Chapter 1

Introduction

1.1 Introduction

Digital Image processing is a rapidly growing area of computer science & engineering. Processing of Digital image by means of a digital computer is known as digital image processing. An image may be defined as a two dimensional function, f(x, y), where x and y are spatial coordinates. These elements are called pixels and the amplitude of a pixel is the intensity or gray level of the image at that pixel in the gray image. Each pixel is a scalar proportional to the brightness. The minimum brightness is called black, and the maximum brightness is called white. A typical example is given in Figure 1.1. A color image measures the intensity and chrominance of light. 
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Figure 1.1: A typical grayscale image of Lena of resolution 256 ×256

For storage purposes, pixel values need to be quantized. The brightness in grayscale images is usually quantized to L levels so; 
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. If quantization level L has the form of
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 the image is referred to as having L bits per pixel. Many common grayscale images use 8 bits per pixel, giving 256 distinct grey levels. In medical applications often use 12–16 bits per pixel, as their accuracy could be critically important. 
1.2 Image characteristics

1.2.1 The histogram

An image histogram plots the graph of relative frequency of each pixel value that occurs in a grayscale image. The histogram provides a convenient summary of the intensities in an image, but is unable to convey any information regarding spatial relationships between pixels. Figure 1.2 shows histogram of figure 1.1.In  this example ; the image does not contain 
many very low or very high intensity pixels.

[image: image4]
Figure 1.2: Histogram of  image of Lena of resolution 256 ×256

1.2.2 The mean

The average pixel value of an image is referred as the image mean. For a grayscale image this is equal to the average brightness or intensity. Let for the image,
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, of the size N×M, the mean of this image, may be calculated using Equation 1.1 
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1.2.3 The variance
The image variance,
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, gives, around the image mean an estimate of the spread of pixel values. It can be calculated using either Equation 1.2 or Equation 1.4 for the image,
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1.2.4 Image-arithmetical operations
Various useful arithmetical operations may possible for images. Let 
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 represent the binary operator for addition, subtraction, multiplication, or division. Equation 1.3 shows how to combine a scalar,
[image: image14.wmf]s

, and an image, I, to produce a new image F. This is a pixel-wise operation, each pixel in I is operated on using 
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, and the result put in F.

                                   F = I  
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This equation can be used to enhance an image which is too dark. Consider the image in Figure 1.3(a) which uses 8 bits per pixel (256 levels), but it contains only pixels with intensities from 64 to 191. 

[image: image21.emf]


Figure 1.3: (a) low contrast image; (b) after enhancement
This image may enhance up to the full intensity range by using Equation 1.4, where ﬂoating point precision is used for all pixels during the calculation. The result is given in Figure 1.3(b).
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1.3 Noise reduction 

Noise, discussed in the next chapter, reduction is an important step in many image processing applications. The image may easily corrupt during storage, scanning, transmission etc. Corruption of image by impulse noise is a frequent problem in image processing. It is necessary to remove noise from the image before some subsequent processing such as edge detection, image segmentation and pattern reorganization. Non linear techniques for noise reduction are very effective due to their specific ability to perform an effective nose cancellation without degrading the image structure.

A large number of filters have been proposed to remove impulse noise while preserving image details. In the literature median based filter and its modification is used widely because of their effective noise suppressive capability and their simplicity. However most of the median filters are implemented uniformly across the image, they tend to modify both noise pixel and undisturbed good pixels.

The basic principle of noise reduction is replacing the gray level of every pixel with a new value depending on the local window. The filtering action should distinguish between unwanted noise and image information. Hence ideal algorithm for noise cancellation should vary from pixel to pixel depending upon local context. For example if window region is free from noise, then average of window values must be taken for the new pixel value. On the other hand if window region contains edge or non impulse noise pixel, different type of algorithm should be used to preserve image information but it is very difficult.

Fuzzy filters have been suggested as on means of solving above problem It succeeded in removing impulse noise while preserving image detail such as edge. For example consider the following fuzzy rule for impulse noise detection.

If pixel value in the region is large.

Then pixel is impulse noise pixel.

The antecedents of fuzzy rules are constructed by using two important local characteristics.
1. Improvement in the central pixel by applying  fuzzy rule / other equation.
2. Apply fuzzy membership function. 

Since the fuzzy filter is able to change its property according to local characteristics in given window, it can remove Impulse noise while preserving image details.

Two important features as presented above estimates a Improvement in the central pixel which is sensitive to local variation due to image structure such as edges; and then apply the membership function accordingly to the noise level to perform as “fuzzy filter” for noise reduction. These rules examine each pixel that is processed and determine a correlated term.

The evaluation of the performance of classical and fuzzy filters for impulse noise will be supported by numerical and visual experiments. Among other things, we will compare whether fuzzy filters perform better than classical filter. We will also compare other available fuzzy filters and whether good numerical results are also confirmed by good visual results.

Since most effective approaches of Impulse noise reduction are non linear and adaptive nature. We are trying to develop fuzzy filter for impulse noise reduction in images.
1.4 Objective of the Thesis

The objectives of the thesis are as follows:—

(a) First step:-Impulse detection uses Laplacian Operator by investigation of each pixel.

(b) Improvement in the current pixel by applying switching equation to improve noisy image. This equation removes some noise from noisy image.

(c) Second step:-Apply fuzzy membership function to develop fuzzy filter to remove noise by refinement of above equation.

1.5 Scope of the Study

It is well known that fuzzy filters have better performance than classical filters. For example median filter and its modification remove noise but blur the edges, while fuzzy filters have ability to remove noise with preservation of image information.

Fuzzy logic has been successfully applied to control problems. Fuzzy theory allows the use of fuzzy “if – then” rules concerning fuzzy concept. These rules may come from human experts that help for matching input – output pairs. Some fuzzy filters already exist in the literature. We want to design new fuzzy filter which can reduce noise only from the image information.

The fuzzy filter removes ‘salt and pepper’ and ‘random’, noise from the image. This filter suppresses impulse noise effectively while preserving details of the image information. Here depending on the fuzzy rule, we use S-function to remove noise by taking the parameter “(”,”β,”and “γ”. The parameters are evaluated from the trial and error procedure from image depending upon image information.

1.6 Need for Fuzzy Filter

Image procession is an important step for automated visual inspection. In order to improve visual quality of image the acquired images must pass through image processing to remove distracting and useless information from the image. These preprocessing techniques are important in increasing the accuracy of image.

In Image Enhancement, the ultimate goal of restoration techniques is to improve on image to some predefined sense. For example, contrast enhancement is often necessary in order to highlight important features in the image information. The enhancement of the degraded image is very critical process. Many fuzzy filters exist but we will tri to develop effective fuzzy filter that can remove impulse noise from the image information itself.

1.7 Outline of the study

The dissertation started with a general introduction to fundamental of digital image. Identification of the problem and objective of the study, and need for fuzzy filter for image processing. The second part of the report describes a literature review of the noise model.  The third part of the report is a literature survey that expounded the essential knowledge about the introduction to the classical filters. The forth part gives an introduction to fuzzy logic, fuzzy fundamentals, fuzzy image processing and its advantage over classical filter. classification of fuzzy filter and their comparison. The fifth part of the dissertation contains to design and implementation of fuzzy filters for image processing. This part also contains explanation of analysis of each pixel to remove impulse noise and Gaussian noise. The sixth part of the report describes design and implementation of two step fuzzy filter. Thereafter, the seventh part describes conclusions about the project work for noise reduction. Scope of the project for further development is also discussed in this part.

Chapter 2

NOISE

2.1. Introduction

In this chapter, the degradation process modeled, which included noises such as uniform noise, salt and pepper noise and Gaussian noise etc. Figure 2.1 shows how these types of noise affect a typical grayscale image.

[image: image23.emf]
Figure 2.1: Different types of noise: (a) original image; (b) additive noise; (c) multiplicative noise; (d) impulse noise.
2.2 Noise Model 

2.2.1 Additive noise
Let 
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be the noisy image of the ideal image,
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 be a “noise function” which gives random values coming from an arbitrary distribution. Then additive noise can be described by Equation 2.1.
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Figure 2.2 shows the degradation of image by additive noise 

Additive noise is independent of the pixel values in the original image. Typically, additive noise 
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is symmetric about zero. This has the effect of not altering the average brightness of the image, or large parts thereof. A good example of additive noise is the thermal noise within photo-electronic sensors.

Here level of additive noise generally express by its variance. Given 
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 and some knowledge about the additive noise term, the objective of restoration is to obtain an estimate 
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of the original image; which to be as close as possible to the original input image and it require more we know about 
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 . In order to compare the performance with respect to original input image, the signal to noise ratio is often used for the characterization of signal. 
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Where   
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  = variance in the signal
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  = variance in the noise
 The mean square error (MSE) between the original image 
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Where (N,M = image dimensions

In practice, images easily get corrupted with noise, e.g. due to the circumstances of recording for example digital image acquired with digital electronic camera corrupted due to dust on a lens, electronic noise in the cameras and sensors etc., transmission (e.g. electromagnetic interaction, transmission over channel etc.) for example video images transmitted via satellite are susceptible to the electromagnetic interference. Also the digital image also easily corrupted during storage on secondary memory, during copying and scanning etc.

The noise component may be considered random variables characterized by a probability density function (PDF). The mean and variance are useful parameters to represent noise. Mean value M gives the average brightness of the noise and square root of variance ( gives the average peak-to-peak gray level deviation of noise. M (mean) and ( (variance) are given by:-
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Where 
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= frequency of occurrence of noise amplitude k
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= maximum gray level

Where k, ideally varies from – ( to (. Since pixel level are limited to range (0, N–1)  the noise amplitude level k also varies to range (0, N–1).

2.2.2 Multiplicative noise

A signal dependent form of noise, whose magnitude is related to the value of the original pixel is know as Multiplicative noise, or speckle noise, and Equation 2.6 describes one simple form it can take, but a more complex function of the original pixel value is also possible. 
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 2.2.3 Impulsive noise

The PDF of impulsive noise is given by:
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Where
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, is the probability of salt is noise and 
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 is the probability of pepper noise
Impulse noise has the property of either leaving a pixel unmodified with probability 1-p or replacing it altogether with probability p.

If b > a, gray level b will appear as a light dot in the image. While level a will appear like dark dot. If either 
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 is zero, the impulse noise is called unipolar. If neither probability is zero, especially if a and b are approximate equal, impulse noise will resemble salt and pepper granules randomly distributed over the image. For this reason, bipolar noise is also called salt and pepper noise. Other name of impulse noise is shot and spike noise. Noise impulse can be positive or negative.

2.2.4 Gaussian noise

Gaussian noise models are used frequently in practice due its mathematical tractability in both the spatial and frequency domains. 

The PDF of a Gaussian random variable k is given by:
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Where k = represent gray value.

           M = mean average value of k
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 = standard deviation and its square 
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When k is described by above equation approximate 70% of its values will be in the range [(–
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)], and approximate 95% will be in the range [( – 2
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2.2.5 Uniform noise

The PDF of uniform noise with equal probability in the range from gmax to gmin is given by:- 
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The mean and standard deviation can be computed as:
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2.2.6  Rayleigh noise

The PDF of Rayleigh noise is given by:
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The mean and variance of this density are given by:
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Rayleigh density can be quite useful for approximation of skewed histograms.

2.2.7 Enlong (Gamma) noise

The PDF of England Noise is given by :
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Where parameters are such that gmin > 0, gmax is a positive integer and mean and variance of this density are given by :
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Although above equation is referred to as the gamma density. Strictly this is correct only when the denomination is gamma function.

2.2.8 Exponential noise

The PDF of exponential noise is given by :
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Where gmin > 0

The mean and variance of the Exponential noise function are :
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2.2.9 Periodic noise
Electrical or electromechanical interference during image acquisition in an image is known as periodic noise. This type of noise can be reduced significantly via frequency domain filtering.
 2.2.10 Quantization noise
Noise due to quantization of pixel values during the analog to digital conversion is known as quantization noise. For example, consider an analog image with brightness values ranging from 0 to 10. If it is quantized to accuracy 0.1, the digitized image will have 101 distinct grey levels. A given intensity could have originally been anywhere in the range
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Chapter 3

Classical filters
3.1 Introduction

As stated in the earlier chapter that, images easily get corrupted with noise. In case of additive noise, a corrupted image can be regarded as the sum of original image and a noise image. Filters are used to suppress noise.

Let P = image processing operator and is processing two input images X and Y respectively. The output images are C and D respectively, then

                                    P (a ( X + b ( Y) = (a ( C) + (b ( D)








Where a, and b are constants.

If the operator P is linear, then each pixel in the output of a linear operator is the weight sum of a set of pixels in the input image.

If the image processing operator is nonlinear for example threshold operators, as described in equation 3.1; then for an input image. 
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Also  when image processing operator is non linear, the absolute value operation is non linear : i.e.

|-1 + 1| ≠ | –1 | + |1|

3.2 Local windows
Most of the algorithms are processing each pixel in local window. Only a small number of neighboring pixels are included in any calculation. Local processing can produce simpler algorithms with less processing time and space complexity. They may be used in a parallel local manner, combining many local interpretations into an overall image. The union of the pixel being processed and its neighboring pixels may be collectively referred to as a window, a mask, or the local region surrounding the pixel.  Normally local windows typically involve fewer than 50 pixels. 

