

MAJOR THESIS
ON

“DESIGN AND IMPLEMENTATION OF
SYNCHRONIZATION AND SWITCHING

COMPONENTS IN DIGITAL NETWORKS,
WITH FPGA ”

A dissertation submitted in partial fulfillment of the requirement
for

the degree of

MASTER OF ENGINEERING
in

ELECTRONICS AND COMMUNICATION

Submitted by :

PRAVEEN KUMAR
College Roll No. 16/EC/03

University Roll No. 9113
M.E. (ELECTRONICS AND COMMUNICATION)

VIth SEMESTER

UNDER THE GUIDANCE OF

DR. ASOK BHATTACHARYYA
PROFESSOR & HEAD

ELECTRONICS AND COMMUNICATION DEPTT.
DELHI COLLEGE OF ENGINEERING

CERTIFICATE

This is to certify that the thesis entitled “Design and Implementation of Synchronization and

Switching components, in Digital Networks, with FPGA”, ” being submitted by Praveen Kumar

in the partial fulfillment of the requirement for the degree of Master of Engineering in Electronics

and Communication in the Department of Electronics and Communication, Delhi College of

Engineering, University of Delhi is a record of bonafide work done by him under my supervision and

guidance. It is also certified that the dissertation has not been submitted elsewhere for any other

degree.

(Prof. A. BHATTACHARYYA)
Head of Department,
Project Guide
Department of Electronics & Communication
Delhi College of Engineering
Delhi - 110042

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompanies the successful completion of any task would be

incomplete without a mention of the people who made it possible, whose constant guidance and

encouragement crown all the efforts with success.

I am grateful to Prof. A. BHATTACHARYYA (HOD, ECE Deptt.) for providing us an opportunity

to undertake this project and for being my project guide for taking keen interest in my work and for

his constant monitoring and invaluable guidance and support through out the course of my project. I

profusely thank him for having patience to clear my doubts and channelise my efforts. His cheerful

disposition made my work all the more enjoyable.

PRAVEEN KUMAR

College Roll No. 16/EC/03
University Roll No. 9113
Delhi College of Engineering
University of Delhi, Delhi.

INDEX

 CONTENTS PAGE NO.

1. SYNCHRONIZATION 1

1.1 SYNCHRONIZATION INTRODUCTION 1

1.2 HISTORICAL PERSPECTIVE 1

1.3 SYNCHRONIZATION IN TELECOMMUNICATION 3

1.4 NETWORK SYNCHRONIZATION ARCHITECTURES 4

1.5 NETWORK SYNCHRONIZATION STRATEGIES 5

1.6 SYNCHRONIZATION AND DIGITAL SWITCHING 7

2. PHASE LOCKED LOOPS 9

2.1 PHASE LOCKED LOOPS 9

2.2 TYPES OF PHASE LOCKED LOOPS 9

2.3 FUNDAMENTAL BLOCKS 9

2.4 BRIEF HISTORY 10

2.5 PLL APPLICATION 10

2.6 THE LINEAR PHASE LOCKED LOOP (LPLL) 12

2.6.1 BUILDING BLOCKS OF LPLL 12

2.6.2 LPLL PERFORMACE IN LOCKED STATE 13

2.7 KEY PARAMETERS OF THE LPLL 16

2.7.1 THE HOLD RANGE 17

2.7.2 THE LOCK RANGE 17

2.7.3 PULL IN RANGE 17

2.7.4 PULL OUT RANGE 19

2.8 THE CLASSICAL DIGITAL PLL (DPLL) 19

2.8.1 DIGITAL PHASE DETECTORS 20

2.8.1.1 EXOR GATE PHASE DETECTOR 20

2.8.1.2 JK FLIP FLOP PHASE DETECTOR 21

2.8.1.3 PHASE FREQUENCY DETECTOR (PFD) 22

2.8.2 DYNAMIC PERFORMANCE 26

2.8.3 PARAMETERS 26

2.8.3.1 THE HOLD RANGE 27

2.8.3.2 THE LOCK RANGE 28

2.8.3.3 PULL IN RANGE 29

2.8.3.4 PULL OUT RANGE 32

2.8.4 DPLL DESIGN 33

2.9 ALL DIGITAL PHASE LOCKED LOOP (ADPLL) 33

2.9.1 DIGITAL PHASE DETECTOR 34

2.9.1.1 FLIP FLOP COUNTER PHASE DETECTOR 34

2.9.2 DIGITAL LOOP FILTERS 35

2.9.2.1 UP/DOWN COUNTER FILTER 35

2.9.2.2 N-BFORE-M COUNTER FILTER 36

2.9.3 DIGITAL CONTROLLED OSCILLATORS 36

2.9.4 EXAMPLE OF AN IMPLEMENTED ADPLL 37

3. ADPLL IMPLEMENTATION 40

3.1 BLOCK DIAGRAM 40

3.2 SAMPLING PHASE DETECTOR 40

3.3 LOOP FILTER AND DCO CONTROL UNIT 44

3.4 DCO CIRCUIT 45

3.5 VHDL CODE 45

3.6 VHDL TESTBENCH 50

3.7 SCHEMATICS 51

4. SWITCHING 57

4.1 SWITCHING BACKGROUND 57

4.2 ELECTRONICS IN SWITCHING 57

4.3 DEFINITION 58

4.4 DIGITAL SWITCHING FUNDAMENTALS 59

4.5 TIME MULTIPLEXED SPACE SWITCHING 62

4.6 TIME MULTIPLEXED TIME SWITCHING 63

4.7 SWITCH FABRICS 65

4.7.1 BASIC CONCEPTS 65

4.7.1.1 ACCESSIBILITY 66

4.7.1.2 BLOCKING 66

4.7.1.3 COMPLEXITY 67

4.7.1.4 SCALABILITY 67

4.7.1.5 RELIABILITY 68

4.7.1.6 THROUGHPUT 68

4.7.2 TIME AND SPACE SWITCHING 68

4.7.2.1 SPACE DIVISION SWITCHING 69

4.7.2.2 TIME DIVISION SWITCHING 70

4.7.2.3 PROPERTIES OF SPACE AND TIME SWITCHES 72

4.7.3 TWO STAGE SWITCHES 73

4.7.3.1 TIME MULTIPLEXED SPACE SWICTH 73

4.7.3.2 TS SWITCH INTERCONNECTING TDM LINK 74

4.7.4 THREE STAGE SWITCH 75

4.7.4.1 THREE STAGE SWITCH COMBINATIONS 75

4.7.4.2 TIME-SPACE-SPACE SWITCH 76

4.7.4.3 SPACE-TIME-TIME SWITCH 76

5. IMPLEMENTATION OF TIME AND SPACE SWITCH 77

5.1 IMPLEMENTATION OF TIME SWITCH 77

5.1.1 FUNCTINAL DIAGRAM OF TIME SWITCH 77

5.2 IMPLEMENTATION OF SPACE SWITCH 78

5.2.1 FUNCTINAL DIAGRAM OF TIME SWITCH 79

5.3 VHDL CODES 80

5.3.1 PROJECT HIERARCHY 80

5.3.2 VHDL CODE OF TST SWITCH 80

5.3.3 VHDL CODE OF TIME SWITCH 84

5.3.4 VHDL CODE OF SPACE SWITCH 86

5.4 SIMULATION RESULTS 88

6. PRACTICAL UTILITY AND FUTURE ENHANCEMENTS 97

6.1 IMPLEMENTED ADPLL 97

6.2 IMPLEMENTED TST SWITCH 97

 BIBLIOGRAPHY 99

 -1-

1. SYNCHRONIZATION

__

1.1 SYNCHRONIZATION INTRODUCTION

Synchronization is the act of synchronizing (Webster’s Ninth New Collegiate Dictionary) i.e.

making synchronous (cf. the Greek etymon σύγχρουος)the operation of different devices or the

evolving of different processes by aligning their time scales.

Many operations in digital systems must obey a precedence relationship. If two operations obey

some precedence, then synchronization ensures that operation follow in the correct order. At the

hardware level, synchronization is accomplished by distributing a common timing signal to all the

modules of the system. At a higher level of abstraction, software processes synchronize by

exchanging messages.

Depending on the application field, different systems of abstractions are adopted usefully, structured

in a hierarchical fashion, where each level of abstraction relies on the features of the abstraction level

below and hides unnecessary details to the higher level. Abstractions enable the designers to ignore

such unnecessary details and focus on essential features, thus making easier achieving a greater

complexity of the system designed.

In digital hardware systems, a common approach is to structure the system representation in

abstraction levels such as the physical level, in which the designer is concerned about physical laws

governing semi conductor properties; the circuit level, where he deals with transistor, resistor etc.;

the element level focused on gates, logical ports etc.; the module level, where elements are grouped

to form more complex entities, such as memories, logic units, CPUs etc.

Whichever is the abstraction criterion adopted in describing hardware and software systems, many

are the entities mutually correlated, at any level, whose correct operation relies on temporal

coordination. Though, entities of different abstraction levels, both in hardware and software systems,

usually require different and independent ‘synchronization’ functions. Elliptical term

synchronization is adopted to refer to whole set of heterogeneous issues where temporal coordination

is essential.

1.2 HITORICAL PERSPECTIVE

The modern telecommunication networks result from along evolution process, started since the end

of the 19th century:

 -2-

Network synchronization, at first an unknown issue as not relevant to network operation and

performance, has played a role of increasing importance in telecommunication throughout this

evolution process, especially since transmission and switching turned digital.

Transmission and switching are the two basic functions of any telecommunication network, and in

particular telephone networks.

Transmission is the action of conveying information point-to-point, for example from one node in a

network to another one directly linked to it by a physical channel. Moreover, transmission can also

be from one point to multiple points (multicast) or even from one point to all listeners on the medium

(broadcast).

Switching, on the other hand, is the function of connecting a given input-output pair in nodes where

multiple transmission links are terminated. It deals thus with the dynamic assignment of the

transmission channels available in a network, on the basis of user connection requests.

To make an analogy with railways, transmission systems are the tracks and switching nodes are the

shunts. Transmission and switching are the complementary foundations on which all the

telecommunication services are based. Both Transmission and Switching were analog first and then

one after the other turned to digital technology.

The evolution of digital transmission and switching technology for the public telephones with

isolated digital transmission links between analog switching machines or analog radio transmission

systems. The fact that digital technology was used was transparent to the interfaces. Thus there was

no need to relate internal clock rate of one system to the internal clock rate of another system.

Even as higher level multiplexing systems were developed there was no need (nor viable means) of

relating the clock rates of the higher rate multiplexed signals with the clock rates of lower rate

tributaries. Indeed the transmission equipment based on PDH technology does not need to be

synchronized, since the bit justification technique allows the multiplexing of asynchronous

tributaries with substantial frequency offsets.

Problems began to arise wit such asynchronous architecture when digital technology moved to

switching machines too. Digital switching equipment requires to be synchronized in order to avoid

slips at input elastic stores. And while slips do not significantly affect normal phone conversations,

they may be troublesome indeed on some data services! The introduction of circuit switched data

networks and of ISDN, therefore, yielded first the need for more stringent synchronization

requirements.

The ongoing spread of SDH/SONET technology in transmission network has really made

synchronization a hot topic in standard bodies since 1990s.The need for adequate network

synchronization facilities has become more and more stringent in order to fully exploit SDH/SONET

capabilities; it is widely recognized that SDH/SONET transmission may rely on a suitable

 -3-

dependable timing distribution to fully meet all its benefits, in particular because pointer action may

yield excess jitter on transported tributaries.

Beyond SDH/SONET needs, anyway, nowadays network synchronization facilities are unanimously

considered as profitable network resource, allowing slip free digital switching, enhancing the

performance of ATM based transport services and serviceable for improving the quality of a variety

of services (e.g. ISDN, mobile cellular telephony, etc.). For this reason, most major network

operators have set up national synchronization networks, in order to distribute a common timing

reference to each node of the telecommunication network, On the standardization side, ITU-T and

ETSI bodies released new synchronization standards, suitable for operation of modern digital

communication network, specifying more stringent and complex requirements for jitter and wander

at synchronization interfaces, for clock accuracy and stability and for the synchronization network

architecture.

Most modern synchronization networks are provided with management systems. The main

management functions relevant to synchronization network management lie in the areas of fault,

configuration, performance and security management.

Most advanced synchronization networks are provided with monitoring systems that allows to verify

continuously, in real time, the performance achieved in timing distribution. The rationale of

synchronization performance monitoring is the need to be proactive, i.e. to detect timing

degradations well before they impact service.

1.3 SYNCHRONIZATION IN TELECOMMUNICATION

The term synchronization is familiar in a somewhat restricted sense , meaning only acquisition and

tracking of a clock in a receiver, with reference to the periodic timing information contained in the

receive signal. More properly speaking this should be referred to as carrier or symbol

synchronization. On the contrary, synchronization plays an essential role in several other areas in

telecommunications, at different level of abstraction and in different context too.

At different abstraction levels, the main contexts in which the word synchronization is used in

telecommunication are the following:

• Carrier synchronization, i.e. the extraction of the carrier from a modulated signal in coherent

demodulation;

• Symbol synchronization, i.e. the identification of sampling and decision times in digital

demodulation, in order to extract the logical information from the received analog signal;

• Word and frame synchronization, i.e. the identification of start and end of code words or of

group of code words(frames), or also the delineation of the frames in the raw and

undifferentiated stream of received bits;

 -4-

• Packet synchronization, i.e. the delay equalization of packet arrival times in order to

reconstruct a user circuit with constant bit rate over a packet switched network;

• Network synchronization, i.e. the distribution of a common timing over a network of clocks,

spread over an even wider geographical area;

• Multimedia synchronization, i.e. the orchestration of heterogeneous elements (images, text,

audio, video, etc.) in a multimedia communication at different (e.g. physical and human

interface) levels of integration;

• Synchronization of real-time clocks, i.e. a substantially different kind of network

synchronization in which the distribution of the absolute time (e.g. the national standard time)

across a telecommunication network is concerned, mainly to network management purposes.

1.4 NETWORK SYNCHRONIZATION ARCHITECTURES

Network synchronization is a comprehensive expression that addresses in a wide sense any

distribution of time and frequency over a network of clocks. Its goal may be either

1. To align the absolute time scales of network nodes, thus aiming for instance at aligning

local clocks to the Universal Time Coordinated (UTC)

2. To align the timing signals (or more precisely, their significant instants) generated by

local clocks, independently from a constant phase offset among them. Thus aiming at

minimizing phase fluctuations around such average phase offset (example :

synchronization of synchronous digital multiplexers or digital switching exchanges in

order to avoid slips at input elastic stores);

3. To equalize the frequencies of local clocks, without controlling their phase relationship

(example: the distribution of a standard signal to PLL based slave clocks).

In a network synchronized as in case (1), local timing signals are synchronous and their total

phases are aligned. Therefore, this network synchronization requires estimation and

compensation of transmission delays on synchronization signals directed to each node.

In a network synchronized as in case (2), local timing signals are synchronous but there is no

need to estimate transmission average delays of synchronization signals.

In a network synchronized as in case (3), finally, timing signals are just mesochronous.

In most cases network synchronization is intended as in case (2) and is achieved by transferring

chrono signals (i.e.some pseudo-periodic signals such as sine or square waves), which carry a

timing information with the uncertainty of the integer number of periods elapsed since the signal

was generated (total transmission delay).

A synchronization network is the facility implementing network synchronization. It is able to

provide all telecommunication networks with reference timing signals of required quality. Most

modern telecommunication operators have set up one synchronization network to synchronize

their switching and transmission networks.

Basic elements of synchronization network are the nodes (autonomous and slave clocks) and

links interconnecting them. An autonomous clock is a stand-alone device able to generate a

timing signal, starting from some periodic physical phenomenon. A slave clock on the other hand,

generates a timing signal having phase locked to a reference timing signal at its input. Slave

clocks are usually implemented as PLLs (Phase Locked Loops).

