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ABSTRACT 

 

                                                                                                                                    

This work is aimed at designing Neural Autopilot controllers for Pitch 

and Roll channels using linear aircraft model, created with MATLAB 

/ SIMULINK tool-box and investigation of the Model Response 

during various phases of flight like climb, cruise and landing using 

MATLAB. The behavior of aircraft can be described using a set of 

non-linear differential equations, assuming six degrees of freedom (3 

linear motions and 3 angular motions) about x, y & z axes. The 

solutions to these set of equations are very complex and for 

investigation purpose they can be approximated to linear differential 

equations assuming 3 degrees of freedom for the subject aircraft 

model. The input to the system for pitch attitude are U, α,θ, θ_dot and 

h. The output to pitch control channel is δe , the elevator deflection.  

The input to the system for roll  attitude are β,φ,ρ,Ψ and r.  The output 

to roll control channel is δr , the aileron deflection. The simulation 

data in the above study are converted to discrete space data and used 

for training  neural network controllers based on different architecture 

and method of training. These neural network controllers will adapt 

the behavior of conventional controllers in pitch/roll/yaw axes. An 

analysis of the performance is carried out using trained neural 

networks and comparative performance study is also done. 
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CHAPTER 1 

INTRODUCTION 
 

1.1    PREFACE 

 

The design of an aircraft involves solving a set of non linear equations of motion 

in six degrees of freedom  ( three linear motions and three angular motions). The 

task of solving control problem of airspace vehicles is more complex, since these 

are required to operate over a wide rage of altitude, air-speed and maneuvers. In 

addition  environment disturbance factors affect aircraft performance to a large 

extent at lower altitudes. Also in practical terms, stability and manoeuvrability are 

complementary to each other in aircraft design. So, the aircraft behaviour is 

unstable in certain operating conditions. Due to non– linearties involved in 

equations of motion, design of control system components for aircraft is a more 

challenging task. 

 
Due to advancement in technology, aircraft controls have become more and more 

sophisticated. Mechanical controls have been replaced with more powerful 

hydraulic actuators. Today, specialized flight control computers and more 

sophisticated electro-hydraulic actuators and sensors have been successfully 

employed in aircraft control in ‘fly-by-wire’ architecture. 

 

The evolution of UAVs (Unmanned Aerial Vehicle) is also linked to the 

advancements in   technology in the following areas. 

 Production   of   light   composite   materials   used   in  airframe construction, 

 Electrical   Flight    control   system    components   of    fly-by-wire     design. 

 Advanced  flight  control  computers  using  modern  hardware  and  software. 

 Availability of  simulation techniques using software tools like MATLAB and         

AEROSPACE SIMULATION PROGRAMS  conducted  by leading aerospace    

research  organizations  and  defense research  establishments. 

                                                                                                                                                                         



 

 

 

 Complex  and non-linear control problems have been solved using powerful 

software tools and advanced techniques like fuzzy logic and neural network.  

 Today, controllers in many engineering control applications are being 

designed using neural network architecture and learning algorithms which 

simplify the process of controller design and  take care of most of the  complex  

nonlinear problems. Once programmed, these controllers adapt to changes in 

system response over time and in few cases are designed to be failure tolerant . 

The same techniques are being applied in the design of  controllers employed in 

airspace vehicles . 

 

1.2. DESCRIPTION 
 

Though extensive application of neural network technique is found in areas like 

pattern recognition and intelligent data-processing like data compression, 

encryption, decoding etc, its application to control  systems too is steadily 

increasing. In this project, using MATLAB / SIMULINK control system / neural 

network toolboxes and programming, neural network controller design for pitch , 

roll and landing autopilot control of a model UAV is  explored and compared to 

those of conventional controller design. The salient features of an UAV are:- 

 

 It is fully dependent on onboard controllers and instruments for monitoring 

and for operating. 

  It is intend to be monitored and controlled by remote operator through radio 

links. 

  It is intended to be fully controllable in its flight envelope by on board 

autopilot controllers. 

 It is a light vehicle designed with optimum maneuverability and optimum 

stability.  

                                                                                                                                                                         



These points make the design of autopilot controllers a special case. It is desired 

to design and study the performance of Neural Network controllers in auto-pilot 

controllers of an UAV. The work is outlined below. 

 

 

1.3 OUTLINE OF THE THESIS 
 

In this work, the following methodology is adopted, using MATLAB / Simulink 
tools: 

 First, using state space models, the open-loop response of aircraft in pitch and 

roll axes are investigated. 

  Then PID controllers are introduced in the control loop of pitch and roll axes 

and the closed loop responses are investigated.  

 The PID controller parameters are tuned using Ziegler – Nichols methods for 

optimum- performance. 

 Three layer feed – forward and three layer cascaded feed-forward neural 

networks are chosen and trained using back – propagation algorithm in 

MATLAB / Simulink neural network toolbox. 

 Requisite training data is generated using model-reference open-loop 

simulation in pitch and roll and used for training individual neural network 

controllers for  pitch and roll channels. 

 Once trained, these controllers are introduced in pitch and roll autopilot 

closed-loop channels and their  performance is evaluated using simulation. 

 Next performance of neural network controller in landing phases on glide 

slope and flare control are studied.  

 Finally, a comparative performance analysis for Conventional controllers  and  

 Neural Network controllers is provided. 

               

1.4. DISSECTION OF DISSERTATION   

 
Chapter-2 presents literature overview about UAVs and neural Net Work theory 
and applications. 

                                                                                                                                                                         



Chapter-3 presents basic aircraft dynamics in 6 degrees of freedom (6-DOF) and 

de-coupled form in 3-DOF. Derivation of longitudinal (pitch-axis) and lateral 

(roll-axis) equations of motion and their characteristics , aspects of important 

stability and control derivatives  are explained. Derivation of state-space models 

in pitch and roll are also presented in this chapter. 

 

Chapter-4 and 5 ,Automatic Flight control system  (AFCS) 

And autopilots are explained. UAV flight control system architecture is also 

explained. 

Chapter-6 presents conventional auto-pilot architecture using PID controller in 

pitch and roll. Aircraft Landing system architecture is also explained 

Chapter-7 presents MATLAB/ SIMULINK study of conventional autopilot 

performance in pitch, roll and landing phases. 

Chapter-8 gives a brief introduction to Artificial Neural Networks and their scope 

in developing autopilot controllers for aircraft. 

Chapter-9  presents simulation study results of comparative performance analysis 

between conventional and neural network  autopilot controllers. 

         

          

                     

 

                                                                                                                                                                         



 
                                            CHAPTER 2 
                                            LITERATURE REVIEW 
 
 
2.1. HISTORICAL DEVELOPMENT OF NEURAL NETWORKS. 
 

 1943 – McCulloch and Pitts: start of the modern era of neural 
networks  
This form of logical calculus of neural networks. A network consists of 

sufficient number of neurons (using a simple model ) and properly set 

synaptic connections can compute any computable function. A simple 

logic function is performed by a neuron based upon the weights set in 

the McCulloch-Pitts neuron. The most important feature of this type of 

neuron is the concept of threshold. When the net input to a particular 

neuron is greater than specified threshold by the user, then the neuron 

fires. Logic circuits are found to use this type of neurons extensively. An 

explicit statement of a psychological learning rule for synaptic 

modification was presented . 

 1949 – Hebb’s book “ The Organization of behavior ” suggesting the 

continuous changing connectivity of brain neuron cells are the basis of 

learning. 

 1958 – Rosenblatt introduces Perceptron ( Block [1962], Minsky and 

Papert [1988]) Introduced the concept of adjusting connection weights 

to reproduce target outputs. They showed that Large number of input 

samples and corresponding targets achieved convergence, suggesting 

‘learning’ property. 

 1960 – Widrow and Hoff introduce ADALINE. Abbreviated from 

Adaptive Linear Neurons , ADALINE uses LMS (least mean square) or  

delta rule. Net weights are adjusted to minimise difference between the  

Q (net-input minus net-output) and T(desired output),  using mean square 

error reduction rule  for convergence. 

 

                                                                                                                                                                         



 1982 – John Hopfield’s networks . Based on dynamically stable and 

associative memory networks with ‘ísing spin glass’ type of model this 

work showed the ‘memory’ function of neural net. This useful work led 

to modeling in systems. 

 1972 – Kohonen’s   Self Organizing Maps ( SOM ) Making use of 

topographical mapping on data structures, this work showed the method 

of reproducing brain functions like recall and reproduce. It found 

applications in pattern recognition .  

 1985 – Parker, 1986 – Lecum: Important work introduced ‘back 

propagation algorithm’ and led to its application in many multi-layer 

network design . 

 1988 – Grossberg. This work which introduced application of counter 

propagation net, uses learning rule similar to Kohonen’s self organising 

maps. Training affects all cell layers without any competition between 

them.   

 1987, 1990 – Carpenter and Grossberg. Introduced Adaptive 

Resonance Theory (ART)  for both digital and continuous systems. The 

ART net can accept input pattern in any order or sequence. 

 1988 – Broomhead and Lowe. Introduced RBF or Radial Basis 

Functions similar to back propagation algorithm applied on multi-layer 

neural net. 

 1990 – Vapnik developed the support vector machine. 

 1999-Maass .W. and Bishop: Introduced Spiking Neuron network. With  

sigmoid or linear transfer function for hidden layer neurons, the network 

can approximate any function or behave like ‘universal approximator’. 

 2003- Hasler .P. and Duggar.J.- Explored hardware development of 

neural networks using electronic hardware like transistor / 

MOSFET/Analog VLSI circuits.  

 

                                                                                                                                                                         



 

2.2. JOURNALS AND ORGANIZATIONS 

Journals and organizations involved in the advancement of neural network 

applications, research and development are listed below: 

 IEEE Neural Network Homepage 

 International Neural Network Society and Networks journal 

 IEEE Transactions on neural networks 

 IEEE Transactions on Fuzzy systems  

 IEEE transaction on evolutionary computation 

 Neural Computation 

 

2.3 SOFTWARE RESOURCES AVAILABLE ON THE NET 

There is a continuous contribution to neural network theory in the software sector, 

in line with the research and development work. A vast amount of application  

software and tools are available on – line. Below is the list of some leading groups 

in this area: 

 PDP ++: Parallel Distributed Processing software in C++ 

 NETLAB Toolbox: An extensive MATLAB toolbox for  

      statistical pattern and Neural Networks 

 SNNS, JavaNNS Simulators: Stuttgart Neural Network  

     Simulator in C  and Java 

 SOFM Toolbox:  A MATLAB toolbox for SOFM Simulation  

  Helsinki University Research Laboratories. 

 GENESIS : General Neural Simulation System Caltech. 

 Hodgkin – Huxley Toolbox : A MATLAB toolbox for  

     Hodgkin – Huxley model simulation. 

 SVM  toolbox : Support Vector Machine  MATLAB toolbox. 

 

                                                                                                                                                                         



 

2.4. EVOLUTION OF UAV 

The Aircraft history dates back to the beginning  of 20th century. Initial designs 

were lacking aspects of stability, maneuverability and automatic control. Concept 

of Autopilot  was first introduced in 1927 and after the world wars there was a 

rapid growth in aviation in the areas of materials , designs , turbojet engines, 

control system components and aviation electronics.  Autopilots evolved with 

more sophistications. Sensors and instruments also saw a radical change in their 

design and performance. The first experimental automatic landing system was 

introduced in 1943. In 1949 foundation for the application of adaptive control 

theory in aircraft systems was  laid. This led to application of  conventional 

autopilots employing adaptive control theory. Serious nonlinear and stability 

problems were successfully tackled using ‘gain scheduling’ and ‘robust 

controller’  designs. In 1950s AFCS architecture were developed using Model-

Reference Adaptive control systems. In1960s , Stochastic problems arising due to 

atmospheric disturbances were investigated  and tackled. With the advancements 

in semiconductor technology, more electronic hardware were introduced in 

aircraft applications. In 1980s  autopilots were introduced in the navigation loops . 

Using either inertial navigation or radio navigation , the aircraft could be 

commanded by  onboard computers over long inter continental flights. 

