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1.               SYNCHRONIZATION 
 
________________________________________________________________________ 
 

1.1 SYNCHRONIZATION INTRODUCTION 
 
Synchronization is the act of synchronizing ( Webster’s Ninth New Collegiate Dictionary) i.e. 

making synchronous (cf. the Greek etymon    σύγχρουος)the operation of different devices or the 

evolving of different processes by aligning their time scales. 

Many operations in digital systems must obey a precedence relationship. If two operations obey 

some precedence, then synchronization ensures that operation follow in the correct order. At the 

hardware level, synchronization is accomplished by distributing a common timing signal to all the 

modules of the system. At a higher level of abstraction, software processes synchronize by 

exchanging messages. 

Depending on the application field, different systems of abstractions are adopted usefully, structured 

in a hierarchical fashion, where each level of abstraction relies on the features of the abstraction level 

below and hides unnecessary details to the higher level. Abstractions enable the designers to ignore 

such unnecessary details and focus on essential features, thus making easier achieving a greater 

complexity of the system designed. 

In digital hardware systems, a common approach is to structure the system representation in 

abstraction levels such as the physical level, in which the designer is concerned about physical laws 

governing semi conductor properties; the circuit level, where he deals with transistor, resistor etc.; 

the element level focused on gates, logical ports etc.; the module level, where elements are grouped 

to form more complex entities, such as memories, logic units, CPUs etc. 

Whichever is the abstraction criterion adopted in describing hardware and software systems, many 

are the entities mutually correlated, at any level, whose correct operation relies on temporal 

coordination. Though, entities of different abstraction levels, both in hardware and software systems, 

usually require different and independent ‘synchronization’ functions. Elliptical term 

synchronization is adopted to refer to whole set of heterogeneous issues where temporal coordination 

is essential. 

 

1.2 HITORICAL PERSPECTIVE 
 
The modern telecommunication networks result from along evolution process, started since the end 

of the 19th century: 
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Network synchronization, at first an unknown issue as not relevant to network operation and 

performance, has played a role of increasing importance in telecommunication throughout this 

evolution process, especially since transmission and switching turned digital. 

Transmission and switching are the two basic functions of any telecommunication network, and in 

particular telephone networks. 

Transmission is the action of conveying information point-to-point, for example from one node in a 

network to another one directly linked to it by a physical channel. Moreover, transmission can also 

be from one point to multiple points (multicast) or even from one point to all listeners on the medium 

(broadcast). 

Switching, on the other hand, is the function of connecting a given input-output pair in nodes where 

multiple transmission links are terminated. It deals thus with the dynamic assignment of the 

transmission channels available in a network, on the basis of user connection requests. 

To make an analogy with railways, transmission systems are the tracks and switching nodes are the 

shunts. Transmission and switching are the complementary foundations on which all the 

telecommunication services are based. Both Transmission and Switching were analog first and then 

one after the other turned to digital technology. 

The evolution of digital transmission and switching technology for the public telephones with 

isolated digital transmission links between analog switching machines or analog radio transmission 

systems. The fact that digital technology was used was transparent to the interfaces. Thus there was 

no need to relate internal clock rate of one system to the internal clock rate of another system. 

Even as higher level multiplexing systems were developed there was no need (nor viable means) of 

relating the clock rates of the higher rate multiplexed signals with the clock rates of lower rate 

tributaries. Indeed the transmission equipment based on PDH technology does not need to be 

synchronized, since the bit justification technique allows the multiplexing of asynchronous 

tributaries with substantial frequency offsets. 

Problems began to arise wit such asynchronous architecture when digital technology moved to 

switching machines too. Digital switching equipment requires to be synchronized in order to avoid 

slips at input elastic stores. And while slips do not significantly affect normal phone conversations, 

they may be troublesome indeed on some data services! The introduction of circuit switched data 

networks and of ISDN, therefore, yielded first the need for more stringent synchronization 

requirements. 

The ongoing spread of SDH/SONET technology in transmission network has really made 

synchronization a hot topic in standard bodies since 1990s.The need for adequate network 

synchronization facilities has become more and more stringent in order to fully exploit SDH/SONET 

capabilities; it is widely recognized that SDH/SONET transmission may rely on a suitable 
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dependable timing distribution to fully meet all its benefits, in particular because pointer action may 

yield excess jitter on transported tributaries. 

Beyond SDH/SONET needs, anyway, nowadays network synchronization facilities are unanimously 

considered as profitable network resource, allowing slip free digital switching, enhancing the 

performance of ATM based transport services and serviceable for improving the quality of a variety 

of services (e.g. ISDN, mobile cellular telephony, etc.). For this reason, most major network 

operators have set up national synchronization networks, in order to distribute a common timing 

reference to each node of the telecommunication network, On the standardization side, ITU-T and 

ETSI bodies released new synchronization standards, suitable for operation of modern digital 

communication network, specifying more stringent and complex requirements for jitter and wander 

at synchronization interfaces, for clock accuracy and stability and for the synchronization network 

architecture.  

Most modern synchronization networks are provided with management systems. The main 

management functions relevant to synchronization network management lie in the areas of fault, 

configuration, performance and security management. 

Most advanced synchronization networks are provided with monitoring systems that allows to verify 

continuously, in real time, the performance achieved in timing distribution. The rationale of 

synchronization performance monitoring is the need to be proactive, i.e. to detect timing 

degradations well before they impact service. 

 

1.3 SYNCHRONIZATION IN TELECOMMUNICATION 
 
The term synchronization is familiar in a somewhat restricted sense , meaning only acquisition and 

tracking of a clock in a receiver, with reference to the periodic timing information contained in the 

receive signal. More properly speaking this should be referred to as carrier or symbol 

synchronization. On the contrary, synchronization plays an essential role in several other areas in 

telecommunications, at different level of abstraction and in different context too. 

At different abstraction levels, the main contexts in which the word synchronization is used in 

telecommunication are the following: 

• Carrier synchronization, i.e. the extraction of the carrier from a modulated signal in coherent 

demodulation; 

• Symbol synchronization, i.e. the identification of sampling and decision times in digital 

demodulation, in order to extract the logical information from the received analog signal; 

• Word and frame synchronization, i.e. the identification of start and end of code words or of 

group of code words(frames), or also the delineation of the frames in the raw and 

undifferentiated stream of received bits; 
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• Packet synchronization, i.e. the delay equalization of packet arrival times in order to 

reconstruct a user circuit with constant bit rate over a packet switched network; 

• Network synchronization, i.e. the distribution of a common timing over a network of clocks, 

spread over an even wider geographical area; 

• Multimedia synchronization, i.e. the orchestration of heterogeneous elements ( images, text, 

audio, video, etc.) in a multimedia communication at different (e.g. physical and human 

interface) levels of integration; 

• Synchronization of real-time clocks, i.e. a substantially different kind of network 

synchronization in which the distribution of the absolute time (e.g. the national standard time) 

across a telecommunication network is concerned, mainly to network management purposes.  