Time and frequency are distributed by using the communication capacity of the links

interconnecting the clocks (e.g. copper cables, optical fibres, radio links). However, network

nodes may be many and spread over a wide geographical area. Therefore two distinct issues must

be faced:

• How to transfer timing from one node to the other (the tactics of point-to-point timing

transfer);

• How to organize timing distribution among all nodes of the network (the strategy of

network synchronization).

1.5 NETWORK SYNCHRONIZATION STRATEGIES

Network synchronization plays a central role in modern digital telecommunications, determining the

quality of most services offered by network provider to its customers. To this purpose many different

network synchronization strategies have been conceived. Among them following three have found

wide application throughout the last decades: full plesiochrony, hierarchical master-slave (HMS)

synchronization, and mutual synchronization. The main feature of these strategies are as follows.

Full Plesiochrony (Anarchy):

It is actually no synchronization strategy (i.e., it does not involve any synchronization

distribution).Each network node is equipped with an independent clock. Anarchy is the easiest form

of government, but it relies on good behavior of the single elements. Due to lack of any timing

 -5-

distribution, the synchronization of the operation of different nodes is entrusted to accuracy of

network clocks, which therefore must feature excellent performance.

Hierarchical Master –Slave Synchronization (Depotism):

The principal of master slave strategies is based on the distribution of the timing reference from a

clock (master) to all other clocks of the network (slaves), directly or indirectly. Depotism is generally

considered unethical, but it is certainly effective in ensuring very tight control of the slaves: an MS

network is synchronous with the master clock and stable by definition. The HMS strategy is

currently the most widely adopted to synchronize modern digital telecommunication networks, due

to the excellent timing performance and reliability that can be achieved at limited cost.

Mutual Synchronization (Democracy):

Mutual synchronization is based on direct mutual control among the clocks so that output frequency

of each is the result of the “suggestions” of the others. Such a pure democracy looks appealing: there

are no masters and no slaves, but mutual cooperation. However, the behavior of the mutually

controlled elements is hard to govern. Modeling the behavior of such networks, or even ensuring the

stability of the control algorithms, can be very complex task. Network so designed thus tend to be

quite expensive, but extremely reliable. Therefore, until now the field of application of mutual

synchronization has been mostly limited to special cases (e.g., military networks).

 -6-

 -7-

Timing Relation ship between digital signals:

Isochronous : Digital signal in which time intervals between significant instants have, at least on the

average, the same duration or durations which are integer multiples of shortest one.

Two synchronous digital signals are isochronous digital signals whose respective timing signal have

the same frequency, at least on the average, and a phase relationship controlled precisely.

Two mesochronous digital signals are isochronous, asynchronous digital signals, whose respective

timing signals have the same frequency, at least on the average, but no control on phase relationship.

Two plesiochronous digital signals are isochronous, asynchronous digital signals, whose respective

timing signals have the same frequency values only nominally, but actually different within a given

tolerance range.

Two heterochronous digital signals are isochronous, asynchronous digital signals, whose respective

timing signals have different nominal frequencies.

To give sound examples of above abstract concepts, a locked Phase Locked Loop (PLL) outputs a

timing signal which is synchronous with the input signal, owing to the feedback control on the phase

error between them. A Frequency Locked Loop (FLL), i.e., a feedback system operating like a PLL

but instead controlling the frequency error between the input and the output signals, outputs a signal

which is mesochronous with the input. Two oscillators, even if designed and built as equal by the

same supplier, output two plesiochronous timing signals, owing to unavoidable manufacturing

tolerances. Finally, two digital signals with different rates (e.g., 2.048 Mb/s and 8.448Mb/s signals)

are heterochronous.

1.6 SYNCHRONISATION AND DIGITAL SWITCHING

The advent of digital TDM techniques yielded a progressive integration of transmission and

switching, since the PCM primary multiplex frame structure allows exploiting of the TDM principle

for digital switching of circuit connections as well.

Digital Switching Requires Time Alignment Of The Input PCM Frames:

The European 2.048 Mb/s PCM frame is made of 32 octets (time slots), 30 of which carry single 64

Kb/s telephone channels, while the North American 1.544 Mb/s PCM frame is made of 24 slots.

Digital switching is based on moving octets (speech samples) from one time slot to another, from

one input signal to another output signal. Time slot exchanging is basically done by delaying, by a

suitable time interval, the incoming octets before retransmitting them in the output frame at the right

place (time).

It clearly appears that digital switching can take place only if incoming frames (asynchronous since

they can be generated by different pieces of equipment with different clocks) are made synchronous,

with frame starts aligned, so that correspondent time slots at different inputs are perfectly time

aligned. Therefore, one of the tasks of the input line units of a digital switching exchange is to

synchronize bits and frames of incoming PCM signals before feeding them into the switching fabric,

as outlined in figure. In this figure, for the sake of simplicity, only one frame per line is depicted

(with alignment word shaded), and the time slot interchanging in the PCM frames is not pointed out.

 Bit and
 Frame
Synchronizer

 Switching
 fabric

 Equipment
 Clock

 -8-

 Input
asynchronous
PCM frames

Output PCM
 frames
synchronized
and switched

 PCM
 frames
synchronized

Thus, for synchronization to be achieved Phase Locked Loops (PLLs) are to be used and hence are

vital components for any synchronized network.

The main task of these PLLs is, on the one hand, to ensure adequate short-term stability by filtering

phase fluctuations accumulated by pilots along the transmission links, and on the other to provide in

any case an output reference frequency, even under loss of input pilot, by free running operation of

the local oscillator. Free-run frequency accuracy requested to limit distortion in the demodulated

signals is in order of 10-7. Such a frequency accuracy is enough to ensure an adequate transmission

quality of telephone channels, even under pilot frequency losses lasting for the mean time for

restoring.

 -9-

 2. PHASE LOCKED LOOPS

__

2.1 PHASE LOCKED LOOPS

A phase-locked loop (PLL) is a circuit which causes a particular system to track with another one.

More precisely, a PLL is a circuit synchronizing an output signal (generated by an oscillator) wit a

reference or input signal in frequency as well as in phase. In the synchronized –often called locked –

state the phase error between the oscillator’s output signal and the reference signal is zero, or very

small.

If a phase error builds up, a control mechanism acts on the oscillator in such a way that the phase

error is again reduced to minimum. In such a control system the phase of output signal is actually

locked to the phase of input signal. This is why it is referred to as phase-locked loop.

2.2 TYPES OF PLL

1. Linear PLL (LPLL)

2. Digital PLL (DPLL)

3. All Digital PLL (ADPLL)

4. Software PLL (SPLL)

2.3 FUNDAMENTAL BLOCKS

 The PLL consists of three basic fundamental blocks:

1. A Phase Detector (PD)

2. A voltage controlled oscillator (VCO)

3. A loop filter (LF)

The signals of interest within the PLL circuit are defined as follows:

• The reference (or input) signal u1(t)

• The angular frequency ω1 of the reference signal

 -10-

• The output signal u2(t) of the VCO

• The angular frequency ω2 of the output signal

• The output signal ud(t) of the phase detector

• The output signal uf(t) of the loop filter

• The phase error θe , defined as the phase difference between signals u1(t) and u2(t)

2.4 BRIEF HISTORY

The very first (PLL) were implemented as early as 1932 by de Bellesize; this French engineer is

considered inventor the “coherent communication”. The PLL found broad industrial applications

only when it became available as an integrated circuit. The first PLL IC’s appeared around 1965 and

were purely analog devices.

An analog multiplier (four quadrant multiplier) was used as phase detector, the loop filter was build

from a passive or RC filter and the well known voltage controlled oscillator was used to generate the

output signal of PLL. This type of PLL is referred to as linear PLL today. In the following years the

PLL drifted slowly but steadily into digital territory. The very first digital PLL (DPLL) which

appeared around 1970, was in effect a hybrid device; only the phase detector was build from digital

circuit, e.g., from an EXOR gate or a JK flip flop, but the remaining blocks still were analog. A few

years later the “all-digital PLL (ADPLL)” was invented. The ADPLL is exclusively build from

digital functional blocks hence doesn’t contain any passive components like resistors and capacitors.

In analogy to filters, PLL’s can also be implemented “by software”. In this case the function of PLL

is no longer performed by a piece of specialized hardware, but rather by a computer program. This

last type if PLL is referred to as SPLL.

Unfortunately, LPLLs, DPLLs, and ADPLLs behave differently, so there is no common theory

which covers all of these types. Consequently we must treat the various types of PLLs separately.

2.5 PLL APPLICATIONS

A Sample of PLL Applications :

The reason that PLLs are so ubiquitous is that they are so useful in so many applications.

• Carrier Recovery

• Clock/Data Recovery

• Frequency Synthesis

• Modulation/Demodulation

• PLL Applications in Control Problems

 -- Disk Drive Control

 -- Harmonic Compensation

 -- Motor Control

EXAMPLES :

1. Carrier Recovery

 General block diagram of frequency recovery from a modulated signal.

Squaring loop to recover carrier from a BPSK modulated signal.

2. Frequency Synthesis

To lock a clock with an input signal of a different frequency synthesize a clock frequency from a

lower frequency input. Harmonic locking loop generates a clock at N times input frequency (non-

integer N is possible). Example from storage industry is DVD+RW format uses a high frequency

wobble embedded in the groove walls to synthesize a write clock frequency.

 -11-

2.6 THE LINEAR PHASE LOCKED LOOP (LPLL)

2.6.1 Building Blocks of LPLL

Multiplier Low Pass
Filter

Voltage
Controlled
Oscillator

 PD

 VCO

ud
ufu1, ω1

 u2, ω2

In linear PLLs, the fourth quadrant multiplier is used as phase detector. In most cases the input signal

u1(t) is a sine wave with angular frequency ω1, whereas output signal u2(t) is a symmetrical square

wave with angular frequency ω2, In the locked state the two frequencies are equal. The output signal

ud(t) of the phase detector then consist of a number of terms; the first of these is a “dc” component

and is roughly proportional to the phase error θe; the remaining terms are “ac” components having

frequencies of 2 ω1, 4 ω1 …Because these higher frequencies are unwanted signals, they are filtered

out by the loop filter (which is a low pass filter). Fig below shows a passive lag filter having one pole

and one zero.

 -12-

Its transfer function is given by

R1

R2 ud uf

C

F(s) = 1 + s τ2 / 1 + s(τ1 + τ2)

Where τ1 = R1C and τ2 = R2C

Its amplitude response is shown in figure below:

|F|

1
-20 dB / decade

1/(τ1 + τ2) 1/τ1 ω

Higher order low-pass filters could be used instead of simple one-pole filters; this is done in some

applications. Because each additional filter pole introduces phase shift, it is much more difficult to

maintain stability in higher order systems.

2.6.2 LPLL performance in Locked State

Assuming PLL to be locked and remain locked in near future a mathematical model can be

developed for phase transfer function H(s) which relates the phase θ1 of the input signal to the phase

θ2 of the output signal.

 H(s) = θ2 (s) / θ1 (s)

Where θ1 (s) and θ2 (s) are the Laplace Transforms of the phase signals θ1(s) and θ2 (s) respectively.

To get an expression for H(s) we must know the transfer functions of the individual blocks in block

diagram of LPLL. Let us start with phase detector.

Input signal of an LPLL is usually a sine wave.

 u1(t) = U10 sin (ω1t + θ1)

whereas output signal is usually a square wave and can therefore be written as a Walsh function

u2(t) = U20 ω (ω2t + θ2)

The output signal of the four quadrant multiplier is obtained by multiplying the signals u1 and u2.

To simplify the analysis the Walsh function is replaced by its fourier series.

For u2(t) we then get

 u2(t) = U20 [4/ π cos (ω2t + θ2) + 4/ 3π cos (3ω2t + θ2) + ….]

First term in square bracket is fundamental component the remaining terms are odd harmonics. For

output signal u2(t) therefore we get

ud(t) = u1(t) u2(t) = U10 U20 sin (ω1t + θ1)

 -13-

 x [4/ π cos (ω2t + θ2) + 4/ 3π cos (3ω2t + θ2) + ….]

When PLL is locked, the frequencies ω1 and ω2 are identical and ud(t) become

ud(t) = U10 U20 [2/ π sin θe) + ….]

where θe = θ1 - θ2 is the phase error. The first term in the series is the wanted “dc” term, whereas

the higher frequency terms will be eliminated by the loop filter. Setting

Kd = 2 U10 U20 / π and neglecting higher frequency terms we get

ud(t) = Kd sin θe

where Kd is called detector gain. When the phase error is small, the sine function can be replaced by

its argument, and we have

ud(t) ≈ Kd θe

In locked state of LPLL the Phase Detector represents a zero order block having a gain of Kd.

Transfer function of a Passive Lag Filter having one pole and one zero is

F(s) = 1 + s τ2 / 1 + s(τ1 + τ2)

Where τ1 = R1C and τ2 = R2C

Angular frequency of VCO is given by

ω2 (t) = ω0 + ∆ ω2 (t) = ω0 + K0 uf (t)

where K0 is called VCO gain (dimension : rad s-1V-1)

The model should yield the output phase θ2 and not the output frequency ω2 .

By definition

θ2 (t) = ∫ ∆ ω2 dt = K0∫ uf dt

Laplace transform

θ2 (s) = (K0/s) Uf (s)

The transfer function of the VCO is given by

θ2 (s) / Uf (s) = K0/s

For phase signals the VCO simply represents an integrator.

From above equations a simplified linear model of a LPLL can be drawn :

Kd F(s)

K0/s
θ2(s

θ1(s
θe

PD

VCO Uf(s)= Ud(s)

FILTER Ud(s)= Kdθe(s)

From the model Phase Transfer Function H(s) is computed. We get
 -14-

H(s) = θ2 (s) / θ1 (s) = K0 Kd F(s) / s + K0KdF(s)

In addition to the phase transfer function, an error transfer function He(s) is defined by

He(s) = θe (s) / θ1 (s) = s / s + K0KdF(s)

Replacing F(s) by LPF transfer function we get, for passive lag filter :

 H(s) = (K0Kd) (1 + s τ2 / 1 + s(τ1 + τ2))

 s2 + s (1 + K0 Kd τ2)/ (τ1 + τ2) + (K0 Kd)/ (τ1 + τ2)

writing the denominator in normalized form i.e.,

Denominator = s2 + 2ξ ωn s + ωn
2

Where ωn is natural frequency and ξ is the damping factor.

For passive lag filter :

ωn = √(K0 Kd)/ (τ1 + τ2)

ξ = ωn /2 (τ2 + 1/K0 Kd)

K0 Kd : Loop Gain

2.7 KEY PARAMETERS OF THE LPLL

 -15-

 ±∆ωH : Hold in range

 ±∆ωp : Pull in range

 ±∆ωpo : Pull out range

 ±∆ωL : Lock range = normal
 Operating range

ω0

Dynamic Limit of Stability

 Static Limit of Stability

Conditionally Stable

Dynamically Unstable

Hold range, ∆ωH : LLPL can statically maintain phase tracking, conditionally stable.

 -16-

Pull out range, ∆ωpo : Dynamic limit for stability, normally locked again.

Pull in range, ∆ωp : Lock again but process is slow.

Lock range, ∆ωL : Lock within single beat note between reference frequency &

 output frequency.

2.7.1 The Hold Range

It is the frequency range in which a PLL is able to maintain the lock statically. The LPLL locks out

for ever when the frequency of the input signal exceeds the hold range.

Magnitude is calculated by frequency offset at reference input which causes phase error θe of π/2.

 ω1 = ω0 + ∆ ωH

where is the hold range. For the phase signal we get

 θ1 (t) = ∆ ωH t

Laplace transform

θ1 (s) = ∆ ω / s2

Phase error :

θ e (s) = θ 1 (s) He(s) = (∆ ω / s2)/ (s / s + KdK0F (s))

using final value theorem, final phase error in time domain :

 lim θ e (t) = lim sθ e (s) = ∆ω / KdK0F(0)

 t → ∞ s → 0

this is for small values of θe only, for greater values :

lim sin θ e (t) = ∆ωH / KdK0F(0)

t → ∞

at the limit of hold range θe = π/2 sin θe = 1 , therefore expression for hold range :

∆ωH = KdK0F(0)

for passive lag filter :

∆ωH = KdK0

2.7.2 The Lock Range

Assume that the LPLL is initially not locked and that the reference frequency is

 ω1 = ω0 + ∆ ω . The reference signal of the LPLL is then given by

 u1(t) = U10 sin (ω0t + ∆ωt) and the output signal by

u2(t) = U20 ω (ω0t)

Phase Detector will deliver an output signal given by

ud(t) = Kd sin (∆ωt) + higher frequency terms

 -17-

The higher frequency terms can be filtered out by loop filter. The output of loop filter can be written

as

uf(t) ≈ Kd |F (∆ω)| sin (∆ωt)

this is an AC signal causing frequency modulation of the VCO. The peak frequency deviation is

equal to KdK0 |F (∆ω)|.