Development of advanced  LSI and VLSI semiconductors  for analog and digital 

applications, readily saw an impact in aviation electronics. More robust and 

sophisticated control and navigation equipment with far low weight and power 

consumption   are steadily evolving, even today. With advent of GPS and other 

terrain navigational aids the aircraft can fly virtually pilot-less. With all this 

developments in the background there  was an increasing demand for pilot-less 

vehicles for espionage, reconnaissance, scientific aerial expeditions and 

commercial applications in civil survey, agriculture and forestry .With the 

availability of advanced light weight composite materials, efficient propulsion 

systems and low power consuming electronic hardware, today, UAVs are viable 

to produce commercially. The main requirements for UAV application are fully 

                                                                                                                                                                         



autonomous onboard computers for control, navigation  and telemetry.  This 

makes demand for artificial intelligence applications like   fuzzy logic and Neural 

Networks in the development of these components. A large amount of technical 

and web resources are available today in this area. Some of the important 

technical references are listed below:   

Reference :1. Bringing command and control of UAVs Down to Earth. A paper 

by Benjamin Bell  of CHI Systems,Inc and John Clark , Lockheed-Martin 

Aeronautics Co.--IEEE 2002. 

3. IEEE paper on robust control applications in UAV control (2004) by Hiroki 

Nakanishi and Koichi Inoue. Discussion on ways to tackle Stochastic uncertainty 

to wind speed, Robust control system design by use of neural networks and its 

application to UAV flight control components. 

4.Survey of Unmanned Aerial Vehicle , Richard M. Howard and Isaac Kaminer. 

Proceedings of American control conference, Seattle, Washington, June 1995. 

5. Development of flight test system for UAV by Isaac Kaminer, Eric Hallberg,    

Antonio Pascoal, IEEE Transaction on control systemFeb-1999. 

6.Artificial Intelligence and Expert systems for Avionics. By Lee H. Harrison and 

Pamela J Saunders of Galaxy Scientific Corporation;  NJ and Peter J Saraceni, Jr 

of FAA Technical Centre , NJ.—IEEE control systems journal July 1993. 

7. A paper on self-organizing Fuzzy-neural network based Autopilot system for 

Automated vehicle. Pergamon article on neural network Volume – 14, 2001, Page 

10992-1122. 

8. AI technique using Fuzzy based applications techniques in UAV:  Warren R. 

Dufrence Jr. Nova South-Eastern University. IEEE A&E Systems Magazine , 

August-2004. 

9. Design of reconfigurable Automated Landing System for VTOL UAVs by 

Michael Bole, Research Associate  and Jaroslov Svoboda Director of Aerospace 

Programs.  Concordia Univ. Montreal; Canada . 

 

                                                                                                                                                                         



10. Intelligent Control Theory in Guidance and control system design: an 

overview. By Chun-Liang Lin and Huai –Wen Su Proc of National Scientific 

Council , ROC(A) ; Vol-24 No-1, 2000,pp 15 to 30. 

11. Robust Neuro- H∞ Controller design for aircraft auto landing by Yan Li, N. 

Sundara Rajan, P.Saratchandran  and Zhi Feng Wang ; Nanyang Tech. Univ. 

Singapore. IEEE Trans. on A&E Systems Vol-40 Jan-2004. page 158 to 167. 

     

 

  

                                                                                                                                                                         



 

CHAPTER-3 
AIRCRAFT DYNAMICS 

 
3.1. THE BASICS OF AIRCRAFT DYNAMICS  
 

 An aircraft has six degrees of freedom (6DOF). They are Linear motions about x, 

y, z axes and Angular motions about x, y, z axes. 

Assuming x, y ,z  co-ordinates ,these motions can be represented using laws of 

motion as follows:  

Let  the centre of co-ordinates be located at the centre of gravity of the aircraft. 

Then the linear motions in x, y, z  co-ordinates can be written as 

           ΣΔFx  =  m (U_dot + WQ -- VR) 

           ΣΔFy  =  m (V_dot + UR -- WP) 

           ΣΔ Fz  = m (W_dot + VP – VQ) 

where                                
           Fx = force on x-axis 

           Fy = force on y-axis 

           Fz  = force on z-axis 

           U,V,W  - Linear velocities along  x, y, z axes. 

           P,Q,R   - Angular velocities along  x, y, z axes. 

           m  - mass of aircraft. 

Similarly angular motions about x, y and z axes can be written as  

           ΣΔL =  P_dot Ix   _ R_dot Jxz   +  QR (Iz – Iy) – PQ Jxz 

           ΣΔΜ = Q_dot Iy   + PR(Ix – Iz) +  (P²- R²) Jxz 

           ΣΔn =   R_dot Iz  – p_dot Jxz    +  PQ ( Iy – Ix ) + QRJxz 

where, 

           L, M, N - moments about x, y, z axes 

           Ix, Iy, Iz - moment of inertia about x, y, z axes 

           Jxz -  cross product of inertia 

 

                                                                                                                                                                         



 

The above six equations are nonlinear in type and their solutions are  complex in 

nature.  Using digital computer the above six equations can be modeled in 

difference equation form. A complete solution for the given range of aircraft 

maneuvers like velocities, attitudes etc. involves very large computations. These 

six equations can be de-coupled  into two sets of three equations each and 

approximated to linear equations to obtain numerical solutions for small-

disturbances . Since the Changes in airspace parameters like altitude, temperature 

and wind velocities do not change quickly as compared to aircraft dynamics they 

can be assumed constants. Practically this assumption holds  true and the model 

can be reduced to linear form with a good degree of accuracy. This is done so 

because a majority number of autopilots operate assuming linear models and their 

responses are restricted to a limited range.  

The two set of de-coupled equations are called  

1.Longitudinal equations of motion  

2.Lateral equation of motion   

Our investigation is limited to these de-coupled linear equations. 

 

3.2.LONGITUDINAL EQUATIONS OF MOTIONS 

 

In this longitudinal mode, the aircraft is considered to be in straight, level and 

steady (un-accelerated) flight and then to be disturbed by deflection of the 

elevator. This deflection applies a   pitching moment about the  OY axis causing a 

rotation about the axis, which eventually  causes a change in  Fx and Fz, but does 

not cause a rolling or yawing moment or any change in Fy. Thus we can  assume 

that  the angular velocities about x and z axes (P and R) and linear  velocity about 

y axis ( V) are negligible and   can be omitted.  

Hence, ∑ Fy, ∑ ΔL, ∑ ΔN equations may be eliminated. 

Therefore, the longitudinal equations of motions can be written as          

                 ∑ΔFx = m (U_dot + WQ) 

                 ∑ΔFz = m (W_dot – UQ) 

                                                                                                                                                                         



                 ∑ΔM =  Q_dot Iy 

 

Neglecting small perturbations and other external influences. These equations an 

be  considered as linear and solved for parameters. The final equations will be in 

terms of stability derivatives and form these equations  the transfer-functions of 

the aircraft in longitudinal mode are derived. Solutions of three longitudinal 

equations of motion will a quadratic equation  and can be  written as: 

                (s² + 2ζpωnp s + ω²np) (s² + 2ζsωns s + ω²ns)        

where 

               ζ p, ωnp  phugoid mode of damping and  natural frequency 

               ζ s,ωns  -  natural short period damping and natural frequency. 

 

3.3.OPEN-LOOP LONGITUDINAL  DYNAMICS 

 

Inspections of the  quadratic equation 

                 (s² + 2ζpωnp s + ω²np) (s² + 2ζsωns s + ω²ns) 

reveals that the roots of this   characteristic equation decides the behavior of fixed 

wing aircraft. For a practical aircraft   model, these roots are characterized in two 

oscillation. 

They are: 

             1.Short period with relatively heavy damping and  high frequency 

                 oscillations. 

             2.long period ( phugoid ) with very light damping. 

                  and low frequency oscillations. 

On inspection of the above equation we can conclude that the characteristic of these 

oscillation turn depend on the aircraft design parameters like mass, moment of 

inertia and geometry of flight. The short period oscillation cause variations in angle 

of attack α and  pitch angle  θ    and very little change in forward speed  u.  

(u_dot ≈ 0) The long period (phugoid) oscillation occurs at a constant angle of  

attack.  It is  characterized by long period and   low damping constant. 

                                                                                                                                                                         



 

 

 
3.4. LATERAL EQUATIONS OF MOTIONS 

Aircraft behavior in lateral mode is different from behavior of longitudinal mode.    

               ∑ΔFy =  m (V_dot + VR – WP) 

               ∑Δ L  = P_dot Ix – R_dot Jxz + QR ( Iz – Iy) – PQ Jxz 

               ∑Δ N =  R_dot Ix – P_dot Jxz + PQ ( Iy – Ix ) + QR Jxz                                   

For steady longitudinal conditions and small perturbations, these equations can be 

simplified to:                                                      

              ∑Δ L  = P_dot Ix – R_dot Jxz  

              ∑ΔFy =  m (V_dot + VR ) 

              ∑Δ N =  R_dot Ix – P_dot Jxz                               

 

Examination of these equations, we note the following: 

Rolling moment or yawing moment induces angular velocities in all the three 

axes. It is assumed that pitching moment Q= 0 ( de-coupled ) for solving the 

lateral equations of motions. 

 

3.5.OPEN-LOOP LATERAL  DYNAMICS 

 

The solution of these equations can be generated as a characteristic 

equation given  below: 

             ( S + 1 / τs )  (  S + 1  / τr)  ( S² + 2ζ D ωnD S + ωn²D) = 0 

The solution of this characteristic equation are the parameter of lateral 

transfer functions, using all approximations. In the above characteristic equation, 

            ( S + 1 / τs ) characterizes spiral mode component         

            (  S + 1  / τr) characterizes roll subsidence mode component 

            ( S² + 2ζ D ωnD S + ωn²D) characterizes Dutch roll mode  

                                                                                                                                                                         



 

The Dutch roll mode component basically vary with the flight conditions and may 

lead to instability if the damping co-efficient ζD is small, that is, lightly damped  

case. Other two components are of higher frequency and higher damping. The roll 

subsidence is the rolling response of the aircraft to an aileron input. The spiral 

divergences is of  very high time constant leading to slowly varying divergence 

and can be easily controlled.  

      

3.6.  STABILITY AND CONTROL DERIVATIVES 

 

 To obtain the transfer functions of the aircraft,  it is necessary to identify 

influential components and define their derivatives, relating the changes in 

aerodynamic forces and moments acting on aircraft. These changes are caused by 

aircraft motion about three axes, momentum about three axes as well as control 

surface deflections. The stability derivatives are the dimensionless coefficients  

which determine the stability of the aircraft by virtue of the design.  

These are: 

                          1. CLα - Lift curve slope 

                          2. Cmα -  pitching moment due to angle of attack. 

                          3. Cmq – pitching moment due to angle pitch rate. 

                          4. Cmv – pitching moment due to free stream velocity. 

                          5. Cmα_dot – pitching moment due to rate of change of 

                                                 angle of   attack.                       

