, when data is

Returned with the help of the Tag the data is matched and data is compared. If data does

not match with the Expected once .then it is intimated as a Error

5.2.2 ABFM-SLAVE

 This block interacts with RTL, ABFM-Slave is responsible to receive the

TLPs forwarded by RTL towards user, This block implements 8 BAR memories of

configured sizes, they can be pointed by the signal named usr_rcv_bar_hit.

Depending on the address specified in the header of the received TLP data on the data

bus is written into memory. This block implements a data structure named Pool, which is

shared by ABFM-Master. Whenever a packet with out data is received by the ABFM-

Slave .Then completion packet is prepared by slave and it is stored inside the completion

pool. ABFM Master is responsible to pick out the packets from the completion pool and

they are transmitted towards TTL .

Cmd FIFO

 This is used to store the commands .This has 32-bit registers , the values

inside the register decides the Slave job ,either ACK should be asserted for the TLP or

RETRY or DISCARD should be asserted and also specifies when should assert WAIT .

All the signals in the interface driven by ABFM-SLAVE are configurable using test

cases.

 69

Cpl Fifo

 This has 32-bit register’s in a queue, Values inside each register specifies

the Completion Status in the Completion Packets prepared by ABFM_SLAVE. The

values inside the CPL_FIFO registers are specified by do_cfg’s written in test cases.

Completion Pool :

 This has 32-bit registers aligned .As explained previously This is a data

structure. This pool is used to store the completion packets prepared by ABFM_SLAVE

in response to the Non-Posted requests received by ABFM_SLAVE.

Note : This Pool is also sharable by ABFM-Master .Master is responsible to delete

packets from the Pool.

Base Address Registers (BAR):

 These are the Memory’s designed inside the Application layer .These are

configured by using defines as I/O or MEM bars. When ever Memory Transaction is

received then data associated is written into MEM BARs ,if the received is non-Posted

memory transaction then the completion packets are made using the MEM BARS.

Similarly I/O BARS are accessed for I/O transactions.

5.3 ABFM- MONITOR:

 This block is instantiated on the signal interface between the ABFM and

TTL and also RTL .This module has two state machines one tracks the ABFM-TTL

interface and the other tracks the ABFM-RTL interface. This module prints all the

transactions taking place on the Signal interface and gives the summary at the end of the

simulation.

5.4 ABFM-CHECKER:

 This block is instantiated on the signal interface between the ABFM and

TTL and also RTL. This module also has two state machines one tracks the ABFM-TTL

interface and the other tracks the ABFM-RTL interface. This module checks the signal

interface violations and displays the Errors correspondingly.

 70

Fig 5-3 Transaction with data payload

Fig 5-4 Transaction with DPl clock description

 71

For better understanding , a brief functional description is given of different blocks

described in the PCIe Block Diagram.

5.5 Functionality of PCIe block
5.5.1 Transmission Transaction Layer (TTL)

Primary function of the TTL (Transmitter Transaction Layer) is to receive the TLPs

and error signals from User Logic and RTL (Receiver Transaction Layer) which are

then forwarded to TDL (Transmitter Data Link Layer). It also generates error

message TLPs as requested by all layers. It performs a series of checks for TLPs to

be sent e.g TLPs, for which credits are not available or those have value of length

greater than Max_pay_load_size are not allowed to pass.

 5.5.2 Transmission Data Link Layer (TDL)

This block receives TLPs from TTL and stores them in the Retry Buffer on the fly. It

prepends sequence number and appends LCRC to TLP received from TTL or from

Retry Buffer during replay. This block also generates four types of DLLPs: Ack/Nak,

PM, UFCs and INIT -FCs. 64-bit(x4) data slot of LLTP is transmitted to TPL when

ready to receive data from TDL.

5.5.3 Transmission Physical Layer (TPL)

This block deals with the transmission of Transaction layer packets (TLPs), Data Link

Layer Packets (DLLPs) and Ordered Sets (OSs) on to the PCIe bus. The LLTP

(TLP/DLLP) stream is received from TDL which is distributed on the configured

lane(s). The data to be transmitted on each lane is then scrambled and passed on to

PHY for transmission on the PCIe bus. The OSs received from LTSSM is passed on

directly to PHY.