 

1.4 NETWORK SYNCHRONIZATION ARCHITECTURES 
 

Network synchronization is a comprehensive expression that addresses in a wide sense any 

distribution of time and frequency over a network of clocks. Its goal may be either 

1. To align the absolute time scales of network nodes, thus aiming for instance at aligning 

local clocks to the Universal Time Coordinated (UTC) 

2. To align the timing signals (or more precisely, their significant instants) generated by 

local clocks, independently from a constant phase offset among them. Thus aiming at 

minimizing phase fluctuations around such average phase offset (example : 

synchronization of synchronous digital multiplexers or digital switching exchanges in 

order to avoid slips at input elastic stores); 

3. To equalize the frequencies of local clocks, without controlling their phase relationship 

(example: the distribution of a standard signal to PLL based slave clocks). 

In a network synchronized as in case (1), local timing signals are synchronous and their total 

phases are aligned. Therefore, this network synchronization requires estimation and 

compensation of transmission delays on synchronization signals directed to each node. 

In a network synchronized as in case (2), local timing signals are synchronous but there is no 

need to estimate transmission average delays of synchronization signals. 

In a network synchronized as in case (3), finally, timing signals are just mesochronous. 

In most cases network synchronization is intended as in case (2) and is achieved by transferring 

chrono signals (i.e.some pseudo-periodic signals such as sine or square waves), which carry a 

timing information with the uncertainty of the integer number of periods elapsed since the signal 

was generated ( total transmission delay). 

A synchronization network is the facility implementing network synchronization. It is able to 

provide all telecommunication networks with reference timing signals of required quality. Most 



modern telecommunication operators have set up one synchronization network to synchronize 

their switching and transmission networks.  

Basic elements of synchronization network are the nodes (autonomous and slave clocks) and 

links interconnecting them. An autonomous clock is a stand-alone device able to generate a 

timing signal, starting from some periodic physical phenomenon. A slave clock on the other hand, 

generates a timing signal having phase locked to a reference timing signal at its input. Slave 

clocks are usually implemented as PLLs (Phase Locked Loops). 

Time and frequency are distributed by using the communication capacity of the links 

interconnecting the clocks (e.g. copper cables, optical fibres, radio links). However, network 

nodes may be many and spread over a wide geographical area. Therefore two distinct issues must 

be faced: 

• How to transfer timing from one node to the other (the tactics of point-to-point timing 

transfer); 

• How to organize timing distribution among all nodes of the network (the strategy of 

network synchronization). 

 

1.5 NETWORK SYNCHRONIZATION STRATEGIES 
 

Network synchronization plays a central role in modern digital telecommunications, determining the 

quality of most services offered by network provider to its customers. To this purpose many different 

network synchronization strategies have been conceived. Among them following three have found 

wide application throughout the last decades: full plesiochrony, hierarchical master-slave (HMS) 

synchronization, and mutual synchronization. The main feature of  these strategies are as follows. 

 

Full Plesiochrony (Anarchy):  

 
 

It is actually no synchronization strategy (i.e., it does not involve any synchronization 

distribution).Each network node is equipped with an independent clock. Anarchy is the easiest form 

of government, but it relies on good behavior of the single elements. Due to lack of any timing 
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distribution, the synchronization of the operation of different nodes is entrusted to accuracy of 

network clocks, which therefore must feature excellent performance. 

Hierarchical Master –Slave Synchronization (Depotism): 

 

 
The principal of master slave strategies is based on the distribution of the timing reference from a 

clock (master) to all other clocks of the network (slaves), directly or indirectly. Depotism is generally 

considered unethical, but it is certainly effective in ensuring very tight control of the slaves: an MS 

network is synchronous with the master clock and stable by definition. The HMS strategy is 

currently the most widely adopted to synchronize modern digital telecommunication networks, due 

to the excellent timing performance and reliability that can be achieved at limited cost. 

 

Mutual Synchronization (Democracy): 

 
 
Mutual synchronization is based on direct mutual control among the clocks so that output frequency 

of each is the result of the “suggestions” of the others. Such a pure democracy looks appealing: there 

are no masters and no slaves, but mutual cooperation. However, the behavior of the mutually 

controlled elements is hard to govern. Modeling the behavior of such networks, or even ensuring the 

stability of the control algorithms, can be very complex task. Network so designed thus tend to be 

quite expensive, but extremely reliable. Therefore, until now the field of application of mutual 

synchronization has been mostly limited to special cases (e.g., military networks). 
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Timing Relation ship between digital signals: 

 

Isochronous :  Digital signal in which time intervals between significant instants have, at least on the 

average, the same duration or durations which are integer multiples of shortest one. 

Two synchronous digital signals are isochronous digital signals whose respective timing signal have 

the same frequency, at least on the average, and a phase relationship controlled precisely. 

Two mesochronous digital signals are isochronous, asynchronous digital signals, whose respective 

timing signals have the same frequency, at least on the average, but no control on phase relationship. 

Two plesiochronous digital signals are isochronous, asynchronous digital signals, whose respective 

timing signals have the same frequency values only nominally, but actually different within a given 

tolerance range. 

Two heterochronous digital signals are isochronous, asynchronous digital signals, whose respective 

timing signals have different nominal frequencies. 

 
To give sound examples of above abstract concepts, a locked Phase Locked Loop (PLL) outputs a 

timing signal which is synchronous with the input signal, owing to the feedback control on the phase 

error between them. A Frequency Locked Loop (FLL), i.e., a feedback system operating like a PLL 

but instead controlling the frequency error between the input and the output signals, outputs a signal 

which is mesochronous with the input. Two oscillators, even if designed and built as equal by the 

same supplier, output two plesiochronous timing signals, owing to unavoidable manufacturing 

tolerances. Finally, two digital signals with different rates (e.g., 2.048 Mb/s and 8.448Mb/s signals) 

are heterochronous. 

 

1.6 SYNCHRONISATION AND DIGITAL SWITCHING 
 

The advent of digital TDM techniques yielded a progressive integration of transmission and 

switching, since the PCM primary multiplex frame structure allows exploiting of the TDM principle 

for digital switching of circuit connections as well. 