                          6. Cdv – Drag co-efficient due to free stream velocity. 

                          7. Cnβ -  Yawing moment due to slide slip.       

                          8. Cnp – Yawing moment due to rolling velocity.                            

                           9. Cnr – Yawing moment due to yawing velocity. 

                          10. Cnδa – Yawing moment due to aileron deflection. 

                          11. Cnδr – Yawing moment due to rudder deflection. 

                           12. Clβ - Rolling moments due to sideslip 

                           13  Clp – Rolling moment due to rolling velocity. 

                                                                                                                                                                         



                           14. Clr – Rolling moment due to yawing velocity. 

                           15. Clδa – Rolling moment due to aileron deflection. 

                           16. Ciδr – Rolling moment due rudder deflection. 

                            

                           17. Cmδe- Elevator effectiveness. 

                           18. Cxu- Forces in X-Direction due to forward velocity. 

                           19. Czu- Forces in  Z-Direction due to forward velocity. 

 

3.7. INFLUENCE OF CONTROL AND STABILITY DERIVATIVES       

       ON AIRCRAFT 

 

The effect of these coefficients  on aircraft performance is given in the following 

tables: 

Table-3.1. Effect of stability derivatives in longitudinal Mode 

 
Sl.No Stability 

Derivative 
Affected parameter Nature of effect 

1. Cmq ζs      -Short period   
   Damping coefficient 

ζ s increases with increase in 
Cmq 

2. Cmα ωns  - Short period 
        Natural frequency. 

ωns increases with increase in 

Cmα 
3. Cxu ζp- damping of the 

   phugoid oscillations 
ζ p increases with increase in 
Cxu 

4. Czu ωnp-Natural frequency  
  of  phugoid oscillations 

ωnp increases with increase in Czu 

 

 

Table-3.2. Effect of stability derivatives in lateral Mode 

 
Sl.No Stability 

Derivative 
Affected parameter Nature of effect 

1. Cnr ζD- Damping Coefficient 
       of Dutch roll 

ζ s increases with increase in 
Cmq 

2. Cnβ ωnD- Natural frequency ωns increases with increase in 

                                                                                                                                                                         



        of  Dutch roll Cmα 
3. Clp (1/ τr) Roll subsidence (1/ τr)increases with increase in 

Clp 
4. Clβ (s+1/τs) Spiral divergence (s+1/τs) increases with increase in 

Czu 
 

 

3.8. DERIVATION OF TRANSFER FUNCTION AND THE 

       STATE- SPACE MODEL   

 

The small perturbations linear model consists of 12 state variables. The   position 

variables x, y and z do not affect stability, since. a change in these variables occur 

very slowly compared to other states, they can be assumed constant. The  

remaining 9 variables are autonomous and affect aircraft behavior. These are:                                            

 u – velocity in x axis 

 α - angle of attack 

 β - sideslip angle 

 p – Roll rate 

 q – pitch rate 

 r – yaw rate 

 ψ - yaw angle 

 θ  - pitch angle 

 φ - Roll angle 

 

x, y, z  state variables can be neglected (they have no effect on aircraft dynamics). 

The General State-space Equation can be written as follows: 

                                    X_dot = Ax + Bu 

                                    Y = Cx + Du     

Since decoupled equations are considered, the above state space model is created 

for separately for Longitudinal (or pitch)axis  and Lateral ( or roll) axis.                                            

 

3.8.1.Longitudinal State-Space Model 

                                                                                                                                                                         



 

Longitudinal State-space model is derived for pitch responses using the following 

transfer functions : 

 

 

 

 

1. u/δe:     Speed to elevator deflection 

2. α/δe:     Angle of attack to elevator deflection 

3. θ/δe:     Pitch to elevator deflection 

4.  q/δe : Pitch rate to elevator deflection 

5.  h/δe   :  height to elevator deflection 

 

A is a state matrix containing elements of transfer functions 

                                                   [ u/δe; α/δe;θ/δe; q/δe; h/δe] .  

B is a   Vector of initial conditions of elevator input [ δe] .  

C is an  Identity matrix[ I ] . 

D is taken as null vector assuming all initial conditions at zero. 

 

3.8.2.Lateral State-space model 

 

The lateral State-space model  can be constructed using the following transfer 

functions  

  β/δa :  Side-slip to aileron deflection 

  φ/δa :  Roll angle to aileron deflection  

   p/δa :  Roll rate to aileron deflection 

  ψ/δa:   yaw to aileron deflection 

  r/δa:    yaw rate to aileron deflection 

  β/δr:   Side-slip to rudder deflection 

  φ/δr:    Roll angle  rudder deflection 

                                                                                                                                                                         



  p/δr:    Roll rate to rudder deflection 

  ψ/δr:   yaw to rudder deflection 

  r/δr :    yaw rate to rudder  deflection 

For lateral (or roll) axis , 

A is a state matrix containing elements of transfer functions 

                                         [ψ/δa: ψ/δr:φ/δa: φ/δr: β/δa : β/δr]       

 

 

B is an input vector with initial conditions in pitch and roll[ δa:  δr ] 

C is an Identity matrix[ I ] 

D is taken as null matrix [ δa=0  δr=0 ] 

 

This state-space model in longitudinal, lateral and vertical axes are used in 

MATLAB / SIMULINK tool box around a given control model, to study the 

response of UAV in pitch , roll and yaw.  Library functions in 

MATLAB/Simulink are used to create the above transfer functions. 

The state space matrices are given in Appendix. 

 
 
 

                                                                                                                                                                         



                                                 

CHAPTER 4 

UNMANNED AERIAL VEHICLE (UAV) 
 

4.1 INTRODUCTION 

 

An Unmanned Aerial Vehicle is essentially designed with high degree of stability 

and required controllability for take-off, climb, cruise, descend, and landing 

maneuvers, using radio controllers. The on-board autonomous controllers  are  

designed for carrying out mission through radio link and correct position and 

velocity errors.  Most Unmanned Aerial Vehicle  rely on Global Positioning 

System ( G.P.S. ) for position tracking and solid-state attitude and rate gyros for 

stabilizing pitch and role altitudes. 

 

4.2 SALIENT  FEATURES OF UAV 

 

With advancement in  solid state semiconductor technology, the  size, weight and 

power consumption of air data and attitude sensors have come down to a great 

extent . These sensors apart from above advantages also include elaborate built-in 

test programs and fault tolerant design features making it suitable for  on-board  

computers in an Unmanned Aerial Vehicle. 

 An Unmanned Aerial Vehicle mission program is edited on-line from ground 

station and the vehicle is maneuvered through radio-link. The vehicle also 

transmits its position, velocity, air-speed and altitude data, making it easier for a 

ground controller. Apart from the above other instrumentation data  like weather 

data ,aerial photographs, volcano samples and movement of migratory birds  have 

been successfully collected using Unmanned aerial vehicle. It is also noticeable 

that a large amount of  Unmanned Aerial Vehicles  are deployed for the purpose 

of military reconnaissance.  Now the  most demanding job of a non-board  

 

                                                                                                                                                                         



 

autopilot controller of an Unmanned Aerial Vehicle is to land the vehicle using 

ground navigational aids like glide path and localizer  employed in all civil and  

military aerodromes. The landing task of an Unmanned Aerial Vehicle is more 

difficult than take off climb and cruise, since the external disturbances are more 

influential during landing phase of the airplane. 

The  salient features of an UAV are:- 

1.It is fully dependent on onboard controllers and instruments for monitoring and 
for operating. 

2. It is intend to be monitored and controlled by remote operator through radio 
links. 

3. It is intended to be fully controllable in its flight envelope by on board autopilot 
controllers. 

4.  It is a light vehicle designed with optimum maneuverability and optimum 
stability.  
 

4.3 DESCRIPTION OF UAV 

 

This  is  an  all  composite,  pusher- propeller  aircraft  in  class-I category 

powered by an indigenous engine. It has a wing with two stakes and a high- 

aspect ratio canard with very small chord. the canard has a fill- span flap, which 

acts as an elevator. Hence, Cmδe and  Clδe is positive. The high aspect ratio 

canard is designed to carry almost 30% of the total aircraft lift resulting in a low 

trim angle-of-attack and consequently in a very low trim drag. The aircraft has an 

exceptionally high L/D ratio and since the engine has a low Specific Fuel 

Consumption , the aircraft  has very good endurance and range. There  is no 

conventional vertical tail or horizontal  tail(empennage), in the UAV. Roll control 

is provided by ailerons, which are located at outboard stations on the wing. Two 

fins (with rudder) are located at the wing tips ,which provide directional stability 

and  control. These wing-tip fin  provide beneficial end plate effects on the wings 

increasing its effective aspect ratio ,thereby improving the aerodynamic efficiency  

 

                                                                                                                                                                         



of the wings. The fuselage has a very large volume available for installing  the 

payloads and for additional fuel storage. The tri-cycle landing gear system 

consists of two main wheels and a retractable nose wheel , which can be retracted 

fully into the  fuselage  to reduce drag during flight. The UAV is capable of being 

flown and maneuvered under the control of a Ground Control Station / or with the 

help of an Onboard Automatic Flight Control, Navigation and Guidance System.  

This UAV is used for surveillance and Reconnaissance purpose. Picture of an 

UAV is shown in Fig 4.1. 

 

 
 
 
 Fig 4.1. Picture of an UAV 

                                                                                                                                                                         



 

 

 

CHAPTER  5 

AUTOMATIC FLIGHT CONTROL SYSTEM(AFCS) 
 
5.1 INTRODUCTION 

 

So far we have created a state – space model describing the aircraft behavior. This 

is a linear model which can be analyzed  for open-loop step response using 

MATLAB control system tool box in SIMULINK program. 

In our study, we can include a separate transfer function for aileron and elevator 

actuators. Generally these are second-order systems designed for a particular 

aircraft. The deflection of aileron and elevator excites the state space model and 

the response of the aircraft in terms of  state variables can be investigated. 

In a practical aircraft there is a large variation in altitude and  airspeed, which 

imposes limits to magnitude and rates with which the control surfaces can be 

deflected for a given magnitude of airspeed and altitude. In other words there is a 

need to introduce  ‘Control Laws’ which will satisfy this requirement. AFCS  is 

integrated into flight control system and functionally it introduces correction 

signals at actuator commands through sensor feed-back. 

 

5.2 FUNCTIONS OF AUTOMATIC FLIGHT CONTROL  SYSTEM 

 

In a practical aircraft the control surfaces are deflected directly by pilots, 

who are trained to operate the aircraft in the stable region. However, 

during trajectory of flight, it is desired to include  an automatic control 

loop for a limited ( hold ) capability. For example  an altitude hold 

function will correct small disturbances in pitch and stabilize  the aircraft 

                                                                                                                                                                         



in height. For large uncontrollable disturbances, the autopilot control loop 

is designed to disengage and alert the pilot for a manual take over. 

 

The general motion of the aircraft can be characterized by its velocity 

vector. If we denote this as x_dot . 

  then x_dot = f (x, u, ζ, t )                                                   

where, 

x – the position of aircraft in space 

u – the control parameter 

ζ - the disturbance 

t – time 

 Since aircraft has 6 DOF, the solution to the above equation is  complex , 

depending upon the state function of aircraft. Since in actual flight 

dynamics the state equations are non-linear in nature, in order to operate 

the aircraft in a stable envelope, the maneuvers are limited for magnitudes  

and rates. The aircraft controls are carefully designed using proto-type 

wind-tunnel models, to incorporate rate-limits and gains, in practical 

models . Several aircraft models are available for experimental 

investigations. In our study we shall use one such model for investigation. 

Most of  all unmanned aerial vehicles are designed for stable maneuvers 

and at the cost of  lower maneuverability.                              

To some degree such an aircraft is stable in state-space and immune to 

low-amplitude and high frequency disturbances. Investigations of air-

space has revealed effect of environmental disturbances encountered by 

fixed wing aircraft. For a particular aircraft model the influence of 

disturbances vary with aircraft position vector, velocity vector and attitude 

vector. This means that an aircraft flying at high altitude at higher 

subsonic speed in a level flight is more stable than an aircraft flying at low 

altitude at high pitch and roll rate at low velocities.  

                                                                                                                                                                         



The unmanned aerial vehicle requires a flexible autopilot which is 

adaptive in nature to maneuver the aircraft in the stable region in the entire 

state-space.  

 

 

Normally automatic flight control system ( A.F.C.S. ) employs feedback 

control to achieve the following : 

1.  Speed of response in closed-loop better than open loop response. 

2. Accuracy in command follow-up is better. The system is capable of 

suppressing, to some degree, unwanted effects, which have arisen as a 

result of  disturbances affecting the aircraft’s flight.                                                         

 

5.3 AUTOMATIC FLIGHT CONTROL SYSTEM (AFCS)  

ARCHITECTURE 

         

The AFCS  is intended to perform the following functions: 

 

1. Collect air data and inertial sensor data in order to apply ‘ control laws’ which 

limit the magnitude (gain program) and rates of actuator deflections (damping) so 

that the aircraft is always operated in a stable envelope over the entire flight 

profile.  Air data are the sensor data pertaining to variations in density as a  

function of altitude, airspeed, mach number ( ratio of actual airspeed to that of 

speed of sound at that altitude), temperature, and angle of attack encountered by 

wing . Inertial data are those sensor data from attitude gyros , rate gyros and 

accelerometers pertaining to position, displacement  vector and inertial forces 

acting on aircraft structure. 