5.5.4 Link Training and Status State Machine (LTSSM)

This block is the Link Training and Status State Machine (LTSSM) part of the

physical layer. It deals with exchange of ordered sets with the other device to form

a configured link on which the useful data is transmitted.

 72

 5.5.5 Receive Physical Layer (RPL)

This block deals with the receiving of Transaction layer packets (TLPs) and Data Link

Layer Packets (DLLPs) from the PHY. The LLTP (TLP/DLLP) stream received from

PHY is processed to form valid LLTPs which are presented to RDL for further

processing.

5.5.6 Receive Data Link Layer (RDL)

This block receives LLTP (TLP or DLLP) from the RPL in the form of 64-bit(x4) data

Slots with the signal indicating whether the received data is part of TLP or DLLP. The

integrity and sequence number of the received LLTP is checked and processed.

5.5.7 Receive Transaction Layer (RTL)

The primary function of Receive Transaction Layer (RTL) block is to receive TLPs

from Receive Data Link Layer (RDL) and pass them on to the User Logic. RTL block

performs a series of checks (malformed TLP, UR or Configuration Request) on TLP

received from RDL before passing it to user logic. Completions generated for

Configuration Request and UR are passed on to the TTL block for transmission.

Configuration Requests which require access to user defined configuration area are

passed to User Logic. It updates credit information for all types of received TLPs.

RTL block decodes the received TLP for BAR hit and function hit and makes this

information available to User Logic along with the corresponding TLP. RTL block also

takes care of PCI Express ordering rules for transferring TLP to User Logic.

 73

5.6 Design of Transmission Transaction Layer (TTL)
Fig 5-5 Block Diagram Transmission Transaction Layer

 74

5.6.1 Description of block diagram
5.6.1.1 Info-Decoder

Info-Decoder extracts following information from header of the TLP.

• Header is either 3DW or 4DW wide

• Valid data in the first slot of TLP is either QW or DW

• If the value in length field is greater than the max_pay_load_size then the

transaction is aborted by assertion of usr_xmt_abort signal Information extracted

from first two points is used by Capture Logic for latching 64- bit slots of TLP in the

buffer.

5.6.1.2 FC-Checker

• Checks whether the credits required to process the transaction is greater

than the available credits. The request signal is forward ed to reordering

logic otherwise retry signal is asserted.

5.6.1.3 FC-Updater

• Generates the information regarding the availability of credits

• Updates the credit availability information depending upon the

rdl_ufc_credits, rdl_ufc_type, rdl_ufc_valid (credit information from RDL)

and credit information of transaction under process

• Does not update the credit information in case of nullified packet

• Informs Reordering Logic and FC-Checker about available credits

5.6.1.4 Capture Logic

• Capture Logic is pointer manager which manages the read and write

pointers for the 4DW Buffer as per information extracted by Info-decoder

5.6.1.5 ERR MSG TLP Generator*

• Generates Error Message TLP based upon the error message signals arriving from

User Logic or RTL.

 75

• Contains a configurable buffer to store error message signals

5.6.1.6 Reordering Logic

• Forwards request for the VC Arbiter to enable the corresponding VC, if request

asserted by user logic is forwarded from info-decoder when FC checker has passed

the available credits check request asserted by ERR MSG TLP Generator or RTL

• Generates acknowledge for the requests arriving from RTL, user logic or

error message TLP generator block

• Generates enable signal for MUX1 for selecting transaction from 4DW

 buffer, ERR MSG TLP generator or RTL

• Generates ttl_tlp_sop (start of packet) and ttl_tlp_ rdy (TL ready for

 transmission) signal for TDL

5.6.1.7 EOP Gen/Hold

• Generates eop (end of packet) signal for the error message TLP, and Config-

completion TLPs

• Manages holding of eop signal from the user logic for virtual channel 0 only

5.6.1.8 Boosting Buffer

• Used to avoid the large series of combo gating

5.6.1.9 MUX1

• Selects transaction from the ERR MSG TLP generator, 4DW buffer or Config-

completion/UR (Unsupported request) from RTL

5.6.1.10 VC Arbiter

• Generates select line for MUX2 signal using round robin and high priority

 algorithm

• Acknowledges reordering logic of one of the Virtual Channels

5.6.1.11 ECRC Calculator

• Calculates 32-bit ECRC for the 64-bit TLP slots

• Appends the ECRC to the TLP during the transmission of the last 64-bit

slot of the TLP.