 

Digital Switching Requires Time Alignment Of The Input PCM Frames: 

 

The European 2.048 Mb/s PCM frame is made of 32 octets (time slots), 30 of which carry single 64 

Kb/s telephone channels, while the North American 1.544 Mb/s PCM frame is made of 24 slots. 

Digital switching is based on moving octets (speech samples) from one time slot to another, from 

one input signal to another output signal. Time slot exchanging is basically done by delaying, by a 



suitable time interval, the incoming octets before retransmitting them in the output frame at the right 

place (time). 

It clearly appears that digital switching can take place only if incoming frames (asynchronous since 

they can be generated by different pieces of equipment with different clocks) are made synchronous, 

with frame starts aligned, so that correspondent time slots at different inputs are perfectly time 

aligned. Therefore, one of the tasks of the input line units of a digital switching exchange is to 

synchronize bits and frames of incoming PCM signals before feeding them into the switching fabric, 

as outlined in figure. In this figure, for the sake of simplicity, only one frame per line is depicted 

(with alignment word shaded), and the time slot interchanging in the PCM frames is not pointed out.  

 

 
 
 
   Bit and   
    Frame 
Synchronizer

 
 
 
 
 
 
 
 Switching 
    fabric 
 

 Equipment 
    Clock 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 -8- 

 
 
 

      Input 
asynchronous 
PCM frames 

Output PCM 
    frames 
synchronized 
and switched 
 

     PCM 
   frames 
synchronized 

 
 
 
Thus, for synchronization to be achieved Phase Locked Loops (PLLs) are to be used and hence are 

vital components for any synchronized network. 

The main task of these PLLs is, on the one hand, to ensure adequate short-term stability by filtering 

phase fluctuations accumulated by pilots along the transmission links, and on the other to provide in 

any case an output reference frequency, even under loss of input pilot, by free running operation of 

the local oscillator. Free-run frequency accuracy requested to limit distortion in the demodulated 

signals is in order of 10-7. Such a frequency accuracy is enough to ensure an adequate transmission 

quality of telephone channels, even under pilot frequency losses lasting for the mean time for 

restoring.  
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  2.               PHASE LOCKED LOOPS 
 
________________________________________________________________________ 
 
 
 
2.1   PHASE LOCKED LOOPS
 
 
A phase-locked loop (PLL) is a circuit which causes a particular system to track with another one. 

More precisely, a PLL is a circuit synchronizing an output signal (generated by an oscillator) wit a 

reference or input signal in frequency as well as in phase. In the synchronized –often called locked – 

state the phase error between the oscillator’s output signal and the reference signal is zero, or very 

small. 

If a phase error builds up, a control mechanism acts on the oscillator in such a way that the phase 

error is again reduced to minimum. In such a control system the phase of output signal is actually 

locked to the phase of input signal. This is why it is referred to as phase-locked loop. 

 
 
2.2 TYPES OF PLL  
 

1. Linear PLL (LPLL) 

2. Digital PLL (DPLL) 

3. All Digital PLL (ADPLL) 

4. Software PLL (SPLL) 

 

2.3 FUNDAMENTAL BLOCKS 
 
     The PLL consists of three basic fundamental blocks: 

 

1. A Phase Detector (PD) 

2. A voltage controlled oscillator (VCO) 

3. A loop filter (LF) 

 

The signals of interest within the PLL circuit are defined as follows: 

 

• The reference (or input ) signal u1(t) 

• The angular frequency ω1 of the reference signal 



 -10- 

• The output signal u2(t) of the VCO 

• The angular frequency ω2 of the output signal 

• The output signal ud(t) of the phase detector 

• The output signal uf(t) of the loop filter 

• The phase error θe , defined as the phase difference between signals u1(t) and u2(t) 

 

2.4 BRIEF HISTORY  
 
The very first (PLL) were implemented as early as 1932 by de Bellesize; this French engineer is 

considered inventor the “coherent communication”. The PLL found broad industrial applications 

only when it became available as an integrated circuit. The first PLL IC’s appeared around 1965 and 

were purely analog devices. 

An analog multiplier (four quadrant multiplier) was used as phase detector, the loop filter was build 

from a passive or RC filter and the well known voltage controlled oscillator was used to generate the 

output signal of PLL. This type of PLL is referred to as linear PLL today. In the following years the 

PLL drifted slowly but steadily into digital territory. The very first digital PLL (DPLL) which 

appeared around 1970, was in effect a hybrid device; only the phase detector was build from digital 

circuit, e.g., from an EXOR gate or a JK flip flop, but the remaining blocks still were analog. A few 

years later the “all-digital PLL (ADPLL)” was invented. The ADPLL is exclusively build from 

digital functional blocks hence doesn’t contain any passive components like resistors and capacitors. 

In analogy to filters, PLL’s can also be implemented “by software”. In this case the function of PLL 

is no longer performed by a piece of specialized hardware, but rather by a computer program. This 

last type if PLL is referred to as SPLL. 

Unfortunately, LPLLs, DPLLs, and ADPLLs behave differently, so there is no common theory 

which covers all of these types. Consequently we must treat the various types of PLLs separately. 

 

2.5 PLL APPLICATIONS  
 
A Sample of  PLL Applications : 

The reason that PLLs are so ubiquitous is that they are so useful in so many applications. 

 

• Carrier Recovery 

• Clock/Data Recovery 

• Frequency Synthesis 

• Modulation/Demodulation 



• PLL Applications in Control Problems 

         -- Disk Drive Control 

         -- Harmonic Compensation 

         -- Motor Control 

 

EXAMPLES  : 

1.  Carrier Recovery 

 General block diagram of frequency recovery from a modulated signal. 

 

 

Squaring loop to recover carrier from a BPSK modulated signal. 