2. To correct aircraft response in pitch , roll and yaw axes against disturbances 

caused by inherent non-linearties in aircraft characteristics , sensor and actuator 

noise and disturbances in airspace. For e.g. the dutch roll introduces oscillations 

in yaw and roll axes . Yaw damping function of AFCS  uses a dedicated rate gyro 

                                                                                                                                                                         



sensor and corrects  dutch roll by exciting  yaw actuator around a closed control 

loop. 

 

 

 

3. in short AFCS  acts as an interface between pilots inputs and actuator 

commands and introduces required damping and gain so that the aircraft 

maneuvers are stable under all flight conditions. By design AFCS can be 

interfaced with Autopilot controllers and process autopilot commands as a 

function of control laws and pass on the commands to actuators. 

 

The general architecture of AFCS is shown in the following figure:                                                        

                

 

                                             Figure 5.1 General structure of AFCS 

                                                                                                                                                                         



                                                 

CHAPTER-6 
AUTOPILOTS 

    

6.1. INTRODUCTION 

                          

The basic function of an autopilot is to control the aircraft in flight on pitch and 

roll in order to steadily maintain a pre-selected pitch or roll attitude or  steadily 

maintain  a pre-selected altitude, or heading without the intervention of pilots. 

They act as command and reference controllers in parallel to pilot inputs. In all 

designs the pilot input is assigned highest priority over autopilot inputs. i.e. pilot 

can always over-ride auto pilot commands. In addition to this priority, autopilots 

engage and operate only over a limited range of operating conditions. They are 

designed to disengage and alert the pilots in case the amplitude or rate of change  

of error signals from air data  and inertial sensors exceed the design limits. 

 

6.2. AUTOPILOT OF UAVs 

 

In case of UAVs autopilot is the only command unit on board the aircraft. Hence, 

it is a vital unit and should be designed to perform more reliably and is required to 

posses learning capability from flight experience. An UAV is required to perform 

maneuvers continuously and should make necessary corrections in control laws to 

counter wear and tear in actuators and drifts in sensor and actuator characteristics. 

It should posses a desired level of failure tolerance against failures in sensor and 

control components. Modern commercial aircraft employ multiple sensors and 

actuators and dual AFCS / Autopilot systems to satisfy these requirements.  

 

 

 

 

 

                                                                                                                                                                         



 

6.3. DESIGN REQUIREMENTS OF AUTOPILOTS 

 

Rules and guidelines in the design of Autopilot are given below:- 

1. Rules 

 Always keep the crew informed.  

 Do not accept inputs from both the crew and autopilot. 

 Issue audio and visual warnings for uncommanded  actions. 

 The Autopilot should not be given full surface control authority or 

envelope authority. 

 Engagement and disengagement of the autopilot should not result in 

transient motions. 

 The crew should have a single button for lateral and longitudinal controls. 

 Limit open – ended modes. 

 All crew inputs should be unambiguous.  

 

2. Guidelines. 

 The autopilot should be designed for normal flight. 

 Use auto – throttle and pitch control to control longitudinal axis, aileron 

and rudders to control lateral / directional axes. 

 Minimize the number of modes. 

 Automatic configuration checks should be built in. 

 Leaving nothing to chance. 

 Global Positioning System (GPS) and terrain databases can replace 

traditional navigation aids.  

 Point and click programming should be the goal.  

 Windows like helping menus.  

 

 

 

 

                                                                                                                                                                         



 

6.4 CLASSIC AUTOPILOT DESIGN USING PID CONTROLLER   
 

The choice of controller depends on open-loop response of aircraft dynamics. For 

example  a small delta-wing  fighter plane employs a very complex controller 

which is adopting to a wide-range of air-speeds, altitudes, attitudes and 

maneuvers. Such a controller is associated with a fast responding servo-systems 

stabilized around several feed-backs loops programmed for gains and time 

constants to minimize position error, peak overshoot, settling time , gain margin , 

steady state error, velocity error and time  

 

error, not compromising   response and  stability. Whereas a slow flying large 

commercial aircraft employs a less complex controller employing fewer adaptive 

control loops, all tailored for a particular aircraft model. 

In general the servo-system consists of an error detector, controller  (PI, P or PID) 

and necessary  sensors like  pitch & roll gyros, which generate rates and positions. 

Any change in the control surface moment is also sensed by separate position 

sensors for a feed-back in in a local-loop to minimize position and velocity errors 

and limit deflection rates. For example a large commercial aeroplane employs a 

sensor feed-back to limit deflections in pitch to less-then twenty-five degrees in 

pitch up altitude at low-speed configurations and this limit is restricted to ten 

degrees at maximum operating velocity. 

For our purposes we select a second order system with damping ratio  ζn=0.7 and 

natural frequency ( ωn)= 40 rad/sec. It is designed using MATLAB / SIMULINK 

toolbox.                                                     

                                     Ga =            1024           .         

                                               s² + 44.8s + 1024 

 If we choose a PID controller in the design architecture then it is desired of the 

PID controller to produce a command to the input of the actuator according to the 

relationship. 

                                     U ( s ) = Kp ( ( 1 + 1 / (τi.s)  + τd .s) 

                                                                                                                                                                         



 

6.4.1.Zeigler – Nichols Method                                            

By using Zeigler – Nichols Method, we can calculate  Kp, Ti and Td  . If the 

dynamic model of the plant is known, using the tuning rule, we can determine the 

critical gain Ker for the closed-up system which initiates oscillations. Then  the 

corresponding time period Ter of the oscillation is determined. Knowing the two 

values, the PID controller can be tuned using the following results: 

                                            Kp  = 0 . 6 Ker 
                                 τi   = 0 . 5 Ter 
                                            τd  = 0 . 125 Ter                                    
By using root-locus or Routh criteria method, the critical gain Ker can be 

obtained. But to get accurate result, fine tuning of controller constants that is  Kp, 

τi and τd  are required. 

 

6.4.2.Guidelines For Designing A PID Controller 

When designing a PID controller for a given system, the following procedure is 

generally adopted: 

   1. Obtain Open-loop response and determine the parameters to be improved. 

   2. Add a  proportional control (P-only) to improve rise-time (tr). 

3. Add a derivative control to improve the overshoot. 

4. Add an integral control to eliminate the steady-state error. 

5. Adjust each of Kp, Ki and Kd until you obtain a desired overall response.  

The following table summarizes the effect of Kp, Ki and Kd on controller 

characteristics. 
CL RESPONSE → 

PARAMETER   ↓ 

RISE TIME 

      (tr) 
OVERSHOOT

     (ξ) 
SETTLING TIME 

     (ts) 
S-S ERROR 

   (∈) 
         Kp DECREASES INCREASES SMALL CHANGE DECREASES 

         Ki DECREASES INCREASES INCREASES ELIMINATED 

         Kd SMALL 

CHANGE 

DECREASES DECREASES SMALL 

CHANGE 

 

                                   Table 6.1     Controller Characteristics 

                                                                                                                                                                         



CHAPTER  7 
MATLAB SIMULATION STUDY OF 
CONVENTIONAL AUTOPILOTS 
 
 7.1.INTRODUCTION  
 
Using small perturbations state-space models ,which were described in Chapter-3, 

the closed-loop response of Auto-pilot PID controllers in Pitch and Roll are 

studied using MATLAB/ Simulink Control systems tool-box. Unit step input is 

used as pilot command and the response of the two-autopilot modes (pitch & roll) 

are investigated in this chapter. The aircraft dynamics are derived for flight 

condition of altitude 3000m and speed 65 m/s. The aircraft state-space model is 

given in the appendix. In longitudinal modes the positive step input means 

negative  elevator deflection δe. The response of the two landing phase on glide 

path and flare path are also investigated. During this glide phase , the aircraft 

velocity is taken as 50 m/s and during flare mode the velocity of the aircraft is 

taken as  35 m/s and the flare entry height (h0) is 15.25 m. 

 
 7.2. STUDY OF  AUTOPILOT PITCH  RESPONSE 
 
 Pitch attitude autopilot control system is normally used for establishing a 

reference pitch attitude in vertical profile and for maintaining a reference altitude. 

This autopilot is normally used when the aircraft is in wings - level flight. The 

pitch angle θ is the controlled variable. It requires an increase in the damping of 

short period oscillations for stability and for this, an inner feedback loop utilizing 

a rate gyro for pitch is added. The design requirements are  

 Overshoot                : Less than 10% 

 Rise Time                : Less than 2 seconds 

 Settling time            : Less than 10 seconds 

 Steady – State error : Less than 2%     

 

                                                                                                                                                                         



The Functional Block diagram , Simulation diagram and model response plots are 

shown in Figure 7.1.  Figure 7.2. and Figure 7.3. respectively. 

 
 

            Fig-7.1. Functional block diagram of pitch channel 

 

 

 
         Fig-7.2. MATLAB simulation diagram of Pitch Autopilot  

 

 

                                                                                                                                                                         



                    

                  
                         Fig 7.3. Response Plots for Pitch Autopilot 

  

 

7.3. STUDY OF AUTOPILOT ROLL RESPONSE 

 

 The ailerons differential deflection is the input to roll attitude control system. An 

attitude gyroscope which provides roll information is used as reference sensor in 

y, z plane. Here also a roll rate inner feedback loop and high sensitivity outer loop 

are employed for optimum stability maneuverability. The design requirements are  

 Overshoot                : Less than 5% 

 Rise Time                : Less than 4 seconds 

 Settling time            : Less than 8 seconds 

 Steady – State error : Less than 2%     

 

 

 

 

                                                                                                                                                                         



 

One of the most important function of AFCS in roll axis is to attain high degree of  

spiral damping. The Functional Block diagram, Simulation diagram and model 

response plots are shown in  Figure 7.4,  Figure 7.5  and Figure 7.6 respectively. 

 

 

 
               Fig-7.4. Functional Block Diagram Of Roll Autopilot 

 
                       Fig-7.5. MATLAB Simulation diagram of  Roll Autopilot  

 

 

 

 

                                                                                                                                                                         



 

 
 

                         Fig-7.6. Response Plots for Roll Autopilot 

 

7.4. STUDY OF AUTOPILOT RESPONSE IN LANDING CONTROL. 

 

The most important requirement of aircraft is to be controlled for stability during 

landing phase where weather disturbances prevail to a large degree and the speed 

of the craft is low due to drag and landing speed limitations. The basic pitch and 

roll autopilot controllers are employed in outer control loops, with reference 

signals provided by radio – navigation controllers. The basic landing controls are 

glide slope localizer  and flare control. These are investigated in the following 

sections. 

 

7.4.1  Design considerations  

The following are the design considerations: 

1.Landing Strips are usually located at low altitudes where wind element is a 

strong influencing factor in the model involved. The glide path trajectory is to be 

controlled at 2.5° under no-wind as well as under wind conditions. 

 

                                                                                                                                                                         



 

2. Pitch and roll feed-back loops to be engaged in the respective modes for system 

redundancy. 

3.In our simulation models we have omitted Engine throttle control. The models 

always return linear response for a range of throttle settings. The engine throttles 

are assumed to be at constant idle setting at the start of approach and speed 

control loop is kept open. 

4. The deviation of UAV in the Y-Plane shall be within + 4.5 m and Shall be 

within 

+ 2 m in Z-axis. 

The limits on control variables in our design study are as follows: 

1)   −  7°   ≤  α  ≤  + 7°        Angle-of –attack limits. 

2)   −16°   ≤  θ   ≤  +16°       Limits on pitch attitude 

3)   −20°   ≤   (δe, δa, δr )   ≤   +20°  Limits on Actuator deflections. 

4) Servo Rate  ≤   100° per second     Limits on Actuator speed. 