 Figure 3.1 shows ﬁve local windows which are commonly used in image processing. Each is an approximation to a circular window, with the square windows being simplest to implement
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Figure 3.1: Common local neighborhood configurations: 5, 9, 13, 21, and 25 pixels.

3.3. Linear filters

A linear filter replaces the gray value of pixel in an image by linear combination of gray values neighborhood of that pixel.
Mathematically linear filter replaces the gray value of a pixel 
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Where    
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The coefficients
[image: image79.wmf])

,

(

l

k

w

 are independent of the processed pixel
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Two well-known examples of linear filters are (A) Mean filter and (b) Gaussian filters.

The mean filter

 One of the simplest forms of linear filter is the average filter. the noisy image filtered using the average convolution kernel with different size block. The elements in the block have the same filter coefficients. The 3( 3 mean value filter is determined by 
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                                                          8×8 average Kernel

                             Figure: 3.2: Averaging Kernel used in mean filtering

Larger Kernels can be used for severer smoothing. The convolution operates to modify each pixel in the image by passing the center of a convolution kernel through each pixel in the noisy image, we can sum each product of the kernel element and the corresponding image pixel value and multiply the sum by the scale factor to get the filtered pixel.

Problems of mean filtering are:

(i) A single pixel with a very unrepresentative value can significantly affect the mean value of all pixels in its neighborhood.

(ii) Interpretation with the pixel value at edge produces blurring the edge.

  Gaussian filter

The 3 ( 3 Gaussian filer is determined by, for k, l = –1, 0, 1
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Where ( is a parameter and in case of Gaussian noise, ( is given by the corresponding standard deviation or an estimation of it.
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Fig 3.3: approximate 3×3 Gaussian filter.

This filter varies the weights such that those pixels further from the centre contribute less to the overall average. Figure 3.3 shows the configuration of a Gaussian filter in 3×3 box. Gaussian filters are sometimes preferred over average filters because their effect on the Fourier spectrum of the image is better.

 3.4 Rank filters

The output of linear filters is linear combination that is weighted average of neighboring pixel and its drawback is that it will make blurred image. Non linear filters are used to overcome this problem. The rank filters are type of non linear filter. Rank filters are designed to operate on a numerically ordered set of pixels. The pixels ªfrom the local neighborhood are gathered and sorted into a new set.

This filter operating in a window about a pixel  
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Three special rank filters are the min, max, median filters

These three rank filters are used to reduce the variance in the image in the effective manner. Advantages of rank filers are:

A. Preservation of sharp edge.

B. Ability to remove salt and pepper noise.

3.4.1 Median filters

The median filter replaces the gray value of a pixel 
[image: image92.wmf])
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in an image by the median of the gray values in a (2N + 1) x (2N + 1) neighborhood of that pixel.
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Where
[image: image94.wmf])

,

(

j

i

A

 is the input image and 
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 is the output image.

The original value of the pixel is included in the computation of the median. For certain types of random noise, median filter provide excellent noise-reduction capabilities that are why median filters are quit popular. For example the above equation will eliminate “extreme” gray values, The median is the middle datum in a sorted data sequence and consequently the median filter is very appropriate for the reduction of impulse noise.

The operations of a classical median (MED) filter involve the application of a window to move over an image and to replace the value at the center pixel with the median of all the pixel values within the window. In so doing, a pixel with a distinct intensity (in the case of impulse) as compared to those of its predefined neighbors will be eliminated. The implementation of a standard median filter is simple and the filter can process an image in a fast manner. The performance of a median filter is average for filtering random noise in an image.
Fig. 3.4 illustrates calculation of median value in the 3 x 3 window.
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Fig. 3.4: The median value of a pixel neighborhood.

Neighborhood Values 115, 119, 10, 123, 124,   125, 126, 127,   150

    Median Value: 124

As shown in figure above, a 3 x 3 square neighborhood is used herewith central pixel value of 150 which is replaced with the median value of 124 as can be seen as rather unrepresentative of the surrounding pixel .

Here larger neighborhood can be used for more severe smoothing.

The median filter has two main advantages over the mean filter.

· The median filter is more robust as compare with the mean filter; the median filter of single very unrepresentative pixel in a neighborhood will not affect the median value significantly.

· The median filter does not create new unrealistic pixel values when the filter straddles an edge, since the median value must be actually be the one of the pixel in the neighborhood. For this reason the median filter is much better at preserving sharp edges that the mean filter.

In general, the median filter allow great deal of high spatial frequency detail to pass while remaining very effective at removing noise from the  images where less than half of the pixels in a smoothing neighborhood have been effected. So, median filtering can be less effective when the images corrupted with Gaussian noise.

One of the drawbacks of the median filter is that the filtered image gets blurred and that the fine structure such as lines will disappear.

Other filters like Max and Min filters are used in an image for finding brightest and darkest points respectively.

Midpoint filter combines order statistic and averaging. This filter would work best for randomly distributed noise, like Gaussian or Uniform noise.

Alpha-trimmed mean filter is useful in situations involving multiple types of noise, such as combination of salt and pepper and Gaussian noise.

3.4.2 The weighted median

A popular variant of median filter is the centre weighted median filter. The working of the centre weighted median is to increase the size of the ordered set of pixels by adding some extra duplicates of the centre pixel, before taking the median. The value of some extra duplicates depends on the number of pixels in the window, and the type of structures one wishes to preserve.
3.5 Adaptive filters
 The adaptive filters are applied to an image without regard for how image characteristic vary from one point to another. The adaptive filter whose behavior changes on statistical characteristics or image inside the filter region defined by M× N rectangular window. Adaptive filters are capable of performance superior to that of filters discussed above. The price paid for improved filtering power is an increase in filter complexity.

3.5.1 Adaptive median filer

Adaptive median filter changes (increases) the window Size Sxy during filter operation depending upon certain conditions. The output of the filter is a single value used to replace the value of the pixel at (x,y), the particular point on which the window Sxy is centered at given time.

Let


Zmin = minimum intensity value in Sxy 
Zmax = maximum intensity value in Sxy 

Zmed = median intensity value in Sxy 

Zxy = intensity value at (x,y) 

The adaptive median algorithm works in two levels, denoted level A and level B.

Level A :
If Zmin <  Zmed  < Zmax  go to level B else increase the window size.



If window size Smax, repeat level A.



Else output Zmed

Level B:
If Zmin <  Zxy  < Zmed      output Zxy


Else output  Zmed                                                                              (3.8)                                                                                                 

This filter produces a slightly less blurred result but can fail to detect salt (pepper) noise having the same value as pepper (salt) noise.

3.5.2 Adaptive weighted mean filter

In case of adaptive weighted mean filter a pixel (i, j) replaced by the gray value of a weighted average of the gray values in a (2N + 1) x (2N + 1) neighborhood of that pixel. Note that in this case the weights depend upon the processed pixel.
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Here the choice of the weights 
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 is based on the gray value difference.

If this difference exceeds a certain threshold one assumes that corresponding pixel is a noise pixel and one defines
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3.5.3 Adaptive wiener filter

The adaptive wiener filter is useful for the reduction of Gaussian noise. The gray-value of the central pixel (i, j) of a (2N + 1) x (2N + 1) neighborhood is replaced by the sum of a local estimation 
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 of the mean value and a fraction of the contrast
[image: image101.wmf])

,

(

–

)

,

(

'

j

i

j

i

A

m

, when this fraction depends on a local estimation of the variance
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With:
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And 
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is the global variance of the noise. If this global variance is unknown, estimation is made by taking the average of all the local variances.

Other type classical filters is also available but due to space limitation we are not able to discuss them.

3.6. Conclusions

Linear filtering techniques used for noise reduction in images are mathematical simple and easy to implement. It can effectively reduce noise. However, linear filters cannot effectively reduce impulse noise and have a tendency to blur the edges of an image. Nonlinear filters such as median filters which are provide an effective solution. Median filters have good edge preserving ability, can eliminate impulse noise. Moving average filters can smooth Gaussian noise and cannot preserve sharp edges of an image. The idea of a standard moving average filter is to replace its center pixel by the average value of its predefined window. Depending up on their filtering strategies, adaptive filters can be classified. Filtering performance of adaptive filters are much better than median filter and average filters as they preserve image information while filtering.

Chapter 4

Fuzzy Logic in Image Processing
4.1 Introduction to fuzzy logic

Fuzzy logic was initiated in 1965 by Lotfi A. Zadeh, professor for computer science at the University of California in Berkelay.

Basically, fuzzy logic is a multivalued logic that in a narrow sense, fuzzy logic refers to a logical system that generalizes classical two valued logical for reasoning under uncertainty. In a broad sense, fuzzy logic refers to all of the theories and technologies that employ fuzzy sets, which are classes with unsharp boundaries. Notions like rather tall or very fast can be formulated mathematically and processed by computer, in order to apply a more human-like way of thinking in the programming of computers.

Fuzzy system is an alternative to traditional notion of set membership and logic that has its origin in ancient Greek philosophy. Fuzzy logic has emerged as a profitable tool for the controlling and steering of the systems and complex industrial processes as well as for household and entertainment electronics, as well as other expert systems and applications.

4.2  Fuzzy Fundamentals

Fuzzy logic technique is based on four basic concepts:

(1) Fuzzy Sets
:
Sets which smooth boundaries.

(2) Linguistic variables
:
Variables whose values are both qualitatively and quantitatively described by a fuzzy set.

 (3) Possibility distributions
:
Constraints on the value of a linguistic variable imposed by assigning it a fuzzy set.

(4) Fuzzy-if-then rules
:
A knowledge representation scheme for describing functional mapping or logical formula.

Example

Fuzzy set theory is the extension of conventional (crisp) set theory .It handles the concept of partial truth (truth values between 1 (completely true) and 0 (completely false)). It was introduced by Prof. Lotfi A. Zadeh of UC/Berkeley in 1965 as a means to model the vagueness and ambiguity in complex systems.

The idea of fuzzy sets is simple and natural. For instance, we want to define a set of gray levels that share the property dark. In classical set theory, we have to determine a threshold, say the gray level 100. All gray levels between 0 and 100 are elements of this set; the others do not belong to the set. But the darkness is a matter of degree. So, a fuzzy set can model this property much better. To define this set, we also need two thresholds, say gray levels 50 and 150. All gray levels that are less than 50 are the full members of the set, all gray levels that are greater than 150 are not the member of the set. The gray levels between 50 and 150, however, have a partial membership in the set (right image in Figure 4.1)
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[image: image107.emf]
Fig. 4.1 Representative of “dark gray-levels” with a crisp and a fuzzy set
4.3 Fuzzy Image Processing 

Fuzzy image processing is not a unique theory. It is a collection of different fuzzy approaches to image processing. Nevertheless, the following definition can be regarded as an attempt to determine the boundaries.

“Fuzzy image processing is the collection of all approaches that understand, represent and process the images, their segments and features as fuzzy sets. The representation and processing depend on the selected fuzzy technique and on the problem to be solved.”

Fuzzy image processing has three main stages: image fuzzification, modification of membership values, and, if necessary, image defuzzification. 
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                  Fig 4.2 The general structure of fuzzy image processing.
The fuzzification and defuzzification steps are due to the fact that we do not possess fuzzy hardware. Therefore, the coding of image data (fuzzification) and decoding of the results (fuzzification) are steps that make possible to process images with fuzzy techniques.  The main power of fuzzy image processing is in the middle step (modification of membership values). After the image data are transformed from gray-level plane to the membership plane (fuzzification), appropriate fuzzy techniques modify the membership values. This can be a fuzzy clustering; a fuzzy rule-based approach, a fuzzy integration approach and so on. These steps are shown in Figure 4.3. 
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Fig.4.3 Steps of fuzzy image processing

4.4 Advantages of Fuzzy Image Processing 

We use Fuzzy techniques in image processing. There are many reasons to do this. The most important of them are as follows:

1. Fuzzy techniques are powerful tools for knowledge representation and processing.

2. Fuzzy techniques can manage the vagueness and ambiguity efficiently.

In many image processing applications, we have to use expert knowledge to overcome the difficulties (e.g. object recognition, scene analysis). Fuzzy set theory and fuzzy logic offer us powerful tools to represent and process human knowledge in form of fuzzy if-then rules. On the other side, many difficulties in image processing arise because the data/tasks/results are uncertain. This uncertainty, however, is not always due to the randomness but to the ambiguity and vagueness. Beside randomness which can be managed by probability theory we can distinguish between three other kinds of imperfection in the image processing (see fig)

· Grayness ambiguity

· Geometrical fuzziness

· Vague (complex/ill-defined) knowledge

These problems are fuzzy in the nature The question whether a pixel should become darker or brighter than it already is, the question where is the boundary between two images segments, and the question what is a tree in a scene analysis problem, all of these and other similar questions are examples for situations that a fuzzy approach can be the more suitable way to manage the imperfection.
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              Fig.4.4  Uncertainty / imperfect knowledge in image processing.