2.   Frequency Synthesis 

 

 

To lock a clock with an input signal of a different frequency synthesize a clock frequency from a 

lower frequency input. Harmonic locking loop generates a clock at N times input frequency (non-

integer N is possible). Example from storage industry is DVD+RW format uses a high frequency 

wobble embedded in the groove walls to synthesize a write clock frequency. 
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2.6 THE LINEAR PHASE LOCKED LOOP (LPLL)
 

2.6.1   Building Blocks of LPLL 
 
               
 
 

Multiplier Low Pass 
Filter

Voltage 
Controlled 
Oscillator 

    PD 

   VCO

ud
ufu1, ω1

   
 
 
 u2, ω2 
 
 
 
 
 
 
 
In linear PLLs, the fourth quadrant multiplier is used as phase detector. In most cases the input signal 

u1(t) is a sine wave with angular frequency ω1, whereas output signal u2(t) is a symmetrical square 

wave with angular  frequency ω2, In the locked state the two frequencies are equal. The output signal 

ud(t) of the phase detector then consist of a number of terms; the first of these is a “dc” component 

and is roughly proportional to the phase error θe; the remaining terms are “ac” components having 

frequencies of 2 ω1, 4 ω1 …Because these higher frequencies are unwanted signals, they are filtered 

out by the loop filter (which is a low pass filter). Fig below shows a passive lag filter having one pole 

and one zero.  
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Its transfer function is given by  

R1 

R2 ud uf

C

F(s) = 1 + s τ2 /  1 +  s( τ1 +  τ2 )  

Where    τ1  = R1C  and   τ2  = R2C 



Its amplitude response is shown in figure below: 

|F| 

1
-20 dB / decade 

1/( τ1 + τ2 )    1/τ1   ω 

   
Higher order low-pass filters could be used instead of simple one-pole filters; this is done in some 

applications. Because each additional filter pole introduces phase shift, it is much more difficult to 

maintain stability in higher order systems. 

 

2.6.2 LPLL performance in Locked State 
 
Assuming PLL to be locked and remain locked in near future a mathematical model can be 

developed for phase transfer function H(s) which relates the phase θ1 of the input signal to the phase 

θ2 of the output signal. 

 H(s) = θ2  (s) /  θ1 (s) 

Where θ1 (s) and θ2 (s)  are the Laplace Transforms of the phase signals θ1(s) and  θ2 (s) respectively. 

To get an expression for H(s) we must know the transfer functions of the individual blocks in block 

diagram of LPLL. Let us start with phase detector. 

Input signal of an LPLL is usually a sine wave. 

 u1(t)  = U10 sin (ω1t  + θ1 ) 

whereas output signal is usually a square wave and can therefore be written as a Walsh function  

u2(t)  = U20 ω (ω2t  + θ2 ) 

The output signal of the four quadrant multiplier is obtained by multiplying the signals  u1  and   u2.  

To simplify the analysis the Walsh function is replaced by its fourier series. 

For  u2(t) we then get 

 u2(t) = U20 [ 4/ π cos (ω2t  + θ2 ) +  4/ 3π cos (3ω2t  + θ2 ) + ….  ] 

First term in square bracket is fundamental component the remaining terms are odd harmonics. For 

output signal  u2(t)  therefore we get  

ud(t)  =  u1(t) u2(t)  =    U10 U20 sin (ω1t  + θ1 )  
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                                           x  [ 4/ π cos (ω2t  + θ2 ) +  4/ 3π cos (3ω2t  + θ2 ) + ….  ] 

When PLL is locked, the frequencies ω1 and  ω2  are identical and ud(t)  become 

ud(t)  =    U10 U20  [ 2/ π sin θe ) + ….  ] 

where θe  = θ1  -  θ2   is the phase error. The first term in the series is the wanted “dc” term, whereas 

the higher frequency terms will be eliminated by the loop filter. Setting  

Kd = 2 U10 U20  / π         and neglecting higher frequency terms we get  

ud(t)  =  Kd sin θe

where Kd  is called detector gain. When the phase error is small, the sine function can be replaced by 

its argument, and we have 

ud(t)  ≈  Kd θe 

In locked state of LPLL the Phase Detector represents a zero order block having a gain of Kd. 

Transfer function of a Passive Lag Filter having one pole and one zero is 

F(s) = 1 + s τ2 /  1 +  s( τ1 +  τ2 )  

Where    τ1  = R1C  and   τ2  = R2C 

Angular frequency of VCO is given by 

ω2 (t) = ω0  +  ∆ ω2 (t)  =  ω0  + K0 uf (t)  

where K0  is called VCO gain (dimension : rad s-1V-1) 

The model should yield the output phase θ2   and not the output frequency  ω2 . 

By definition  

θ2  (t) =  ∫ ∆ ω2 dt  =  K0∫ uf dt   

Laplace transform  

θ2  (s) =  (K0/s) Uf (s)   

The transfer function of the VCO is given by 

θ2  (s) /  Uf (s)     =     K0/s 

 

For phase signals the VCO simply represents an integrator. 

From above equations a simplified linear model of a LPLL can be drawn : 

 

Kd F(s)

K0/s
θ2(s

θ1(s
θe

PD 

VCO Uf(s)= Ud(s) 

FILTER Ud(s)= Kdθe(s)

 
  
 
 
 
 
 
 
 
 
 
From the model Phase Transfer Function H(s) is computed. We get  
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H(s) =  θ2 (s) /  θ1 (s) = K0 Kd F(s) / s +  K0KdF(s) 

In addition to the phase transfer function, an error transfer function He(s) is defined by  

He(s) =  θe (s) /  θ1 (s) =   s  / s +  K0KdF(s) 

Replacing F(s) by LPF transfer function we get, for passive lag filter : 

 
        H(s)     =           (  K0Kd  ) ( 1 + s τ2  /  1 +  s( τ1 +  τ2 ))  

                                 s2 +  s ( 1 + K0 Kd τ2 )/  (τ1 +  τ2) +  (K0 Kd)/ (τ1 +  τ2)   

writing the denominator in normalized form i.e.,  

Denominator   =  s2 + 2ξ ωn s +  ωn
2   

Where  ωn  is natural frequency and  ξ  is the damping factor. 

For passive lag filter : 

ωn   =  √( K0 Kd )/  (τ1 +  τ2) 

ξ  =  ωn /2 ( τ2 + 1/K0 Kd) 

K0 Kd  :  Loop Gain 

2.7 KEY PARAMETERS OF THE LPLL    
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                                                                   ±∆ωH : Hold in range 
                                                                    
 
                                                                   ±∆ωp : Pull in range 
                                                                    
 
                 
                                                                  ±∆ωpo : Pull out range 
 
                                                                   ±∆ωL : Lock range = normal 
      Operating range 
  

ω0

 
 

 
 

                    

Dynamic Limit of Stability

            Static Limit of Stability 

    
                                                                

Conditionally Stable

Dynamically Unstable

 
 
 
 
 
Hold range, ∆ωH           :  LLPL can statically maintain phase tracking, conditionally stable. 
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Pull out range, ∆ωpo   : Dynamic limit for stability, normally locked again. 

Pull in range, ∆ωp        : Lock again but process is slow. 

Lock range, ∆ωL           : Lock within single beat note between reference frequency & 

                                    output frequency. 

2.7.1 The Hold Range 

 

It is the frequency range in which a PLL is able to maintain the lock statically. The LPLL locks out 

for ever when the frequency of the input signal exceeds the hold range. 