7.4.2. Landing Simulation 
 

The important feature of the landing system is coupling glide-slope and localizer 

radio signals to autopilot controller using appropriate instrumentation. Now let us 

study the design features of the landing system. In practice capture of localizer is 

executed using an on-board navigation computer coupled to auto-pilot. Once 

captured, the localizer, the airplane is steered to  airspace boundary along the 

localizer to a lower to a lower altitude so that it intercepts the glide-slope signal 

which is used to provide reference for landing. At the threshold of touching down 

on a runway. Another control loop called flare-path control  executes the landing 

phase. On touchdown the aircraft pitch is increased gradually according to an 

exponential function called flare. 

 

 

 

 

                                                                                                                                                                         



 

7.4.3. Glide Path Landing Simulation. 

 

 The geometry of glide slope situation is shown in the figure. 7.7. 

The glide path receiver of error between the glide slope reference and the actual 

aircraft trajectory. 

 
                     Fig-7.7. Glide Path trajectory. 
 

 

In terms of Longitudinal displacement, this error or deviation in the longitudinal 

axis is given by: 

                           d = R sin ( δ ) ,  
 
 
The controller function is to achieve deviation , d=0 
 

                                      d_dot = U∗  sin (γ-γref) 
 
                                      for small angles : d_dot = U∗(γ-γref) 
 

 Integration of the above equation, gives the information about the longitudinal 

deviations. Once the controller is set on glide-slope mode the closed- loop control 

components steer the aircraft along the glide-path using error computation and 

corrections to achieve the desired trajectory.                  

 

                                                                                                                                                                         



 

The glide path control system block diagram, MATLAB simulation diagram and 

response  plots are given in fig 7.8., 7.9.  and 7.10 respectively   

 
 

 
 
              Fig-7.8. Functional lock Diagram of Glide Path Control System 
 

 
 
 
 
                  Fig-7.9. MATLAB simulation model for the glide path control . 
                                                                                                                                                                       
  
 
 
 
 
 
 

                                                                                                                                                                         



 

 
                      
               Fig-7.10. Response Plots for Glide path simulation 
 
 
 
7.5 . Flare Control Simulation. 
 
 
The final phase of the landing is the transition from the glide slope to the actual 

touchdown, generally referred to as the flare. At predetermined height before 

touch-down, the flare control begins to modify flight path angle from -2.5° to a 

positive value ,  

according to an exponential trajectory given by, 

            

      - ( t / τ )      
                                                h= h0 e 
 
 

The flare path trajectory and the runway approach scheme are shown in Fig- 7.11, 

7.12 respectively. 

 

 

                                                                                                                                                                         



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         Fig. 7.11 .Flare path trajectory 
 
 
 
 
 
 
 
 
 
 
 
 

 

                 
 
  
                                 Fig- 7.12. Runway approach path.   
 

  

 

 

 

 

                                                                                                                                                                         



 

The functional schematic, MATLAB simulation diagram and response plots of 

the  flare control system   are shown in Fig- 7.13 ,Fig-7.14.and Fig-7.15 

respectively. The outer loop supplies the rate-of-descend command  hr_dot. The 

pitch hold autopilot mode is activated at flare entry height h0. The second lead 

network in the coupler is used to obtain a higher value of coupler sensitivity, thus 

preventing the aircraft from flying into runway too soon. 

 

 

 
                 Fig-7.13. Functional Diagram of Flare control system. 
 

 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                         



 
 
 

 
                 Fig-7.14. MATLAB simulation model for  Flare control system. 
 
 
 
 

 
                    Fig-7.15. Response plots of Flare Control System. 
 
 
 
 

                                                                                                                                                                         



 
 

CHAPTER 8 

NEURAL NETWORKS 
 
8.1. INTRODUCTION 
 
In the 1950s, requirements for adaptive and optimal control system design were 

more demanding and a need for ‘expert systems’ were in demand in engineering, 

defense  and several other areas . In the beginning, technical papers were 

published on neural network preliminaries and earlier concepts evolved on 

primitive ideas based on limited understanding of  brain neuron cell architecture 

and   their functioning in brain. Based on the investigations neuron models were 

published in technical publications related to diverse disciplines like medical 

journals , IEEE transactions on control systems , science journals etc. Due to a 

very high number of neurons and their complex physical and chemical properties, 

the complete understanding of brain functions like memory, learning and 

intelligence are still under exploration.              

However, the ideas and discoveries published in the past have contributed to the 

development of neural network theory and their applications in diverse disciplines 

like  control system, instrumentation, aerospace, artificial intelligence, robotics, 

medicine, commerce , market analysis and so on. Today , more powerful and still 

evolving software tools like MATLAB®  on neural network principles are 

available to engineers and scientists .  

 

8.2 BASICS OF ARTIFICIAL NEURAL NETWORKS 

 

Artificial Neural Network is an information-processing system. The elements 

called neurons process the information. The signals are transmitted by means of 

connection links. The links posses an associated weight, which is multiplied along 

with the incoming signal ( net input ) for any typical neural net. The output signal 

is obtained by applying activations to net input. 

                                                                                                                                                                         



 

 

 

A single artificial neuron element is shown below: 

 
 

 

                                  Fig : 8.1. Artificial Neuron 

       a  = output 
        w  = scalar weight 

         p  = scalar input 

         b  = bias 

         n  = Σ(w p + b) 

         a  = f(Σ (w p +  b)) 

         f  = Transfer Function 

       

The function a =  f(Σ (w p +  b)) is the basic data process in an artificial neural 

network. The function  ‘f ’  is decided by the application.  

                                                                                                                                                                         



For example, a threshold function  also called as hardlim is employed in solving 

digital logic functions and linear algebraic expressions. Control systems involving 

non-linear and linear differential equations employ neurons with differentiable 

transfer function like pure-linear, log-sigmoid and tan-sigmoid.    

 

8.2.1 Methodology  

 

 Several neuron elements connected in parallel series combination with suitable 

interconnection is called a neural network. Several neural network architectures 

and algorithms have been developed independently. These are specialized for 

different type of applications.  For solving control system problems, multilayer 

neural network with log sigmoid , tan-sigmoid and pure-linear transfer functions 

and advanced training algorithms are used. Neural Networks are adjusted or 

trained to get specific target output for particular input. Training algorithms based 

on supervised learning or incremental training are used.  The general multilayer 

neural network is shown in figure 8.2. 

 
 

                       Fig : 8.2. Basic Methodology in Neural Network  

 

8.2.2.Learning and recall 

 

                                                                                                                                                                         



Neural Networks perform two major functions namely Learning and Recall. 

Learning is the process of adapting the connecting weights in an ANN to produce 

the desired output vector in response to stimulus vector presented the input vector. 

Recalling is the process of accepting an input stimulus and producing an output 

response in accordance with the network weight structure. 

The set of well defined rules for the solution of a learning problem is called 

learning algorithm. Learning  encodes patterns information into inter-neuronal 

connection strengths. Different types of learning are Supervised Learning, 

Unsupervised Learning, Graded Learning, Hebbian Learning, Associative 

Learning, Competitive Learning, and Reinforcement Learning. 

 

8.3.ADVANTAGES OF NEURAL NETWORK DESIGN 

 

The main advantage of ANN are  

 ANN develops model through learning, unlike the set of rules in a 

computer program, that process data and produce response. 

 ANN is flexible in changing environment. Same  model ‘learns’ and  

adapts  to new requirements in system response. They need only 

information (or ‘learning data’) on changes. 

 ANN is capable of learning complex dynamics with uncertainty. Statistical 

learning algorithms are very powerful tools to handle uncertainties. 

 ANN provides fault tolerance, since, by  design, damage to few 

interconnection  links within  the network will not impair the overall 

performance. The remaining network elements ‘learn’ to adapt and 

produce the same result as before. 

 ANN  performs massive parallel processing in contrast to conventional 

digital computers in which computations are executed sequentially. 

 

 

8.4. NEURAL NETWORK CLASSIFICATION 

 

                                                                                                                                                                         



Neural Networks can be classified as either  Feed Forward network or Feed 

Backward ( Recurrent ) network. Feed Forward network has no feedback between 

layers. The output of one neuron multiplied by a weight becomes the input of an 

adjacent neuron of the next layer e.g. Back Propagation Network, Radial basis 

function. Feed Backward (Recurrent ) network is one in which each neuron 

receives as input a weighted output from all other neurons, including itself as 

Feedback signal e.g. Simulated annealing, Boltzmann machine, Hopfield net etc. 

In the design of Neural controller in this project multi layer Feed Forward 

network is considered.  

 

8.5. MULTILAYER FEED FORWARD NEURAL NETWORK 

 

8.5.1.Architecture 

 

In a Feed Forward Neural Network, neurons in a given layer receive input only 

from the previous layer. A multilayer Neural Network consist of an input layer, a 

hidden layer and an output layer with bias units. A multilayer Feed Forward Back 

Propagation network with one hidden layer is shown in figure.  The input to the 

first layer is the input to the network, called Input Layer. The output of the 

intermediate layer are not observable and  hence this layer is called hidden layer 

of the network. The outputs of the third layer are observable ,  called output layer.  

A typical Multilayer Feed-forward Neural Network is shown in Fig-8.3. 

 

 

 

 

 

 

 

 

                                                                                                                                                                         



 
 

               Fig : 8.3. Multilayer Feed-Forward Neural Network. 
 
 
 
8.5.2. Feed Forward Neural Network Equations  
 
 
Input layer:                    

  Zj  = f ( Zj ) ,  

           = Σ βl1 ul              l = 1, 2, … nu       
 
Hidden layer:   
      V1 = f ( V1) 
           = Σ α1j zj    j = 1, 2, … n1  
 
Output layer:  
      Yp = f ( Yp ),   p = 1,2, … n y 
            =Σ γp1 v1   I = 1,2, … n 2 

Where  nu  is the number of inputs, n1 is the number of  neurons in the hidden 

layer, n2 is the number of  neurons in the output layer, ny is the number of outputs 

and  β11 , α1j , γp1  are interconnected weights. Linear activation function is used 

for input layer, tangent  sigmoid function is used for  hidden and output layer. 

 

                                                                                                                                                                         



 
 
8.6. BACK PROPAGATION NETWORK 
 
Back propagation network is a multi layer feed forward network. It uses 

extended gradient-descent based delta learning rule, called Back propagation (of 

errors) rule. Back propagation  adjusts the weights and biases of the network 

with differentiable activation function units,  to  learn a training set of input-

output. Gradient-descent  used to reduce or minimize the sum squared error of 

the NN at the output layer. The network is trained by supervised learning 

method. Back propagation network  is train the net to achieve a balance between 

the ability to respond correctly to the input patterns that are used for training 

and the ability to provide good response to the input that are similar. 

 
8.6.1. Back propagation rule 
 
 
The total squared error  of the output computed by net is minimized by a 

gradient-descent  method known as Back propagation rule or generalized delta 

rule. 

 
8.6.2. Back propagation algorithm 
 
 

1. Initialize the weights to small random values. 

2. Choose the input pattern from the data generated.(feed forward) 

3. Propagate the signal forward through the network. 

4. Calculate output of the network. 

5. Compute the  δiL in the output layer.(oi=yi
L)        

      

         δi
L   =  ƒ’(si

L) [di
L – yi

L)                                                                                                                     

        Where  siL  represents the net input to the i-th unit in the L-th layer is   the  

        derivative of the activation function ƒ.     

                                                                                                                                                                         



 

 

 6. Compute the deltas for the preceding layer by propagating the errors.   

   δik   =  ƒ’(si
k) Σ wij

k+1 δi k+1
,   for  k = (L – 1),…,1. 

7.Update weights using  

Δ wji
k  =  μ δi

k
   yj

k-1

Wi,new  = wi,old + Δ wi 

     Δ wi = η δ out I + α Δ wi (old) 

       δ= (d(X)-y(X)) out i(1- out i)  

 

   For hidden layer, 

   δ = outi(1 – outi) 
  

where ηis the learning rate and α is a designer parameter which affects the 

speed of convergence. 