If this frequency deviation is less than the frequency offset ∆ω then lock in process will either not

take place or is at least very slow. When frequency deviation is large so that ω2 exactly meets the

reference frequency ω1 , PLL locks within the single beat note between the reference and the output

frequencies.

The condition for locking is therefore

KdK0 |F (∆ω)| ≥ ∆ω

Lock Range itself is given by

∆ωL = KdK0 |F (∆ωL)|

Approximating that lock range is much greater then corner frequencies 1/τ1 and 1/τ2 of the loop filter

and also assuming τ2 to be much smaller than τ1 we can use

 F (∆ωL)| ≈ τ2 / τ1 for passive lag filter

Assuming high gain loops and making substitutions we get

 ∆ωL ≈ 2ζωn ---------- for all types of loop filters

When LPLL locks quickly (ζ < 1 , damped oscillations, transients die out in one clock cycle), it is

reasonable to state lock-in time as

T L ≈ 2 π/ωn (settling time).

2.7.3 Pull in Range ∆ωp

Assume again that LPLL is not locked initially, that the frequency of the reference signal is ω1= ω0 +

∆ω, and the VCO operates at the centre frequency ω0. Consequently the output signal ud of the phase

detector is a sine wave having the frequency ∆ω.

The difference ∆ω between reference frequency ω1 and output frequency ω2(t) is not a constant; it

is also varied by the frequency modulation of the VCO output signal. If the frequency ω2(t) is

modulated in the positive direction, the difference ∆ω becomes smaller and reaches some minimum

value ∆ωmin ; if ω2(t) is modulated in negative direction , however, ∆ω becomes greater and

reaches some maximum value ∆ωmax , Because ∆ω(t) is not a constant, the VCO frequency is

modulated non harmonically, that is, the duration of the half-period in which ω2(t) is modulated in

the positive direction becomes longer than that of the half-period in which ω2(t) is modulated in the

negative sense. As a consequence the average frequency ϖ2 of the VCO is now higher than it was

without any modulation, i.e., the VCO frequency is pulled in the direction of the reference signal.

The asymmetry of the waveform ω2(t) is greatly dependent on the value of the average offset ∆ω ;

the asymmetry becomes more marked as ∆ω is decreased. If the avereage value of ω2(t) is pulled

somewhat in the direction of ω1 (which is assumed to be greater than ϖ2), the asymmetry of the

ω2(t) waveform becomes stronger. This in turn causes ϖ2 to be pulled even more in the positive

direction. This process is regenerative under certain conditions, so that the output frequency ω2

finally reaches the reference frequency ω1 . This phenomenon is called the pull-in process.

Mathematical analysis shows that a pull-in process occurs whenever the initial frequency offset ∆ω

is smaller than a critical value, the pull-in range ∆ωp . If , on the other hand, the initial frequency

offset ∆ω is larger than ∆ωp , a pull-in process does not take place because the pulling effect is not

then regenerative.

 ω2

 ω1

 -18-

 ∆ωmin

 ∆ωmax

 ω2(t)
 ϖ2 : average of ω2(t)
 ω0

 t

 In the unlocked state of the PLL the frequency modulation of the VCO output signal

 is non harmonic . This causes the average value of the VCO output frequency to be

 pulled in the direction of the reference frequency.

 ω2

 ω1

 ∆ω0

 ω2(t)

 ω0
 Tp

 The Pull-in process

The pull-in range also depends on loop filter.

For passive lag filter:

∆ωp = 4/π √(2ζ ωn K0 Kd - ωn
2)

For active PI filter :

 ∆ωp → infinity (because high , theoretically infinite, DC gain)

2.7.4 Pull Out Range ∆ωpo

The pull out range is by definition that frequency step which causes a lock-out if applied to the

reference input of the PLL.

An exact calculation of the pull0out range is not possible for the linear PLL. However, simulations

on an analog computer have led to an approximation:

∆ωPO = 1.8 ωn (ξ + 1)

In most practical cases the pull out range is between the lock range and the pull in range

 ∆ωL < ∆ωPO < ∆ωP

2.8 THE CALSSICAL DIGITAL PLL (DPLL)

The classical DPLL is actually a hybrid system built from analog and digital functional blocks. The

only part of the DPLL that is really digital is phase detector. In many aspects the DPLL performs

similar to the LPLL, so some part of PLL theory can be adopted; in some particular aspects, however,

DPLL behavior is completely different.

Digital
PD

Analog
LPF

VCO

÷ N
Counter
(optional)

u2,ω2 uf ud
u1,ω1

u2’,ω2’

Block diagram of the DPLL

The block diagram of DPLL is shown in figure above, like the LPLL, consists of the three known

function blocks phase detector, loop filter and voltage controlled oscillator. In many DPLL
 -19-

applications (e.g.,PLL frequency synthesizers) a divide-by-N counter is inserted between VCO and

phase detector. When such a counter is used, the VCO generates a frequency which is N times the

reference frequency.

2.8.1 DIGITAL PHASE DETECTORS

Three most important logical circuits for phase detector are :

• The EXOR gate

• The (edge triggered) JK flip-flop

• The “phase frequency detector” (PFD)

2.8.1.1 EXOR Phase detector

+
ud

u1

u2’

The operation of EXOR phase detector is most similar to that of the liner multiplier. The signals in

DPLLs are always binary signals, i.e., square waves. We assume for the moment that both signals u1

and u2 are symmetric square waves.

 -20-

At zero phase error the signals u1 and u2 are out of phase by exactly 90°. Then the output signal ud is

a square wave whose frequency is twice the reference frequency; the duty cycle of the ud signal is

exactly 50%. Because the high frequency component of this signal will be filtered out by loop filter,

we consider only the average value of ud, as shown by dashed line. The average value is arithmatic

mean of the two logical levels.

When the output signal u2’ lags the reference signal u1, the phase error θe becomes positive, the duty

cycle of ud becomes larger than 50% i.e., average value of ud is considered positive. Clearly the mean

of ud reaches its maximum value for a phase error of θe = 90° and its minimum value for θe = - 90°.

Whereas the output signal of the four quadrant multiplier varied with the sine of phase error, the

average output of ūd of the EXOR is a triangular function of the phase error. Within a phase error

range of -π/2 < θe < π/2, ud is exactly proportional to θe and can be written as

 ūd = Kdθe.

Kd : constant.

When supply voltage to EXOR are UB and 0, and when we assume logic levels are UB and 0. Kd is

given by

 Kd = UB/π

The performance of the EXOR phase detector becomes severely impaired if the signals u1 and u2’

become asymmetrical. If this happens, the output signal ūd gets clipped at some intermediate level,

this reduces loop gain of the DPLL and results in smaller lock range and pull out range, etc.

2.8.1.2 J-K Flipflop Phase Detector

 -21-

 u1

 ud
 Vd

 u2

 JK- Flipflop

 J Q

 FF

 K Q’

Waveform symmetry is unimportant; however the JK-flipflop is used as phase detector. This JK-

flipflop differs from conventional JK-flipflops, because it is edge-triggered. A positive edge

appearing at the J input triggers the flipflop into its “high” state (Q = 1), a positive edge at the K

input into its “low” state (Q = 0).

Figure above shows the waveforms of the JK-flipflop phase detector for the case θe = 0. With no

phase error, u1 and u2 have opposite phase. The output signal ud then represents a symmetrical square

wave whose frequency is identical with the reference frequency (and not twice the reference

frequency). This condition is considered as ūd being zero. If the phase error become positive, the duty

cycle of the ud signal becomes greater than 50 percent, i.e., ūd becomes positive. Clearly, ūd becomes

maximum when phase error reaches 180° and minimum when the phase error is -180°. If the mean

value of ūd is plotted vs phase error θe the saw tooth characteristic is obtained. Within a phase error

range of –π < θe < π the average signal ud is proportional to θe and is given by

 ūd = Kd θe

Obviously the JK-flipflop phase detector is able to maintain phase tracking for phase errors within

the range

 –π < θe < π

By analogous consideration, the phase detector gain of the JK flip flop phase detector is given by

Kd = UB/2π.

In contrast to EXOR gate , the symmetry of the u1 and u2’ signals is irrelevant, because the state of

the JK flip flop is altered only by the positive transitions of these signals.

2.8.1.3 PFD (Phase Frequency Detector)

As its name implies, its output signal depends not only on phase error θe but also on frequency error

∆ω = ω1- ω2’, when the DPLL has not yet acquired lock. Fig above shows the schematic diagram of

 -22-

the PFD. It is built from two D-flip flops, whose outputs are denoted “UP” and “DN”(down)

respectively. The PFD can be in one of the four states

• UP= 0 , DN= 0 ,

• UP= 1 , DN= 0 ,

• UP= 0 , DN= 1 ,

• UP= 1 , DN= 1

The fourth state is inhibited, however, by an additional AND gate whose output goes to clear direct

(CD) pin which resets both flip-flops.

D Q
 FF
CP

 CD

 CD
CP
 FF
D Q

ud

N

U

P

DN

UP

“1”

u2

u1

“1”

We assign symbols –1, 0, 1 to these states:

• DN = 1 , UP = 0 state = -1

• UP = 0 , DN = 0 state = 0

• UP = 1 , DN = 0 state = +1

The actual state of PFD is determined by the positive going transients of the signals u1 and u2’,as

explained by state diagram in fig below. A positive transition of u1 forces PFD to go into its next

higher state unless it is already in +1 state. In analogy, a positive edge of u2’ forces the PFD into its

next lower stae, unless it is already in the –1 state. When PFD is in +1 state, ud must be positive;

 -23-

when it is in -1 state, ud must be negative; and when it is in 0 state, ud must be zero. Theoritically ud

is a ternary signal. Third state can be substituted by a high impedance state.

-1
 0 +1

u2u2

u1
u1

u1

u2

When the UP signal is high, the P channel MOS transistor conducts, so ud equals the positive supply

voltage UB. When the DN signal is high, the N channel MOS transistor conducts, so ud is on the

ground potential. If neither signal is high, both MOS transistors are off, and the output signal floats

i.e., is in the high impedance state. Consequently the output signal ud represents a tristate signal.

Fig (a) shows the case where the phase error is zero. It is assumed that the PFD has been in 0 state

initially. The signals u1 and u2’ are exactly in phase here; both positive edges of

 (a)

u1 and u2’ occur “at the same time”; hence their effects will cancel. The PFD will stay in 0 state for

ever. Fig (b) shows the case where u1 leads u2’.

 -24-

 (b)

The PFD now toggles between the states 0 and +1. If u1 lags u2’ as shown in Fig (c),

 (c)

the PFD toggles between states –1 and 0. It is easily seen from the waveforms in fig (b) and fig(c)

that ud becomes largest when the phase error is positive and approaches 360° and smallest when the

phase error is negative and approaches -360°. When the phase error θe exceeds 2π, the PFD behaves

as if the phase error is recycled at zero; hence the characteristic curve of PFD becomes periodic with

period 2π. An analogous consideration can be made for phase errors smaller then -2π. When the

phase error is restricted to the range -2π < θe < 2π, the average of ud becomes

 ūd = Kdθe

In analogy to JK flip-flop, phase detector gain is computed by

Kd = UB/4π

When the logic levels are UB or 0 respectively.

To recognize the bonus offered by the PFD, we must assume that the DPLL is unlocked initially.

Furthermore we make the assumption that the reference frequency ω1 is higher than the output

frequency ω2’.The u1 signal then generates more positive transitions per unit of time then the signal

u2’. Looking at fig(b) above we see that the PFD can toggle only between the states 0 and +1 under

this condition but will never go into the –1 state. If ω1 is much higher than ω2’ furthermore, the PFD

will be in +1 state most of the time. When ω1 is smaller than ω2’ however, the PFD will toggle

between the states –1 and 0. If ω1 is much lower than ω2’ , the PFD will be in -1 state most of the

time. We conclude therefore that the average output signal ūd of the PFD varies monotonically with

 -25-

the frequency error ∆ω = ω1 - ω2’ when the DPLL is out of lock. This leads to the term phase-

frequency detector.

For the case ω1 < ω2 the duty cycle δ is defined the average fraction of time the PFD is in the –1

state ; for ω1 > ω2, δ is by definition minus the average fraction of time the PFD is in the +1 state. As

expected, δ approaches –1 when ω1 << ω2 and +1 when ω1 >> ω2.

Because the output signal ūd of the PFD depends on phase error in the locked state of the DPLL and

on frequency error in the unlocked state, a DPLL which uses the PFD will lock under any condition,

irrespective of the type of loop filter used. For this reason the PFD is the preferred phase detectors in

DPLLs.

2.8.2 DYNAMIC PERFORMANCE

When the DPLL has acquired lock and is not pulled out by large phase steps, frequency steps, or

phase noise applied to its reference input, its performance can be analyzed by a linear model, as done

for the LPLL.

Digital
PD
[Kd]

Analog
LPF
[F(s)]

VCO
[K0/s]

÷ N
Counter
(optional)
[1/N]

θ2’(s)

θ2(s
θ1(s)

Knowing the transfer functions of all building blocks of the DPLL, we are able to drive the phase-

transfer function H(s), the natural frequency ωn and damping factor ξ. For ωn and ξ , expressions

similar to those for the LPLL are obtained.

2.8.3 PARAMETERS

• The Hold Range

• The Lock Range

 -26-

 -27-

• Pull in Range

• Pull out Range

2.8.3.1 The Hold Range

The hold range ∆ωH is the frequency range within which PLL operation can be statically stable.

Under normal operating conditions the PLL never operates at the limits of the hold range. To reach

this limit of stability it would be necessary to weep the reference frequency slowly upward (or

downward). If the reference frequency is increased and the dc gain of the loop filter is finite, the

phase error increases in proportion. When it attains the maximum value for which the phase detector

operates linearly, the hold range is reached.

If an EXOR gate is used as phase detector, the maximum phase error is π/2. Based on the procedure

as was adopted in LPLL case, we obtain for hold range

 ∆ωH = K0KdF(0)(π/2)

 N

Where F(0) is dc gain of the loop filter.

DC gain is 1 for passive lag,

For EXOR phase detector and passive lag filter, hold range:

 ∆ωH = K0Kd(π/2)

 N

If the JK flip flop is used as phase detector, the maximum phase error becomes π, so hold range :

∆ωH = K0Kdπ

 N

The situation changes drastically, however, when the PFD is used as phase detector. Because its

output is in the high-impedance state when none of the UP or DN outputs is active, the charge on the

capacitor(s) of the loop filter remains unchanged when the PFD is in the 0 state. Consequently the

output signal uf of the loop filter can have a non-zero value even if the average ud signal is 0. When

driven by a tri-state source the loop filter acts like an integrator i.e., filter whose transfer function F(s)

has a pole at s = 0.

The hold range of a DPLL using the PFD becomes infinite.

 -28-

2.8.3.2 The Lock Range

By definition lock range is the offset between the reference and (scaled down) VCO frequency which

causes the DPLL to acquire lock within one beat note between reference and (scaled down) output

frequencies. The lock range of the DPLL can be determined by considerations analog to those made

in LPLL case we assume DPLL is initially out of lock and that the VCO oscillates on its center

frequency Nω0. The reference frequency is offset by ∆ω from its center value ω0,i.e., ω1 = ω0 + ∆ω.

The signals u1 and u2 can then be replaced by the walsh functions

 u1 (t) =U10ω[(ω0 + ∆ω)t]

and

 u2 (t) =U20ω(ω0)t

respectively, where U10 and U20 are the amplitudes of the square wave signals. The phase error θe is

the difference of the phases of these two signals, i.e.,

 θe(t) =ω0t : which is a ramp function.