Magnitude is calculated by frequency offset at reference input which causes phase error θe of  π/2. 

               ω1  = ω0  +  ∆ ωH 

where is the hold range. For the phase signal we get   

               θ1 (t) = ∆ ωH t 

Laplace transform 

θ1 (s) = ∆ ω / s2 

Phase error : 

θ e (s) = θ 1 (s) He(s) = (∆ ω / s2)/ (s / s + KdK0F (s)) 

using final value theorem, final phase error in time domain : 

 lim    θ e (t)   =  lim    sθ e (s)  =  ∆ω / KdK0F(0) 

 t → ∞                s → 0  

this is for small values of θe  only, for greater values : 

lim    sin θ e (t)   =    ∆ωH / KdK0F(0) 

t → ∞                 

at the limit of hold range θe =  π/2  sin θe = 1 , therefore expression for hold range : 

∆ωH =  KdK0F(0) 

for passive lag filter : 

∆ωH =  KdK0

2.7.2 The Lock Range 

Assume that the LPLL is initially not locked and that the reference frequency is  

 ω1  = ω0  +  ∆ ω  . The reference signal of the LPLL is then given by  

 u1(t)  = U10 sin (ω0t  + ∆ωt )           and the output signal by  

u2(t)  = U20 ω (ω0t)   

Phase Detector will deliver an output signal given by 

ud(t)  =  Kd sin (∆ωt ) + higher frequency terms 
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The higher frequency terms can be filtered out by loop filter. The output of loop filter can be written 

as   

uf(t)  ≈  Kd |F (∆ω)| sin (∆ωt ) 

this is an AC signal causing frequency modulation of the VCO. The peak frequency deviation is 

equal to   KdK0 |F (∆ω)|. 

If this frequency deviation is less than the frequency offset ∆ω then lock in process will either not 

take place  or is at least very slow. When frequency deviation is large so that ω2 exactly meets the 

reference frequency ω1  , PLL locks within the single beat note between the reference and the output 

frequencies.    

The condition for locking is therefore  

KdK0 |F (∆ω)| ≥ ∆ω 

Lock Range itself is given by 

∆ωL = KdK0 |F (∆ωL)| 

Approximating that lock range is much greater then corner frequencies 1/τ1 and  1/τ2 of the loop filter 

and also assuming  τ2   to be much smaller than   τ1   we can use 

          F (∆ωL)| ≈   τ2  / τ1        for passive lag filter

Assuming high gain loops and making substitutions we get 

      ∆ωL ≈  2ζωn                   ----------   for all types of loop filters 

When LPLL locks quickly ( ζ < 1 , damped oscillations, transients die out in one clock cycle), it is 

reasonable to state lock-in time as 

T L ≈  2 π/ωn                ( settling time ). 

2.7.3 Pull in Range  ∆ωp   

Assume again that LPLL is not locked initially, that the frequency of the reference signal is  ω1= ω0 + 

∆ω, and the VCO operates at the centre frequency ω0. Consequently the output signal ud of the phase 

detector is a sine wave having the frequency ∆ω. 

The difference ∆ω between reference frequency ω1  and output frequency  ω2(t)  is not a constant; it 

is also varied by the frequency modulation of the VCO output signal. If the frequency  ω2(t) is 

modulated in the positive direction, the difference ∆ω  becomes smaller and reaches some minimum 

value  ∆ωmin ; if  ω2(t)  is modulated in negative direction , however, ∆ω  becomes greater and 

reaches some maximum value  ∆ωmax , Because  ∆ω(t)  is not a constant, the VCO frequency is 

modulated non harmonically, that is, the duration of the half-period in which ω2(t)  is modulated in 

the positive direction becomes longer than that of the half-period in which ω2(t) is modulated in the 

negative sense. As a consequence the average frequency  ϖ2  of the VCO is now higher than it was 

without any modulation, i.e., the VCO frequency is pulled in the direction of the reference signal. 



The asymmetry of the waveform ω2(t)  is greatly dependent on the value of the average offset  ∆ω ;  

the asymmetry becomes more marked as ∆ω is decreased. If the avereage value of  ω2(t)  is pulled 

somewhat in the direction of ω1  (which is assumed to be greater than  ϖ2 ), the asymmetry of the 

ω2(t) waveform becomes stronger. This in turn causes  ϖ2   to be pulled even more in the positive 

direction. This process is regenerative under certain conditions, so that the output frequency  ω2  

finally reaches the reference frequency  ω1 . This phenomenon is called the pull-in process. 

Mathematical analysis shows that a pull-in process occurs whenever the initial frequency offset ∆ω      

is smaller than a critical value, the pull-in range  ∆ωp . If , on the other hand, the initial frequency 

offset ∆ω  is larger than  ∆ωp , a pull-in process does not take place because the pulling effect is not 

then regenerative. 

 
                ω2 

                ω1
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                         ∆ωmin

                                      ∆ωmax

                                                    ω2(t) 
                                                                                  ϖ2 : average of ω2(t) 
                ω0
 
 
 
                                                                                                                t 
 
 In the unlocked state of the PLL the frequency modulation of the VCO output signal  

 is non harmonic . This causes the average value   of the VCO output frequency to be  

 pulled in the direction of the reference frequency. 

 
              ω2
 
              ω1
 
 
                      ∆ω0

                                                     ω2(t) 
 
 
           ω0
                                        Tp 
 
 
 
                                            The Pull-in process 
 



The pull-in range also depends on loop filter. 

For passive lag filter: 

∆ωp  =   4/π √(2ζ ωn K0 Kd  - ωn
2) 

For active PI filter : 

  ∆ωp   →   infinity             (because high , theoretically infinite, DC gain) 

2.7.4 Pull Out Range  ∆ωpo 

The pull out range is by definition that frequency step which causes a lock-out if applied to the 

reference input of the PLL. 

An exact calculation of the pull0out range is not possible for the linear PLL. However, simulations 

on an analog computer have led to an approximation: 

∆ωPO = 1.8 ωn ( ξ +  1 ) 

In most practical cases the pull out range is between the lock range and the pull in range 

 ∆ωL  < ∆ωPO < ∆ωP 

2.8 THE CALSSICAL DIGITAL PLL (DPLL) 
 
The classical DPLL is actually a hybrid system built from analog and digital functional blocks. The 

only part of the DPLL that is really digital is phase detector. In many aspects the DPLL performs 

similar to the LPLL, so some part of PLL theory can be adopted; in some particular aspects, however, 

DPLL behavior is completely different. 