4.5 Classification of Fuzzy Filters 

The fuzzy logic in image processing is discussed as above . For a meaningful classification of fuzzy filter we will consider on the following criteria:

(1) Noise Type                : for which noise type is the filter designed.

(2) Degree of fuzziness   : whether  the filter a pure fizzy filter or is it rather a 
(3)                                     modification of one or more classical filters.

(4) Fuzzy rules                : which criteria are used by the fuzzy rules to determine whether
                                                a pixel is a noise pixel or not .

(5) Algorithm                  :  whether the algorithm iterative or recursive?

(6) Complexity                : how complex is the construction.

4.4.1 Noise type

The considered fuzzy filters are designed for impulse and/or Gaussian noise, as can be derived from the literature and also follow from the construction of the filters. Impulse noise and Gaussian noise are the most common types of noise. However, for other type of noise,  we have not encountered any fuzzy filter that is specifically designed .

Note that, although they are both based on the classical adaptive weighted mean filter, the WFM filter is designed for impulse noise while the FWM filter is designed for Gaussian noise. This is confirmed by experiments, in which it can be observed that the FWM filters not perform good for impulse noise.

4.4.2 Degree of fuzziness 

Some fuzzy filters are modifications, i.e. extensions, generalizations or refinements, of existing classical filters. These modifications are realized by using fuzzy rules. This group of filters can be divided in two classes:

(1) The output of the fuzzy filters depends on the output of one or more classical filters; in this case the weight of the classical filter(s) is determined using fuzzy rules. Examples : FMF, FDD and CK filters

(2) The output of the fuzzy filters is obtained by using a classical formula: in this case the specific parameters of the formula are determined using fuzzy rules. Examples: FWM, WFM, AWFM and AWFM2 filters.

The next considered fuzzy filters are pure fuzzy filters, i.e. filters where the output is exclusively determined using fuzzy rules, independent of any classical filter. Examples: FIRE, DS-FIRE, PWL-FIRE, IFC, MIFC, EIFC, SFC, SSFC and GOA filters.

4.4.3 Fuzzy rules

For every considered fuzzy filter, the fuzzy rules determine the degree to which a pixel is a noise pixel or not. In general, this is done by investigating to which degree the processed pixel differs from its neighbors.

Most fuzzy filters explicitly use the gray-value differences between the processed pixel and its neighbors. This is the case for the FWM (which also takes distances into account), FIRE, DS-FIRE, PWL-FIRE, IFC, MIFC, EIFC, SFC, SSFC, GOA (where, with the purpose of edge detection, other gray value differences are considered as well) and FDD filters. It is also the case for the CK filters (where distances are also taken into account), although that is done in a more complicated and less explicit way.

The FM, WFM, AWFM1 and AWFM2 filters are an exception : the fuzzy median filters used the gray-value difference between the processed pixel and the median filtered version of this pixel; the WFM, AWFM1 and AWFM2 filters take the homogeneity of the neighborhood into account in a different way (namely by using fuzzy sets dark, medium and bright).

4.4.4 Algorithm

Some of the fuzzy filters are applied iteratively or recursively. Note that an iterative filter also has a recursive character; after each iteration the algorithm is applied on the filtered pixels. We refer to tale 1 for a complete overview. 

Some notes: (1) non-iterative filters can always be made iterative (one just applied the algorithm more than once); (2) non-recursive filters can be always be made recursive (after a pixel is filtered, one just replace the original pixel by its filtered version; (3) the interactivity of a filter has a great impact on the computing time of that filter (the algorithm has to be applied several times), while this is not the case of recursive filters.

4.4.5 Complexity

The complexity of the considered filters can be derived by analyzing the corresponding algorithm and by performing some experiments. In order to quantify the complexity of the filters, we ill divide them in three classes; low, medium and high complexity.

(1) High complexity (computing time in our experiments: above 10000 seconds): FWM filter. The high complexity is due to the calculation of the weights: (i) the weights are calculated interactively until convergence is attained; (ii) some of the required parameters are also very complex to determine; (iii) the calculations have to be performed for each separate pixel.

(2) Low complexity (computing time in our experiments: between 100 and 500 seconds): FM, FDD and PWL-FIRE filters. For the FM and FDD filters this follows from the construction (only gray-value difference are used, and straightforward formulae are available); the PWL-FIRE has a low complexity compared to the FIRE and DS-FIRE filter because, besides the relatively simple formulas, less different patterns of pixels are considered.

(3) Medium complexity (computing time in our experiment: between 1000 and 3500 seconds) : the formulas with the other fuzzy filters are more extended or complicated, which requires more computing time. This is mainly due to the high number of function evaluation, resulting from the membership functions of the fuzzy sets involved.

4.4.6 Summary

The above discussions are summarized in Table 1. The different criteria can take the following values:

Noise type (A)                : Impulse (I), Gaussian (G) or both (B) 

Degree f fuzziness (B)    : Mixed (M) or Pure (P)

Fuzzy rules (C)               : Differences (when based on gray-value differences) (D) or    

                                            Other (O)

Algorithm (D)                 : Iterative (I), Recursive (R) or Standard (S);

	Filter
	A
	B
	C
	D
	E

	FWM
	G
	M
	D
	S
	H

	FM
	I 
	M
	O
	S
	L

	WFM
	I 
	M
	O
	S
	M

	AFWM1
	I 
	M
	O
	S
	M

	AFWM2
	I 
	M
	O
	S
	M

	FIRE
	I 
	P
	D
	R
	M

	DS-FIRE
	I 
	P
	D
	R
	M

	PWL-FIRE
	I 
	P
	D
	R
	L

	IFC
	B
	P
	D
	I 
	M

	MIFC
	B
	P
	D
	I 
	M

	EIFC
	B
	P
	D
	I 
	M

	SFC
	B
	P
	D
	S
	M

	SSFC
	B
	P
	D
	S
	M

	GOA
	G
	P
	D
	I 
	M

	FDD
	I
	M
	D
	S
	L

	CK
	B
	M
	D
	S
	M


Complexity (E)               : Low (l), Medium (M) or High (H).

Table 4.1: summery of different type of fuzzy filter

Summery of classification of existing fuzzy filters, based on 5 criteria

Based on these 5 criteria, the 16 considered fuzzy filers can be divided into 10 classes: 6 of the classes consist of one fuzzy filter; 4 classes consist of several fuzzy filters, in particular;

(a) WFM, AWFM1 and AWFM 2 (impulse, mixed, other, standard, medium)

(b) FIRE and DS-FIRE (impulse, pure, differences, recursive, medium)

(c) IFC, MIFC and EIFC (both, pure, differences, iterative, medium)

(d) SFC and SSFC (both, pure, differences, standard, medium)

(e) FWM (Gaussian, mixed, differences, standard, high)

(f) FM (impulse, mixed, other, standard, low)

(g) PWL-FIRE (impulse, pure, differences, recursive, low)

(h) GOA (Gaussian,   pure, differences, iterative, medium)

(i) FDD (impulse, mixed, differences, standard, low)

(j) CK (both, mixed, differences, standard, medium)
The visual and numerical observation is summarized in the table 4.2

	
	Salt & pepper
	Gaussian

	
	Low
	high
	low
	high

	Numerical

(top 5)
	PWL-FIRE

DS-FIRE

FM

SFC

SSFC
	AWFM2

AWFM1

WFM

DS-FIRE

IFC
	GOA

Wiener

AWFM2

MIFC

EIFC
	GOA

Mean

IFC

EIFC

MIFC

	Visual

(top 5)


	Most filters

Performs

Very good
	AWFM2

AWFM1

WFM

DS-FIRE

median


	AWFM2

GOA
	AWFM2

GOA

	Global

(top 3)
	
	


 Table 4.2: summery of best performing filters

4.5 Conclusion
The best filters for salt and pepper noise are always fuzzy filters. The best performing classical filter is the median filter; however, the fuzzy median filter performs much better than median filter for low noise levels.
Form the visual point of view, in case of lower noise levels, most filters perform well, on the other hand, in case of higher noise levels, the best performing filters are AWFM2, AWFM1, WFM, DS-FIRE, and median filters.

For Gaussian noise, again the best performing filters are fuzzy filters. Form numerical point of view the classical wiener filter is among the best performing filters for low noise levels; on the other hand, for higher noise levels the classical mean filter is among the best performing filters.

Forms the visual points of view, due to complicated nature of Gaussian noise, the results are not so good as compared to salt & pepper noise, however, AWFM2, and GOA filters generate the best visual results, both for the low noise and high levels.

The existing fuzzy filters based on five different criteria, have been classified which gives us a good insight in the technical differences. It can be a useful tool in selection procedure.

Chapter 5

Design and implementation of fuzzy filters

5.1. Introduction
The two common types of noise in images are impulse (or salt and pepper) noise, and random (or Gaussian) noise. Impulse noise, as discussed in earlier chapter, can be expressed by noise density and Gaussian noise can be expressed   in terms of its mean and variance value .Noise can be generated during image capture, transmission, storage, as well as during image copying, scanning, and display. For example, impulse noise can be generated through the T.V. broadcasting and due to the information losses; and the random noise can be generated during film exposure and development. Noise reduction is an important step in image processing applications as stated above. In case of impulse noise, most part of original image is unaltered, and the image is characterized by some corrupted samples that vary drastically.
   Compared to impulse noise, random noise is a more challenging   type of   noise. It is important to be able to reduce random noise effectively from an image. In image processing, various linear and nonlinear filtering methods have been proposed.
 Linear filtering techniques used for filter design for noise reduction in images are characterized by mathematical simplicity and can effectively reduce noise with spectral components that do not overlap with those of an image. However, linear filters cannot effectively reduce impulse noise and have a tendency to blur the edges of an image. In such situations, median filters which are nonlinear filters provide an effective solution. Median filters have good edge preserving ability, can reduce impulse noise, and have moderate noise attenuation ability in the flat region of an image. The operation of a classical median (MED) filter is to replace the value at the center pixel with the median of all the pixel values within the window. In so doing, a pixel with a distinct intensity (in the case of impulse) as compared to those of its predefined neighbors will be eliminated. The implementation of a standard median filter is simple and the filter can process an image in a fast manner. The performance of a median filter is average for filtering random noise in an image.
For Gaussian noise reduction another filtering technique using moving average (MAV) filters. Moving average filters can smooth random noise and cannot preserve sharp edges of an image. The operation of a standard moving average filter is to replace its center pixel by the average value of its pre defined neighboring pixel, which can be easily implemented.
The ability of the filter unwanted impulse noise and the random noise while preserving edges and details of an image is a non trivial task. Various nonlinear filters based on classical techniques and fuzzy techniques have emerged in the few years for this challenging task. Review on fuzzy type of filters can be found and a comparison study has been reported. Depending up on their filtering strategies, these filters can be classified as discussed in the earlier chapters. Here, we have described standard median filtering using fuzzy concept and standard average filtering using fuzzy concept, for reduction of impulse and random noise respectively. Symmetrical and asymmetrical triangular membership functions with median center and moving average center have been applied to filtering of images contaminated with impulse, random and mixed noises. .Fuzzy filters are defined and their filtering performance on impulse noise and Gaussian noise are presented.
5.2. Definition of fuzzy filter

  Let 
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be an input of a two dimensional fuzzy filter, the output of the fuzzy filter is defined as:
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Where 
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is the general window function and A is the area of the window. For a square window of dimensions N ×N, the range of r and s are: -R ≤ r ≤ R and -S ≤ r ≤ S, where N =2R+1 = 2S+1. With the definition of different window functions, fuzzy filters are obtained, for example Gaussian fuzzy filter with median center (GMED),the symmetrical triangular fuzzy filter with median center (TMED), the asymmetrical triangular fuzzy filter with median center (ATMED), the Gaussian fuzzy filter with moving average center (GMAV), the symmetrical triangular fuzzy filter with moving average center (TMAV), the asymmetrical triangular fuzzy filter with moving average center (ATMAV), and the moving average center filter (MAV) etc. We will discuss these filters in detail in the latter articles of the report.

5.3 MED: Median filter


[image: image111.wmf]
In the case of a standard median filter, the window function is defined as:
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Such that the output value 
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 A at discrete indexes in the window A.