 76

• In the last TLP slot transfer if only 32-bits are valid then ECRC is

appended within the same slot otherwise in the next one where only 32-bit CRC bits

are declared as valid

5.6.1.12 ECRC Buffer

• Maintains TLP stream while appending the 32-bit ECRC with TLP

• Provides buffered output from TTL

5.6.1.13 Arbiter Holder

• Holds switching of the arbiter until entire TLP is transferred

5.6.1.14 MUX2

• Selects transaction from the one of the eight virtual channels

Fig 5-6 TLP with 3DW Hdr, DW aligned data, 1DW data valid in last slot
Packet transmission from TTL to TDL

 77

 5.7 Design for Receive Transaction Layer (RTL)
 The primary function of Receive Transaction Layer (RTL) block is to

receive TLPs from Receive Data Link Layer (RDL) and pass them on to the User Logic.

RTL block performs a series of checks (malformed TLP, UR or Configuration Request)

on TLP received from RDL before passing it to user logic. Completions generated for

Configuration Request and UR are passed on to the TTL block for transmission.

Fig 5-7 Block Diagram of Receive Transaction Layer

 78

5.7.1 Description

5.7.1 Control Logic:

This logical sub-block generates control signals like start of packet, end of packet,

etc for other sub-blocks of RTL thus ensures synchronization between all sub-blocks.

5.7.2 Decode Block:

This sub-block decodes the header of received TLP and makes the following

information available to other sub-blocks:

• BAR decoding information using decoded_bar[7:0] signal

• Function decoding information using decoded_func[2:0] signal. This information

is required by User Logic along with BAR decoding information to complete the

address decoding information.

• VC decoding information using decoded_vc[7:0] signal. One bit from this set of

signals goes to the corresponding VC thus enabling the VC, which is intended

recipient of TLP.

• When a TLP is received with a TC mapped to an uninitialized VC this sub-block

asserts its decoded_vc_init_err signal. Other sub-blocks if find this signal asserted for

a received TLP, discard the TLP and credits are not updated for the same.

• When a TLP is received with invalid Fmt -Type combination, this sub-block

asserts its decoded_inv_typ signal. Other sub-blocks if find this signal asserted for a

received TLP, discard the TLP and credits are not updated for the same.

5.7.3 TLP Checker:

This sub-block checks the TLP being received from RDL and reports other sub-blocks

for an erroneous TLP.

• This sub-block checks for a malformed TLP

• ECRC check is also made by this block if TD bit is set in received TLP header

• For an error in received TLP, this sub-block:

• asserts signal tlp_chk_discard_pkt to indicate that the received TLP is to be

discarded

• informs FC updater of corresponding VC to update credits

• request TTL to send an error message

 79

• FC update is performed only when no error is reported by RDL and Decode sub-

block

5.7.4 UR and Cfg Handler:

This sub-block handles configuration and unsupported requests.

• For configuration requests this sub-block:

• performs the corresponding read/write in configuration space

• generates completion and requests TTL for its transmission

• requests FC updater of VC0 to updates np credits once complete TLP is received,

is not malformed, no error (like LCRC error) is reported by RDL and finally TTL

accepts the request for transmitting completion

• Request to TTL for transmitting completions and read/write in configuration

space is made only when complete TLP is received, is not malformed and no error

(like LCRC error) is reported by RDL

• For poisoned configuration write a completion is sent with UR status

• Configuration requests targeting user defined configuration space are not handled

by this sub-block and are passed to User Logic.

• For unsupported requests this sub-block:

 generates completion with UR status for np requests and requests TTL for

its transmission,

 requests FC updater of corresponding VC to update credits once complete

TLP is received, is not malformed, no error (like LCRC error) is reported

by RDL and TTL accepts the request for transmitting completion in case of

np request.

• requests TTL for sending an error message

• Request to TTL for transmitting completions and error message is made only

when complete TLP is received, is not malformed and no error (like LCRC error) is

reported by RDL.