Case of EXOR phase detector :

Average output signal ūd (t) of the EXOR is a triangular function of phase error, ūd(t) becomes

triangular function of time. The shape of uf signal is also triangular, therefore frequency of VCO is

modulated by this triangular function. When the frequency offset ∆ω is chosen such that the peak of

the ω2’ curve just reaches the reference frequency ω1 , ∆ω equals the lock range ∆ωL. Using

mathematical model developed in LPLL case, we obtain lock range

 ∆ωL ≈ πξωn

The lock range of the DPLL using the EXOR phase detector is greater than the lock range of the

LPLL by a factor of approximately π/2. This is easily explained by the fact that the maximum output

signal of the four quadrant multiplier is Kd, whereas the maximum output signal of the EXOR is

Kdπ/2.

Case of JK flip-flop phase detector :

Average output signal ūd(t) of the JK flip-flop varies in a saw-tooth-like fashion with phase error,

ūd(t) will also be a saw-tooth function . The frequency of VCO is modulated in a saw tooth like

manner. When the frequency offset ∆ω is chosen such that the peak of the ω2’ curve just reaches the

reference frequency ω1 , ∆ω equals the lock range ∆ωL. By analog consideration we get the

approximation

∆ωL ≈ 2πξωn

 -29-

Case of PFD phase detector :

A similar procedure can be applied to the PFD. For a DPLL using the PFD the lock range becomes

approximately

∆ωL ≈ 2πξωn

The lock-in time can be calculated by analog consideration as made for the linear PLL. The lock

process is completed within one cycle of the damped oscillation at most, so it is reasonable

approximation to state that TL is one period of the damped oscillation:

TL ≈ 2π/ωn

2.8.3.3 Pull-in range

Pull-in process is a nonlinear phenomenon and is very hard to calculate. Analysis is different for

different phase detectors.

Let us assume first EXOR gate phase detector.

We assume DPLL is initially out of lock and that the VCO oscillates on its center frequency Nω0.

The reference frequency is offset by ∆ω from its center value ω0,i.e., ω1 = ω0 + ∆ω. The signals u1

and u2 can then be replaced by the walsh functions

 u1 (t) =U10ω[(ω0 + ∆ω)t]

and

 u2 (t) =U20ω(ω0)t

respectively, where U10 and U20 are the amplitudes of the square wave signals. The phase error θe is

the difference of the phases of these two signals ,i.e.,

θe(t) =ω0t : which is a ramp function.

Average output signal ūd(t) of the EXOR is a triangular function of phase error, ūd(t) becomes

triangular function of time. The shape of uf signal is also triangular, therefore frequency of VCO is

modulated by this triangular function. If the triangular waveform were symmetrical the average

frequency ω2’ would remain constant and is equal to ω0 . However the frequency offset ∆ω is not

constant but is given by the difference between reference frequency ω1 and instantaneous frequency

ω2’. Consequently, ∆ω(t) becomes smaller during the positive half of the ūd signal and larger during

the negative half-wave. Therefore, the waveform of ūd becomes asymmetrical. When the ūd

waveform is asymmetrical, its mean value is no longer zero but becomes slightly positive. This

causes the average frequency of the VCO to be pulled up. If the loop gain is high, pull in process

becomes regenerative and the VCO frequency will be pulled up until it becomes close to the

reference frequency. Then a locking process will take place. A pull-in process is initiated whenever

the initial frequency offset ∆ω is smaller than the pull-in range ∆ωp.

ūd T1 T2

Kdπ/2

t
Kdπ/2

T=2π/∆ω

ω2’ ω1

∆ω(t)

ω2’(t)

ω0

t

Final results:

For passive lag low gain loops

∆ωp = (π/2)√(2ξωnK0Kd - ωn
2)

For passive lag high gain loops

∆ωp = (π/√2)√(ξωnK0Kd)

Final result for approximate pull-in time TP :

 TP = 4∆ω0
2/(π2ξωn

3)

Pull in time varies with square of initial frequency offset. Pull in time becomes infinite when initial

frequency offset equals the pull-in range.

 -30-

In case of JK flip-flop phase detector, the waveforms of average ūd(t) signal is saw tooth instead of

triangular. Performing analog computation as above, we get for the pull-in range :

For passive lag low gain loops

 ∆ωp = π√(2ξωnK0Kd - ωn
2)

For passive lag high gain loops

 ∆ωp = (π/√2)√(ξωnK0Kd)

Pull in time

 TP = ∆ω0
2/(π2ξωn

3)

Consider the case where PFD is used as phase detector:

The pull-in range becomes infinite now, because the loop filter is driven by a tri-state source. The

charge on the filter capacitor remains unchanged when the output of the PFD is in the high

impedance state, Hence even a passive lag filter works like a real integrator.

We assume again that the DPLL is initially out of lock and that the frequency ω1 of the reference

signal u1 is marked higher than the (down scaled) output frequency ω2
’. The output signal ud of the

PFD then toggles between the states 0 and +1.The average ud signal has the shape of saw-tooth signal.

It periodically ramps up from 0 to 1 and is a saw-tooth function as well. The average duty cycle of ud

is 50%. Because the time constant τ1 of the loop filter is much larger than the period of the u1 signal,

an equivalent ueq having a constant duty cycle of 50% would have the same effect on the loop filter

(neglecting τ2 because τ2 << τ1). Because the duty cycle is only 50%, however the capacitor needs

twice as much time to charge. Therefore the loop filter acts like a simple RC filter whose time

constant is not τ1 but 2τ1. After some time, uf will have reached a level which causes the VCO to

generate just the “right” frequency.

UB

uf

∆ω/K0

UB/2

TP

 -31-

 -32-

This occurs when the voltage on the capacitor has been increased by the amount ∆ω/K0. When this

happens, the pull-in process terminates, and a lock-in process takes place.

For passive lag loop filter pull-in time (time required for the capacitor to increase its voltage by

∆ω/K0) :

 TP = 2τ1 ln ((K0UB/2)/K0UB/2 - ∆ωp)

 Where ∆ωp is the initial frequency offset, ∆ωp= ω1 - ωp

Major difference of the pull-in process for different types of phase detectors :

If the phase detector is an EXOR gate, the instantaneous frequency of the VCO is modulated in both

directions around its average value. Provided a pull-in process starts, the frequency of the VCO is

slowly “pumped up” as in case of LPLL. A similar pumping is observed when the phase detector is a

JK flip-flop. No pumping occurs when the PFD is used, the VCO “knows where to go” at every time.

The instantaneous frequency of the VCO approaches the final value from one side only. When the

pull-in process is completed, a lock-in process follows.

2.8.3.4 Pull-out range

Pull out range is the size of the frequency step applied to the reference input which causes the PLL to

loose phase tracking.

In case of LPLL the output signal of four quadrant multiplier varies with sine of the phase error, it is

triangular function in case of EXOR which is quite similar. We expect, however, that the pull-out

range would be slightly greater for the DPLL, because the output signal of the EXOR is linear over

the full range -π/2 < θe < π/2 and does not flatten out at phase errors approaching π/2.

By simulations, using damping factors in the range of 0.1 < ξ < 3 , then a least squares fit gave the

approximation

 ∆ωPO = 2.46 ωn (ξ + 0.65)

In case of the JK flip-flop, the pull-out range is the frequency step causing the peak phase error to

exceed π ; in case of PFD, the pull-out range is the frequency step leading to a peak phase error of 2π.

Least square fit gives :

For JK flip flop phase detector

∆ωPO = 5.78 ωn (ξ + 0.5) and

For PFD phase detector

∆ωPO = 11.55 ωn (ξ + 0.5)

 -33-

2.8.4 DPLL DESIGN

• Step 1. The input and output frequencies of the DPLL must be specified.

• Step 2. The scalar ratio must be determined.

• Step 3. Determination of damping factor ξ.(0.7 preferred for butterworth response)

• Step 4. Choice of Phase Detector (PFD preferred)

• Step 5. Characteristic of VCO is determined. ω0 and N are decided, range for ω is generated,

VCO gain K0 is determined

• Step 6. Specify type of loop filter.(passive lag filter is preferred with PFD for infinite hold

and pull-in range)

• Step 7. Determining dynamic properties of DPLL. How the DPLL is used, TP should be key

parameter (goto step 8) or ∆ωpo should be key parameter (goto step 12) or TL should be key

parameter (goto step 13). User must resort to specification which makes as much sense as

possible.

• Step 8. With TP known τ1 is calculated.

• Step 9. With τ1 known ξ is calculated.

• Step 10. With ωn and ξ known τ2 is calculated.

• Step 11. With τ1 and τ2 (plus eventually K0), the components of loop filter can be determined.

• Step 12. Given ∆ωpo and damping factor ξ , natural frequency ωn is calculated. Proceed to

step 14.

• Step 13. ωn is calculated from TL, proceed to step 14

• Step 14. With ωn and ξ known τ1 is calculated.

2.9 ALL DIGITAL PLL (ADPLL)

The Classical DPLL is a semi analog circuit. Because it always needs a couple of external

components, its key parameters will vary because of parts spread. Even worse, the center frequency

of a DPLL is influenced by parasitic capacitors on the DPLL chip. Its variation can be so large that

trimming can become necessary in critical applications. Many parameters are also subject to

temperature drift.

The all-digital PLL does away with these analog-circuitry headaches. In contrast to the DPLL, it is

an entirely digital system. Let us know first that the term “digital” is used here for a number of

different things. First of all, “digital” means that the system consists exclusively of logical devices.

But “digital” also signifies that the signals within the system are digital too. Hence it can be a binary

signal (or “bit” signal) as was the case with the classical DPLL, but it can as well be a “word” signal,

i.e., a digital code word coming from a data register, from the parallel outputs of a computer, and the

like. When discussing the various types of ADPLL, we find the whole palette of such digital signals.

To realize an ADPLL, all function blocks of the system must be implemented by purely digital

circuits.

2.9.1 DIGITAL PHASE DETECTORS

2.9.1.1 Flip-Flop counter phase detector

 N = content ∼ θe

 -34-

 u1

 u2

 High Frequency Clock

 u1

 u2

 Q
 ∼ θe
 N content

S
Q

Enable

Count

The reference (input) signal u1 and the output (or scaled down output) signal u2 of the DCO (or VCO)

are binary valued signals. They are used to set or rest an edge triggered RS flip flop. The time period

in which the Q output of the flip flop is a logic 1 is proportional to the phase error θe. The Q signal is

used to gate the high frequency clock signal into the upward counter. Note that the counter is reset on

every positive edge of the u1 signal.

The content N of counter is also proportional to the phase error θe, where N is n-bit output of this

type of phase detector. The frequency of the high frequency clock is usually Mf0 where f0 is the

frequency of reference signal and M is large positive integer.

2.9.2 DIGITAL LOOP FILTERS

2.9.2.1 UP/DOWN counter filter

Probably the simplest loop filter is built from an ordinary UP/DOWN counter. The UP/DOWN

counter loop filter preferably operates in combination with a phase detector delivering UP or DN

(DOWN) pulses, such as the PFD. It is easily adapted, however, to operate in conjunction with the

XOR or JK flip flop phase detectors and others, as shown in figure. A pulse-forming network is first

needed which converts the incoming UP and DN pulses into a counting clock and a direction

(ŪP/DN) signal as explained by waveforms in figure.

On each UP pulse generated by the phase detector, the content N of UP/DOWN counter is

incremented by 1. A DOWN pulse will decrement N in same manner. The content N is given by the

n-bit parallel output signal uf of the loop filter. Because the content N is the weighted sum of the UP

and DN pulses — the UP pulses have an assigned weight of +1 , the DN pulses, -1 — this filter can

roughly be considered an integrator having the transfer function

H(s) = 1/ sTI

where u1 is the integrator time constant. This is however, a very crude approximation, since the UP

and DN pulses do not carry any information about the actual size of the phase error; they only tell

whether the phase of u1 is leading or lagging u2.

 Content N ∼ uf

 UP clock
From
Phase DN
Detector UP/DN

 -35-

UP

DN

Clock

ŪP/DN

Pulse
forming
circuit

Clock
 UP/DOWN counter
UP/DN

2.9.2.2 N-before-M counter filter

Another digital loop filter is the so called N-before-M counter (shown in figure below). The

performance of this filter is very non-linear.It is suggested that N-before-M filter operates in

conjunction with a phase detector generating UP and DOWN pulses, as was the case with the PFD.

The N-before-M filter uses two frequency counters scaling down the input signal by a factor N and

one counter scaling down by M, where M > N always. The ÷M counter counts the incoming UP and

DN pulses. The upper ÷N counter will produce one carry output when it has received N UP pulses.

But it will generate this CARRY only when the ÷M counter does not receive M pulses. Otherwise

the ÷N counter would have been reset. We can say the upper ÷N counter will produce a carry pulse

whenever more than N pulses of an ensemble of M pulses have been UP pulses. A similar statement

can be made for the lower ÷N counter in figure, which will output BORROW pulses only when the

majority of incoming pulses are DN pulses.

The outputs of the N-before-M filter can be used in a similar way to control a DCO, as indicated for

the K counter.

 UP CARRY

from
PD

 DN BORROW

÷N counter

 reset

÷M counter

 reset

÷N counter

 reset

2.9.3 DIGITAL CONTROLLED OSCILLATORS

A variety of DCO’s can be designed; they can be implemented by hardware or software.

Probably the simplest solution is the ÷N counter DCO. A ÷N counter is used to scale down the signal

generated by a high frequency oscillator operating at a fixed frequency. The N-bit parallel output

signal of a digital loop filter is used to control the scaling factor N of the ÷N counter.
 -36-

÷N counter

≈ Fixed high-frequency oscillator

OUT
From
loop
filter

N modulus
control

2.9.4 EXAMPLE OF AN IMPLEMENTED ADPLL

The Example depicted in Figure below, a JK flip-flop (JK-FF2) is used as a phase detector. The

Phase detector block has been extended, however, by a pulse forming network consisting of another

JK flip flop (JK-FF1) and an AND gate. The loop filter is built from an UP/DOWN counter. ÷N

counter is used as DCO. The pulse forming network generates the counting clock (CK) for the

UP/DOWN counter.

 -37-

 (a) Block Diagram

J Q
clk JK-FF1
K

Clock
 UP/DN counter
ŪP/DN

J Q
JK-FF2
K

 Modulus control
Out clock
 ÷N counter

≈
Optional ÷M
counter
Out clock

PHASE DETECTOR 1
LOOP FILTER u1*

CK
u1

ud
N-uf

DCO
u2 fcDCO output

The waveforms in figure (b) explain the operating principle of the PD. The JK-FF1 scales down the

input signal u1 by a factor of 2; the scaled down input signal is designated u1*.The reconstructed

signal u2 has the same frequency as u1* not u1. The waveforms in have been drawn for two cases:

1. u1* leading u2

2. u1* lagging u2

u1

u1*

CK

Case 1: u1*

u2

up/dn counter
counts UP

up/dn counter
counts UP

ud

Case 2: u1*

u2

up/dn counter
counts DOWN

up/dn counter
counts DOWNud

 (b) Waveforms

The JK-FF2 is an edge-triggered flip-flop.The positive transitions of u1* set this flip flop; the

positive transition of u2 reset it. The counting clock CK for the UP/DOWN counter occurs at a time

when the output signal ud or JK-FF2 is stable, that is, high when u1* lags u2 or low when u1* leads u2.

Consequently the phase-detector output signal ud is used as the direction input ŪP/DOWN for the

UP/DOWN counter. If the frequencies of u1* and u2 are not identical, the UP/DOWN counter will

 -38-

 -39-

count upward or downward until N has reached the value that causes ÷N counter to generate the

correct output frequency.

Because N can only be varied in steps of 1, the frequency of signal u2 will normally be slightly too

high or too low. This will force the contents of N to jitter continuously around the values of N and

N+1 if the reference frequency f1 is constant. At equilibrium f1 will be equal to fc/(N-M), where M is

the scaling factor of the optional ÷M counter.