5.4 MAV: Moving average filter

In a standard moving average filter, the window function is defined as:
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The moving average filter is equivalent to a fuzzy filter with a rectangular shape window covering all the input values
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5.5 GMED: Gaussian fuzzy filter with median center 

The Gaussian fuzzy filter with median value within a window chosen as the center value is defined as:
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5.6 TMED: Symmetrical Triangular Fuzzy Filter with Median Center

The symmetrical triangular fuzzy filter with median value within a window A chosen as the center value is defined as:
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5.7 ATMED: Asymmetrical Triangular Fuzzy Filter with Median Center

The asymmetrical triangular fuzzy filter with median value  within a window A chosen as the center value is defined as:
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In equation (5.6), the degree of asymmetry depends on the difference between 
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 5.8 GMAV: Gaussian fuzzy filter with moving average center 

The Gaussian fuzzy filter with median value within a window chosen as the center value is defined as:
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5.9 TMAV: Symmetrical Triangular Fuzzy Filter with Moving average 
                    Center

The symmetrical triangular fuzzy filter with moving average  value within a window A chosen as the center value is defined as:
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5.10 ATMAV: Asymmetrical Triangular Fuzzy Filter with Moving average       

                         Center

The asymmetrical triangular fuzzy filter with moving average value  within a window A chosen as the center value is defined as:
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In above equation (5.9), the degree of asymmetry depends on the difference between 
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5.11. SIMULATIONS

In all the simulations, square windows of dimensions N x M pixels and with different values of width N (= 3, 5, 7) are used. Two 8 bit mono images, Lena image of dimensions 256×256 pixels and pepper image of dimension 512×512 pixels are used. In each of the images, the pixels 
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 for 1 ≤ i ≤ N and 1 ≤ i ≤ M, are corrupted by adding two kinds of noise, namely, salt and pepper noise (i.e. impulse noise) and Gaussian noise described by 
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,respectively. These images are corrupted by low, medium, and high levels of impulse noise, with the respective density values of 0.03, 0.15 and 0.3 are added to each of these two images. These images are also corrupted with low, medium, and high levels of random noise, each has a mean value of 0.0 and a respective variance value of 0.0052, 0.021, and 0.106 is added to each of the two images. The two input noisy images 
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 The mean squared error (MSE) is used to compare the relative filtering performance of various filters. The MSE between filtered output image  
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 of dimension N×M pixels are defined as:
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1. MED:  standard median filter.


[image: image172]

[image: image173]
[image: image174.emf] 3*3 filtered image with impulse noise 3*3 filtered   image with gaussian noise


[image: image175.emf]5*5 filtered  image with impulse noise 5*5 filtered  image with gaussian noise


[image: image176.emf]7*7 filtered  image with impulse noise 7*7 filtered  image with gaussian noise


Fig 5.1: simulation results of standard median filter on Lena image with 3% impulse noise and variance of Random noise is 0.0052.
2. MAV :-  Moving average filter

[image: image177.emf]original image


[image: image178.emf]noisy image with impulse noise  noisy image with gaussian noise


[image: image179.emf]3*3 filted image with impulse noise 3*3 filted image with random noise


[image: image180.emf]5*5 filted image with impulse noise 5*5 filted image with random noise


[image: image181.emf]7*7 filted image with impulse noise 7*7 filted image with random noise


Fig 5.2: simulation result of Moving average on pepper image with 3% impulse noise and variance of Random noise is 0.0052.
3.GMED :-- Gaussian Fuzzy filter with median center
[image: image182.emf] 3*3 filtered image with impulse noise 3*3 filtered   image with gaussian noise


[image: image183.emf] 5*5 filtered image with impulse noise 5*5 filtered   image with gaussian noise


[image: image184.emf] 7*7 filtered image with impulse noise 7*7 filtered   image with gaussian noise


Fig 5.3: simulation result of Gaussian Fuzzy filter with median center pepper image with 3% impulse noise and variance of Random noise is 0.0052.
4. TMED :- Symmetrical Triangle fuzzy filter with median center
[image: image185.emf] 3*3 filtered image with impulse noise

3*3 filtered   image with gaussian noise


[image: image186.emf]5*5 filtered  image with impulse noise 5*5 filtered  image with gaussian noise


[image: image187.emf] 7*7 filtered image with impulse noise

7*7filtered   image with gaussian noise


Fig 5.4: simulation result of Symmetrical triangle Fuzzy filter with median center on Lena image with 3% impulse noise and variance of Random noise is 0.0052.
5. ATMED:-Asymmetrical Triangle fuzzy filter with median center 
    [image: image188.emf]3*3 filtered  image with impulse noise 3*3 filtered  image with gaussian noise


    [image: image189.emf]5*5 filtered  image with impulse noise 5*5 filtered  image with gaussian noise


[image: image190.emf]7*7 filtered  image with impulse noise

7*7filtered  image with gaussian noise

                                                 Fig 5.5: simulation result of Asymmetrical triangle Fuzzy filter with median center
on pepper image with 3% impulse noise and variance of Random noise is 0.0052.
6. GMAV: -- Gaussian Fuzzy filter with moving average center
[image: image191.emf] 3*3 filtered image with impulse noise 3*3 filtered   image with gaussian noise


[image: image192.emf] 5*5 filtered image with impulse noise 5*5 filtered   image with gaussian noise


[image: image193.emf] 7*7 filtered image with impulse noise

7*7 filtered   image with gaussian noise


 Fig 5.6: simulation result of Gaussian Fuzzy filter with moving average center on Lena image with 3% impulse noise and variance of Random noise is 0.0052.
7. TMAV:-Symmetrical Triangle Fuzzy Filter with Average Center
[image: image194.emf] 3*3 filtered image with impulse noise

3*3 filtered   image with gaussian noise


[image: image195.emf] 5*5 filtered image with impulse noise 5*5 filtered   image with gaussian noise


[image: image196.emf] 7*7 filtered image with impulse noise 7*7 filtered   image with gaussian noise


Fig 5.7: Simulation result of symmetrical triangle Fuzzy filter with moving average center:     on Lena image with 3% impulse noise and variance of Random noise is 0.0052.
8. ATMAV:-Asymmetrical Triangle Fuzzy Filter with Average Center
[image: image197.emf] 3*3 filtered image with impulse noise 3*3 filtered   image with gaussian noise


[image: image198.emf] 5*5 filtered image with impulse noise 5*5 filtered   image with gaussian noise


[image: image199.emf] 7*7 filtered image with impulse noise 7*7 filtered   image with gaussian noise


Fig 5.8: Simulation result of symmetrical triangle Fuzzy filter with moving average center:     on Pepper image with 3% impulse noise and variance of Random noise is 0.0052.
Table 5.1. MSE of original and filtered noisy Lena images contaminated with Impulse noise 

	Filters
	N
	Density of Impulse noise

	(LENA IMAGE)
	 
	Low=0.03
	medium=0.15
	High=0.3
	 

	Noisy image
	 
	521.9486
	2812
	5605.1
	 

	MED
	3
	42.5058
	87.9255
	389.4541
	 

	
	5
	105.0319
	142.3144
	250.9066
	 

	
	7
	168.563
	215.2113
	360.3322
	 

	GMED
	3
	102.0199
	199.4348
	412.8059
	 

	
	5
	301.7529
	358.6553
	449.1635
	 

	
	7
	346.0907
	399.9936
	492.3289
	 

	TMED
	3
	167.3273
	535.4895
	1050.4
	 

	
	5
	250.3508
	413.3004
	766.3252
	 

	
	7
	355.68
	482.3147
	771.0522
	 

	ATMED
	3
	45.0093
	84.6471
	231.4334
	 

	
	5
	122.306
	170.2464
	281.9752
	 

	
	7
	208.2667
	279.7282
	469.3059
	 

	MAV
	3
	153.8961
	470.808
	921.8644
	 

	
	5
	228.915
	392.3546
	653.9081
	 

	
	7
	321.7675
	445.4873
	650.4935
	 

	GMAV
	3
	124.3275
	264.0986
	549.123
	 

	
	5
	323.6681
	378.1589
	496.6089
	 

	
	7
	381.8098
	              426.8783
	519.9535
	 

	TMAV
	3
	62.5261
	94.9876
	180.1281
	 

	
	5
	156.257
	223.814
	319.4418
	 

	
	7
	269.8268
	348.1073
	444.9392
	 

	ATMAV
	3
	83.3162
	107.0757
	136.7807
	 

	
	5
	210.6865
	259.109
	312.9745
	 

	
	7
	333.9511
	402.5385
	457.0625
	 


Table 5.2. MSE of original and filtered noisy Lena images contaminated with  Random noise 

	Filters
	N
	Variance of Random noise

	(LENA IMAGE)
	 
	Low=0.0052
	medium=0.021
	High=0.106
	 

	Noisy image
	 
	640.8112
	675.9511
	1339.2
	 

	MED
	3
	174.2499
	193.6388
	893.1207
	 

	
	5
	178.3566
	196.1405
	883.3051
	 

	
	7
	230.8114
	247.761
	920.6739
	 

	GMED
	3
	154.5681
	176.4531
	821.5971
	 

	
	5
	354.1333
	438.2919
	1323.7
	 

	
	7
	339.412
	390.257
	1190
	 

	TMED
	3
	166.6332
	194.49
	870.2774
	 

	
	5
	243.4414
	263.9742
	918.2595
	 

	
	7
	340.2696
	363.8562
	994.7793
	 

	ATMED
	3
	142.1404
	               168.2126
	856.1143
	 

	
	5
	200.532
	223.9863
	908.481
	 

	
	7
	289.1702
	313.5566
	992.3399
	 

	MAV
	3
	175.2407
	194.5913
	851.7112
	 

	
	5
	228.1275
	246.3266
	898.0979
	 

	
	7
	318.5102
	333.3503
	968.7383
	 

	GMAV
	3
	164.6459
	185.6309
	840.4992
	 

	
	5
	361.069
	442.9133
	1317
	 

	
	7
	347.6782
	397.1035
	1189
	 

	TMAV
	3
	136.9047
	158.5171
	840.8754
	 

	
	5
	228.6064
	245.2812
	898.3653
	 

	
	7
	346.9909
	355.0555
	975.0551
	 

	ATMAV
	3
	155.8961
	156.5562
	636.2952
	 

	
	5
	252.7016
	240.2939
	651.7398
	 

	
	7
	360.1897
	346.5246
	699.3116
	 


. Table 5.3. MSE of original and filtered noisy Pepper image contaminated with   impulse noise 

	Filters
	N
	Density of Impulse noise

	(pepper image)
	 
	Low=0.03
	medium=0.15
	High=0.3
	 

	Noisy image
	 
	564.6976
	2874.6
	5797.2
	 

	MED
	3
	22.6959
	50.2449
	307.45
	 

	
	5
	40.3688
	60.3238
	111.5115
	 

	
	7
	62.5476
	90.2262
	151.3845
	 

	GMED
	3
	53.8802
	140.5916
	343.7236
	 

	
	5
	211.1086
	254.3828
	349.3239
	 

	
	7
	187.8519
	218.4542
	296.3798
	 

	TMED
	3
	121.6807
	501.5679
	1095.9
	 

	
	5
	132.7291
	311.298
	730.6009
	 

	
	7
	182.4908
	317.8934
	696.5689
	 

	ATMED
	3
	22.1104
	45.8184
	165.3505
	 

	
	5
	48.3924
	77.507
	170.9245
	 

	
	7
	85.3052
	130.3931
	276.0914
	 

	MAV
	3
	114.0675
	431.6377
	937.0572
	 

	
	5
	125.8444
	287.6534
	605.2009
	 

	
	7
	170.5662
	293.6587
	558.9814
	 

	GMAV
	3
	68.1545
	201.8328
	500.0763
	 

	
	5
	224.3138
	271.2069
	405.6941
	 

	
	7
	208.3141
	            241.2011
	331.4814
	 

	TMAV
	3
	27.2427
	47.1033
	110.4835
	 

	
	5
	69.4694
	101.9779
	173.1767
	 

	
	7
	123.4902
	165.6822
	242.9678
	 

	ATMAV
	3
	49.0995
	64.0514
	86.8541
	 

	
	5
	118.2345
	153.7527
	193.3507
	 

	
	7
	190.2994
	
           250.3867
	299.4033
	 


Table 5.4. MSE of original and filtered noisy Pepper image contaminated with   random noise 

	Filters
	N
	Variance of Random noise

	(PEPPER IMAGE)
	 