• This sub-block also make some additional checks like unsupported completion

type, unexpected completion (Requester ID mismatch).

• Data and handshake signals for transferring configuration and UR c ompletions to

TTL are separate for each VC. This is required to maintain independent flow of

 80

traffic through each VC.

5.7.5 Write Manager:

This sub-block manages storing of received TLPs into receive buffer.

• Each VC has a dedicated receive buffer and thus dedicated write/read managers

and FC updater as shown in block diagram.

• Receive buffer of a VC is further divided into three different parts one each for

posted requests, non-posted requests and completions. This makes retry and masking

for a particular type of transaction from user logic easier.

• Write manager stores TLP only if the corresponding VC is intended recipient of

the TLP and there is no error in the TLP.

• An error may be reported in the TLP by RDL or TLP Checker sub-block when the

packet is being stored. In such a case write manager discards whatever was stored in

buffer and restores the write pointer.

5.7.6 Read Manager and Reordering Logic:

This sub-block reorders and transfers TLPs from receive buffer to User Logic.

• Each VC has a dedicated read manager as explained earlier

• For transferring a TLP to User Logic, Read Manager:

• places header information on us r_rcv_hdr[127:0]

• asserts usr_rcv_req to request User Logic for TLP transfer

• places data on usr_rcv_data[63:0]

• places BAR hit information on usr_rcv_bar_hit[7:0]

• places function hit information on usr_rcv_func_hit[2:0]

• Read Manager also takes care of QW aligned address while placing data on data

bus usr_rcv_data[63:0]. If Addr[2] bit is one i.e. address is not QW aligned,

read manager places first dword of data to be transferred on usr_rcv_data[63:32] and

contents of usr_rcv_data[31:0] are don’t care

• Read Manager is also responsible for making byte enable information

available to User Logic while transferring data

• When a complete TLP is transferred to User Logic Read Manager requests FC

updater of corresponding VC to update credits Read Manager is also responsible

 81

for reordering of TLPs when a retry is given or a particular type of TLP is halted

for time being by User Logic

• Reordering of TLP is done according to PCI Express transaction ordering

rules

5.7.7 FC Updater:

 On every update it triggers Update FC Notifier sub-block to send a request to

TDL for transmitting Update FC DLLP.

 Credits are updated:

 when a malformed TLP is received with a valid Fmt -Type combination as

reported by TLP Check sub-block

 when a complete TLP is transferred to User Logic as reported by Read Manager

sub-block

 when a transmission of configuration request completion is started by TTL as

requested by UR and Cfg Handler sub-block

 when transmission of an unsupported request completion is started by TTL as

requested by UR and Configuration Handler sub-block

 Credits are not updated:

 when a TLP is received with a TC mapped to uninitialized VC as reported

 by Decode sub-block

 For a TLP with invalid Fmt, Type combination as reported by decode sub block

 when a received TLP causes the receive buffer overflow

 Credit information related to completion buffer space is made available to TTL

by this sub-block. TTL if finds insufficient completion credits gives retry for a TLP

 transmit request from User Logic.

5.7.8 Update FC Notifier:

 This sub-block request TDL for sending Update FC DLLP.

 FC Updater sub-blocks of each VC report to this sub-block for any credit update.

 This sub-block then selects any one of those VC’s and sends a request to TDL

indicating that an update DLLP transmission is scheduled.

 Following information is made available to TDL for sending update DLLP:

 82

 VC whose update credit is scheduled to be transmitted using signal

rtl_ufc_vc_sel[2:0]

 updated credit value using signal rtl_ufc_credits[19:0]

 credit type: posted, non-posted using signal rtl_ufc_typ_sel

 Request to TDL for transmitting update FC is made by asserting signal

rtl_ufc_req

 TDL acknowledges the request by asserting signal tdl_ufc_ack

Fig 5 -8 TLP transfer from RDL to User Logic without Error

Assumptions:

o 3 DW header , TLP includes data

o Address is QW aligned , X4 link established

o TLP is well formed and can be passed to User Logic

 83

Fig 5-9 TLP transfer from RDL to User Logic without Error

In the above waveform RDL passes the packet to RTL and that is forwarded by

RTL to user logic.