 3. ADPLL IMPLEMENTATION

__

ADPLL implemented by VHDL ,synthesized and tested on Xilinx FPGA.

3.1 BLOCK DIAGRAM

ADPLL :

fin MSBA

 ADPLL

fc

This is the symbol of ADPLL synthesized on xilinx FPGA and tested on PCB.

fin is the input reference signal and MSBA is output clock signal locked to input.

fc is standard high frequency clock from any independent clock source.

The ADPLL comprises of following components:

• Sampling Phase detector

• Loop filter and DCO control unit

• DCO circuit

3.2 SAMPLING PHASE DETECTOR

D Q D Q D Q D Q

en_d

fc

fin

 -40-

 -41-

This is the logical diagram of ‘Sampling Phase Detector’ . In this case input reference fin

is sampled by a high frequency (32 or 64 times) fc. It produces a pulse whenever a positve edge of

input reference is sensed.

The circuit was implemented by VHDL and simulated on Altera’s MaxPlus-II tool for various

conditions i.e., when fc is leading fin or when fc is lagging fin or when fc is in phase with fin etc.

Following is the VHDL code and simulation results for various cases. An output pulse is generated

on every positive edge of fin.

library IEEE;
use IEEE.std_logic_1164.all;
-- use IEEE.std_logic_misc.all ;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity adpll is
port(
 fc : in std_logic;
 fin : in std_logic;
 rst : in std_logic;
 en_d : out std_logic
);
end adpll;

architecture RTL of adpll is

signal f1out : std_logic;
signal f2out : std_logic;
signal f3out : std_logic;
signal en : std_logic;
begin
process(en, rst, fin)
begin
 if (rst='0' or en='1') then
 f1out <= '0';
 elsif fin'event and fin = '1' then
 f1out <= '1';
 end if;
end process;

process(f1out, f2out, f3out, fc, rst)
begin
 if rst = '0' then
 f2out <= '0'; f3out <= '0'; en <= '0' ;
 elsif fc'event and fc = '1' then
 f2out <= f1out ; f3out <= f2out ; en <= f3out ;
 end if;
end process;
en_d <= f3out and (not en);
end RTL;

PHASE DETECTOR SIMULATIONS :

 -42-

 -43-

3.3 LOOP FILTER AND DCO CONTROL UNIT

en_d MSBA RegBin
 0 0 000001
 0 1 000001
 1 0 000010
 1 1 000000

R
E
G
B

R
E
G
A

 ADDER

MSBA

 fc double

This circuit simulates loop filter and DCO control unit. Registers A and B are of 6 bits each. (width

of registers depends on frequencies of fin and fc . Here in this case

 fc = 26 x fin , so register width is 6)

Registers A and B are running on high frequency clock. MSB of Register A is our output clock

locked to fin. Reset value of Register B is “000001”. If a positive edge of en_d comes and edge of

MSBA does not come then value of register B is incremented for one clock cycle so as to get MSBA

edge earlier in next turn. If a positive edge of en_d comes and edge of MSBA had came earlier then

value of register B is decremented for one clock cycle so as to get MSBA edge later in next turn. In

this way we get MSBA locked to fin.

 -44-

3.4 DCO CIRCUIT

CLK DLL

clkfb clko

bufg

fcHigh
freq. free
running
OSC

fc double

This is the DCO circuit implemented by a high frquency free running oscillator and clock doubler

circuit using DLL (Delay Locked Loop) of Xilinx FPGA. This is done to double the operating clock

so as to have minimum jitter in output clock. It is observed that the jitter in output clock does not

exceed the time period of this high frequency clock.

So we get less jitter when we double the clock using above circuit and use 2x fc instead of simple fc.

IMPLEMENTATION :

The above ADPLL was implemented using VHDL and synthesized in Xilinx FPGA Spartan-II series

XC2S200-PQ208-5C. The ciruit was tested on PCB.

fin was selected 2.048 MHz and fc was selected 65.536 MHz. So 2x fc became 131.072 MHz.

Another case where fin was 8.448 MHz was also tested (fc remaing same).

Following are the VHDL code , VHDL test-bench and simulation results for the proposed ADPLL

circuit :

3.5 VHDL CODE

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_misc.all ;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity dproj is
port(
 fc : in std_logic;
 fin : in std_logic;
 rst : in std_logic;
 f2mb : out std_logic;

 -45-

 -46-

 f2mb_do : out std_logic;
 f8mb : out std_logic;
 rec_clk : out std_logic;
 fcout : out std_logic;
 finout : out std_logic;
 fcdoub : out std_logic;
 scrdatao : out std_logic
);
end dproj;

architecture RTL of dproj is

component clkdll port
(
 clkin : in std_logic;
 clkfb : in std_logic;
 rst : in std_logic;
 clk0 : out std_logic;
 clk90 : out std_logic;
 clk180 : out std_logic;
 clk270 : out std_logic;
 clk2x : out std_logic;
 clkdv : out std_logic;
 locked : out std_logic
);
end component;

component bufg port
(
 i : in std_logic;
 o : out std_logic
);
end component;

signal f1out : std_logic;
signal f2out : std_logic;
signal f3out : std_logic;
signal en : std_logic;
signal en_d : std_logic;
signal msba : std_logic;
signal regbin : std_logic_vector(4 downto 0);
signal regaout : std_logic_vector(4 downto 0);
signal regbout : std_logic_vector(4 downto 0);
signal adderout : std_logic_vector(4 downto 0);

signal fcdouble : std_logic;
signal clk_out : std_logic;
signal clkfb : std_logic;
signal ground : std_logic;

signal f1out_do : std_logic;
signal f2out_do : std_logic;
signal f3out_do : std_logic;
signal en_do : std_logic;
signal en_d_do : std_logic;
signal msba_do : std_logic;
signal regbin_do : std_logic_vector(5 downto 0);
signal regaout_do : std_logic_vector(5 downto 0);
signal regbout_do : std_logic_vector(5 downto 0);
signal adderout_do : std_logic_vector(5 downto 0);

signal msba_do8 : std_logic;
signal regbin_do8 : std_logic_vector(8 downto 0);
signal regaout_do8 : std_logic_vector(8 downto 0);
signal regbout_do8 : std_logic_vector(8 downto 0);

 -47-

signal adderout_do8 : std_logic_vector(8 downto 0);

signal scrdata : std_logic;
signal d1,d2,d3,d4,d5,d6,d7 : std_logic;
signal f1out_do1 : std_logic;
signal f2out_do1 : std_logic;
signal f3out_do1 : std_logic;
signal en_do1 : std_logic;
signal en_d_do1 : std_logic;
signal msba_do1 : std_logic;
signal regbin_do1 : std_logic_vector(5 downto 0);
signal regaout_do1 : std_logic_vector(5 downto 0);
signal regbout_do1 : std_logic_vector(5 downto 0);
signal adderout_do1 : std_logic_vector(5 downto 0);

begin

dll: clkdll port map
(
 clkin => fc ,
 clkfb => clkfb,
 rst => ground ,
 clk0 => clk_out,
 -- clk_90 => open,
 -- clk_180 => open,
 -- clk_270 => open,
 clk2x => fcdouble
 -- clk_dv => open,
 -- locked => open
);

fbclk : bufg port map
(
 i => clk_out,
 o => clkfb
);

process(en, fin, rst)
begin
 if (rst = '0'or en = '1') then
 f1out <= '0';
 elsif fin'event and fin = '1' then
 f1out <= '1';
 end if;
end process;

process(f1out, fc, rst)
begin
 if rst = '0' then
 f2out <= '0'; f3out <= '0'; en <= '0' ;
 elsif fc'event and fc = '1' then
 f2out <= f1out ; f3out <= f2out ; en <= f3out ;
 end if;
end process;

process(en_d,fc, rst)
begin
 if rst = '0' then
 regaout <= "00000"; regbout <= "00001";
 elsif fc'event and fc = '1' then
 regaout <= adderout;
 regbout <= regbin ;
 end if;

 -48-

 if (en_d='0' and msba='0') then regbin <="00001" ;
 elsif (en_d='0' and msba='1') then regbin <="00001" ;
 elsif (en_d='1' and msba='0') then regbin <="00010" ;
 elsif (en_d='1' and msba='1') then regbin <="00000" ;
 end if;

end process;

msba <= regaout(4) ;
adderout <= regaout + regbout ;
f2mb <= msba ;
fcout <= fc;
finout <= fin;
en_d <= (not en) and f3out;
fcdoub <= fcdouble;

process(en_do, fin, rst)
begin
 if (rst = '0'or en_do = '1') then
 f1out_do <= '0';
 elsif fin'event and fin = '1' then
 f1out_do <= '1';
 end if;
end process;
process(f1out_do, fcdouble, rst)
begin
 if rst = '0' then
 f2out_do <= '0'; f3out_do <= '0';
 en_do <= '0' ;
 elsif fcdouble'event and fcdouble = '1' then
 f2out_do <= f1out_do ; f3out_do <= f2out_do ;
 en_do <= f3out_do ;
 end if;
end process;
process(en_d_do,fcdouble, rst)
begin
 if rst = '0' then
 regaout_do <= "000000"; regbout_do <= "000001";
 elsif fcdouble'event and fcdouble = '1' then
 regaout_do <= adderout_do;
 regbout_do <= regbin_do ;
 end if;
 if (en_d_do='0' and msba_do='0') then regbin_do <="000001" ;
 elsif (en_d_do='0' and msba_do='1') then regbin_do <="000001" ;
 elsif (en_d_do='1' and msba_do='0') then regbin_do <="000010" ;
 elsif (en_d_do='1' and msba_do='1') then regbin_do <="000000" ;
end if;
end process;

msba_do <= regaout_do(5) ;
adderout_do <= regaout_do + regbout_do ;
f2mb_do <= msba_do ;
en_d_do <= (not en_do) and f3out_do;
ground <= '0' ;

process(en_d_do,fcdouble, rst)
begin
 if rst = '0' then
 regaout_do8 <= "000000000"; regbout_do8 <= "000100001";
 elsif fcdouble'event and fcdouble = '1' then
 regaout_do8 <= adderout_do8;
 regbout_do8 <= regbin_do8 ;
 end if;
 if (en_d_do='0' and msba_do8='0') then regbin_do8 <="000100001" ;
 elsif (en_d_do='0' and msba_do8='1') then regbin_do8 <="000100001" ;

 -49-

 elsif (en_d_do='1' and msba_do8='0') then regbin_do8 <="000100010" ;
 elsif (en_d_do='1' and msba_do8='1') then regbin_do8 <="000100000" ;
 end if;

end process;

msba_do8 <= regaout_do8(8) ;
adderout_do8 <= regaout_do8 + regbout_do8 ;
f8mb <= msba_do8 ;

process(d1,d2,d3,d4,d5,d6,d7,rst,fin,scrdata)
begin
 if rst = '0' then
 d1<='1'; d2<='1'; d3<='1'; d4<='1'; d5<='1';
 d6<='1'; scrdata<='1';
 elsif fin'event and fin = '1' then
 scrdata <= d6; d6<=d5; d5<=d4; d4<=d3; d3<=d2;
 d2<=d1; d1<=d7;
 end if;
end process;
d7<= d6 xor scrdata ;
scrdatao <= scrdata;

process(en_do1, fin, rst)
begin
 if (rst = '0'or en_do1 = '1') then
 f1out_do1 <= '0';
 elsif scrdata'event and scrdata = '1' then
 f1out_do1 <= '1';
 end if;
end process;
process(f1out_do1, fcdouble, rst)
begin
 if rst = '0' then
 f2out_do1 <= '0'; f3out_do1 <= '0'; en_do1 <= '0' ;
 elsif fcdouble'event and fcdouble = '1' then
 f2out_do1 <= f1out_do1 ; f3out_do1 <= f2out_do1 ;
 en_do1 <= f3out_do1 ;
 end if;
end process;
process(en_d_do1,fcdouble, rst)
begin
 if rst = '0' then
 regaout_do1 <= "000000"; regbout_do1 <= "000001";
 elsif fcdouble'event and fcdouble = '1' then
 regaout_do1 <= adderout_do1;
 regbout_do1 <= regbin_do1 ;
 end if;
 if (en_d_do1='0' and msba_do1='0') then regbin_do1 <="000001" ;
 elsif (en_d_do1='0' and msba_do1='1') then regbin_do1 <="000001" ;
 elsif (en_d_do1='1' and msba_do1='0') then regbin_do1 <="000010" ;
 elsif (en_d_do1='1' and msba_do1='1') then regbin_do1 <="000000" ;
end if;
end process;
msba_do1 <= regaout_do1(5) ;
adderout_do1 <= regaout_do1 + regbout_do1 ;
rec_clk <= msba_do1 ;
en_d_do1 <= (not en_do1) and f3out_do1;

end RTL;

 -50-

3.6 VHDL TEST-BENCH

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_misc.all ;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity tb_dproj is
end tb_dproj;

architecture test of tb_dproj is

component dproj port

 (fc : in std_logic;
 fin : in std_logic;
 rst : in std_logic;
 f2mb : out std_logic;
 f2mb_do : out std_logic;
 f8mb : out std_logic;
 rec_clk : out std_logic;
 fcout : out std_logic;
 finout : out std_logic;
 fcdoub : out std_logic;
 scrdatao : out std_logic
);
end component;

signal fc : std_logic;
signal fin : std_logic;
signal rst : std_logic;
signal f2mb : std_logic;
signal f2mb_do : std_logic;
signal f8mb : std_logic;
signal rec_clk : std_logic;
signal fcout : std_logic;
signal finout : std_logic;
signal fcdoub : std_logic;
signal scrdatao : std_logic;

begin

dut : dproj port map

(fc => fc ,
 fin => fin ,
 rst => rst,
 f2mb => f2mb,
 f2mb_do => f2mb_do,
 f8mb => f8mb,
 rec_clk => rec_clk,
 fcout => fcout ,
 finout => finout,
 fcdoub => fcdoub,
 scrdatao => scrdatao
);

 process
 begin
 rst <= '0' ;
 wait for 50 ns;
 rst <= '1' ;

 wait ;
 end process;

 process
 begin
 fin <= '0';
 wait for 125 ns;
 fin <= '1';
 wait for 125 ns;
 end process;

 process
 begin
 fc <= '0';
 wait for 15.625 ns;
 fc <= '1';
 wait for 15.625 ns ;
 end process;

end test;

configuration cfg_tb_dproj of tb_dproj is
 for test
 end for;
end cfg_tb_dproj;

3.7 SCHEMATICS :

 -51-

 -52-

SIMULATIONS :

 -53-

 -54-

SYNTHESIZED DESIGN IN FPGA:

 -55-

 -56-

CONSTRAINTS FILE :

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments
NET "f2mb" LOC = "P164" ;
NET "f2mb_do" LOC = "P163" ;
NET "f8mb" LOC = "P152" ;
NET "fc" LOC = "P77" ;
NET "fcdoub" LOC = "P160" ;
NET "fcout" LOC = "P161" ;
NET "fin" LOC = "P80" ;
NET "finout" LOC = "P162" ;
NET "rec_clk" LOC = "P150" ;
NET "rst" LOC = "P30" ;
NET "scrdatao" LOC = "P151" ;

#PACE: Start of PACE Area Constraints

#PACE: Start of PACE Prohibit Constraints

#PACE: End of Constraints generated by PACE

 -57-

4. SWITCHING

4.1 SWITCHING BACKGROUND

The use of digital techniques has always been essential in providing universal telecommunication

service: whether it was the digital dexterity of the operators selecting a jack to complete a call, or the

digits placed into a switching system to control the remote and automatic selection of a

telecommunication terminal or path. In recent years voice signals that constitute the messages in

some telecommunication systems have been digitized. This made possible the distortion less robust

transmission of signals representing the voice. “Digital Transmission” as it is called, has not only

made possible high speed communication between terminals offering discrete signals, such as alarm,

computer, and written communication, but has stimulated a new era in switching where the path

through the switching center is also designed to pass digitized signals.

Based on this newer application of the “digital” techniques, the term “digital switching” has now

come into prominent usage. However, many who use the term mean not only the network to switch

digital signals, but also the digital control process that has been a characteristic of switching since its

origin.