	Low=0.0052
	medium=0.021
	High=0.106
	 

	Noisy image
	 
	628.5457
	661.0324
	1348.6
	 

	MED
	3
	141.1568
	168.0028
	865.0495
	 

	
	5
	99.3955
	123.7792
	814.0602
	 

	
	7
	109.5719
	132.6332
	816.5889
	 

	GMED
	3
	103.6547
	130.5502
	806.5647
	 

	
	5
	266.9931
	355.2285
	1286.9
	 

	
	7
	218.7216
	276.0096
	1091
	 

	TMED
	3
	123.8712
	151.4158
	828.1189
	 

	
	5
	132.9765
	157.8518
	830.2263
	 

	
	7
	181.8283
	205.5593
	862.2262
	 

	ATMED
	3
	105.9791
	129.5686
	835.1294
	 

	
	5
	114.0176
	139.4866
	838.7832
	 

	
	7
	155.8606
	184.8206
	871.4489
	 

	MAV
	3
	118.2853
	143.5509
	813.6563
	 

	
	5
	126.3851
	150.3248
	814.3971
	 

	
	7
	168.7844
	191.2165
	845.3606
	 

	GMAV
	3
	111.8104
	135.6078
	810.4777
	 

	
	5
	271.4777
	357.8893
	1291.9
	 

	
	7
	223.5222
	             280.8482
	1085.7
	 

	TMAV
	3
	92.2993
	118.5965
	806.4699
	 

	
	5
	116.3395
	139.3153
	816.3118
	 

	
	7
	171.3687
	191.9514
	856.9239
	 

	ATMAV
	3
	        126.5945
	133.1628
	625.3305
	 

	
	5
	170.7268
	168.5087
	602.9842
	 

	
	7
	236.6881
	228.8613
	626.4351
	 


Table 5.5. MSE ranking of  filtered  Lena image contaminated with Impulse noise 

	Filters
	Low
	Medium
	High

	MED
	1
	1
	4

	GMED
	5
	5
	5

	TMED
	8
	8
	8

	ATMED
	2
	2
	3

	MAV
	7
	7
	7

	GMAV
	6
	6
	6

	TMAV
	3
	3
	2

	ATMAV
	4
	4
	1


	Filters
	Low
	Medium
	High

	MED
	2
	3
	4

	GMED
	5
	5
	5

	TMED
	8
	8
	8

	ATMED
	1
	1
	3

	MAV
	7
	7
	7

	GMAV
	6
	6
	6

	TMAV
	3
	2
	2

	ATMAV
	4
	4
	1


Table 5.6. MSE ranking of filtered Lena image contaminated with Random noise 

Table 5.7. MSE ranking of filtered pepper image contaminated with impulse noise 

	Filters
	Low
	Medium
	High

	MED
	7
	6
	8

	GMED
	3
	4
	2

	TMED
	6
	7
	7

	ATMED
	2
	3
	6

	MAV
	8
	8
	5

	GMAV
	5
	5
	3

	TMAV
	1
	2
	4

	ATMAV
	4
	1
	1


Table 5.8. MSE ranking of filtered pepper image contaminated with random noise 

	Filters
	Low
	Medium
	High

	MED
	8
	8
	8

	GMED
	2
	3
	3

	TMED
	6
	7
	6

	ATMED
	3
	2
	7

	MAV
	5
	6
	5

	GMAV
	4
	5
	4

	TMAV
	1
	1
	2

	ATMAV
	7
	4
	1


5.12 Summary of result and conclusion

Each of eight fuzzy filters applies a weighted membership function to an image within local window to compute the value of the central pixel. These fuzzy filters are to implement and can suppress low, medium, and high levels of impulse noise and random noise with a varying degree of success. for impulse noise filtering the MED filter is a standard filter while for random noise filtering the MAV filter is the standard filter.    

The MSE of the original and filtered noisy Lena image for the low, medium, and high levels of impulse noise and the low, medium, high levels of random noise for window size N =3, 5, 7 are respectively summarized in Tables 5.1 and 5.2 The MSE of the original and filtered noisy pepper image for the low, medium, and high levels of impulse noise and the low, medium, high levels of random noise for window size N =3, 5, 7 are respectively summarized in Tables 5.3 and 5.4 and. As seen from Tables   5.1-5.4, the MSE values of the impulse and random noise filtered images share some similar properties. As the window width N increases, nearly all the MSE values increase for low-level noises while majority of the MSE values decrease for high-level noises, and there is a combination of MSE values increase and decrease for medium-level noises. In general, a narrower window width is appropriate for low-level noises, and a wider window width is appropriate for high-level noises, for reduced MSE performance. It should be noted that the edges and details of an image become blur as the window width N increases (for N=5 or 7). Form the filtered images, image information are well preserved for N=3 in all the eight filters. for closer look at the relative filtering performance, according to their MSE value for N=3.the filter with the minimum MSE value will ranked first and so on. As a result four ranking table 5.5-5.8, are obtained from corresponding tables.

A study of the fuzzy filters and their filtering performance has been presented. These filters are easy and fast to implement.

Chapter 6

Deign and implementation of two step fuzzy filter

6.1 Introduction

In the earlier chapters, several filters have been studied for impulse noise reduction. A large number of algorithms have been proposed to remove impulse noise while preserving image details. Among them, the median filter and its modifications are used widely because of their effective noise suppression capability. However, most of the median filters are implemented uniformly across the image and thus tend to modify both noise and noise-free pixels. Consequently, the effective removal of impulse is often accomplished at the expenses of blurred and distorted features. Recently, the use of fuzzy logic in impulse removal has attracted more attention because it can avoid the damage of good pixels by employing an impulse detector to determine which pixels should be filtered. The two step fuzzy filters have been shown to be faster and yet more effective than uniformly applied methods. This nonlinear filtering technique contains two separated steps: an impulse noise detection step and a reduction step that preserve edge sharpness. Based on the concept of Laplacian operator

method, impulse noise detected. The detected noise partially removed by switching action than further improvement can be achieved by application of fuzzy membership function. Experimental results show that the two step fuzzy filter provides a significant improvement on other existing filters available in the literature. This filter is not only very fast, but also very effective for reducing little as well as very high impulse noise.

6.2 First step Impulse noise Detection

The impulse detection is usually based on the following two assumptions: 

(i) A noise-free image consists of locally smoothly varying areas separated by edges and

(ii) A noise pixel takes a gray value substantially larger or smaller than those of its neighbors. 

Let 
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Where
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is the p th kernel, and 
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 denotes a convolution operation.
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 detects the impulse noise due to the following reasons:

   (1)   
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is large when the current pixel is an isolated impulse because the four

           convolutions are large and almost the same. 
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is small when the current pixel is a noise-free, flat region pixel because the four

           convolutions are close to zero.
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is small also when the current pixel is an edge (including thin line) pixel because

          one of the convolutions is very small (close to zero) along with the other three might be 
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Fig.6.1 Four 5 x 5 convolutions Laplacian kernels
6.3 The improvement of the current pixel
From the above analysis 
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with a threshold, T, to determine whether a pixel is corrupted, i.e.
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Obviously, the threshold T affects the performance of impulse detection. It is not easy to derive an optimal threshold through analytical formulation. But we can determine a reasonable threshold using computer simulations.

[image: image216.wmf]1

)

,

(

=

j

i

d

 means 
[image: image217.wmf])

,

(

j

i

x

 is a noisy pixel ; otherwise 
[image: image218.wmf])

,

(

j

i

x

 is noise free. The improvement of the current pixel is obtained by following switching equation:
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where 
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6.4 Second step: filtering based on fuzzy switching

The modification of the current pixel is based on fuzzy switching. If 
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 that indicates how much a pixel corrupted with an impulse noise, we can give the fallowing fuzzy rules:
                      Rule 1: if
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                      Rule 2: if 
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According to the above rules, we use S-function to describe the membership function of the impulse noise corruption extent of the current pixel:
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 Where 
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 Hence, the filter based on adaptive fuzzy rules proposed produces the output value:
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 If the membership function 
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 is a noise-free pixel and hence it is no need to filter. The filter will output the original pixel and preserve the image information. If the membership function 
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has been corrupted by impulse noise and it needs to filter. Here 
[image: image235.wmf])

,

(

j

i

E

 used in the filter output is the improvement of current pixel
[image: image236.wmf])

,

(

j

i

x

. If the membership function 0<
[image: image237.wmf][

]

)

,

(

j

i

w

m

<1, it means that the current pixel has been corrupted somewhat by impulse noise. The filter will output the- weighted average of 
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6.5 Simulation Results
Computer simulations are carried out to assess the performance of the proposed two step fuzzy filter using a variety of test images.

6.5.1 Result set 1
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The filter was tested with 10% impulse noise on different images. The results are listed below. The proposed filter was tested with α = 4, γ = 55, and β=29.5 values of fuzzy membership function.
Fig (a): Original image
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              Fig (b): Noisy image                                             Fig (c): Filtered image

                       Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.1: (a) Original Cameraman Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                       Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.2: (a) Original Man and woman Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.3: (a) Original Aircraft Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.4: (a) Original river Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.5: (a) Original Red house Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.6: (a) Original baboon Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.7: (a) Original Girl Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.8: (a) Original Barbara Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                    Fig (b): Noisy image                                             Fig (c): Filtered image

Fig 6.9: (a) Original Woman Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method
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Fig (a): Original image
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                Fig (b): Noisy image                                                   fig(c): filtered image

Fig 6.10: (a) Original Bridge Image (b) Image corrupted with 10% impulse noise (c) Image Corrected by the proposed method

Table No. 6.1
MSE values for different test images with 10% impulse noise. (All images are uint 8 image)
	S.

No.
	Images
	Size
	Impulse noise
	MSE of filtered 

Image 

	1
	Lena
	256 × 256
	10%
	6.5676

	2
	Pepper
	512 × 512
	10%
	2.824

	3
	Cameraman
	256 × 256
	10%
	8.0494

	4
	Man and women
	512 × 512
	10%
	5.2354

	5
	Aircraft
	512 × 512
	10%
	2.9194

	6
	River
	512 × 512
	10%
	7.6258

	7
	Red house
	256 × 256
	10%
	3.1107

	8
	Baboon
	256 × 256
	10%
	28.551

	9
	Girl
	512 × 512
	10%
	4.4499

	10
	Barbara
	512 × 512
	10%
	5.5781

	11
	Woman
	512 × 512
	10%
	0.8108

	12
	Bridge
	512 × 512
	10%
	13.2535


6.5.2 Analysis from result set 1 & table 6.1

The performance of the proposed filter has been tabulated as shown in table 6.1 on verity of images. After careful analyzing of the numerical result of the images, we can make out that the performance of the given filter is not same for all the images. We get best results for woman and pepper images and worst results for Baboon and bridge images. The numerical measure used here is the mean square error (MSE) between the original and restored images.
6.5.3 Result set 2
The proposed filter was tested with α = 4, γ = 55, and β=29.5 values of fuzzy membership function an impulse noise of probability density 0.05, 0.1, 0.20 , and 0.30.on Lena image of size  256 ×256. The results are depicted below.
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               Noisy image with 5% noise                                           filtered image

.
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               Noisy image with 10% noise                                           filtered image
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            Noisy image with 20% noise                                           filtered image
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            Noisy image with 30% noise        (fig: 6.11)                       filtered image

Table No. 6.2
Comparative results in MSE values of different filtering methods for various percentage of impulse noise. ( Uint 8 Lena image)
	[image: image295.png]


S.N.
	            Noise
Filter
	5 %
	10 %
	20 %
	30 %

	1
	Median filter 3 × 3
	16.3971
	18.0998
	20.4328
	29.6172

	2
	Median filter 5 × 5
	22.9954
	23.7484
	25.7944
	 28.2408

	3
	SM filter 5 × 5
	9.2339
	12.0455
	15.9235
	26.9832

	4
	MAV 3 × 3
	44.4956
	58.6109
	75.0973
	84.9826

	5
	GMED 3 × 3
	32.5344
	39.6872
	54.5607
	66.1364

	6
	GMAV 3 × 3
	35.8295
	45.2574
	58.9217
	71.7731

	7
	TMED 3 × 3
	44.7673
	58.9582
	76.9018
	85.8321

	8
	ATMED 3 × 3
	16.3603
	18.6894
	24.2112
	33.8168

	9
	TMAV 3 × 3
	19.2927
	21.4275
	27.2744
	38.5597

	10
	ATMAV 3 × 3
	19.701
	21.9231
	27.7945
	37.2045

	11
	Proposed filter
	5.5044
	6.5676
	8.6793
	18.0843


6.5.4 Analysis from result set 2 & table 6.2
The performance of the proposed filter has been tabulated as shown in table 6.2 and compared with those several existing filters for image correction on, uint 8, world famous Lena image of size 256 ×256. The numerical measure used here is the mean square error (MSE) between the original and restored images
6.5.5 Result set 3
The proposed filter was tested with α = 4, γ = 55, and β=29.5 values of fuzzy membership function an impulse noise of probability 0.05, 0.1, 0.20 ,and 0.30 .pepper image of size  512 ×512. The results are depicted below.
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            Noisy image with 5% noise                                                filtered image
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            Noisy image with 10% noise                                                filtered image


          Noisy image with 20% noise                                                filtered image

            Noisy image with 30% noise            (fig: 6.12)                   filtered image

Table No. 6.3

Comparative results in MSE values of different filtering methods for various percentage of impulse noise. ( Uint 8 Pepper image)