5.8 Verification Environment:
 Before going into the results .Let us know about the total environment

how different modules are connected and how the transactions are fired and how outputs

are displayed

 We have two ends where we are interested into check the outputs.

o One is ABFM(user logic) interface .We have got ABFM-Monitor which displays

the values on the Interface bus .

o Second one is the Interface between the device connected between the PCI-

Express core and the device connected .Here we connected an BFM(Bus Function

Model) of PCI-Express which is configured as RC(root –complex).Here there is

another Monitor printing the values on the differential signals .This prints all the

training ordered sets used for link negotiations.

What Is a BFM ?

A BFM simply models the bus interface of some unit, regularly a microprocessor. It does

not contain the RTL or gate level specifics of the unit’s internal workings. The purpose of

a BFM is to gain simulation speed, ease of use, and ease of creation.

 84

Fig 5-10 Verification Environment

Here DUT includes the PCI-Express core which includes Physical-layer to

Application BFM

5.8.1 What is Verification?

Verification is not synonymous with simulation. It is a strategy to make sure all aspects

of the system meets the specification document, while simulation is a tool used in the

verification effort. The basic components of verification are shown in “The Verification

Pyramid” below .

Fig 5-11 Verification Pyramid

 85

Test Scenario or Application Layer

This layer is the highest level of interaction with the DUT for test suite creation. At this

level, users will have control over creating a combination of different test scenarios based

on the specific application. Through setting parameters either in the constraint segments

of the class or parameters for the sequence generation, pseudo-random test suites can be

generated. Checking the results is of course more domains specific..

Application Layer here is designed as ABFM.

5.9 Results and Observations :
 Here we present the output of the Design through the two monitors tracking

on both ends of the PCI-Express core .

 As shown in the ABFM Output (Refer to APPENDIX for Output Log files)

Memory and IO transactions are transmitted from ABFM. As we can see the output

obtained in the log files written by Monitors and Protocol Checkers Present at both ends

of the PCI-Express Core check for violations.

In the physical layer the packet is serialized and then they are transmitted on to the Links

that are detected during the Link training .Link training is the process of negotiating the

link, lane width and data transmission rate. This is done by symbol encoding at the PHY

interface, there are special symbols called Training ordered sets used for training

process.

 From BFM-OUTPUT It can be seen that Link training is done by transmitting

the ordered sets namely TS1, TS2, SKIP, IDLE. These out puts are displayed by BFM-

Monitor present on the link. It can also be observed that all the packets transmitted from

the ABFM are transmitted on the link differentially.

 86

Chapter 6

SUMMARY AND CONCLUSION

 The work in this thesis presents an approach to design Transaction Layer

of PCI-Express and to verify it by the design of configurable Application Layer

named here as Application Bus Function Model (ABFM). The design for the Transaction

Layer implemented here produces one of the optimized cost-effective structures for the

design of PCI-Express core.

 PCI Express provides many benefits to the workstation designer and to

workstation customers. These benefits result from the architecture, the implementation

and standardization.. Also, because the low pin count of the links, workstation designers

have much more flexibility in designing electromechanical layouts, potentially lowering

costs and increasing serviceability. PCI Express will serve as a general purpose I/O

interconnects for a wide variety of future computing and communications platforms.

Gradually PCI Express will replace PCI and PCI-X as the core I/O subsystem for

workstations4. In the meantime, customers will gain immediate benefit from the features

of PCI Express while protecting their current investments in I/O devices, software and

operating environments.

 87

FUTURE SCOPE :

 PCI Express will serve as a general purpose I/O interconnect for a

wide variety of future computing and communications platforms.The approach for the

design of Transaction Layer described in this thesis is synthesized on X1,X2 and X4

Further it can be extended and can be synthesized on X16,X32 . This thesis work uses

PCI-Express base 1.0 a as guide which is generation one of PCI-Express ,the design

described can further extended and can be implemented following PCI-Express Base 2.0

which is generation two of PCI-Express. PCI-Express generation two can transfer data

still more faster at 5 Giga bits/sec as compared to 2.5 Giga bits/sec of generation one.