 

Digital 
PD 

Analog 
LPF 

VCO 

÷ N 
Counter 
(optional)

u2,ω2 uf ud 
u1,ω1 

u2’,ω2’ 

 
Block diagram of the DPLL 

 

The block diagram of DPLL is shown in figure above, like the LPLL, consists of the three known 

function blocks phase detector, loop filter and voltage controlled oscillator. In many DPLL 
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applications (e.g.,PLL frequency synthesizers) a divide-by-N counter is inserted between VCO and 

phase detector. When such a counter is used, the VCO generates a frequency which is N times the 

reference frequency. 

2.8.1 DIGITAL PHASE DETECTORS 
 
Three most important logical circuits for phase detector are : 

 

• The EXOR gate 

• The (edge triggered) JK flip-flop 

• The “phase frequency detector” (PFD) 

2.8.1.1      EXOR Phase detector 

 

+ 
ud

u1

u2’ 
 

The operation of EXOR phase detector is most similar to that of the liner multiplier. The signals in 

DPLLs are always binary signals, i.e., square waves. We assume for the moment that both signals u1 

and u2 are symmetric square waves.  
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At zero phase error the signals u1 and u2 are out of phase by exactly 90°. Then the output signal ud is 

a square wave whose frequency is twice the reference frequency; the duty cycle of the ud signal is 

exactly 50%. Because the high frequency component of this signal will be filtered out by loop filter, 

we consider only the average value of ud, as shown by dashed line. The average value is arithmatic 

mean of the two logical levels. 

When the output signal u2’ lags the reference signal u1, the phase error θe becomes positive, the duty 

cycle of ud becomes larger than 50% i.e., average value of ud is considered positive. Clearly the mean 

of ud reaches its maximum value for a phase error of  θe = 90°  and its minimum value for θe =  - 90°. 

Whereas the output signal of the four quadrant multiplier varied with the sine of phase error, the 

average output of ūd of the EXOR is a triangular function of the phase error. Within a phase error 

range of  -π/2 < θe  < π/2, ud is exactly proportional to θe and can be written as  

 ūd  = Kdθe. 

Kd : constant. 

When supply voltage to EXOR are UB and 0, and when we assume logic levels are UB and 0. Kd is 

given by  

 Kd = UB/π 

The performance of the EXOR phase detector becomes severely impaired if the signals u1 and u2’ 

become asymmetrical. If this happens, the output signal ūd  gets clipped at some intermediate level, 

this reduces loop gain of the DPLL and results in smaller lock range and pull out range, etc. 

2.8.1.2       J-K Flipflop Phase Detector  
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                                                                                                                              ud
                                                                        Vd
 
 
                   
                u2                                                                         
 
 
                                                        JK- Flipflop        

 
  
   J                       Q
 
 
            FF 
 
                             
   K                    Q’
                   

 
 

Waveform symmetry is unimportant; however the JK-flipflop is used as phase detector. This JK-

flipflop differs from conventional JK-flipflops, because it is edge-triggered. A positive edge 



appearing at the J input triggers the flipflop into its “high” state (Q = 1), a positive edge at the K 

input into its “low” state (Q = 0).  

 
 

 
 

 
 
Figure above shows the waveforms of the JK-flipflop phase detector for the case θe = 0. With no 

phase error, u1 and u2 have opposite phase. The output signal ud then represents a symmetrical square 

wave whose frequency is identical with the reference frequency (and not twice the reference 

frequency). This condition is considered as ūd being zero. If the phase error become positive, the duty 

cycle of the ud signal becomes greater than 50 percent, i.e., ūd becomes positive. Clearly, ūd becomes 

maximum when phase error reaches 180° and minimum when the phase error is -180°. If the mean 

value of ūd is plotted vs phase error θe the saw tooth characteristic is obtained. Within a phase error 

range of   –π < θe < π   the average signal ud is proportional to θe and is given by  

        ūd = Kd θe 

Obviously the JK-flipflop phase detector is able to maintain phase tracking for phase errors within 

the range  

     –π < θe < π 

By analogous consideration, the phase detector gain of the JK flip flop phase detector is given by     

Kd = UB/2π. 

In contrast to EXOR gate , the symmetry of the u1 and u2’ signals is irrelevant, because the state of 

the JK flip flop is altered only by the positive transitions of these signals. 

2.8.1.3         PFD (Phase Frequency Detector) 
 
As its name implies, its output signal depends not only on phase error θe but also on frequency error  

∆ω = ω1- ω2’, when the DPLL has not yet acquired lock. Fig above shows the schematic diagram of 
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the PFD. It is built from two D-flip flops, whose outputs are denoted “UP” and “DN”(down) 

respectively. The PFD can be in one of the four states 

 

• UP= 0 ,  DN= 0 , 

• UP= 1 ,  DN= 0 , 

• UP= 0 ,  DN= 1 ,  

• UP= 1 ,  DN= 1    

 

The fourth state is inhibited, however, by an additional AND gate whose output goes to clear direct 

(CD) pin which resets both flip-flops. 

 

D             Q 
      FF 
CP 
 
       CD 

       CD 
CP 
      FF 
D             Q 

ud

N 

U

P 

DN

UP 

“1” 

u2

u1

“1” 

 
 
We assign symbols  –1, 0, 1  to these states: 
       
• DN = 1 ,  UP = 0       state =   -1 

• UP = 0 ,  DN = 0       state =   0 

• UP = 1 ,  DN = 0       state =   +1 

The actual state of PFD is determined by the positive going transients of the signals u1 and u2’,as 

explained by state diagram in fig below. A positive transition of u1 forces PFD to go into its next 

higher state unless it is already in +1 state. In analogy, a positive edge of u2’ forces the PFD into its 

next lower stae, unless it is already in the –1 state. When PFD is in +1 state, ud must be positive; 
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when it is in -1 state, ud must be negative; and when it is in  0  state, ud must be zero. Theoritically ud 

is a ternary signal. Third state can be substituted by a high impedance state. 

 

-1 
 0 +1

u2u2

u1
u1

u1

u2

 
When the UP signal is high, the P channel MOS transistor conducts, so ud equals the positive supply 

voltage UB. When the DN signal is high, the N channel MOS transistor conducts, so ud is on the 

ground potential. If neither signal is high, both MOS transistors are off, and the output signal floats 

i.e., is in the high impedance state. Consequently the output signal ud represents a tristate signal. 