	S.N.
	             Noise

Filter
	5 %
	10 %
	20 %
	30 %

	1
	Median filter 3 × 3
	9.3441
	10.2935
	12.5213
	21.0784

	2
	Median filter 5 × 5
	13.0261
	13.9051
	15.2578
	16.8221

	3
	SM filter 5 × 5
	4.2574
	6.2357
	9.739
	19.3214

	4
	MAV 3 × 3
	33.8233
	48.8204
	68.3163
	80.5144

	5
	GMED 3 × 3
	22.1773
	30.1351
	44.2576
	58.8501

	6
	GMAV 3 × 3
	25.1223
	35.4335
	51.1182
	65.2236

	7
	TMED 3 × 3
	35.317
	51.8336
	71.8291
	83.8937

	8
	ATMED 3 × 3
	9.5532
	11.0811
	16.941
	28.1715

	9
	TMAV 3 × 3
	11.0857
	12.679
	18.3959
	27.8476

	10
	ATMAV 3 × 3
	11.1923
	12.8957
	18.3662
	27.7263

	11
	Proposed filter
	2.0792
	2.824
	4.7555
	13.0033


6.5.6 Analysis from result set 1 & table 6.3
The performance of the proposed filter has been tabulated as shown in table 6.2 and compared with those several existing filters for image correction on uint 8, Pepper image of size 512 × 512. The numerical measure used here is the mean square error (MSE) between the original and restored images.
6.6. Simulation results and discussion: 
The performance of the proposed filter has been evaluated and compared with those of several existing filters for image restoration. In this simulations, 8 bit images of size 256 ×256 (Lena image), and 512 × 512 (Pepper image) were used. Grayscale images corrupted by salt and pepper noise with occurrence rate ranging from 5% to 30% are used. 
The 3 ×3 median filter, the 5x5 median filter, the 5x5 switching median filter, Gaussian fuzzy filter with median center (GMED),the symmetrical triangular fuzzy filter with median center (TMED), the asymmetrical triangular fuzzy filter with median center (ATMED), the Gaussian fuzzy filter with moving average center (GMAV), the symmetrical triangular fuzzy filter with moving average center (TMAV), the asymmetrical triangular fuzzy filter with moving average center (ATMAV), and the moving average center filter (MAV) are simulated as well for performance comparison. The threshold for the switching median filter is 40. The results are shown in Table 6.2 and Table 6.2. It is obviously seen that the proposed filter consistently works we11 for different test images contaminated at different noise ratios, providing substantial improvement over the other filters. Figure 6.11 shows the restoration results of different filtering methods for the test image “Lena” corrupted up to 30% impulse noise while Figure 6.12 shows the restoration results of different filtering methods for the test image “Pepper” corrupted up to 30% impulse noise. The result shows that the proposed filter is performing well in case of impulse noise reduction while preserving image details.
6.7. Conclusions

In this chapter we lave introduced the two step fuzzy filter that can remove impulse noise effectively while preserving details of the image. As shown by illustrative examples both numerical and visual the performance,  the proposed filter is better than  many of the existing filters such as the median filter and its variant and other fuzzy filters such as Gaussian fuzzy filter with median center (GMED),the symmetrical triangular fuzzy filter with median center (TMED), the asymmetrical triangular fuzzy filter with median center (ATMED), the Gaussian fuzzy filter with moving average center (GMAV), the symmetrical triangular fuzzy filter with moving average center (TMAV), the asymmetrical triangular fuzzy filter with moving average center (ATMAV), and the moving average center filter (MAV) .

Chapter 7
Conclusion and suggestion for future work 
7.1 Conclusion
The fuzzy filters to remove Gaussian noise and impulse noise have been presented in chapter five. These are very simple filters and no complex tuning of fuzzy set parameters is required. In fact, the overall nonlinear behavior of the enhancement system is very easily controlled by median, mean, maximum and minimum values of local window only.
An effective method to remove Salt & Pepper Noise has been explained in chapter six. Here the switching parameter was controlled by trial and error tuning of impulse detection, resulting reduction of impulse noise in some parts of the image. Than we apply fuzzy membership function to develop fuzzy filter .the fuzzy parameters are obtained by trial and error basis.. Each pixel location is adaptively assigned a different parameter value by evaluating the local features. 
The proposed an improved fuzzy filter that can effectively separate noise and noise-free pixels. In particular, it prevents the removal of fine details such as thin lines from the images and thus provides improved impulse detection ability. Both the simulation and computational complexity analysis show that the proposal method is better than many of the existing filters.. The main feature of the Fuzzy filter is that it distinguishes between local variation due to noise and due to the image structure, using an S- membership function that models the image information in the spatial domain.

7.2. Suggestion for future work
In chapter five, we have presented the fuzzy filter for Salt & Pepper Noise and Gaussian noise. These filters are based on fuzzy membership function in which the parameters are variable for each pixel and calculated from image information. Now this method  can be applied after noise detection and removal to get better filtering result. 

In the Chapter six, we have presented the filter for Salt & Pepper Noise; we have formulated the value of ‘δ’ select by trial and error procedure used in the switching equation. Instead of the trial and error procedure we can further look to automate the value of ‘δ’ also. Also there is a further scope to develop a better membership function to remove both Salt & Pepper noise and Gaussian noise more satisfactorily. 
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APPENDIX A: SOURSE CODE

%1.  MED:  standard median filter.
clc;close all;clear all;
I=imread('lena.jpg');
n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.03);% noise addition
p=im2uint8(b);
pi=double(p);
b1 =  imnoise(a,'gaussian',0.0052);% noise addition
b2=im2uint8(b1);
b3=double(b2);
k1=3
m1=medfilt2(b,[k1,k1]);
p1=im2uint8(m1);
p2=double(p1);
m2=medfilt2(b1,[k1,k1]);
p3=im2uint8(m2);
p4=double(p3);
k2=5
m3=medfilt2(b,[k2,k2]);
p5=im2uint8(m3);
p6=double(p5);
m4=medfilt2(b1,[k2,k2]);
p7=im2uint8(m4);
p8=double(p7);
k3=7
m5=medfilt2(b,[k3,k3]);
p9=im2uint8(m5);
p10=double(p9);
m6=medfilt2(b1,[k3,k3]);
p11=im2uint8(m6);
p12=double(p11);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-pi(i,j))^2); 
    end
end 
k4=sum(sum(r1));
mse1=k4/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k5=sum(sum(r2));
mse2=k5/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k6=sum(sum(r3));
mse3=k6/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-p4(i,j))^2); 
    end
end 
k7=sum(sum(r4));
mse4=k7/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r5(i,j)=((n1(i,j)-p6(i,j))^2); 
    end
end 
k8=sum(sum(r5));
mse5=k8/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r6(i,j)=((n1(i,j)-p8(i,j))^2); 
    end
end 
k9=sum(sum(r6));
mse6=k9/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r7(i,j)=((n1(i,j)-p10(i,j))^2); 
    end
end 
k10=sum(sum(r7));
mse7=k10/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r8(i,j)=((n1(i,j)-p12(i,j))^2); 
    end
end 
k11=sum(sum(r8));
mse8=k11/(size(n1,1)*size(n1,2))
figure;subplot(1,2,1);imshow(p);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with gaussian noise');
figure;subplot(1,2,1);imshow(m1);title(' 3*3 filtered image with impulse noise');
subplot(1,2,2);imshow(m2);title('3*3 filtered   image with gaussian noise');
figure;subplot(1,2,1);imshow(m3);title('5*5 filtered  image with impulse noise');
subplot(1,2,2);imshow(m4);title('5*5 filtered  image with gaussian noise');
figure;subplot(1,2,1);imshow(m5);title('7*7 filtered  image with impulse noise');
subplot(1,2,2);imshow(m6);title('7*7 filtered  image with gaussian noise');

%2.  Mav: Moving average filter
clc;close all;clear all;
n=imread('test12.jpg');
%n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.03);% noise addition
p=im2uint8(b);
pi=double(p);
b1 =  imnoise(a,'gaussian',0.0052);% noise addition
b2=im2uint8(b1);
b3=double(b2);
win=3;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b1,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f = g(1+w:r-w,1+w:c-w); 
f1=im2uint8(f);
f2=double(f1);
win=3;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g1(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f3 = g1(1+w:r-w,1+w:c-w);
  f4=im2uint8(f3);
f5=double(f4);
win=5;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b1,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g2(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f6 = g2(1+w:r-w,1+w:c-w);
 f7=im2uint8(f6);
f8=double(f7);
win=5;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g3(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f9 = g3(1+w:r-w,1+w:c-w);
f10=im2uint8(f9);
f11=double(f10);
win=7;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b1,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g4(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f12 = g4(1+w:r-w,1+w:c-w);
 f13=im2uint8(f12);
f14=double(f13);
win=7;      %window size
 w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);            
r = e(1);
c = e(2);
i = w+1; 
 while i <= (r-w) 
     j = w+1;
     while j <= c-w       
                fi=g(i-w:i+w,j-w:j+w);%sub-array creation
                mav=sum(sum(fi))/(win*win);
              x=1;
         while x<=win 
            y=1;
            while y<=win
                fn=mav;
                y=y+1;
            end
                x=x+1;
         end
            g5(i,j)=fn;
            j = j + 1 ;
     end
    i = i + 1;
 end
 f15 = g5(1+w:r-w,1+w:c-w);
 f16=im2uint8(f15);
f17=double(f16);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-pi(i,j))^2); 
    end
end 
k4=sum(sum(r1));
mse1=k4/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k5=sum(sum(r2));
mse2=k5/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-f2(i,j))^2); 
    end
end 
k6=sum(sum(r3));
mse3=k6/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-f5(i,j))^2); 
    end
end 
k7=sum(sum(r4));
mse4=k7/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r5(i,j)=((n1(i,j)-f8(i,j))^2); 
    end
end 
k8=sum(sum(r5));
mse5=k8/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r6(i,j)=((n1(i,j)-f11(i,j))^2); 
    end
end 
k9=sum(sum(r6));
mse6=k9/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r7(i,j)=((n1(i,j)-f14(i,j))^2); 
    end
end 
k10=sum(sum(r7));
mse7=k10/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r8(i,j)=((n1(i,j)-f17(i,j))^2); 
    end
end 
k11=sum(sum(r8));
mse8=k11/(size(n1,1)*size(n1,2))
figure;subplot(1,2,1);imshow(p);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with gaussian noise');
figure;subplot(1,2,1);imshow(f3);title('3*3 filted image with impulse noise');
subplot(1,2,2);imshow(f);title('3*3 filted image with random noise');
figure;subplot(1,2,1); imshow(f9);title('5*5 filted image with impulse noise');
subplot(1,2,2);imshow(f6);title('5*5 filted image with random noise');
figure;subplot(1,2,1);imshow(f15);title('7*7 filted image with impulse noise');
subplot(1,2,2);imshow(f12);title('7*7 filted image with random noise');