 Verification PCI-Express at 2.5 Gigabits/sec had been a very

expensive task .The approach used in this work is formal verification .The performance

of the design can be further enhanced by testing the design using Enhanced Loop back

technique.

 88

APPENDIX : ABFM-MONITOR OUTPUT

 89

 90

 91

BFM output

 92

 93

 219280 D 021 01 MWR 2 01c -------- 34000018 000001ff 4000801c f f 0000 ---- ------ -- 01 007 1 0
 -------- 34000018
 06070809 02030405
 0e0f1011 0a0b0c0d
 16171819 12131415
 1e1f2021 1a1b1c1d
 26272829 22232425
 2e2f3031 2a2b2c2d
 36373839 32333435
 3e3f4041 3a3b3c3d
 46474849 42434445
 4e4f5051 4a4b4c4d
 56575859 52535455
 5e5f6061 5a5b5c5d
 66676869 62636465
 6e6f7071 6a6b6c6d
 219520 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 219720 U 020 00 MWR 2 01c -------- ff000018 010000ff 4000001c f f 0100 ---- ------ -- 01 007 0 0
 -------- ff000018
 08070605 04030201
 100f0e0d 0c0b0a09
 18171615 14131211
 201f1e1d 1c1b1a19
 28272625 24232221
 302f2e2d 2c2b2a29
 38373635 34333231
 403f3e3d 3c3b3a39
 48474645 44434241
 504f4e4d 4c4b4a49
 58575655 54535251
 605f5e5d 5c5b5a59
 68676665 64636261
 706f6e6d 6c6b6a69
 219760 D 022 00 IO_WR 2 001 -------- 1230001c 00000009 42008001 9 0 0000 ---- ------ -- 01 001 1 0
 -------- 1230001c
 -------- 02030405
 219800 U --- -- IDLE - 001 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 220000 U 021 00 MWR 2 001 -------- ff00001c 01000009 40000001 9 0 0100 ---- ------ -- 01 001 0 0
 -------- ff00001c
 -------- 04030201
 220000 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221120 U 022 00 MWR 2 017 -------- ff000028 010000ff 40000017 f f 0100 ---- ------ -- 01 006 0 0
 -------- ff000028
 08070605 04030201
 100f0e0d 0c0b0a09
 18171615 14131211
 201f1e1d 1c1b1a19
 28272625 24232221
 302f2e2d 2c2b2a29
 38373635 34333231
 403f3e3d 3c3b3a39
 48474645 44434241
 504f4e4d 4c4b4a49
 58575655 54535251
 -------- 5c5b5a59
 221120 D 023 09 MWR 2 017 -------- 34000028 000009ff 40008017 f f 0000 ---- ------ -- 01 006 1 0
 -------- 34000028
 06070809 02030405
 0e0f1011 0a0b0c0d
 16171819 12131415
 1e1f2021 1a1b1c1d
 26272829 22232425
 2e2f3031 2a2b2c2d
 36373839 32333435
 3e3f4041 3a3b3c3d
 46474849 42434445
 4e4f5051 4a4b4c4d
 56575859 52535455
 -------- 5a000000
 221360 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221400 D 020 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221400 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221440 U 022 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221480 D 021 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221640 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 221720 D 024 01 MRD 0 014 -------- 56000054 000001ff 00008014 f f 0000 ---- ------ -- 01 --- 1 0
 -------- 56000054
 221800 D --- -- IDLE - 001 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -

 94

 221800 U 023 00 MRD 0 014 -------- ff000054 010000ff 00000014 f f 0100 ---- ------ -- 01 --- 0 0
 -------- ff000054
 221840 D 022 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222080 D 025 02 IO_RD 0 001 -------- 12300008 00000208 02008001 8 0 0000 ---- ------ -- 01 --- 1 0
 -------- 12300008
 222120 U --- -- IDLE - 007 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222160 U --- -- UFC_P - --- -------- -------- -------- -------- - - ---- ---- ------ 0 21 207 - -
 222240 D --- -- IDLE - 003 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222360 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222440 D 026 03 CFG_RD0 0 001 -------- 01000000 00000302 04008001 2 0 0000 ---- ------ -- 01 --- 1 0
 -------- 01000000
 222600 U 024 00 MWR 3 001 00000001 ff000008 01000008 60000001 8 0 0100 ---- ------ -- 01 001 0 0
 ff000008 00000001
 -------- 04030201
 222680 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222720 D 023 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222920 U --- -- IDLE - 007 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 222960 U 023 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223000 D 027 04 IO_WR 2 001 -------- 12300078 00000404 42008001 4 0 0000 ---- ------ -- 01 001 1 0
 -------- 12300078
 -------- 02030405
 223040 U --- -- UFC_NP - --- -------- -------- -------- -------- - - ---- ---- ------ 0 a0 211 - -
 223120 U 024 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223160 D --- -- IDLE - 003 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223200 D 024 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223320 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223440 D 028 05 MRD 0 00e -------- 3400002c 000005ff 0000800e f f 0000 ---- ------ -- 01 --- 1 0
 -------- 3400002c
 223520 U 025 00 MWR 2 001 -------- ff000000 01000002 40000001 2 0 0100 ---- ------ -- 01 001 0 0
 -------- ff000000
 -------- 04030201
 223600 D --- -- IDLE - 003 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223800 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223840 U 026 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 223840 D 029 06 MRD 1 005 00000007 89000018 000006ff 20008005 f f 0000 ---- ------ -- 01 --- 1 0
 89000018 00000007
 224040 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224080 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224120 D 025 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224200 U 026 00 CPL 0 000 004 00 01000004 0a000000 - - 0000 0100 SC -- 01 --- 0 0
 -------- 00000000
 224280 U --- -- IDLE - 001 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224400 D 02a 07 MRD 1 003 00000007 89000020 000007ff 20008003 f f 0000 ---- ------ -- 01 --- 1 0
 89000020 00000007
 224480 U 027 00 MWR 2 001 -------- ff000078 01000004 40000001 4 0 0100 ---- ------ -- 01 001 0 0
 -------- ff000078
 -------- 04030201
 224480 D --- -- IDLE - 001 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224720 D 02b 08 MRD 1 005 00000007 8900001c 000008ff 20008005 f f 0000 ---- ------ -- 01 --- 1 0
 8900001c 00000007
 224760 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224800 U 028 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 224880 U --- -- UFC_P - --- -------- -------- -------- -------- - - ---- ---- ------ 0 22 20d - -
 224960 D --- -- IDLE - 005 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225000 D 026 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225160 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225280 D 02c 09 MRD 1 012 00000007 89000044 000009ff 20008012 f f 0000 ---- ------ -- 01 --- 1 0
 89000044 00000007
 225360 U 028 03 CPLD 2 001 004 00 01000004 4a000001 - - 0000 0100 SC -- 01 001 0 0
 -------- 00000300
 -------- af180000
 225360 D --- -- IDLE - 001 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225400 D 027 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225640 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225680 U 029 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 225760 U --- -- UFC_NP - --- -------- -------- -------- -------- - - ---- ---- ------ 0 a2 211 - -
 225840 U 02a -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226040 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226240 U 029 01 MRD 1 005 00000001 ff000018 010001ff 20000005 f f 0100 ---- ------ -- 01 --- 0 0
 ff000018 00000001
 226520 U --- -- IDLE - 006 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226560 U 02b -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226640 U --- -- UFC_NP - --- -------- -------- -------- -------- - - ---- ---- ------ 0 a3 211 - -
 226720 U 02c -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226920 U --- -- IDLE - 004 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 226960 D 02d 03 MWR 3 020 00000007 8900003c 000003ff 60008020 f f 0000 ---- ------ -- 01 008 1 0
 8900003c 00000007
 06070809 02030405
 0e0f1011 0a0b0c0d
 16171819 12131415
 1e1f2021 1a1b1c1d
 26272829 22232425
 2e2f3031 2a2b2c2d
 36373839 32333435
 3e3f4041 3a3b3c3d
 46474849 42434445
 4e4f5051 4a4b4c4d
 56575859 52535455
 5e5f6061 5a5b5c5d
 66676869 62636465
 6e6f7071 6a6b6c6d
 76777879 72737475
 7e7f8000 7a7b7c7d
 227120 D --- -- IDLE - 003 -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 227160 D 028 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -
 227240 D 029 -- ACK - --- -------- -------- -------- -------- - - ---- ---- ------ -- -- --- - -