8. Go to step 2 and repeat for the next pattern until the error in the output layer 

is below a pre-specified threshold  or a maximum number of iterations is 

reached. 

 

8.6.3. Selection of parameters 

 

 Initial weights : 

 

Initial weights and biases are set to random values between -0.5 to 0.5 or -1 to 1. 

 

Selection of  learning rate:  

 

1. Start with higher learning rate and steadily decrease it. 

2. Increase the  learning rate to improve performance and decrease  to 

worsen the performance. 

                                                                                                                                                                         



3. Double the learning rate until  the error value worsens. 

 

Types of learning: 

     1. Sequential learning or pre-pattern method. 

     2. Batch  learning or pre-epoch method. 

 

Selection of  the hidden layer: 

 

Generally two hidden layers are used. Neurons in the first hidden layer learn the 

local features  that characterize specific regions of the input space. Global 

features are extracted in the second hidden layer. 

 

Selection of neurons in the hidden layer 

 

1.Pruning method 

Process of removing the redundant hidden unit’s produces the smallest neural 

network capable of performing a desired task is called pruning. 

The neurons to be used in hidden layers are estimated by trail and error 

approach. One method is to construct with excessive number of hidden units 

and then some redundant units are removed during learning process. To find 

which redundant units to be removed the output of all hidden units is monitored 

and analyzed across all the training examples after the network achieves 

convergence. If the output of a certain units are approximately constant for all 

training examples this unit can be removed since it does not contribute 

essentially to the solution because it is acting as an additional bias to all 

neurons. After removing some hidden units  which do not contribute to the 

solution the weights of the reduced network must be trained once again to 

ensure the desired performance. 

 

2. Cross validation method 

 

                                                                                                                                                                         



Divide the data set into a training set T –training and a test set T-test. Subdivide 

T–training into two subsets: one to train the network T-learning and  one to 

validate the network T-validation. Train different network architectures on T-

training and evaluate their performance on T-validation. Select the best 

network. Finally retrain the network architecture on T –training .Test the 

generalization ability using T-test. 

 

8.7. NEURAL NETWORK TRAINING 

 

Training process involves four steps: 

1. Assemble the training data . 

2.Create the network object. 

3.Train the network. 

4.Simulate the network response to new inputs. 

        

8.8 .    NEURAL NETWORK   CONTROL STRUCTURE   

 

Model reference control is used  for the design .The desired performance of the 

closed-loop system is specified through a stable reference model. The control 

system attempts  to make the plant output  y p(k) match the reference model output 

asymptotically, i.e. 

 

                         Lim ||  y r(k)  - y p(k) || <=  ε , 

For some specified constant ε >= 0.  

 

 

 

 

 

 

The MRC training structure is shown in fig.8.4. 

                                                                                                                                                                         



 

 
 

 
                      Fig : 8.4. Model Reference control. 
 
 
 
The plant is required to respond with target states. The plant estimator is replaced 

with its Neural model (called neural estimator),for the purpose of training the 

controller. So before training the Neural net controller, a separate Neural net  is 

trained to behave like a plant. Here  specifically , the Neural net  is trained to 

emulate the aircraft open loop response. Training the estimator is similar to plant 

identification in control theory. The error occurs at the output of the model 

network. The derivatives of the error  can be back propagated through the 

controller and used to adjust its weights and biases. Thus the control network 

must learn how to control the plant so that it behaves like the linear reference 

model. 

 

 

 

 

 

  

8.8.1.Training the Neural Network Controller 

                                                                                                                                                                         



The given estimator now closely matches the plant dynamics, use it for the 

purpose of training the controller. The controller learns to derive the plant 

estimator from an initial state to the desired state. Learning takes place during  

many trails or runs each starting  from an initial state terminating  at a final state. 

The objective of the learning process is to find a set of controller weights that 

minimizes the error function J , where J is the averaged over the set of initial 

states. 

                           J= E ( ||  y r(k)  - y p(k) ||  ) 

  Then the weights in the controller network have to be modified so that the square 

error will be less at the end of next run. To train the controller , we need to know 

the error in the controller output for each of the next run. To train the controller , 

output for each time step k .Only the error in the final plant state , i.e.(y r(k)  - y 

p(k) ) is available. since the plant estimator is a Neural network, we can back 

propagate the final plant error through the plant estimator to get an equivalent 

error for  the controller  in the k-th state. 

 

8.8.2 Training Data Generation 

 

The data that is generated (to be used as training signal )to train the network 

should contain all the relevant information about the dynamics of the control 

system. The required training data generations are given in Appendix. 

 

                                                                                                                                                                         



 

CHAPTER 9 

SIMULATION STUDY RESULTS 

OF NEURAL NETWORKS 

 
9.1. INTRODUCTION 

 

As outlined in the methodology, initially a choice of multilayer Neural Network is 

made. Since higher order system are involved in pitch and roll, differentiable 

transfer functions are required in all the network layers. Hence tansig , logsig and 

purelin transfer functions  are used in the net  layers. To produce training data the 

following method is adopted. Using  state-space models in pitch and roll and  

transfer functions of actuator , model response data are generated for unit step 

input. Target data (θt) are generated using AAA standard models in pitch and roll 

respectively with  same unit step signals. These data are used to train respective 

Neural Network controllers in pitch and roll. Using back propagation algorithm 

the Neural network controllers are trained iteratively for different learning rates, 

until the mean square error between actual controller estimate and target fall at or 

below a specified error figure.  

After training, Neural Network Controller response for pitch and roll channels are 

Plotted. The trained controller sub-system is then built into glide-path and flare-

path control systems and the responses are also plotted. Finally, a comparative 

analysis of Conventional and Neural Network Controller responses are  done. 

 

9.2. NEURAL NETWORKS DESIGN 

9.2.1. Neural controller Design 

The general structure of the estimator for Pitch autopilot 

NN input                                         :  u , α , θ ,q ,h. 

NN output                                       :   θ  

                                                                                                                                                                         



 

 

Number of hidden layer neurons     :  12 

Neural architecture                           : 9, 12, 1.    

Training data length                         :   201 

 

The general structure of the estimator for Roll autopilot 

 

NN input                                         :  β , Φ , p ,Ψ , r . 

NN output                                       :   Φ  

Number of hidden layer neurons     :   12 

Neural architecture                           :  9,  12,  1. 

Training data length                         :   201 

 

9.2.2. Design of Pitch Attitude Control System 

 

Based on the   MIL-STD-8785C specifications , the following reference model is 

selected for training the neural network 

θref (s)   / δ e(s)       =   5.6 / (s^2 + 3.5 s +5.6)   

Where  s represents a laplace  operator for a sampling  time of 50 msec.   

 

9.2.3. Neural controller   architecture  

 

NN input                                         : δe , u , α , θ ,q ,h. 

NN output                                       :  θ ref 

Number of hidden layer neurons     : 12 

Neural architecture                           : 9, 12,  1 

Training data length                         : 201 

 

 

 

                                                                                                                                                                         



 

 

9.2.4. Design of Roll Control System 

 

Based on the   MIL-STD-1797A specifications , the following reference model is 

selected for training the neural network 

   Φ ref (s)   / δa(s)       =   16 / (s^2 + 5.6 s +16) 
Where  s represents a laplace  operator for a sampling  time of 50 m.sec.   

 

9.2.5. Neural controller   architecture  

 

NN input                                         : δa , β , Φ , p ,Ψ , r . 

NN output                                       :  Φ ref 

Number of hidden layer neurons     :  12 

Neural architecture                           :  9, 12, 1 

Training data length                         :   201 

 

 

9.3. NEURAL NETWORK SIMULATION RESULTS. 

 

Using the above specifications, Neural Network Controller designs for pitch and 

roll channels were created and their response in glide slope and  flare path control 

systems were simulated. The response plots are shown in Figures 9.1, 9.2, 9.3 and 

9.4. In order to find out the initial weights and biases,  the neural network is 

initialized with randomly chosen weights and biases and trained. This is done  

with the controller not connected to the system (Off-line). Now the network is 

initialized with new weights and biases , and the network learns fast 

comparatively when disturbances are introduced. So this network is capable of 

changing its weights and biases if there is any disturbance  or flight conditions are 

changed. For the pitch hold systems, the network was trained for a large number 

                                                                                                                                                                         



of  epochs and the performance index (mean square error) is reached. For roll 

control systems the  

network was also trained for a large number of epochs and the mean square error 

is reached.  

 

 

For landing system, the neural network is trained with two hidden layers and each 

layer is having 5 neurons. With suitable learning rate and momentum constant the  

network was trained for several epochs till  performance index (mean square 

error)  is reached. 

 

 

 

                                                                                                                                                                         



Figure 9.1. Neural Autopilot Response of pitch control. 

 

 

 

 

 

 

 

 
   

  Figure 9.2. Neural Autopilot Response of Roll Control 

 

 

                                                                                                                                                                         



 

 

 

 
 

Figure 9.3. Neural Autopilot Response of Glide path Control. 

 

 

  

 

                                                                                                                                                                         



 

 

 

 

 
     Figure 9.4. Neural Autopilot Response of Flare path control. 

 
 

 

 

 

 

 

                                                                                                                                                                         



9.4. SIMULATION FOR COMPARATIVE STUDY ANALYSIS 

 

The performance comparison of Neural and Conventional Autopilots are studied 

using parallel simulation and the response figures for Pitch, Roll and Landing 

control are given the following figures. 

 
Fig 9.5 Comparison of Pitch Response 

 
Fig 9.6 Comparison of Roll Response 

 

                                                                                                                                                                         



 

 

 

 
 

Fig 9.7 MATLAB Simulation Diagram for comparison of Glide path 

 

 

 

 

                                                                                                                                                                         



 

 

 
Fig 9.8 Comparison of Glide slope Gamma Response 

 

 
 

Fig 9.9 Comparison of Glide slope Theta Response 

 

                                                                                                                                                                         



 

 

 

 

 

 

 

 

 

 

 
Fig 9.10 Comparison of Glide slope Tau Response 

 

 

 

 

 

 

 

 

                                                                                                                                                                         



 

 

 

 

 

 

 

 
Fig  9.11 MATLAB Simulation Diagram for comparison of Flare Path  

 

                                                                                                                                                                         



 

 

 

 

 

 

 
Fig 9.12 Comparison of Flare Path Gamma Response 

 

 

                                                                                                                                                                         



 
Fig 9.13 Comparison of Flare path Height Response 

                                                                                                                                                                         



 

CONCLUSION 
 
The work demonstrates the feasibility of developing a neural network application 

in place of conventional controller design.  Instead of using conventional control 

system methods to design autopilot controllers, neural network controllers have 

been designed and trained with quantitative experimental data and actual model 

open-loop responses.  This largely takes care of most of non-linearities in aircraft 

characteristics and it is sufficient to define only a target response characteristic.  

Due to parallel architecture of Neural Design, the controller response is faster.  

The model response behavior is found to be accurate enough for practical design 

applications.  This is evident from the Comparative simulation study response 

plots. 

                                                                                                                                                                         



 

FUTURE SCOPE 
 
A vast resource of aircraft design data is available from the past experience by 

leading aerospace organizations.  Advanced navigational aids like GPS and solid 

state inertial reference systems are available to the designer. The size, weight and 

power consumption of aircraft hardware has been reduced to a large extent.  

Combined with other control designs using fuzzy logic and genetic algorithm, 

more elaborate control laws can be incorporated in the autopilot design to provide 

more precise and intelligent control response for difficult weather conditions and 

non-linearities in aircraft characteristics.  These developments make future scope 

for designing fully autonomous autopilots with more robustness, higher degree of 

controllability and better failure tolerance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                         



                                     APPENDIX 
 

       
 
A.I. List of Matlab Programs for Simulation Studies 
 
1.Programs for Training Data generation 

 
A.1.Reference Model Pitch transfer function. 
 
          %tf for training ref milstd theta to del-e 
 

num=[5.6 0]; 
 
den=[1 3.5 5.6]; 
 
sysc1_r=tf(num,den);-<--------- Laplace Transfer function. 
 
sysd1_r=c2d(sysc1_r,.05);-<---- Discrete form. 
 