%2.  GMED: Gaussian Fuzzy filter with median center
clc;
close all;
clear all;
n=imread('test12.jpg');
%n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.03);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.0052);% noise addition
b2=im2uint8(b1);
b3=double(b2);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
g = padarray(b,[1 1]);% zero padding
e = size(g);
r = e(1);
c = e(2);
i = 1;
t=exp(ones(1,1));
i = 2;
while i <= (r-1) 
   j = 2;
   while j <= c-1
       k = [g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);g(i,j);
           g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
       x= median(k);
       y=sqrt(std2(k));
       if (y~=0)
        l=i-1;
        while l<=(i+1)
            m=j-1;
            while m<=(j+1)
           z=-(((g(l,m)-x)/y).^2)/2;       
           o(l,m)=realpow(t,z);
           m=m+1;
            end
           l=l+1;
        end
        end
       k=[g(i-1,j-1)*o(i-1,j-1);g(i-1,j)*o(i-1,j);g(i-1,j+1)*o(i-1,j+1);
           g(i,j-1)*o(i,j-1);g(i,j)*o(i,j);g(i,j+1)*o(i,j+1);g(i+1,j-1)*o(i+1,j-1);
           g(i+1,j)*o(i+1,j);g(i+1,j+1)*o(i+1,j+1)];
          sum1=sum(k);
        l=[o(i-1,j-1);o(i-1,j);o(i-1,j+1);o(i,j-1);o(i,j);o(i,j+1);o(i+1,j-1);o(i+1,j);o(i+1,j+1)];
        sum2=sum(l);
        if(sum2 ~=0)
        g(i,j)=sum1/sum2;
        end
       j = j + 1 ;
   end
   i = i + 1;
end
f = g(2:r-1,2:c-1);
f1=im2uint8(f);
f2=double(f1);
for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-f2(i,j))^2); 
    end
end 
k3=sum(sum(r3));
mse3=k3/(size(n1,1)*size(n1,2))
g = padarray(b1,[1 1]);% zero padding
e = size(g);
r = e(1);
c = e(2);
i = 1;
t=exp(ones(1,1));
i = 2;
while i <= (r-1) 
   j = 2;
   while j <= c-1
       k = [g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);g(i,j);
           g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
       x= median(k);
       y=sqrt(std2(k));
       if (y~=0)
        l=i-1;
        while l<=(i+1)
            m=j-1;
            while m<=(j+1)
           z=-(((g(l,m)-x)/y).^2)/2;       
           o(l,m)=realpow(t,z);
           m=m+1;
            end
           l=l+1;
        end
        end
       k=[g(i-1,j-1)*o(i-1,j-1);g(i-1,j)*o(i-1,j);g(i-1,j+1)*o(i-1,j+1);
           g(i,j-1)*o(i,j-1);g(i,j)*o(i,j);g(i,j+1)*o(i,j+1);g(i+1,j-1)*o(i+1,j-1);
           g(i+1,j)*o(i+1,j);g(i+1,j+1)*o(i+1,j+1)];
          sum1=sum(k);
        l=[o(i-1,j-1);o(i-1,j);o(i-1,j+1);o(i,j-1);
            o(i,j);o(i,j+1);o(i+1,j-1);o(i+1,j);o(i+1,j+1)];
        sum2=sum(l);
        if(sum2 ~=0)
        g(i,j)=sum1/sum2;
        end
       j = j + 1 ;
   end
   i = i + 1;
end
f3 = g(2:r-1,2:c-1);
f4=im2uint8(f3);
f5=double(f4);
for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-f5(i,j))^2); 
    end
end 
k4=sum(sum(r4));
mse4=k4/(size(n1,1)*size(n1,2))
psnr4=10*log10(255^2/mse3)
figure;subplot(1,2,1);imshow(p1);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with gaussian noise');
figure;subplot(1,2,1);imshow(f);title(' 3*3 filtered image with impulse noise');
subplot(1,2,2);imshow(f4);title('3*3 filtered   image with gaussian noise');
%TMED:-Triangle fuzzy filter with median center
clc;
close all;
clear all;
I=imread('lena.jpg');
n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.03);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.0052);% noise addition
b2=im2uint8(b1);
b3=double(b2);
 w=7;
 z=(w-1)/2;
g = padarray(b,[z z]);% zero padding
 e = size(g);
 r = e(1);
 c = e(2);
 row1=size(n1,1);
 col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
 k1=sum(sum(r1));
 mse1=k1/(size(n1,1)*size(n1,2))
 psnr1=10*(log10(255^2/mse1))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
psnr2=10*(log10(255^2/mse2))
  i = z+1; 
  while i <= (r-z) 
     j = z+1;
     while j <= c-z         
         k = g(i-z:i+z,j-z:j+z);         
         m = median(k);                    
         xmax = max(k);
         xmin = min(k);
         n=[xmax-m;m-xmin];
         xmv=max(n);         
         v1=0;
         v2=0;
         p=-z;
         while p<=z
             q=-z;
             while q<=z
                 x=abs(g(i+p,j+q)-m);
                 if(x<=xmv & xmv~=0)
                     f=1-x/xmv;
                     else
                     f=1;
                 end
               v1=v1+f*g(i+p,j+q);
               v2=v2+f;  
               q=q+1;
             end 
             p=p+1;
         end
         g(i,j)=v1/v2;
          j = j + 1 ;
     end
     i = i + 1;
 end
 f = g(z+1:r-z,z+1:c-z);
figure,imshow(f);
f1=im2uint8(f);
f2=double(f1);
 for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-f2(i,j))^2); 
    end
 end
k3=sum(sum(r3))
mse3=k3/(size(n1,1)*size(n1,2))
psnr3=10*(log10(255^2/mse3))
w=7;
z=(w-1)/2;
g = padarray(b1,[z z]);% zero padding
 e = size(g);
 r = e(1);
 c = e(2);
 i = z+1; 
  while i <= (r-z) 
     j = z+1;
     while j <= c-z         
         k = g(i-z:i+z,j-z:j+z);         
         m = median(k);                    
         xmax = max(k);
         xmin = min(k);
         n=[xmax-m;m-xmin];
         xmv=max(n);         
         v1=0;
         v2=0;
         p=-z;
         while p<=z
             q=-z;
             while q<=z
                 x=abs(g(i+p,j+q)-m);
                 if(x<=xmv & xmv~=0)
                     f=1-x/xmv;
                     else
                     f=1;
                 end
               v1=v1+f*g(i+p,j+q);
               v2=v2+f;  
               q=q+1;
             end 
             p=p+1;
         end
         g(i,j)=v1/v2;
          j = j + 1 ;
     end
     i = i + 1;
 end
 f3 = g(z+1:r-z,z+1:c-z);
figure,imshow(f3);
f4=im2uint8(f3);
f5=double(f4);
 for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-f5(i,j))^2); 
    end
 end
k4=sum(sum(r4))
mse4=k4/(size(n1,1)*size(n1,2))
figure;subplot(1,2,1);imshow(p1);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with Gaussian noise');
figure;subplot(1,2,1);imshow(f1);title(' 7*7 filtered image with impulse noise');
subplot(1,2,2);imshow(f4);title('7*7 filtered   image with Gaussian noise');
%ATMED:-Asymmetrical triangle fuzzy filter with median center
clc;
close all;
clear all;
x=imread('test12.jpg');
%x = rgb2gray(I);
n1=double(x);
a = im2double(x);
figure;imshow(x);title('original image');
b =  imnoise(a,'salt & pepper',0.15);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.026);% noise addition
b2=im2uint8(b1);
b3=double(b2);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(n1,1)*size(n1,2))
psnr1=10*log10(255^2/mse1)
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
psnr2=10*log10(255^2/mse2)
win=7;
w=(win-1)/2;
g = padarray(b,[w w]);% zero padding
e1=size(g);
r=e1(1);
c=e1(2);
 i= w+1;
 while i <= (r-w) 
     j = w+1;
     while j <= (c-w)
         e=w;d=w;
         k=g(i-d:i+d,j-e:j+e);% k=[g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);g(i,j);g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
         l=min(min(k));     %xmin
         m=median(median(k));  %xmed 
          maxx=max(max(k));      %calculate maximum
        minn=min(min(k));      %calculate minimum    
        if((maxx-m)>(m-minn))       
            mv=double(maxx-m);
        else
            mv=double(m-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(k(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>m)
                        fn=1-(xy-m)/mv;
                    else
                        fn=1-(m-xy)/mv;
                    end
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f6 = g(1+w:r-w,1+w:c-w);
 figure,imshow(f6);title('7*7 ATMED image with impulse noise')
f7=im2uint8(f6);
f8=double(f7);
for i=1:row1
    for j=1:col1
        r5(i,j)=((n1(i,j)-f8(i,j))^2); 
    end
end 
k5=sum(sum(r5));
mse5=k5/(size(n1,1)*size(n1,2))
psnr5=10*log10(255^2/mse5)
win=7;
w=(win-1)/2;
g = padarray(b1,[w w]);% zero padding
e1=size(g);
r=e1(1);
c=e1(2);
 i= w+1;
 while i <= (r-w) 
     j = w+1;
     while j <= (c-w)
         e=w;d=w;
         k=g(i-d:i+d,j-e:j+e);% k=[g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);g(i,j);g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
         l=min(min(k));     %xmin
         m=median(median(k));  %xmed 
          maxx=max(max(k));      %calculate maximum
        minn=min(min(k));      %calculate minimum    
        if((maxx-m)>(m-minn))       
            mv=double(maxx-m);
        else
            mv=double(m-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(k(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>m)
                        fn=1-(xy-m)/mv;
                    else
                        fn=1-(m-xy)/mv;
                    end
                ;%fn=1-abs(mav-fi(x,y))/mv;
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f9 = g(1+w:r-w,1+w:c-w);
 figure,imshow(f9);title('7*7 ATMED image with Gaussian noise')
f10=im2uint8(f9);
f11=double(f10);
for i=1:row1
    for j=1:col1
        r6(i,j)=((n1(i,j)-f11(i,j))^2); 
    end
end 
k6=sum(sum(r6));
mse6=k6/(size(n1,1)*size(n1,2))
psnr6=10*log10(255^2/mse6)
--------------------------------------------------------------