 95

REFERENCES

[1] Eugin Hyun, Kwang-Su Seong, “The design of PCI Express for future

communication platform”Intelligent Signal Processing and Communication Systems,

2004. ISPACS 2004. Proceedings of 2004 International Symposium on 18-19 Nov. 2004

Page(s):734 - 739

[2] Dhawan, S.K“ Introduction to PCI Express - A New High Speed Serial Data Bus”

Nuclear Science Symposium Conference Record, 2005 IEEE Oct 23 - 29, 2005

Page(s):687 - 691

[3] Min-An Song, Ting-Chun Huang, Sy-Yen Kuo “A Functional Verification

Environment for Advanced Switching Architecture”

Electronic Design, Test and Applications, 2006. DELTA 2006. Third IEEE International

Workshop on 17-19 Jan. 2006 Page(s):201 – 204

[4] Aguilar, M, Veloz, A, Guzman. M Proposal of implementation of the "data link

layer" of PCI-express Electrical and Electronics Engineering, 2004. (ICEEE). 1st

International Conference on 24-27 June 2004 Page(s):64 – 69

[5] Abdennadher, S.; Shaikh, S.A “Challenges in High Speed Interface Testing”

 Test Symposium, 2005. Proceedings. 14th Asian 18-21 Dec. 2005 Page(s):468 - 468

[6] Dawson,C Pattanam, S.K, Roberts. D “ The Verilog Procedural Interface for the

Verilog Hardware Description Language” Verilog HDL Conference, 1996. Proceedings.,

1996 IEEE International 26-28 Feb. 1996 Page(s):17 – 23

[7] Szu-Tsung Cheng, Brayton, R.K. York, G. Yelick, K. Saldanha, A Compiling Verilog

into timed finite state machines Verilog HDL Conference, 1995. Proceedings., 1995

IEEE International 27-29 March 1995 Page(s):32 – 39

[8] PCI-Express Base specifications 1.0a PCI-SIG

 96

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9826
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9826
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10641
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10553
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10553
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9798
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9798
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10525
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3561
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3561
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3876
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3876

[9] Plessier.B, Pixley.C.” Formal verification of a commercial serial bus interface”

 Computers and Communications, 1995. Conference Proceedings of the 1995 IEEE

Fourteenth Annual International Phoenix Conference on 28-31 Mar 95 Page(s):378 – 382

[10] A samir Palnitkar “Verilog –HDL tutorial”

 97

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3317
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3317

	 PCI Express provides a high-speed, high-performance, point-to-point, dual simplex, differential signaling Link for interconnecting devices. Data is transmitted from a device on one set of signals, and received on another set of signals.
	Chapter 4
	
	Fig 4-1 Transaction Layer Overview
	The transaction layer receives read and write requests from the software layer and creates request packets for transmission to the link layer. All requests are implemented as split transactions and some of the request packets require a response packet. The transaction layer also receives response packets from the link layer and matches these with the original software requests. Each packet has a unique identifier that enables response packets to be directed to the correct originator. The packet format offers 32-bit memory addressing and extended 64-bit memory addressing. Packets also have attributes such as “no-snoop,” “relaxed ordering,” and “priority,” which may be used to route these packets optimally through the I/O subsystem.
	
	Fig 4-2 software Layers operating on PCI-Express Layers
	 The transaction layer provides four address spaces – three PCI address spaces (memory, I/O and configuration) and message space. PCI 2.2 introduced an alternate method of propagating system interrupts called message signaled interrupt (MSI). Here a special-format memory-write transaction was used instead of a hard-wired sideband signal, as an optional capability in a PCI 2.2 system. The PCI Express specification reuses the MSI concept as a primary method for interrupt processing and uses a message space to accept all prior sideband signals, such as interrupts, power-management requests, and resets, as in-band messages. Other “special cycles” within the PCI 2.2 specification, such as interrupt acknowledge, are also implemented as in-band messages. You could think of PCI Express messages as “virtual wires” because their effect is to eliminate the wide array of sideband signals currently used in a platform implementation.