 
Laplace Transfer function: 
 
           5.6 s 
 ------------------------ 
 s^2 + 3.5 s + 5.6 
  
Discrete Transfer function: 
 
    0.2563 z - 0.2563 
--------------------------------- 
z^2 - 1.827 z + 0.8395 
  
Sampling time: 0.05 
 

 
 
A.2.Elevator actuator Transfer function 
 

%tf for training ref milstd theta to del-e 
 
%tf for aileron actuator 
 
num=[20]; 
 
 
den=[1 20]; 

                                                                                                                                                                         



 
sysc_a=tf(num,den); 
 
sysd_a=c2d(sysc_a,.05); 
 
 
Laplace Transfer function: 
       20 
   ------------ 
    s + 20 
  
Discrete Transfer function: 
 

             0.6321 
---------------- 
 z - 0.3679 
  
Sampling time: 0.05 
 
 

 
 
A.3. Aircraft State-Space Model and Transfer Functions 
 
A.3.1 Longitudinal mode  

 
      A =  [-0.077 5.6691 -9.81 0 0;-0.0022 -5.8734 0 0.930  0; 
                0 0 0 1 0;0.0004 -41.8834  0 -2.8536 0;0 -1.6579 1.6579 0 0] 
      A =  [u  α  θ  q  h] 
 
      B  =  [0;-0.3662;0;35.0018;0] 
      B  =  [δe] 

 
      C  =  [1 0 0 0 0;0 1 0 0 0 ;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1] 
      C  = [u  α  θ  q  h] 

 
      D  =  [0;0;0;0;0] 
      D  =  [δe] 

 
      iu  =  1; 
 
     [num,den]  =  ss2tf(A,B,C,D,iu); 

 
     sys =  ss(A,B,C,D); 

 
     

                                                                                                                                                                         



    HAHS_ss  =  c2d(sys,.05) 
 
    printsys[num,den] 
 
   [zz,pp,kk] = ss2zp(A,B,C,D) 
 

 
         A = 

               u                       α                 θ               q                   h      
              
     u     -0.077          5.669          -9.81         0                  0 
     α    -0.0022       -5.873           0              0.93             0 
     θ     0                  0                  0              1                  0 
     q     0.0004       -41.88           0              -2.854          0 
     h     0                -1.658           1.658        0                 0 
 
 
B =        δe  
 
   u         0 
   α    -0.3662 
   θ       0 
   q       35 
   h         0 
 
 
 
C = 
            u     α   θ     q    h      
 
      u    1    0    0    0    0 
      α    0    1    0    0    0 
      θ    0    0    1    0    0 
      q    0    0    0    1    0 
      h    0    0    0    0    1 
 
 
D = 
             δe  
    
   u         0 
   α         0 
   θ          0 
   q         0 
   h         0 
 

                                                                                                                                                                         



 
 
 
Continuous-time model. 
 
A = 
                x1               x2                 x3                    x4                x5 
   x1       0.9961           0.249       -0.4896            -0.00594          0 
   x2  -9.325e-005      0.7076      2.423e-005       0.03682           0 
   x3   2.187e-006     -0.04499             1              0.0459             0 
   x4    0.0001172       -1.658      -2.145e-005      0.8272             0 
   x5   4.145e-006     -0.07201       0.08289          0.000306        1 
 
 
b = 
              u1 
   x1  -0.005808 
   x2    0.01935 
   x3    0.04171 
   x4      1.623 
   x5  0.0008473 
 
 
c = 
       x1  x2  x3  x4  x5 
   y1   1   0   0   0   0 
   y2   0   1   0   0   0 
   y3   0   0   1   0   0 
   y4   0   0   0   1   0 
   y5   0   0   0   0   1 
 
 
d = 
       u1 
   y1   0 
   y2   0 
   y3   0 
   y4   0 
   y5   0 
 
Sampling time: 0.05 
Discrete-time model. 

 
 
 
 

                                                                                                                                                                         



 
 
num = 
 
  1.0e+003 * 
 
  Columns 1 through 5  
 
         0   -0.0000   -0.0021   -0.1648   -2.1672 
         0   -0.0004    0.0315    0.0024    0.0008 
         0   -0.0000    0.0350    0.2236    0.0174 
         0    0.0350    0.2236    0.0174    0.0000 
         0   -0.0000    0.0006    0.0058    0.3667 
 
  Column 6  
 
         0 
         0 
         0 
         0 
    0.0277 
 
 
den = 
 
  Columns 1 through 5  
 
    1.0000    8.8040   56.3963    4.3272    0.9270 
 
  Column 6  
 
         0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                         



Speed to Elevator (u/δe) Transfer Function 
 
num(1)/den =  
  
   -1.7764e-015 s^4 - 2.076 s^3 - 164.7531 s^2 - 2167.1985 s 
   --------------------------------------------------------- 
     s^5 + 8.804 s^4 + 56.3963 s^3 + 4.3272 s^2 + 0.92697 s 
 
 
 
Angle of Attack to Elevator (α/δe) Transfer Function 
  
num(2)/den =  
  
      -0.3662 s^4 + 31.4785 s^3 + 2.426 s^2 + 0.75397 s 
   ------------------------------------------------------ 
   s^5 + 8.804 s^4 + 56.3963 s^3 + 4.3272 s^2 + 0.92697 s 
 
 
 
Pitch to Elevator (θ/δe) Transfer Function 
num(3)/den =  
  
   -1.2434e-014 s^4 + 35.0018 s^3 + 223.6124 s^2 + 17.4463 s 
   --------------------------------------------------------- 
     s^5 + 8.804 s^4 + 56.3963 s^3 + 4.3272 s^2 + 0.92697 s 
 
 
 
Pitch rate to Elevator (p/δe) Transfer Function 
num(4)/den =  
  
   35.0018 s^4 + 223.6124 s^3 + 17.4463 s^2 + 8.1046e-015 s 
   -------------------------------------------------------- 
    s^5 + 8.804 s^4 + 56.3963 s^3 + 4.3272 s^2 + 0.92697 s 
  
 
 
Height to Elevator (h/δe) Transfer Function 
num(5)/den =  
  
   -7.1054e-015 s^4 + 0.60712 s^3 + 5.8413 s^2 + 366.7049 s + 27.6743 
   ------------------------------------------------------------------ 
         s^5 + 8.804 s^4 + 56.3963 s^3 + 4.3272 s^2 + 0.92697 s 
 
 

                                                                                                                                                                         



 
 
 
 
ZZ = 
 
  Columns 1 through 3  
 
 -62.7143            86.0371            -0.0790           
 -16.6456            -0.0386 + 0.1498i  -6.3096           
   0.0000            -0.0386 - 0.1498i        0           
      Inf                  0                Inf           
 
  
 
 
 
 Columns 4 through 5  
 
        0            -4.7729 +24.0936i 
  -6.3096            -4.7729 -24.0936i 
  -0.0790            -0.0756           
        0                Inf           
 
 
PP = 
 
        0           
  -4.3645 + 6.0561i 
  -4.3645 - 6.0561i 
  -0.0375 + 0.1234i 
  -0.0375 - 0.1234i 
 
KK = 
 
   -2.0760 
   -0.3662 
   35.0018 
   35.0018 
    0.6071 

                                                                                                                                                                         



 
 
A.3.2 Lateral Mode 
 
 
A = [β  φ  Ψ  p   r] 
B = [δa] 
C = [β  φ  Ψ  p   r] 
D = [δa] 
 
 
 
A = 
 
        
   -0.2954    0.1509    0.0001         0   -0.9930 
         0         0    1.0000         0         0 
  -36.2243         0   -8.9888         0    2.4260 
         0         0         0         0    1.0000 
   10.9816         0   -3.1858         0   -0.4554 
 
 
B = 
 
         0 
         0 
   34.3115 
         0 
    7.7691 
 
 
C = 
 
     1     0     0     0     0 
     0     1     0     0     0 
     0     0     1     0     0 
     0     0     0     1     0 
     0     0     0     0     1 
 
D = 
 
     0 
     0 
     0 
     0 
     0 

                                                                                                                                                                         



 
 
 
 
ZZ = 
 
  Columns 1 through 3  
 
   5.8700            -0.6501 + 4.3501i        0           
  -0.0000            -0.6501 - 4.3501i  -0.6501 + 4.3501i 
  -0.1149                  0            -0.6501 - 4.3501i 
      Inf                Inf                  0           
 
  Columns 4 through 5  
 
   4.4822             4.4822           
  -1.5440            -1.5440           
   1.8474             1.8474           
      Inf                  0           
 
 
PP = 
 
        0           
  -9.5082           
  -0.1191 + 4.8278i 
  -0.1191 - 4.8278i 
   0.0069           
 
KK = 
 
   -7.7113 
   34.3115 
   34.3115 
    7.7691 
    7.7691 
 
num = 
 
  Columns 1 through 5  
 
         0   -0.0000   -7.7113   44.3794    5.2020 
         0    0.0000   34.3115   44.6089  663.8012 
         0   34.3115   44.6089  663.8012   -0.0000 
         0    0.0000    7.7691  -37.1797  -11.5950 
         0    7.7691  -37.1797  -11.5950   99.32 

                                                                                                                                                                         



 
 
  Column 6  
 
         0 
         0 
         0 
   99.3262 
         0 
 
 
den = 
 
  Columns 1 through 5  
 
    1.0000    9.7396   25.5204  221.5735   -1.5309 
 
  Column 6  
 
         0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                         



Sideslip to aileron (β/δa) Transfer Function 
 
num(1)/den =  
  
     -1.2434e-014 s^4 - 7.7113 s^3 + 44.3794 s^2 + 5.202 s 
   -------------------------------------------------------- 
   s^5 + 9.7396 s^4 + 25.5204 s^3 + 221.5735 s^2 - 1.5309 s 
 
 
Roll angle to aileron (φ/δa) Transfer Function  
 
num(2)/den =  
  
   2.3093e-014 s^4 + 34.3115 s^3 + 44.6089 s^2 + 663.8012 s 
   -------------------------------------------------------- 
   s^5 + 9.7396 s^4 + 25.5204 s^3 + 221.5735 s^2 - 1.5309 s 
  
 
Roll Rate to aileron (p/δa) Transfer Function 
 
num(3)/den =  
  
   34.3115 s^4 + 44.6089 s^3 + 663.8012 s^2 - 1.6209e-013 s 
   -------------------------------------------------------- 
   s^5 + 9.7396 s^4 + 25.5204 s^3 + 221.5735 s^2 - 1.5309 s 
 
 
Yaw to aileron (Ψ/δa) Transfer Function 
  
num(4)/den =  
  
   7.1054e-015 s^4 + 7.7691 s^3 - 37.1797 s^2 - 11.595 s + 99.3262 
   --------------------------------------------------------------- 
       s^5 + 9.7396 s^4 + 25.5204 s^3 + 221.5735 s^2 - 1.5309 s 
  
 
Yaw Rate to aileron (r/δa) Transfer Function 
 
num(5)/den =  
  
       7.7691 s^4 - 37.1797 s^3 - 11.595 s^2 + 99.3262 s 
   -------------------------------------------------------- 
   s^5 + 9.7396 s^4 + 25.5204 s^3 + 221.5735 s^2 - 1.5309 s 
 
 
 

                                                                                                                                                                         



 
II Training data Generation – Post Training Analysis                          
 

 
               Fig A.1   Basic Block Diagram of Training Network 

                                                                                                                                                                         



 
 
 
 