4.2 ELECTRONICS IN SWITCHING

Switching system designers dreamed from early 1920’s of harnessing the advantages of speed of

electronics, the technology then being used to advantage in extending transmission capability in

distance and in capacity. But since for many digital techniques many logic elements were required,

the number, reliability, and power required for such information processing made it impractical to

use hot cathode electronic technology. A single electromagnetic relay represents as many as 24 logic

elements and has a low power duty cycle while a vacuum tube consumed continuos power. This is

still one of the drawbacks of the large scale use of electronics, but with the reduced size of semi-

conductor devices has come a reduction of power by several orders of magnitude.

Even prior to the invention of the transistor, the principle of time-sharing was recognized as a way of

taking advantage of the speed of electronics. Systems using vacuum tubes for logic operations were

applied to computer, time division transmission and switching. The sampling of speech led H.

Nyquist to postulate a criterion for frequency for sampling and accurately reproducing a given

bandwidth signal. Sample from different sources could then “time share” the transmission medium if

its bandwidth was great enough. The time sharing of a communication medium to transmit samples

of varying amplitude captured the imagination of many electronic experts fresh from their World

War II experiences in radar and the like and who were looking for an opportunity to apply their skills

to such civilian pursuits as telecommunications.

The World War II effort also stimulated more serious consideration of serial transmission of on and

off or “digital” signals first proposed in 1926 in connection with picture transmission. With digital

transmission the samples of the signal amplitude were coded as one method to make feasible speech

secrecy. In a sense this was the beginning of digital switching because for the first time the digitized

speech samples were processed for than other digital/analog conversion and retransmission. Special

electron tubes, also from these wartime efforts, gave rise to electronic storage, scanning and coding.

Prior to the concept of time sharing, all circuit switching networks established continuos and separate

two-way transmission paths. This is known as “space division”. With sampled speech time sharing,

known initially as “time sharing”, and now as “time division” switching became possible.

With the invention of the transistor, electronic logic for switching controls became feasible. This

meant that several competing common controls were necessary to serve offered calls in real time

with relay logic, only a single control taking advantage of the higher speed of electronics would be

adequate as the common control for a switching system. Shortly thereafter, the ideas of using bulk

electronic memory with random access and electronic semiconductor logic were combined to

produce3 the first real time programmed common control.

4.3 DEFINITIONS
A “digital switching system” is the one in which signals representing messages aretransmitted

through the switch in digital form.

As shown in figure all speech signals start out as continuos analog signals – from sound to varying

electrical signals. If speech signals reach a digital switch in analog form they must first be converted

by sampling techniques to any one of several digital forms. Usually for central office switching the

form chosen matches the form used by most transmission systems, that is 8-bit per sample pulse

code modulation (PCM).

 -58-

 -59-

4.4 DIGITAL SWITCHING FUNDAMENTALS

There are many ways to switch speech signals that have been digitized. An electro-mechanical

switch may be used to interconnect digital transmission facilities, a function required for example to

use spare facilities when trouble develops in another line on the same route, known as “span

switching”. Digitized signals may be passed through an electro-mechanical switch (such as crossbar).

This is a metallic space division digital circuit switching system. However, even to do this efficiently

requires some new concepts that are useful in understanding the fundamentals of any digital switch.

To be efficiently transmitted both outside and generally within a switching office, coded digital

samples are usually time multiplexed. As a result, a plurality of channels is available for transmitting

messages simultaneously over one transmission channel. Here, as in frequency multiplex for analog

trans-mission, the greater the useful bandwidth, the greater the capacity. In time division multiplex

(TDM) each position for a sample, or channel, is known as a “time slot”. Collectively, one sample

from each channel constitutes a “frame” of signals. The individual pulses of a sample are usually

transmitted

serially.

Generally, a switching system serves several TDM lines. To switch calls then requires digital signals

from individual time slots on one line to be placed in the same or different time slots on other lines.

To efficiently use a digital line requires that most time slots be assigned and used. Under these

circum-stances it is quite likely that the signals from one time slot would have to be placed into a

different time slot on another line. This “shifting” or “interchanging” of time slots isessential to

efficient time division switching as it relates to integrated digital transmission and switching. This

principle was early recognized by Messrs. H. hose and J. P. Runyon in 1960.

If metallic space division switching is used for switching digital signals, time buffering and TSI are

required for all time slots in other lines to be accessible. Placing and later removing coded speech

samples from buffers or memories inherently introduces delay in transmission which must be kept as

short as possible. Generally each memory or time stage (T) through which a sample passes may

introduce a maximum delay of almost two frames since it is necessary to store the samples for one

frame while reading out from another section of memory the samples from the preceding frame.

Memory may be provided in any of several forms. In the early days of digital switching variable

delay lines were popular. They received and delivered signals serially. Now

most memories use integrated circuit technology with parallel access.

Switching between the same time slots on different digital transmission lines may use a common

multiplex and time stage or a form of space division switching. When switching is purely sequential,

it is known as multiplexing. In a multi-TI-line system channels enter the system time divided on each

line and separated in space (space division) from different lines. The time and space divided channels

 -60-

are then converted to time division by multiplexing. In this process concentration is possible with

more channels as sources than there are time slots. In some systems to improve the traffic

performance expansion it is also introduced by serving fewer channels than time slots. Multiplexers

operate in a fixed order and provide for concentration by skipping channels not being served.

The rate at which the multiplex stage loads a time division internal link is an indication of the degree

to which the electronic technology is being pressed. Within a modern digital

TDM switching system the digitized samples are read into and out of memory in parallel. Since the

bits of the samples to and from lines are serial, buffers are required for serial to parallel (and reverse)

conversion. In some systems to increase the capacity with a given technology the samples are passed

between stages within the system on parallel buses or

a combination of serial and parallel.

Multiplexing is generally not considered to be a switching network function, but when strictly’

considered, including the TSI memory access, it and de-multiplexing are functions that enable digital

TDM networks to be composed of only T stages. In general, multiplexing is used for space to time

conversion.

Unlike space division switching for analog signals where connections are maintained continuously

for each message, space division switches for time division networks are used to interconnect

(permute) time division transmission lines for each time slot period. This has become known as

“time multiplex switching” (TMS), but for simplicity, it is in the context of time division switching

known as “space” (S) switching. These are multiplex stages with random rather than fixed order of

gating with access to a common set of inlets or outlets. Furthermore, they are usually arranged so

that each channel is gated in each time slot. As indicated earlier, systems with only S stages are

inefficient from a traffic standpoint. However, using combinations of S and T stages is a popular way

of increasing network capacity. In particular, the S stages facilitate system growth.

From a traffic handling point of view, the T stages are non-blocking and the S stages may be

engineered to be non-blocking. Non-blocking S stages act non-blocking for all time slots. Therefore

it is relatively inexpensive for the non-concentrating portions of TDM switching systems to be made

non-blocking. The total number of input (and therefore output) time slots is equal to the number of

independent time slots provided within the system. This total is equal to tm where m equals the

number of buses or highways and t equals the number of time slots per bus. Each TSI memory

section has at least as many addresses as there are time slots. Single and three or more switching

stages of square switches are also non-blocking by rearrangement. Generally to insure this

characteristic without rearrangement, more internal time slots are provided. In addition to providing

more time slots, the inputs from several sources that are multiplexed together may be decorrelated so

that heavy traffic or failure from a particular digital line will be spread throughout the remainder of

the switch.

 -61-

In any switching network the connection relationships are stored in memory, In space division

electromechanical systems this memory is usually inherent in the device states. In time division

switching the connection relationship is in cyclical bulk memory. These memories are loaded for

each connection and provide the TSI memory read out addresses and the TMS connection

permutations.

Concentration, that is, more input channels than output time slots, may be included in the

multiplexing process. Further multiplexing is usually employed to bring together several time

division sources, sometimes with a slight expansion (more output time slots than total input time

slots). Also, in multiplexing it is not unusual to decorrelate the time slots from each of the several

sources. Since there may be different pulse transmission rates and the pulse may come from

unrelated sources, intermediate buffer storage of coded samples is often required before

multiplexing.

All multiplexing is in preparation for the actual switching. Concentration, expansion, and

decorrelation are switching functions. Switching provides for the association of input time slots with

output time slots for all or any portion of the network. To do this requires a random access control

memory that contains the required input-output time slot associations regardless of how the

switching is accomplished.

The association of coded samples in given input time slots with assigned output time slots may occur

in either of two ways. One is by storing the samples. This implies a time (T)

delay to affect a change in time slot. The other way is by establishing a direct connection, that is

switching (S), directly to an output link or line in the same time slot without delay.

When viewed from an input or output this high speed time slot switching is random access

multiplexing, with a restriction that no more than one input or output may be simultaneously

connected. In some systems this is known as “time multiplex switching (TMS)”.

Generally switching networks are composed of T stages which are non-blocking or combinations of

T and S stages in any order. Network types are denoted by the order of the stages, such as T , TST, or

STS. For specific systems some authors indicate the actual number of stages by repeated use of the

letters, such as TSSSST In larger systems to insure service continuity in the presence of device

failure, part or all of the network is made redundant.

An important area that has been explored in depth deals with the subject of pulse timing or

synchronization, to ensure that switching centers and transmission lines are able to operate

together so that frames of pulses will not be lost or repeated. Most important in this process is

the distribution of standard frequencies from which all pulses generated in the network may be

derived. Pulses derived from a national-wide standard trigger or drive the transmission and

switching system pulse generators, known as “clocks”. In some systems the clocks are

synchronized with pulses derived by averaging the pulse rates of all incoming digital

transmission lines.

4.5 TIME MULTIPLEXED SPACE SWITCHING

In time division switches where an inlet or an outlet corresponds to single subscriber line with one

speech sample appearing every 125µs on the line. Such switches are used in local exchanges. We

now consider switches that are required in transit exchanges. Here, inlets and outlets are the trunks

which carry time division multiplexed data streams. We call such switches time multiplexed

switches.

A time multiplexed time division space switch is shown in figure. There are N incoming trunks and

N outgoing trunks, each carrying a time division multiplexed stream of M samples per frame. Each

frame is of 125 µs time duration. In one frame time, a total number of MN speech samples have to be

switched. One sample duration, 125/M microseconds, is usually referred to as a time slot. In one time

slot, N samples are switched. In case of output controlled switch (which is our present case), the

output is cyclically scanned. There is a 1-to-M relationship between the outlets and the control

memory locations, i.e., there are M locations in the control memory corresponding to each outlet.

Decoder

 CM

NM words

12

12

12

12

.

. . .

M

M M

N-1

M

MAR

Cyclic
control

1
1

2
2

N-1

N
N

 -62-

 -63-

The control memory has MN words, If we view the control memory as M blocks of N words each, a

location address may be specified in a two dimensional form, (i,j), where i is the block address and j

is the word within the block. We have 1 ≤ i ≤ M and 1 ≤ j ≤ N. The block address i corresponds to

the time slot i and the word address j to outlet j. The first N locations of control memory correspond

to the first time slot, the next N locations, i.e., Locations N+1 to 2N when addressed linearly, or

locations (2,1) to (2,N) when addressed in a two dimensional form, correspond to the time slot 2 and

so on. Therefore, if location (i,j) contains an inlet address k, it implies that inlet k is connected to the

outlet j during the time slot i . The number of trunks that can be supported on this switch is given by

N= 125/ Mts

Where ts is the switching time including memory access time per inlet-outlet pair. The cost of the

switch is estimated as

C = No. of switches + No. of memory words

 = 2N + MN

The cost of an equivalent single-stage space division network is (MN)2.

4.6 TIME MULTIPLEXED TIME SWITCH

Unlike time multiplexed space switches, time multiplexed time switches permit time slot interchange

(TSI) of sample values. In TSI, a speech sample input during one time slot may be sent to the output

during a different time slot. Such an operation necessarily implies a delay between the reception and

transmission of a sample. We illustrate the principle of TSI by considering a time switch with one

incoming trunk and one outgoing trunk as shown in figure. M channels are multiplexed on each

trunk. The switch is organized in the sequential write/random read fashion. The time slot duration is

given by

 tTS = 125/M

The time slot clock runs at the time slot rate, i.e. at the rate of one pulse every 125/M microseconds.

The time slot counter is incremented by one at the end of each time slot. The contents of the counter

provides location addresses for the data memory and the control memory. Data memory and control

memory access takes place simultaneously in the beginning of the time slot. Thereafter contents of

the control memory are used as the address of the data memory and the data is read out to output

trunk. The operation carried in one time slot is depicted in figure. The input sample is available for

reading in at the beginning of the time slot and the sample is ready to be clocked in on the output

stream at the end of time slot. Even if there is no time slot interchange, a sample is delayed by a

minimum of one time slot in passing from the input stream to the output stream because of the

storage action. In other words a time slot switch may be considered to have an inherent time delay of

one time slot. In effect, the output stream is delayed by tTS microseconds when compared to

incoming data stream. Depending on the output time

 38

 13

 76

 51

 19

 26

 42

 DM

 27

 1

 7

 4

 CM

 27

Time Slot
Counter

12M 38 42 51 19

1 2 3 M

. . .

Frame

Frame

1

2

3

4

5

6

7

1

2

M

M

.

.

.

.

.

.

Output slot no

Control of data
memory locations

CM = control memory DM = data memory
CTS = time slot clock

PRINCIPLE OF TIME SLOT
INTERCHANGE CTS

slot to which an input slot contents are switched, the sample experiences the delay in the range of tTS

to M tTS microseconds. In the example entries, shown in the control memory of figure, the first

location contains the value 1. This implies that the contents of input time slot 1 is switched to output

time slot 1. The sample, in this case, experiences a delay of tTS microseconds. The second location of

the control memory contains the value 7 and, therefore, the input time slot 7 is switched to output

time slot 2. This sample experiences a delay of ((M – 7) + 2 + 1) tTS or (M - 4) tTS microseconds.

Output time slot 3 carries the contents of input time slot 4 and the delay experienced by the sample is

(M – (4-3) + 1) tTS or MtTS, i.e. 125 microseconds. There are two sequential memory accesses per

time slot and hence the time constraint may be stated as

tTS = 2tm, 125 = 2Mtm.

 -64-

t t

tTS

Read input data;
write into DM;
read CM

Read DM;
 write data to
 output

Operations in a time slot

where tm is the access time of the memory modules in microseconds. When there is a two-way traffic

and the network is non-folded, another set of data and control memories is used. In the second

control memory, the locations 1, 7 and 4 contain the values 1, 2 and 3 respectively, corresponding to

the sample entries shown in figure. When the 125µs cycle is complete, the values in the input time

slots 1, 7 and 4 are interchanged with the output time slots 1,2 and 3 respectively. When the network

is folded, there is only one set of data and control memories even for two way traffic. For the

example shown in figure, control memory locations of 7 and 4 contain the values 2 and 3

respectively. When the 125µs cycle is complete, the values in the time slots 7 and 2 and the time

slots 3 and 4 are interchanged. For a folded network, transferring the data between the same input

and output slots, e.g. from input slot 1 to output slot 1, is not relevant.

Since there are no switching elements in this configuration, the cost is equal to the number of

memory locations. There are M locations each in the control and in the data memory. Therefore, the

cost is given by C = 2M units.

4.7 SWITCH FABRICS
• Basic concepts

• Time and space switching

• Two stage switches

• Three stage switches

 4.7.1 BASIC CONCEPTS

 • Accessibility

 • Blocking

 • Complexity

 • Scalability

 • Reliability

 • Throughput

 -65-

4.7.1.1 Accessibility

– A network has full accessibility (=connectivity) when each inlet can be connected to each

outlet (in case there are no other I/O connections in the network)

– A network has a limited accessibility when the above given property does not exist

– Interconnection networks applied in today’s switch fabrics usually have full accessibility

Example of full accessibility Example of limited accessibility

4.7.1.2 Blocking

Blocking is defined as failure to satisfy a connection request and it depends strongly on the
combinatorial properties of the switching networks.