Fig (a) shows the case where the phase error is zero. It is assumed that the PFD has been in 0 state 

initially. The signals u1 and u2’ are exactly in phase here; both positive edges of  

 
 

 
                                                         (a) 
 
u1 and u2’ occur  “at the same time”; hence their effects will cancel. The PFD will stay in 0 state for 

ever. Fig (b) shows the case where u1 leads u2’. 
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                                                      (b) 
 
The PFD now toggles between the states 0 and +1. If u1 lags u2’ as shown in Fig (c), 
 

                                                     (c) 
 
the PFD toggles between states –1 and 0. It is easily seen from the waveforms in fig (b) and fig(c) 

that ud becomes largest when the phase error is positive and approaches 360° and smallest when the 

phase error is negative and approaches -360°. When the phase error θe exceeds 2π, the PFD behaves 

as if the phase error is recycled at zero; hence the characteristic curve of PFD becomes periodic with 

period 2π. An analogous consideration can be made for phase errors smaller then -2π. When the 

phase error is restricted to the range -2π <  θe < 2π, the average of ud becomes 

 ūd  =  Kdθe

In analogy to JK flip-flop, phase detector gain is computed by  

Kd = UB/4π 

When the logic levels are UB or 0 respectively. 

To recognize the bonus offered by the PFD, we must assume that the DPLL is unlocked initially. 

Furthermore we make the assumption that the reference frequency ω1 is higher than the output 

frequency ω2’.The u1 signal then generates more positive transitions per unit of time then the signal 

u2’. Looking at fig(b) above we see that the PFD can toggle only between the states 0 and +1 under 

this condition but will never go into the –1 state. If ω1 is much higher than ω2’ furthermore, the PFD 

will be in +1 state most of the time. When ω1 is smaller than ω2’ however, the PFD will toggle 

between the states –1 and 0. If ω1 is much lower than ω2’ , the PFD will be in -1 state most of the 

time. We conclude therefore that the average output signal ūd  of the PFD varies monotonically with 
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the frequency error  ∆ω = ω1 - ω2’ when the DPLL is out of lock. This leads to the term phase-

frequency detector. 

For the case ω1 < ω2 the duty cycle δ is defined the average fraction of time the PFD is in the –1 

state ; for ω1 > ω2, δ is by definition minus the average fraction of time the PFD is in the +1 state. As 

expected, δ approaches  –1 when ω1 << ω2 and  +1 when ω1 >> ω2. 

Because the output signal ūd  of the PFD depends on phase error in the locked state of the DPLL and 

on frequency error in the unlocked state, a DPLL which uses the PFD will lock under any condition, 

irrespective of the type of loop filter used. For this reason the PFD is the preferred phase detectors in 

DPLLs. 

 

2.8.2 DYNAMIC PERFORMANCE  
 
When the DPLL has acquired lock and is not pulled out by large phase steps, frequency steps, or 

phase noise applied to its reference input, its performance can be analyzed by a linear model, as done 

for the LPLL. 

 

Digital 
PD 
[Kd] 

Analog 
LPF 
[F(s)] 

VCO 
[K0/s] 

÷ N 
Counter 
(optional)
[1/N] 

θ2’(s) 

θ2(s
θ1(s) 

 
 
Knowing the transfer functions of all building blocks of the DPLL, we are able to drive the phase-

transfer function H(s), the natural frequency ωn and damping factor ξ. For ωn and ξ , expressions 

similar to those for the LPLL are obtained. 

 

2.8.3 PARAMETERS 

 

• The Hold Range 

• The Lock Range 
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• Pull in Range 

• Pull out Range 

2.8.3.1     The Hold Range   

 

The hold range ∆ωH is the frequency range within which PLL operation can be statically stable. 

Under normal operating conditions the PLL never operates at the limits of the hold range. To reach 

this limit of stability it would be necessary to weep the reference frequency slowly upward ( or 

downward). If the reference frequency is increased and the dc gain of the loop filter is finite, the 

phase error increases in proportion. When it attains the maximum value for which the phase detector 

operates linearly, the hold range is reached. 

If an EXOR gate is used as phase detector, the maximum phase error is π/2. Based on the procedure 

as was adopted in LPLL case, we obtain for hold range  

 

 ∆ωH   =    K0KdF(0)(π/2) 
                 ---------------------------
                    N 
 

Where F(0) is dc gain of the loop filter. 

DC gain is 1 for passive lag, 

For EXOR phase detector and passive lag filter, hold range: 

 

  ∆ωH   =   K0Kd(π/2) 
               ---------------------------
                    N 
 

If the JK flip flop is used as phase detector, the maximum phase error becomes π, so hold range : 

∆ωH = K0Kdπ 
            -------------
                 N 
  
The situation changes drastically, however, when the PFD is used as phase detector. Because its 

output is in the high-impedance state when none of the UP or DN outputs is active, the charge on the 

capacitor(s) of the loop filter remains unchanged when the PFD is in the 0 state. Consequently the 

output signal uf of the loop filter can have a non-zero value even if the average ud signal is 0. When 

driven by a tri-state source the loop filter acts like an integrator i.e., filter whose transfer function F(s) 

has a pole at s = 0.  

The hold range of a DPLL using the PFD becomes infinite. 
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2.8.3.2       The Lock Range  
 
By definition lock range is the offset between the reference and (scaled down) VCO frequency which 

causes the DPLL to acquire lock within one beat note between reference and (scaled down) output 

frequencies. The lock range of the DPLL can be determined by considerations analog to those made 

in LPLL case we assume DPLL is initially out of lock and that the VCO oscillates on its center 

frequency Nω0. The reference frequency is offset by ∆ω from its center value  ω0,i.e., ω1 = ω0 + ∆ω. 

The signals u1 and u2 can then be replaced by the walsh functions 

   u1 (t) =U10ω[(ω0 + ∆ω)t] 

and 

   u2 (t) =U20ω(ω0)t 

respectively, where U10 and U20 are the amplitudes of the square wave signals. The phase error θe is 

the difference of the phases of these two signals, i.e., 

  θe(t) =ω0t    :   which is a ramp function. 

Case of EXOR phase detector : 

Average output signal ūd (t) of the EXOR is a triangular function of phase error, ūd(t)  becomes 

triangular function of time. The shape of uf signal is also triangular, therefore frequency of VCO is 

modulated by this triangular function. When the frequency offset ∆ω is chosen such that the peak of 

the ω2’ curve just reaches the reference frequency ω1 , ∆ω equals the lock range ∆ωL. Using 

mathematical model developed in LPLL case, we obtain lock range  

 ∆ωL ≈  πξωn

The lock range of the DPLL using the EXOR phase detector is greater than the lock range of the 

LPLL by a factor of approximately π/2. This is easily explained by the fact that the maximum output 

signal of the four quadrant multiplier is Kd, whereas the maximum output signal of the EXOR is 

Kdπ/2. 