III Model training session 
 
 
TRAINLM, Epoch 0/500, MSE 1.07304e+006/1e-01, Gradient 9.90309e+009/1e-010 
TRAINLM, Epoch 5/500, MSE 0.00193682/1e-010, Gradient 241257/1e-010 
TRAINLM, Epoch 10/500, MSE 2.89731e-006/1e-010, Gradient 3853.49/1e-010 
TRAINLM, Epoch 15/500, MSE 3.7775e-007/1e-010, Gradient 98.1025/1e-010 
TRAINLM, Epoch 20/500, MSE 2.96953e-007/1e-010, Gradient 85.797/1e-010 
TRAINLM, Epoch 25/500, MSE 2.40323e-007/1e-010, Gradient 39.9062/1e-010 
TRAINLM, Epoch 30/500, MSE 2.05305e-007/1e-010, Gradient 2.9601/1e-010 
TRAINLM, Epoch 35/500, MSE 1.99814e-007/1e-010, Gradient 3.73385/1e-010 
TRAINLM, Epoch 40/500, MSE 1.95443e-007/1e-010, Gradient 2.82125/1e-010 
TRAINLM, Epoch 45/500, MSE 1.86932e-007/1e-010, Gradient 14.669/1e-010 
TRAINLM, Epoch 50/500, MSE 1.78222e-007/1e-010, Gradient 57.2569/1e-010 
TRAINLM, Epoch 55/500, MSE 1.60421e-007/1e-010, Gradient 20.6774/1e-010 
TRAINLM, Epoch 60/500, MSE 1.47161e-007/1e-010, Gradient 23.9514/1e-010 
TRAINLM, Epoch 65/500, MSE 1.37778e-007/1e-010, Gradient 16.9432/1e-010 
TRAINLM, Epoch 70/500, MSE 1.29673e-007/1e-010, Gradient 13.0583/1e-010 
TRAINLM, Epoch 75/500, MSE 1.22521e-007/1e-010, Gradient 10.7753/1e-010 
TRAINLM, Epoch 80/500, MSE 1.16145e-007/1e-010, Gradient 9.27313/1e-010 
TRAINLM, Epoch 85/500, MSE 9.95819e-008/1e-010, Gradient 513.254/1e-010 
TRAINLM, Epoch 90/500, MSE 7.31175e-008/1e-010, Gradient 155.243/1e-010 
TRAINLM, Epoch 95/500, MSE 5.98047e-008/1e-010, Gradient 75.0702/1e-010 
TRAINLM, Epoch 100/500, MSE 5.10544e-008/1e-010, Gradient 41.0905/1e-010 
TRAINLM, Epoch 105/500, MSE 4.50858e-008/1e-010, Gradient 24.2643/1e-010 
TRAINLM, Epoch 110/500, MSE 4.08806e-008/1e-010, Gradient 15.0486/1e-010 
TRAINLM, Epoch 115/500, MSE 3.77993e-008/1e-010, Gradient 9.93836/1e-010 
TRAINLM, Epoch 120/500, MSE 3.54409e-008/1e-010, Gradient 7.17603/1e-010 
TRAINLM, Epoch 125/500, MSE 3.35554e-008/1e-010, Gradient 5.75861/1e-010 
TRAINLM, Epoch 130/500, MSE 3.19859e-008/1e-010, Gradient 5.12003/1e-010 
TRAINLM, Epoch 135/500, MSE 3.06331e-008/1e-010, Gradient 4.95535/1e-010 
TRAINLM, Epoch 140/500, MSE 2.94335e-008/1e-010, Gradient 5.11601/1e-010 
TRAINLM, Epoch 145/500, MSE 2.83458e-008/1e-010, Gradient 5.55455/1e-010 
TRAINLM, Epoch 150/500, MSE 2.73432e-008/1e-010, Gradient 6.3081/1e-010 
TRAINLM, Epoch 155/500, MSE 2.64071e-008/1e-010, Gradient 7.51889/1e-010 
TRAINLM, Epoch 160/500, MSE 2.55225e-008/1e-010, Gradient 9.5121/1e-010 
TRAINLM, Epoch 165/500, MSE 2.46704e-008/1e-010, Gradient 13.0001/1e-010 
TRAINLM, Epoch 170/500, MSE 2.38125e-008/1e-010, Gradient 19.6427/1e-010 
TRAINLM, Epoch 175/500, MSE 2.28333e-008/1e-010, Gradient 33.9545/1e-010 
TRAINLM, Epoch 180/500, MSE 2.13066e-008/1e-010, Gradient 76.7027/1e-010 
TRAINLM, Epoch 185/500, MSE 1.93879e-008/1e-010, Gradient 226.328/1e-010 
TRAINLM, Epoch 190/500, MSE 1.6393e-008/1e-010, Gradient 149.383/1e-010 
TRAINLM, Epoch 195/500, MSE 1.45281e-008/1e-010, Gradient 59.1147/1e-010 
 

                                                                                                                                                                         



 
 
TRAINLM, Epoch 200/500, MSE 1.34057e-008/1e-010, Gradient 48.7485/1e-010 
TRAINLM, Epoch 205/500, MSE 1.32052e-008/1e-010, Gradient 6.8286/1e-010 
TRAINLM, Epoch 210/500, MSE 1.30405e-008/1e-010, Gradient 46.0211/1e-010 
TRAINLM, Epoch 215/500, MSE 1.2453e-008/1e-010, Gradient 5.33685/1e-010 
TRAINLM, Epoch 220/500, MSE 1.18148e-008/1e-010, Gradient 8.38775/1e-010 
TRAINLM, Epoch 225/500, MSE 1.10531e-008/1e-010, Gradient 4.89203/1e-010 
TRAINLM, Epoch 230/500, MSE 1.07301e-008/1e-010, Gradient 6.80886/1e-010 
TRAINLM, Epoch 235/500, MSE 1.0507e-008/1e-010, Gradient 1.81323/1e-010 
TRAINLM, Epoch 240/500, MSE 9.5942e-009/1e-010, Gradient 132.353/1e-010 
TRAINLM, Epoch 245/500, MSE 8.52874e-009/1e-010, Gradient 6.30973/1e-010 
TRAINLM, Epoch 250/500, MSE 8.05285e-009/1e-010, Gradient 7.09839/1e-010 
TRAINLM, Epoch 255/500, MSE 7.61701e-009/1e-010, Gradient 7.57393/1e-010 
TRAINLM, Epoch 260/500, MSE 7.21169e-009/1e-010, Gradient 7.96109/1e-010 
TRAINLM, Epoch 265/500, MSE 6.83068e-009/1e-010, Gradient 8.27607/1e-010 
TRAINLM, Epoch 270/500, MSE 6.46988e-009/1e-010, Gradient 8.5136/1e-010 
TRAINLM, Epoch 275/500, MSE 6.12654e-009/1e-010, Gradient 8.66811/1e-010 
TRAINLM, Epoch 280/500, MSE 5.79876e-009/1e-010, Gradient 8.73458/1e-010 
TRAINLM, Epoch 285/500, MSE 5.48528e-009/1e-010, Gradient 8.70898/1e-010 
TRAINLM, Epoch 290/500, MSE 5.18524e-009/1e-010, Gradient 8.58797/1e-010 
TRAINLM, Epoch 295/500, MSE 4.89815e-009/1e-010, Gradient 8.37048/1e-010 
TRAINLM, Epoch 300/500, MSE 4.62371e-009/1e-010, Gradient 8.05859/1e-010 
TRAINLM, Epoch 305/500, MSE 4.3618e-009/1e-010, Gradient 7.65852/1e-010 
TRAINLM, Epoch 310/500, MSE 4.1124e-009/1e-010, Gradient 7.18041/1e-010 
TRAINLM, Epoch 315/500, MSE 3.87552e-009/1e-010, Gradient 6.63825/1e-010 
TRAINLM, Epoch 320/500, MSE 3.65122e-009/1e-010, Gradient 6.04861/1e-010 
TRAINLM, Epoch 325/500, MSE 3.43951e-009/1e-010, Gradient 5.4294/1e-010 
TRAINLM, Epoch 330/500, MSE 3.24037e-009/1e-010, Gradient 4.79851/1e-010 
TRAINLM, Epoch 335/500, MSE 3.05374e-009/1e-010, Gradient 4.17272/1e-010 
TRAINLM, Epoch 340/500, MSE 2.87947e-009/1e-010, Gradient 3.56704/1e-010 
TRAINLM, Epoch 345/500, MSE 2.71734e-009/1e-010, Gradient 2.99374/1e-010 
TRAINLM, Epoch 350/500, MSE 2.56702e-009/1e-010, Gradient 2.46238/1e-010 
TRAINLM, Epoch 355/500, MSE 1.65054e-009/1e-010, Gradient 13.1254/1e-010 
TRAINLM, Epoch 360/500, MSE 1.22363e-009/1e-010, Gradient 23.2065/1e-010 
TRAINLM, Epoch 365/500, MSE 9.8263e-010/1e-010, Gradient  11.6357/1e-010 
TRAINLM, Epoch 370/500, MSE 8.35506e-010/1e-010, Gradient 5.28806/1e-010 
TRAINLM, Epoch 375/500, MSE 7.36023e-010/1e-010, Gradient 3.55964/1e-010 
TRAINLM, Epoch 380/500, MSE 6.63978e-010/1e-010, Gradient 2.49682/1e-010 
TRAINLM, Epoch 385/500, MSE 6.0993e-010/1e-010, Gradient  1.84617/1e-010 
TRAINLM, Epoch 390/500, MSE 5.67718e-010/1e-010, Gradient 0.26092/1e-010 
TRAINLM, Epoch 395/500, MSE 5.35127e-010/1e-010, Gradient 2.75723/1e-010 
TRAINLM, Epoch 400/500, MSE 5.0882e-010/1e-010, Gradient 6.35681/1e-010 
TRAINLM, Epoch 405/500, MSE 4.89506e-010/1e-010, Gradient 9.42287/1e-010 
TRAINLM, Epoch 410/500, MSE 4.69659e-010/1e-010, Gradient 11.0706/1e-010 
TRAINLM, Epoch 415/500, MSE 4.52532e-010/1e-010, Gradient 10.1864/1e-010 
TRAINLM, Epoch 420/500, MSE 4.33189e-010/1e-010, Gradient 8.15139/1e-010 
TRAINLM, Epoch 425/500, MSE 4.17039e-010/1e-010, Gradient 4.20092/1e-010 
 
TRAINLM, Epoch 430/500, MSE 4.02685e-010/1e-010, Gradient 1.87239/1e-010 
TRAINLM, Epoch 435/500, MSE 3.90754e-010/1e-010, Gradient 1.20416/1e-010 

                                                                                                                                                                         



TRAINLM, Epoch 440/500, MSE 3.79998e-010/1e-010, Gradient 1.96774/1e-010 
TRAINLM, Epoch 445/500, MSE 3.70269e-010/1e-010, Gradient 3.02196/1e-010 
TRAINLM, Epoch 450/500, MSE 3.61095e-010/1e-010, Gradient 3.03228/1e-010 
TRAINLM, Epoch 455/500, MSE 3.52543e-010/1e-010, Gradient 3.22549/1e-010 
TRAINLM, Epoch 460/500, MSE 3.44456e-010/1e-010, Gradient 3.16928/1e-010 
TRAINLM, Epoch 465/500, MSE 3.36823e-010/1e-010, Gradient 3.18188/1e-010 
TRAINLM, Epoch 470/500, MSE 3.29574e-010/1e-010, Gradient 3.15426/1e-010 
TRAINLM, Epoch 475/500, MSE 3.22675e-010/1e-010, Gradient 3.13781/1e-010 
TRAINLM, Epoch 480/500, MSE 3.16088e-010/1e-010, Gradient 3.11539/1e-010 
TRAINLM, Epoch 485/500, MSE 3.09782e-010/1e-010, Gradient 3.09239/1e-010 
TRAINLM, Epoch 490/500, MSE 3.03733e-010/1e-010, Gradient 3.06691/1e-010 
TRAINLM, Epoch 495/500, MSE 2.97919e-010/1e-010, Gradient 3.03973/1e-010 
TRAINLM, Epoch 500/500, MSE 2.92323e-010/1e-010, Gradient 3.00974/1e-010 
TRAINLM, Maximum epoch reached, performance goal was not met. 
 
Evaluating callback 'LoadFcn' for neural/Control Systems/X(2Y)  Graph 
Callback: sfunxy2([],[],[],'LoadBlock') 

 
A.2 Neural Network 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                         



 
A.3 Network Convergence 
 

 
A.4 Network Convergence 
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