• Non-blocking - a path between an arbitrary idle inlet and arbitrary idle outlet can always be

established independent of network state at set-up time

• Blocking - a path between an arbitrary idle inlet and arbitrary idle outlet cannot be established

owing to internal congestion due to the already established connections

• Strict-sense non-blocking - a path can always be set up between any idle inlet and any idle outlet

without disturbing paths already set up

• Wide-sense non-blocking - a path can be set up between any idle inlet and any idle outlet without

disturbing existing connections, provided that certain rules are followed. These rules prevent network

from entering a state for which new connections cannot be made.

• Rearrangeably non-blocking - when establishing a path between an idle inlet and an idle outlet,

paths of existing connections may have to be changed (rearranged) to set up that connection

 -66-

4.7.1.3 Complexity

Complexity of an interconnection network is expressed by cost index of switching network.

Traditional definition of cost index gives the number of cross-points in a network. This is used to

be a reasonable measure of space division switching systems.

Nowadays cost index alone does not characterize cost of an interconnection network for broadband

applications.

VLSIs and their integration degree has changed the way how cost of a switch fabric is formed

(number of ICs, power consumption). Management and control of a switching system has a

significant contribution to cost.

Cost index of an 8x8 crossbar Cost index of an 8x8 banyan
is 64 (cross-points) is 12x4= 48 (cross-points)

4.7.1.4 Scalability

Scalability of a switching system has become a key parameter in choosing a switch fabric

architecture due to constant increase of transport links and data rates on links. Scalability describes

ability of a system to evolve with increasing requirements

Issues that are usually matter of scalability are:

– number of switching nodes

– number of interconnection links between nodes

– bandwidth of interconnection links and inlets/outlets

– throughput of switch fabric

– buffering requirements
– number of inlets/outlets supported by switch fabric

Example of scalability:

Suppose a switching equipment has room for 20 line-cards and the original design

supports 10 Mbit/s interfaces (one per line card) and the throughput of switch fabrics is scalable from

500 Mbit/s to 2 Gbit/s. Original switch fabric can support new line cards that implement two 10

Mbit/s interfaces each.

 -67-

Now when line interfaces are replaced with 100 Mbit/s rates(one per line-card), the switch fabric has

to be updated (scaled up) to 2 Gbit/s speed. Buffering memories need to be replaced by faster (and

possible larger) ones. Larger number of line cards implies at least new physical design. Increase of

line rates beyond 100 Mbit/s means redesign of switch fabric.

4.7.1.5 Reliability

Reliability and fault tolerance are system measures that have an impact on all functions of a

switching system. Reliability defines probability that a system does not fail within a given time

interval provided that it functions correctly at the start of the interval.

Availability defines probability that a system will function at a given time instant.

Fault tolerance is the capability of a system to continue its intended function in spite of having a
fault(s).
Reliability measures are:

– MTTF (Mean Time To Failure)

– MTTR (Mean Time To Repair)

– MTBF (Mean Time Between Failures)

Relation of reliability R(t) to availability F(t) is given by F(t) = 1 – R(t).

Relation of MTTF, MTTR and MTBF is shown in figure:

4.7.1.6 Throughput

Throughput gives forwarding/switching speed/efficiency of a switch fabric. It is measured in bits/s,

octets/s, cells/s, packet/s, etc. Quite often throughput is given in the range (0 ... 1.0], i.e. the obtained

forwarding speed is normalized to the theoretical

maximum throughput.

4.7.2 TIME AND SPACE SWITCHING

A switched connection requires a mechanism that attaches the right information streams to each

other. Switching takes place in the switching fabric, the structure of which depends on network’s

mode of operation, available technology and required capacity.

Communicating terminals may use different physical links and different time-slots, so there is an

obvious need to switch both in time and in space domain.

 -68-
Time and space switching are basic functions of a switch fabric.

4.7.2.1 SPACE DIVISION SWITCHING

A space switch directs traffic from input links to output links. An input may set up one connection (1,
3, 6 and 7), multiple connections (4) or no connection (2, 5 and 8). In this type of switching a
particular time slot is switched in the same time slot of a different channel.

Cross bar switch matrix:

Crossbar matrix introduces the basic structure of a space switch. Information flows are controlled
(switched) by opening and closing of cross-points.
For m inputs and n outputs => mn cross-points (connection points).

Only one input can be connected to an output at a time, but an input can be connected to multiple

outputs (multi-cast) at a time.

Example of space switch

mx1 -multiplexer used to implement a space switch. In this type of space switch every input is fed to

every output multiplexer and multiplexer control signals are used to select which input signal is

connected through each multiplexer.

 -69-

4.7.2.2 TIME DIVISION SWITCHING

Time-slot interchanger is a device, which buffers m incoming timeslots, e.g. 32 time-slots of an E1

frame, arranges new transmit order and transmits n time-slots. Time-slots are stored in buffer

memory usually in the order they arrive or in the order they leave the switch. Additional control logic

is needed to decide respective output order or the memory slot where an input slot is stored.

Time Slot Interchange:

 -70-

Time Switch Implementation : Example 1

Incoming time-slots are written cyclically into switch memory. Output logic reads cyclically control

memory, which contains a pointer for each output time-slot. Pointer indicates which input time-slot

to insert into each output time-slot.

Time Switch Implementation : Example 2

Incoming time-slots are written into switch memory by using write-addresses read from control

memory. A write address points to an output slot to which the input slot is addressed. Output time-

slots are read cyclically from switch memory.

Properties of time switches

Input and output frame buffers are read and written at wire-speed, i.e. m R/Ws for input and n R/Ws

for output. Interchange buffer (switch memory) serves all inputs and outputs

and thus it is read and written at the aggregate speed of all inputs and outputs. Speed of an

interchange buffer is a critical parameter in time switches and limits performance of a switch.

Utilizing parallel to serial conversion, memory speed requirement can be cut.

Speed requirement of control memory is half of that of switch memory (in fact a little more than that
to allow new control data to be updated).

 -71-

Time Space Analogy

A time switch can be logically converted into a space switch by setting time-slot buffers into vertical

position => time-slots can be considered to correspond to input/output links of a space switch. But is

this logical conversion fair ?

Space-Space Analogy

A space switch carrying time multiplexed input and output signals can be logically converted into a

pure space switch (without cyclic control) by distributing each time-slot into its own space switch.

4.7.2.3 Properties of space and time switches

 SPACE SWITCHES
• Number of cross-points (e.g. AND-gates)
 m input x n output = mn
 when m=n => n2

• Output bit rate determines the speed
requirement for the switch components
• Both input and output lines deploy “bus”
structure so fault location is difficult

 TIME SWITCHES
• Size of switch memory (SM) and control
memory (CM) grows linearly as long as
memory speed is sufficient, i.e. SM + CM
+ input buffering + output buffering = 2 x 2
x number of time-slots
• A simple and cost effective structure
when memory speed is sufficient
• Speed of available memory determines
the maximum switching capacity

 -72-

4.7.3 TWO STAGE SWITCHES

Switch fabric can be implemented as a combination of space and time switches.

This improves over all performance of switch fabric.

Two stage switches can be of following types:

• Time-Time (TT) switch

• Time-Space (TS) switch

• Space-Time (ST) switch

• Space-Space (SS) switch

TT-switch gives no advantage compared to a single stage T-switch.

SS-switch increases blocking probability.

ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary

 bus, e.g. slots from two different buses attempting to flow to a common output).

TS-switch has low blocking probability, because T-switch allows rearrangement of time-

 slots so that S-switching can be done blocking free.

4.7.3.1 TIME MULTIPLEXED SPACE (TMS) SWITCH

In this type of switch space divided inputs and each of them carry a frame of three time-slots(in this

example). Input frames on each link are synchronized to the crossbar switch.

A switching plane for each time-slot is there to direct incoming slots to destined output links of the

corresponding time-slot.

In the following figure space switch is shown as horizontal planes switching each time slot arriving.

 -73-

Connection conflicts in a TMS switch

If a connection request pointing to some time slot and that time slot is already occupied, then first the

time slot is interchanged to resolve the conflict and then it is switched.

4.7.3.2 TS switch interconnecting TDM links

Time division switching applied prior to space switching. Incoming time-slots can always be
rearranged such that output requests become conflict free for each slot of a frame, provided that the
number of requests for each output is no more than the number of slots in a frame.

 -74-

4.7.4 THREE STAGE SWITCH

Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in

any order in the output frame. If a specific input slot is to carry data of a specific output slot then a

time-slot interchanger is needed at each output also.

By this we have three stage switch configuration.

In this type of configuration any time-slot on any input can be connected to any time-slot on any
output. And blocking probability is also minimized.
Such a 3-stage configuration is named TST-switching.

 TST Switch

4.7.4.1 Three stage switch combinations

There are other combinations also possible for three stage switch. Possible three stage switch

combinations are:

• Time-Time-Time (TTT) (not significant, no connection from PCM to PCM)

• Time-Time-Space (TTS) (=TS)

• Time-Space-Time (TST)
• Time-Space-Space (TSS)

 -75-

• Space-Time-Time (STT) (=ST)

• Space-Time-Space (STS)

• Space-Space-Time (SST) (=ST)

• Space-Space-Space (SSS) (not significant, high probability of blocking)

• Three interesting combinations TST, TSS and STS

4.7.4.2 Time-Space-Space switch

Time-Space-Space switch can be applied to increase switching capacity

4.7.4.3 Space-Time-Space switch

Space-Time-Space switch has a high blocking probability (like ST-switch) - not a desired feature
in public networks.

 -76-

 -77-

 5. IMPLEMENTATION OF TIME AND SPACE SWITCH

5.1 IMPLEMENTATION OF TIME SWITCH

To achieve the functionality of time switch, the incoming data is written into data memory serially

and read from data memory according to the addresses provided by control memory. For our case we

consider an incoming PCM data frame of 32 bytes, which is written into data memory 1 with the

same clock on which data is coming. Addresses are provided by a counter running with the same

clock. So data memory capacity is of 32 X 8. Now depending upon which slot should come first

locations of control memory is written by processor. Control memory is a dual port memory, so at

the same time it can be written by processor from one port and read by addresses provided by a

counter from other port. This counter runs with the same clock as of data rate. Control memory is of

32 X 5.

Arrangement is done so that when incoming data frame is being written into data memory 1, data for

output should be read from data memory 2 and when incoming data frame is being written into data

memory 2, data for output should be read from data memory 1.

5.1.2 FUNCTIONAL DIAGRAM OF TIME SWITCH

ADDRESS
 DOUT

DIN
DATA
MEMORY 1
WE

CLK

ADDRESS
 DOUT

DIN
DATA
MEMORY 2

WE

CLK

 DOUT

 ADDRESS

CONTROL
MEMORY
DUAL PORT

 CLK

COUT

COUNTER

CLK

 ADDRESS

DATA IN

DATA OUT

 WE

CLOCK

PROCESSOR
INTERFACE

DATA OUT

CLOCK IN

DATA IN

 COUNTER

CLK MSB COUT

Single port block memories of 32 X 8 for Data Memories and dual port block memory of 32 X 5 for

Control Memory were generated by Xilinx CoreGen. VHDL code for time switch is written by

instantiating these memories.

5.2 IMPLEMENTATION OF SPACE SWITCH

To achieve the functionality of space switch, the incoming data is given to the input of multiplexers.

We have chosen four multiplexers for a 4 X 4 space switch.

 -78-

Control signals for the multiplexers are provided by control memory. There are four buses going to

each multiplexers so we need two control signals for each multiplexer. So, total eight control signals

are needed per time slot. Control memory capacity is of 32 X 8. Because there are 32 slots and eight

control signals per slot. Control memory is a dual port memory, so at the same time it can be written

by processor from one port and read by addresses provided by a counter from another port. This

counter runs with the same clock as of data rate. Thus we can change the space switch configuration

on per time slot basis, this type of space switch is called Time Multiplexed Space Switch.

5.2.2 FUNCTIONAL DIAGRAM OF SPACE SWITCH

 DOUT

 ADDRESS

CONTROL
MEMORY
DUAL PORT

 CLK

COUT

COUNTER

CLK

DATA IN 1

CLOCK IN

 ADDRESS

DATA IN

DATA OUT

 WE

CLOCK

PROCESSOR
INTERFACE

DATA IN 2

DATA IN 3

DATA IN 4

DATA OUT 2

DATA OUT 3

DATA OUT 4

DATA OUT 1

Dual port block memory of 32 X 8 for Control Memory was generated by Xilinx CoreGen software.

VHDL code for space switch switch is written by instantiating this memory.

 -79-

5.3 VHDL CODES
5.3.1 PROJECT HEIRARCHY

• ‘tswitch’ is entity of time switch. ‘tb_tswitch’ is test bench of ‘tswitch’. It uses xilinx coregen

component ‘conmem’ and ‘dataram’ instantiated by ‘conmem32x5’ and ‘datamem’.

• ‘sswitch’ is entity of space switch. ‘tb_sswitch’ is test bench of ‘sswitch’. It uses xilinx coregen

component ‘spswmem’ instantiated by ‘swmem32x8’.

• ‘tstswitch’ is 4x4 time-space-time switch instantiating ‘tswitch’ and ‘sswitch’. ‘tb_tstswitch’ is

its test bench.

5.3.2 VHDL CODE OF TST SWITCH

-- Company:
-- Engineer: Praveen
-- Create Date: 13:45:49 06/21/06
-- Design Name:
-- Module Name: tstswitch - Behavioral
-- Project Name:
-- Target Device:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

 -80-

 -81-

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity tstswitch is
 Port (ip1 : in std_logic_vector(7 downto 0);
 ip2 : in std_logic_vector(7 downto 0);
 ip3 : in std_logic_vector(7 downto 0);
 ip4 : in std_logic_vector(7 downto 0);
 op1 : out std_logic_vector(7 downto 0);
 op2 : out std_logic_vector(7 downto 0);
 op3 : out std_logic_vector(7 downto 0);
 op4 : out std_logic_vector(7 downto 0);
 reset : in std_logic;
 clkin : in std_logic;
 proc_addr : in std_logic_vector(8 downto 0);
 proc_datain : in std_logic_vector(7 downto 0);
 proc_dataout : out std_logic_vector(7 downto 0);
 proc_clk : in std_logic;
 proc_rwb : in std_logic;
 proc_csb : in std_logic);
end tstswitch;

architecture Behavioral of tstswitch is

component tswitch is
 Port (proc_addr : in std_logic_vector(4 downto 0);
 proc_data_in : in std_logic_vector(7 downto 0);
 proc_data_out : out std_logic_vector(7 downto 0);
 csb : in std_logic;
 rwb : in std_logic;
 proc_clk : in std_logic;
 reset : in std_logic;
 data_in : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(7 downto 0);
 count_out : out std_logic_vector(4 downto 0);
 con_mem_data : out std_logic_vector(4 downto 0);
 clk : in std_logic);
end component;

component sswitch is
 Port (addr_sw : in std_logic_vector(4 downto 0);
 din_sw : in std_logic_vector(7 downto 0);
 dout_sw : out std_logic_vector(7 downto 0);
 clk_sw : in std_logic;
 rwb_sw : in std_logic;
 csb_sw : in std_logic;
 ip1 : in std_logic_vector(7 downto 0);
 ip2 : in std_logic_vector(7 downto 0);
 ip3 : in std_logic_vector(7 downto 0);
 ip4 : in std_logic_vector(7 downto 0);
 op1 : out std_logic_vector(7 downto 0);
 op2 : out std_logic_vector(7 downto 0);
 op3 : out std_logic_vector(7 downto 0);
 op4 : out std_logic_vector(7 downto 0);
 count_out : out std_logic_vector(4 downto 0);
 clkin : in std_logic;
 reset : in std_logic);