%6. GMAV: -- Gaussian Fuzzy filter with moving average center
clc;
close all;
clear all;
I=imread('lena.jpg');
n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a); title('original image');
b =  imnoise(a,'salt & pepper',0.03);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.0052);% noise addition
b2=im2uint8(b1);
b3=double(b2);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(n1,1)*size(n1,2))
psnr1=10*log10(255^2/mse1)
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b3(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
psnr2=10*log10(255^2/mse2)
g = padarray(b,[1 1]);% zero padding
%g = padarray(g,[1,1]);
e = size(g);
r = e(1);
c = e(2);
i = 1;
t=exp(ones(1,1));
i = 2;
while i <= (r-1) 
   j = 2;
   while j <= c-1
       k = [g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);g(i,j);
           g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
        x= mean2(k);
       y=sqrt(std2(k));
       if (y~=0)
        l=i-1;
        while l<=(i+1)
            m=j-1;
            while m<=(j+1)
           z=-(((g(l,m)-x)/y).^2)/2;       
           o(l,m)=realpow(t,z);
           m=m+1;
            end
           l=l+1;
        end
        end
       k=[g(i-1,j-1)*o(i-1,j-1);g(i-1,j)*o(i-1,j);g(i-1,j+1)*o(i-1,j+1);
           g(i,j-1)*o(i,j-1);g(i,j)*o(i,j);g(i,j+1)*o(i,j+1);
           g(i+1,j-1)*o(i+1,j-1);g(i+1,j)*o(i+1,j);g(i+1,j+1)*o(i+1,j+1)];
        sum1=sum(k);
        l=[o(i-1,j-1);o(i-1,j);o(i-1,j+1);o(i,j-1);o(i,j);
            o(i,j+1);o(i+1,j-1);o(i+1,j);o(i+1,j+1)];
        sum2=sum(l);
        if(sum2 ~=0)
        g(i,j)=sum1/sum2;
        end
       j = j + 1 ;
   end
   i = i + 1;
end
f = g(2:r-1,2:c-1);
f1=im2uint8(f);
f2=double(f1);
for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-f2(i,j))^2); 
    end
end 
k3=sum(sum(r3));
mse3=k3/(size(n1,1)*size(n1,2))
psnr3=10*log10(255^2/mse3)
g = padarray(b1,[1 1]);% zero padding
e = size(g);
r = e(1);
c = e(2);
i = 1;
t=exp(ones(1,1));
i = 2;
while i <= (r-1) 
   j = 2;
   while j <= c-1
       k = [g(i-1,j-1);g(i-1,j);g(i-1,j+1);g(i,j-1);
           g(i,j);g(i,j+1);g(i+1,j-1);g(i+1,j);g(i+1,j+1)];
        x= mean2(k);
       y=sqrt(std2(k));
       if (y~=0)
        l=i-1;
        while l<=(i+1)
            m=j-1;
            while m<=(j+1)
           z=-(((g(l,m)-x)/y).^2)/2;       
           o(l,m)=realpow(t,z);
           m=m+1;
            end
           l=l+1;
        end
        end
       k=[g(i-1,j-1)*o(i-1,j-1);g(i-1,j)*o(i-1,j);g(i-1,j+1)*o(i-1,j+1);
           g(i,j-1)*o(i,j-1);g(i,j)*o(i,j);g(i,j+1)*o(i,j+1);
           g(i+1,j-1)*o(i+1,j-1);g(i+1,j)*o(i+1,j);g(i+1,j+1)*o(i+1,j+1)];
                sum1=sum(k);
        l=[o(i-1,j-1);o(i-1,j);o(i-1,j+1);o(i,j-1);
            o(i,j);o(i,j+1);o(i+1,j-1);o(i+1,j);o(i+1,j+1)];
        sum2=sum(l);
        if(sum2 ~=0)
        g(i,j)=sum1/sum2;
        end
       j = j + 1 ;
   end
   i = i + 1;
end
f3 = g(2:r-1,2:c-1);
f4=im2uint8(f3);
f5=double(f4);
for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-f5(i,j))^2); 
    end
end 
k4=sum(sum(r4));
mse4=k4/(size(n1,1)*size(n1,2))
psnr4=10*log10(255^2/mse3)
figure;subplot(1,2,1);imshow(p1);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with gaussian noise');
 figure;subplot(1,2,1);imshow(f);title(' 3*3 filtered image with impulse noise');
 subplot(1,2,2);imshow(f3);title('3*3 filtered   image with gaussian noise');
%Program for Symmetrical Traingle Fuzzy Filter with Average Center(TMAV)
clc;
close all;
clear all;
I=imread('lena.jpg');
n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.15);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.026);% noise addition
b2=im2uint8(b1);
b3=double(b2);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(n1,1)*size(n1,2))
psnr1=10*(log10(255^2/mse1))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b2(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
win=3;      %window size
w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);        %    
r = e(1);
c = e(2);
i = w+1;
while i <= (r-w) 
    j = w+1;
    while j <= c-w
        fi=g(i-w:i+w,j-w:j+w);      %sub-matrix creation
        mav=sum(sum(fi))/(win*win);     %moving average calculation
        maxx=max(max(fi));      %calculate maximum
        minn=min(min(fi));      %calculate minimum    
        if((maxx-mav)>(mav-minn))       
            mv=double(maxx-mav);
        else
            mv=double(mav-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(fi(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>mav)
                        fn=1-(xy-mav)/mv;
                    else
                        fn=1-(mav-xy)/mv;
                    end
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f = g(1+w:r-w,1+w:c-w);
f1=im2uint8(f);
f2=double(f1);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r3(i,j)=((n1(i,j)-f2(i,j))^2); 
    end
end 
k3=sum(sum(r3));
mse3=k3/(size(n1,1)*size(n1,2))
psnr3=10*(log10(255^2/mse3))
win=3;      %window size
w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);        %    
r = e(1);
c = e(2);
i = w+1;
while i <= (r-w) 
    j = w+1;
    while j <= c-w
        fi=g(i-w:i+w,j-w:j+w);      %sub-matrix creation
        mav=sum(sum(fi))/(win*win);     %moving average calculation
        maxx=max(max(fi));      %calculate maximum
        minn=min(min(fi));      %calculate minimum    
        if((maxx-mav)>(mav-minn))       
            mv=double(maxx-mav);
        else
            mv=double(mav-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(fi(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>mav)
                        fn=1-(xy-mav)/mv;
                    else
                        fn=1-(mav-xy)/mv;
                    end
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f3= g(1+w:r-w,1+w:c-w);
f4=im2uint8(f3);
f5=double(f4);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r4(i,j)=((n1(i,j)-f5(i,j))^2); 
    end
end 
k4=sum(sum(r4));
mse4=k4/(size(n1,1)*size(n1,2))
psnr4=10*(log10(255^2/mse4))
figure;subplot(1,2,1);imshow(p1);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with gaussian noise');
figure;subplot(1,2,1);imshow(f);title(' 3*3 filtered image with impulse noise');
subplot(1,2,2);imshow(f3);title('3*3 filtered   image with gaussian noise');
%Program for Asymmetrical Traingle Fuzzy Filter with Average Center(ATMAV)
clc;
close all;
clear all;
n=imread('test12.jpg');
%n= rgb2gray(I);
n1=double(n);
a=im2double(n);
figure; imshow(a);title('original image');
b =  imnoise(a,'salt & pepper',0.3);% noise addition
p1=im2uint8(b);
p2=double(p1);
b1 =  imnoise(a,'gaussian',0.106);% noise addition
b2=im2uint8(b1);
b3=double(b2);
row1=size(n1,1);
col1=size(n1,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((n1(i,j)-p2(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(n1,1)*size(n1,2))
for i=1:row1
    for j=1:col1
        r2(i,j)=((n1(i,j)-b2(i,j))^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(n1,1)*size(n1,2))
win=3;      %window size
w=(win-1)/2;            %calculate padding size
g = padarray(b,[w w]);      % zero padding
e = size(g);        %    
r = e(1);
c = e(2);
i = w+1;
while i <= (r-w) 
    j = w+1;
    while j <= c-w
        fi=g(i-w:i+w,j-w:j+w);      %sub-matrix creation
        mav=sum(sum(fi))/(win*win);     %moving average calculation
        maxx=max(max(fi));      %calculate maximum
        minn=min(min(fi));      %calculate minimum    
        if((maxx-mav)>(mav-minn))       
            mv=double(maxx-mav);
        else
            mv=double(mav-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(fi(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>mav)
                        fn=1-(xy-mav)/mv;
                    else
                        fn=1-(mav-xy)/mv;
                    end
                ;%fn=1-abs(mav-fi(x,y))/mv;
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f = g(1+w:r-w,1+w:c-w);
f1=im2uint8(f);
f2=double(f1);
row1=size(n,1);
col1=size(n,2);
for i=1:row1
    for j=1:col1
          r3(i,j)=((n1(i,j)-f2(i,j))^2);
    end
end 
 k3=sum(sum(r3));
mse3=k3/(size(n,1)*size(n,2))
psnr3=10*(log10((255*255)/mse3))
win=3;      %window size
w=(win-1)/2;            %calculate padding size
g = padarray(b1,[w w]);      % zero padding
e = size(g);        %    
r = e(1);
c = e(2);
i = w+1;
while i <= (r-w) 
    j = w+1;
    while j <= c-w
        fi=g(i-w:i+w,j-w:j+w);      %sub-matrix creation
        mav=sum(sum(fi))/(win*win);     %moving average calculation
        maxx=max(max(fi));      %calculate maximum
        minn=min(min(fi));      %calculate minimum    
        if((maxx-mav)>(mav-minn))       
            mv=double(maxx-mav);
        else
            mv=double(mav-minn);
        end
        numer=0;
        denom=0;
        x=1;
        while x<=win 
            y=1;
            while y<=win
                xy=double(fi(x,y));
                if(mv==0)
                    fn=1;
                else
                    if (xy>mav)
                        fn=1-(xy-mav)/mv;
                    else
                        fn=1-(mav-xy)/mv;
                    end
                end
                    numer=numer + fn*xy;    %numerator calculation
                    denom=denom + fn;       %denominator calculation
                    y=y+1;
            end
            x=x+1;
         end
         g(i,j)=numer/denom;
         j = j + 1 ;
    end
    i = i + 1;
end
f3= g(1+w:r-w,1+w:c-w);
f4=im2uint8(f3);
f5=double(f4);
row1=size(n,1);
col1=size(n,2);
for i=1:row1
    for j=1:col1
          r4(i,j)=((n(i,j)-f5(i,j))^2);
    end
end 
 k4=sum(sum(r4));
mse4=k4/(size(n,1)*size(n,2))
psnr4=10*(log10((255*255)/mse4))
figure;subplot(1,2,1);imshow(p1);title('noisy image with impulse noise');
subplot(1,2,2);imshow(b2);title(' noisy image with Gaussian noise');
figure;subplot(1,2,1);imshow(f);title(' 3*3 filtered image with impulse noise');
subplot(1,2,2);imshow(f3);title('3*3 filtered   image with Gaussian noise');
%NEW TWO STEP FUZZY FILTER FOR IMAGE PROCESSING
close all;clear all; clc;
y=imread('test12.jpg');%raed lena image
%y=rgb2gray(x);%convert color to gray imge
figure;imshow(y);title('original image');
%   I=im2double(y);
% figure;imshow(I);title('intencity image');
h=imnoise(y,'salt & pepper',0.05);%insert imge noise
  g=im2double(h);
% figure;imshow(g);title('noisy image');
w1=[0 0 0 0 0;0 0 0 0 0;-1 -1 4 -1 -1;0 0 0 0 0;0 0 0 0 0];
w2=[0 0 -1 0 0;0 0 -1 0 0;0 0 4 0 0;0 0 -1 0 0;0 0 -1 0 0];
w3=[0 0 0 0 -1;0 0 0 -1 0;0 0 4 0 0;0 -1 0 0 0;-1 0 0 0 0];
w4=[-1 0 0 0 0;0 -1 0 0 0;0 0 4 0 0;0 0 0 -1 0;0 0 0 0 -1];
g1=imfilter(g,w1,'conv');
g2=imfilter(g,w2,'conv');
g3=imfilter(g,w3,'conv');
g4=imfilter(g,w4,'conv');
c1=min(g1,g2);
c2=min(g3,g4);
c4=min(c1,c2);
c3=abs(c4);%implse noise detection
k_size=3;
d=medfilt2(g,[k_size,k_size]);
figure;imshow(d);title('median image');
 c5=im2uint8(c3);
 alpha=c5>40;
 row1=size(g,1);
col1=size(g,2);
for i=1:row1
    for j=1:col1
        y2(i,j)=alpha(i,j)*d(i,j)+(1-alpha(i,j))*g(i,j);
    end
end
 figure;imshow(y2);title('improvement in current pixel');
  y3=im2uint8(y2);
  k=im2uint8(g);
  c=im2uint8(c4);
  d=im2uint8(d);
  y3=double(y3);
  l=double(k);
  c=double(c);
 d=double(d);
 %application of fuzzy rule
p1=4;
p2=55;
p3=(p1+p2)/2;
row1=size(g,1);
col1=size(g,2);
for i=1:row1
    for j=1:col1
       if c(i,j)<=p1
       s(i,j)=0;
         elseif (c(i,j)>p1)& (c(i,j)<p3)
             s(i,j)=2*((c(i,j)-p1)/(p2-p1))^2;
               elseif (c(i,j)>p3)& (c(i,j)<p2)
                s(i,j)=1-(2*((c(i,j)-p2)/(p2-p1))^2);
                 else (c(i,j)>=p2)
                 s(i,j)=1;
       end
  y4(i,j)=s(i,j)*y3(i,j)+(1-s(i,j))*k(i,j);
    end
end
d=uint8(d);
y5=uint8(y4);
%error detection with median filter
row1=size(y,1);
col1=size(y,2);
for i=1:row1
    for j=1:col1
        r1(i,j)=((y(i,j)-d(i,j))^2); 
    end
end 
k1=sum(sum(r1));
mse1=k1/(size(y,1)*size(y,2))
%error detection with switching median filter
y2=im2uint8(y2);
row1=size(y,1);
col1=size(y,2);
for i=1:row1
    for j=1:col1
        r2(i,j)=((y(i,j)-y2(i,j)).^2); 
    end
end 
k2=sum(sum(r2));
mse2=k2/(size(y,1)*size(y,2))
%error detection with fuzzy filter
row1=size(y,1);
col1=size(y,2);
for i=1:row1
    for j=1:col1
        r3(i,j)=((y(i,j)-y5(i,j)).^2); 
    end
end 
k3=sum(sum(r3));
mse3=k3/(size(y,1)*size(y,2))
%error detection with noisy image
for i=1:row1
    for j=1:col1
        r4(i,j)=((y(i,j)-k(i,j)).^2); 
    end
end 
k4=sum(sum(r4));
mse4=k4/(size(y,1)*size(y,2))
figure;imshow(h);title('noisy image with 5% noise');
figure;imshow(y5);title('filtered image');
 +





� EMBED Equation.3  ���





Input


Image





Expert 





knowledge





Image





fuzzification





Membership


       


       Modification





Image





defuzzification





Fuzzy logic





fuzzy set theory





Result








� EMBED CorelDRAW.Graphic.11  ���





0





original image





original image





filtered image





noisy image with impulse noise





 noisy image with gaussian noise





Original image





50





100





150





200





250





0





100





200





300





400





500





600





700





800








PAGE  
113

_1201814503.unknown

_1201926607.unknown

_1201931060.unknown

_1258125138.unknown

_1258971605.unknown

_1258971607.unknown

_1260107865.unknown

_1260107866.unknown

_1260107876.unknown

_1258971608.unknown

_1258971606.unknown

_1258967068.unknown

_1258967966.unknown

_1258968032.unknown

_1258968192.unknown

_1258968273.unknown

_1258968073.unknown

_1258967999.unknown

_1258967173.unknown

_1258966859.unknown

_1258967059.unknown

_1258388532.unknown

_1258957809.unknown

_1258958861.unknown

_1258817529.unknown

_1258274287.unknown

_1201963665.unknown

_1201964962.unknown

_1201965187.unknown

_1201965470.unknown

_1201965572.unknown

_1201965134.unknown

_1201964821.unknown

_1201962999.unknown

_1201963629.unknown

_1201931795.unknown

_1201929176.unknown

_1201929880.unknown

_1201930269.unknown

_1201930326.unknown

_1201930011.unknown

_1201929546.unknown

_1201929631.unknown

_1201929382.unknown

_1201927058.unknown

_1201927660.unknown

_1201927791.unknown

_1201927552.unknown

_1201927108.unknown

_1201926938.unknown

_1201922802.unknown

_1201925098.unknown

_1201925532.unknown

_1201925694.unknown

_1201925821.unknown

_1201925418.unknown

_1201923750.unknown

_1201924656.unknown

_1201924923.unknown

_1201924267.unknown

_1201923368.unknown

_1201923692.unknown

_1201922853.unknown

_1201831036.unknown

_1201833231.unknown

_1201833826.unknown

_1201902247.unknown

_1201922143.unknown

_1201833838.unknown

_1201833663.unknown

_1201832298.unknown

_1201833121.unknown

_1201832228.unknown

_1201828524.unknown

_1201828910.unknown

_1201829162.unknown

_1201828870.unknown

_1201824814.unknown

_1201824945.unknown

_1201824748.unknown

_1201806426.unknown

_1201812796.unknown

_1201813027.unknown

_1201813485.unknown

_1201813724.unknown

_1201813127.unknown

_1201812858.unknown

_1201812995.unknown

_1201812827.unknown

_1201808357.unknown

_1201809750.unknown

_1201811902.unknown

_1201809652.unknown

_1201809373.unknown

_1201807270.unknown

_1201807431.unknown

_1201806507.unknown

_1113687801.unknown

_1201788194.unknown

_1201804107.unknown

_1201806297.unknown

_1201806350.unknown

_1201804797.unknown

_1201804557.unknown

_1201804615.unknown

_1201804442.unknown

_1201789265.unknown

_1201792101.unknown

_1201788807.unknown

_1113695617.unknown

_1201787074.unknown

_1201787268.unknown

_1201787983.unknown

_1201787214.unknown

_1201759746.unknown

_1201761195.unknown

_1201786937.unknown

_1201634546.psd

_1113688400.unknown

_1113688424.unknown

_1113695431.unknown

_1113689017.unknown

_1113689424.unknown

_1113688584.unknown

_1113688410.unknown

_1113688335.unknown

_1113688341.unknown

_1113688293.unknown

_1113688331.unknown

_1113688092.unknown

_1113685992.unknown

_1113686628.unknown

_1113687361.unknown

_1113687798.unknown

_1113687799.unknown

_1113687796.unknown

_1113687567.unknown

_1113687354.psd

_1113686785.unknown

_1113686453.unknown

_1113686492.unknown

_1113686500.unknown

_1113686005.unknown

_1113685934.unknown

_1113685369.unknown

_1113685744.unknown

_1113685917.unknown

_1113685655.unknown

_1113685728.unknown

_1113685198.unknown

_1113685238.unknown

_1113685277.unknown

_1113684920.unknown