 -82-

end component;

signal csb1,csb2,csb3,csb4,csb5 : std_logic;
signal csb6,csb7,csb8,csb9 : std_logic;
signal iip1,iip2,iip3,iip4 : std_logic_vector(7 downto 0);
signal oop1,oop2,oop3,oop4 : std_logic_vector(7 downto 0);
signal count_out1,count_out2,count_out3:std_logic_vector(4 downto 0);
signal count_out4,count_out5,count_out6:std_logic_vector(4 downto 0);
signal count_out7,count_out8,count_out9:std_logic_vector(4 downto 0);
signal con_mem_data1,con_mem_data2 :std_logic_vector(4 downto 0);
signal con_mem_data3,con_mem_data4 :std_logic_vector(4 downto 0);
signal con_mem_data5,con_mem_data6 :std_logic_vector(4 downto 0);
signal con_mem_data7,con_mem_data8 :std_logic_vector(4 downto 0);
signal chipsel :std_logic_vector(3 downto 0);

begin --of architecture

 chipsel(3 downto 0) <= proc_addr(8 downto 5);

process(chipsel) --generating enble signals for different memories
begin
case chipsel is
when "0000" => csb1<='0';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
when "0001" => csb1<='1';csb2<='0';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
when "0010" => csb1<='1';csb2<='1';csb3<='0';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
when "0011" => csb1<='1';csb2<='1';csb3<='1';csb4<='0';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
when "0100" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='0';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
when "0101" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='0';csb7<='1';csb8<='1';csb9<='1';
when "0110" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='0';csb8<='1';csb9<='1';
when "0111" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='0';csb9<='1';
when "1000" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='0';
when others => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1';
 csb6<='1';csb7<='1';csb8<='1';csb9<='1';
end case;
end process;

-- instantiating eight time switches and one space switch
-- one time switch each for four incoming and four outgoing buses

ts1 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb1 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => ip1 ,
 data_out => iip1 ,
 count_out => count_out1,
 con_mem_data => con_mem_data1,
 clk => clkin);

ts2 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,

 -83-

 proc_data_out => proc_dataout,
 csb => csb2 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => ip2 ,
 data_out => iip2 ,
 count_out => count_out2,
 con_mem_data => con_mem_data2,
 clk => clkin);

ts3 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb3 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => ip3 ,
 data_out => iip3 ,
 count_out => count_out3,
 con_mem_data => con_mem_data3,
 clk => clkin);

ts4 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb4 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => ip4 ,
 data_out => iip4 ,
 count_out => count_out4,
 con_mem_data => con_mem_data4,
 clk => clkin);

ts5 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb5 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => oop1 ,
 data_out => op1 ,
 count_out => count_out5,
 con_mem_data => con_mem_data5,
 clk => clkin);

ts6 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb6 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => oop2 ,
 data_out => op2 ,
 count_out => count_out6,
 con_mem_data => con_mem_data6,

 -84-

 clk => clkin);

ts7 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb7 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => oop3 ,
 data_out => op3 ,
 count_out => count_out7,
 con_mem_data => con_mem_data7,
 clk => clkin);

ts8 : tswitch PORT MAP(
 proc_addr => proc_addr(4 downto 0),
 proc_data_in => proc_datain,
 proc_data_out => proc_dataout,
 csb => csb8 ,
 rwb => proc_rwb,
 proc_clk => proc_clk,
 reset => reset,
 data_in => oop4 ,
 data_out => op4 ,
 count_out => count_out8,
 con_mem_data => con_mem_data8,
 clk => clkin);

ss1 : sswitch PORT MAP(
 addr_sw => proc_addr(4 downto 0),
 din_sw => proc_datain,
 dout_sw => proc_dataout,
 clk_sw => proc_clk,
 rwb_sw => proc_rwb,
 csb_sw => csb9 ,
 ip1 => iip1,
 ip2 => iip2,
 ip3 => iip3,
 ip4 => iip4,
 op1 => oop1,
 op2 => oop2,
 op3 => oop3,
 op4 => oop4,
 count_out => count_out9,
 clkin => clkin,
 reset => reset);

end Behavioral;

--

5.3.3 VHDL CODE OF TIME SWITCH

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

 -85-

--library UNISIM;
--use UNISIM.VComponents.all;

entity tswitch is
 Port (proc_addr : in std_logic_vector(4 downto 0);
 proc_data_in : in std_logic_vector(7 downto 0);
 proc_data_out : out std_logic_vector(7 downto 0);
 csb : in std_logic;
 rwb : in std_logic;
 proc_clk : in std_logic;
 reset : in std_logic;
 data_in : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(7 downto 0);
 count_out : out std_logic_vector(4 downto 0);
 con_mem_data : out std_logic_vector(4 downto 0);
 clk : in std_logic);
end tswitch;

architecture Behavioral of tswitch is

component datamem is
 Port (datain : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 dataout : out std_logic_vector(7 downto 0);
 con_datain : in std_logic_vector(4 downto 0);
 reset : in std_logic);
end component;

component conmem32x5 is
 Port (proc_addr : in std_logic_vector(4 downto 0);
 proc_data_in : in std_logic_vector(7 downto 0);
 proc_clk : in std_logic;
 csb : in std_logic;
 rwb : in std_logic;
 proc_data_out : out std_logic_vector(7 downto 0);
 reset : in std_logic;
 clk : in std_logic;
 count_out : out std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(4 downto 0));
end component;

signal condata : std_logic_vector(4 downto 0);

begin

 con_mem_data <= condata ;

 -- instantiating data memory
 module1 : datamem
 port map (
 datain => data_in,
 clk => clk,
 dataout => data_out,
 con_datain => condata,
 reset => reset);

 -- instantiating control memory
 module2 : conmem32x5
 port map (
 proc_addr => proc_addr,
 proc_data_in => proc_data_in,
 proc_clk => proc_clk,
 csb => csb ,
 rwb => rwb ,
 proc_data_out => proc_data_out,

 -86-

 reset => reset,
 clk => clk ,
 count_out => count_out ,
 data_out => condata);

end Behavioral;

5.3.4 VHDL CODE OF SPACE SWITCH

--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity sswitch is
 Port (addr_sw : in std_logic_vector(4 downto 0);
 din_sw : in std_logic_vector(7 downto 0);
 dout_sw : out std_logic_vector(7 downto 0);
 clk_sw : in std_logic;
 rwb_sw : in std_logic;
 csb_sw : in std_logic;
 ip1 : in std_logic_vector(7 downto 0);
 ip2 : in std_logic_vector(7 downto 0);
 ip3 : in std_logic_vector(7 downto 0);
 ip4 : in std_logic_vector(7 downto 0);
 op1 : out std_logic_vector(7 downto 0);
 op2 : out std_logic_vector(7 downto 0);
 op3 : out std_logic_vector(7 downto 0);
 op4 : out std_logic_vector(7 downto 0);
 count_out : out std_logic_vector(4 downto 0);
 clkin : in std_logic;
 reset : in std_logic);
end sswitch;

architecture Behavioral of sswitch is

component swmem32x8 is
 Port (addra_sw : in std_logic_vector(4 downto 0);
 dina_sw : in std_logic_vector(7 downto 0);
 douta_sw : out std_logic_vector(7 downto 0);
 clka_sw : in std_logic;
 rwba_sw : in std_logic;
 csba_sw : in std_logic;
 addrb_sw : in std_logic_vector(4 downto 0);
 doutb_sw : out std_logic_vector(7 downto 0);
 clkb_sw : in std_logic);

end component;

signal addra_sw : std_logic_vector(4 downto 0);
signal dina_sw : std_logic_vector(7 downto 0);
signal douta_sw : std_logic_vector(7 downto 0);
signal clka_sw : std_logic;
signal rwba_sw : std_logic;
signal csba_sw : std_logic;
signal count : std_logic_vector(4 downto 0);
signal ctrl : std_logic_vector(7 downto 0);

 -87-

signal ctrl1,ctrl2,ctrl3,ctrl4:std_logic_vector(1 downto 0);

begin
 -- instantiating space switch control memory
swmemory: swmem32x8 port map
 (addra_sw => addr_sw ,
 dina_sw => din_sw ,
 douta_sw => dout_sw ,
 clka_sw => clk_sw ,
 rwba_sw => rwb_sw ,
 csba_sw => csb_sw ,
 addrb_sw => count ,
 doutb_sw => ctrl ,
 clkb_sw => clkin);

process(reset,clkin)
begin
 if reset ='0' then count <= "00000";
 elsif clkin'event and clkin='1' then
 count <= count + 1;
 end if;
end process;

process(ctrl1,ip1,ip2,ip3,ip4)
begin -- implementing multiplexers
case ctrl1 is
when "00" => op1 <= ip1 ;
when "01" => op1 <= ip2 ;
when "10" => op1 <= ip3 ;
when "11" => op1 <= ip4 ;
when others => null ;
end case;
end process;
process(ctrl2,ip1,ip2,ip3,ip4)
begin
case ctrl2 is
when "00" => op2 <= ip1 ;
when "01" => op2 <= ip2 ;
when "10" => op2 <= ip3 ;
when "11" => op2 <= ip4 ;
when others => null ;
end case;
end process;
process(ctrl3,ip1,ip2,ip3,ip4)
begin
case ctrl3 is
when "00" => op3 <= ip1 ;
when "01" => op3 <= ip2 ;
when "10" => op3 <= ip3 ;
when "11" => op3 <= ip4 ;
when others => null ;
end case;
end process;
process(ctrl4,ip1,ip2,ip3,ip4)
begin
case ctrl4 is
when "00" => op4 <= ip1 ;
when "01" => op4 <= ip2 ;
when "10" => op4 <= ip3 ;
when "11" => op4 <= ip4 ;
when others => null ;
end case;
end process;

 -88-

ctrl1 <= ctrl(1 downto 0);
ctrl2 <= ctrl(3 downto 2);
ctrl3 <= ctrl(5 downto 4);
ctrl4 <= ctrl(7 downto 6);
count_out <= count;

end Behavioral;

5.4 SIMULATION RESULTS

• TIME SWITCHING

• SPACE SWITCHING

• TIME-SPACE SWITCHING

• TIME-SPACE-TIME SWITCHING 1

• TIME-SPACE-TIME SWITCHING 1

• TIME-SPACE-TIME SWITCHING 1

• PROCESSOR ACCES 1

• PROCESSOR ACCES 2

 -89-

 -90- -90-

 -91- -91-

 -92- -92-

 -93- -93-

 -94- -94-

 -95- -95-

 -96- -96-

6. PRACTICAL UTILITY AND FUTURE ENHANCEMENTS

6.1 IMPLEMENTED ADPLL

Implemented ADPLL is a very optimize circuit, hardware wise. This type of circuit can

practically be used anywhere, where there is need of locking clock with standard reference

clock. This type of ADPLL is very useful when the PLL is to be fabricated inside an

Integrated Circuit or to be programmed inside an FPGA or PLD.

Presently the ADPLL is designed in keeping standard E1 (2.048 Mbps) bit rate for PCM

frames. For this frequency, a standard high frequency oscillator of 65.536 MHz is used (2.048

x 26 = 65.536).Thus registers in loop filter are chosen to be of 6 bits each. Maximum output

jitter in this type of ADPLL is one clock period of standard high frequency clock.

Future enhancements can be done by upgrading this design for other standard bit rates also,

as is already done for 8.192 Mbps in the present design. Moreover maximum output jitter can

also be reduced by using higher bit rate standard clock.

For this only register bits of the registers of loop filter are to be increased and rest of the

design will remain same. Number of register bits can be calculated from the formula:

 (output clock rate) x 2(no. of register bits) = Standard high frequency clock rate.

6.2 IMPLEMENTED TST SWITCH

By the elements “time switch” and “space switch” a complete TST switch is implemented.

TIME
SWITCH 1

TIME
SWITCH 2

TIME
SWITCH 3

TIME
SWITCH 4

TIME
SWITCH 5

TIME
SWITCH 6

TIME
SWITCH 7

TIME
SWITCH 8

SPACE
SWITCH
 4 X 4

IMPLEMENTED TST SWITCH

OUTPUT
BUSES

INPUT
BUSES

 -97-

 -98-

Presently the time and space switches are designed according to PCM frames i.e., 32 bytes

per frame. This design can be used in any system where there is need to interchange time

slots in PCM frame at 2.048 Mbps rate. This design can also be used while mapping E1

(2.048 Mbps) tributaries on higher bit rate synchronous frames. This design can also be used

in ISDN systems, after the line interface unit, for switching or interchanging time slots.

This system can be enhanced for more number of buses (presently it is for four input and four

output buses only).

This system can also be enhanced for larger frame sizes and other bit rate signals.

These enhancements can easily be implemented in present framework of VHDL code. For

more number of buses, more time switch units are needed and capacity of space switch is to

be increased. For larger frames, memory requirements at time and space switch units will be

more.

 -99-

 BIBLIOGRAPHY :

• Phase Locked Loops, Theory, Design & Applications – by Roland E Best, McGraw Hill, Inc.

• IEEE journals, solid state circuits, vol 34. No 8, aug 99

• IEEE transactions on Circuit and systems-II, Analog & Digital signal processing, vol 46, No 7,

july99

• IEEE proceedings; vol 63, no 2, feb 1975

• W.C.Lindsey, F.Ghazvinian, W.C.Hagmann, K. Dessouky. Network Synchronization.

Proceedings of the IEEE 1985

• P. Kartaschoff. Synchronization in digital communication networks. Proceedings of the IEEE

1991

• S. Bregni. A historical perspective on network synchronization. IEEE Communication Magazine

1998

• Telecommunication Switching Systems and Networks – by Thiagarajan Viswanathan, Prentice

Hall fo India Pvt. Ltd.

• Amose E. Joel, Digital Switching – How it has developed. IEEE transaction on communications,

Vol. Com-27, No.7, July 1979

• Synchronization of Digital Telecommunication Networks – by Stefano Bregni, John Wiley &

Sons, Ltd.

• http://www.agilent.com

• http://www.xilinx.com

TOOLS USED

• Altera MaxPlus-II ver 10.2

• Modelsim XE-II 5.7g

• Xilinx ISE 5.7i

http://www.agilent.com/
http://www.xilinx.com/

	INDEX
	1. SYNCHRONIZATION
	1.1 SYNCHRONIZATION INTRODUCTION
	1.2 HITORICAL PERSPECTIVE
	1.3 SYNCHRONIZATION IN TELECOMMUNICATION
	1.4 NETWORK SYNCHRONIZATION ARCHITECTURES
	1.5 NETWORK SYNCHRONIZATION STRATEGIES
	1.6 SYNCHRONISATION AND DIGITAL SWITCHING

	2. PHASE LOCKED LOOPS
	2.3 FUNDAMENTAL BLOCKS
	2.4 BRIEF HISTORY
	2.5 PLL APPLICATIONS
	2.6.1 Building Blocks of LPLL
	2.6.2 LPLL performance in Locked State

	2.7 KEY PARAMETERS OF THE LPLL
	2.7.1 The Hold Range
	2.7.2 The Lock Range
	2.7.3 Pull in Range ((p
	2.7.4 Pull Out Range ((po

	2.8 THE CALSSICAL DIGITAL PLL (DPLL)
	2.8.1 DIGITAL PHASE DETECTORS
	2.8.1.1 EXOR Phase detector
	2.8.1.2 J-K Flipflop Phase Detector
	2.8.1.3 PFD (Phase Frequency Detector)
	2.8.2 DYNAMIC PERFORMANCE
	2.8.3 PARAMETERS
	2.8.3.1 The Hold Range
	2.8.3.2 The Lock Range
	2.8.3.4 Pull-out range
	2.8.4 DPLL DESIGN

	2.9 ALL DIGITAL PLL (ADPLL)
	2.9.1 DIGITAL PHASE DETECTORS
	2.9.1.1 Flip-Flop counter phase detector
	2.9.2 DIGITAL LOOP FILTERS
	2.9.2.1 UP/DOWN counter filter
	2.9.3 DIGITAL CONTROLLED OSCILLATORS
	2.9.4 EXAMPLE OF AN IMPLEMENTED ADPLL

	3. ADPLL IMPLEMENTATION
	3.1 BLOCK DIAGRAM
	3.2 SAMPLING PHASE DETECTOR
	3.5 VHDL CODE
	3.6 VHDL TEST-BENCH
	3.7 SCHEMATICS :
	4. SWITCHING
	5. IMPLEMENTATION OF TIME AND SPACE SWITCH
	6. PRACTICAL UTILITY AND FUTURE ENHANCEMENTS