 

Case of JK flip-flop phase detector : 

 

Average output signal ūd(t) of the JK flip-flop varies in a saw-tooth-like fashion with phase error, 

ūd(t) will also be a saw-tooth function . The frequency of VCO is modulated in a saw tooth like 

manner. When the frequency offset ∆ω is chosen such that the peak of the ω2’ curve just reaches the 

reference frequency ω1 , ∆ω equals the lock range ∆ωL. By analog consideration we get the 

approximation 

∆ωL ≈  2πξωn 
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Case of  PFD phase detector : 

 

A similar procedure can be applied to the PFD. For a DPLL using the PFD the lock range becomes 

approximately 

∆ωL ≈  2πξωn 

The lock-in time can be calculated by analog consideration as made for the linear PLL. The lock 

process is completed within one cycle of the damped oscillation at most, so it is reasonable 

approximation to state that TL is one period of the damped oscillation: 

TL  ≈  2π/ωn 

 

2.8.3.3        Pull-in range  

 

Pull-in process is a nonlinear phenomenon and is very hard to calculate. Analysis is different for 

different phase detectors.  

Let us assume first EXOR gate phase detector. 

We assume DPLL is initially out of lock and that the VCO oscillates on its center frequency Nω0. 

The reference frequency is offset by ∆ω from its center value  ω0,i.e., ω1 = ω0 + ∆ω. The signals u1 

and u2 can then be replaced by the walsh functions 

   u1 (t) =U10ω[(ω0 + ∆ω)t] 

and 

   u2 (t) =U20ω(ω0)t 

respectively, where U10 and U20 are the amplitudes of the square wave signals. The phase error θe is 

the difference of the phases of these two signals ,i.e., 

θe(t) =ω0t    :   which is a ramp function. 

Average output signal ūd(t) of the EXOR is a triangular function of phase error, ūd(t) becomes 

triangular function of time. The shape of uf signal is also triangular, therefore frequency of VCO is 

modulated by this triangular function. If the triangular waveform were symmetrical the average 

frequency ω2’ would remain constant and is equal to ω0 . However the frequency offset ∆ω is not 

constant but is given by the difference between reference frequency ω1 and instantaneous frequency 

ω2’. Consequently, ∆ω(t) becomes smaller during the positive half of the ūd  signal and larger during 

the negative half-wave. Therefore, the waveform of ūd  becomes asymmetrical. When the ūd  

waveform is asymmetrical, its mean value is no longer zero but becomes slightly positive. This 

causes the average frequency of the VCO to be pulled up. If the loop gain is high, pull in process 

becomes regenerative and the VCO frequency will be pulled up until it becomes close to the 



reference frequency. Then a locking process will take place. A pull-in process is initiated whenever 

the initial frequency offset ∆ω is smaller than the pull-in range ∆ωp. 

  
ūd T1 T2

Kdπ/2 

t
Kdπ/2 

T=2π/∆ω 
 

 
 

ω2’ ω1

∆ω(t) 

ω2’(t)

ω0

t 
 

 
Final results: 

For passive lag low gain loops 

∆ωp = (π/2)√(2ξωnK0Kd - ωn
2) 

For passive lag high gain loops 

∆ωp = (π/√2)√(ξωnK0Kd) 

Final result for approximate pull-in time TP : 

   TP = 4∆ω0
2/(π2ξωn

3) 

Pull in time varies with square of initial frequency offset. Pull in time becomes infinite when initial 

frequency offset equals the pull-in range. 
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In case of JK flip-flop phase detector, the waveforms of average ūd(t) signal is saw tooth instead of 

triangular. Performing analog computation as above, we get for the pull-in range : 

For passive lag low gain loops 

   ∆ωp = π√(2ξωnK0Kd - ωn
2) 

For passive lag high gain loops 

   ∆ωp = (π/√2)√(ξωnK0Kd) 

Pull in time  

   TP = ∆ω0
2/(π2ξωn

3) 

 

Consider the case where PFD is used as phase detector: 

The pull-in range becomes infinite now, because the loop filter is driven by a tri-state source. The 

charge on the filter capacitor remains unchanged when the output of the PFD is in the high 

impedance state, Hence even a passive lag filter works like a real integrator. 

We assume again that the DPLL is initially out of lock and that the frequency ω1 of the reference 

signal u1 is marked higher than the (down scaled) output frequency ω2
’. The output signal ud of the 

PFD then toggles between the states 0 and +1.The average ud signal has the shape of saw-tooth signal. 

It periodically ramps up from 0 to 1 and is a saw-tooth function as well. The average duty cycle of ud 

is 50%. Because the time constant τ1  of the loop filter is much larger than the period of the u1 signal, 

an equivalent ueq having a constant duty cycle of 50% would have the same effect on the loop filter 

(neglecting τ2 because τ2 << τ1 ). Because the duty cycle is only 50%, however the capacitor needs 

twice as much time to charge. Therefore the loop filter acts like a simple RC filter whose time 

constant is not τ1 but  2τ1. After some time, uf will have reached a level which causes the VCO to 

generate just the “right” frequency.  

 

UB

uf

∆ω/K0

UB/2 

TP
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This occurs when the voltage on the capacitor has been increased by the amount ∆ω/K0. When this 

happens, the pull-in process terminates, and a lock-in process takes place. 

For passive lag loop filter pull-in time (time required for the capacitor to increase its voltage by 

∆ω/K0) : 

  TP  = 2τ1 ln ((K0UB/2)/K0UB/2 - ∆ωp) 

 Where ∆ωp is the initial frequency offset, ∆ωp= ω1 -  ωp

Major difference of the pull-in process for different types of phase detectors : 

If the phase detector is an EXOR gate, the instantaneous frequency of the VCO is modulated in both 

directions around its average value. Provided a pull-in process starts, the frequency of the VCO is 

slowly “pumped up” as in case of LPLL. A similar pumping is observed when the phase detector is a 

JK flip-flop. No pumping occurs when the PFD is used, the VCO “knows where to go” at every time. 

The instantaneous frequency of the VCO approaches the final value from one side only. When the 

pull-in process is completed, a lock-in process follows. 

 

2.8.3.4        Pull-out range 

 

Pull out range is the size of the frequency step applied to the reference input which causes the PLL to 

loose phase tracking. 

In case of LPLL the output signal of four quadrant multiplier varies with sine of the phase error, it is 

triangular function in case of EXOR which is quite similar. We expect, however, that the pull-out 

range would be slightly greater for the DPLL, because the output signal of the EXOR is linear over 

the full range  -π/2 < θe < π/2 and does not flatten out at phase errors approaching π/2. 

By simulations, using damping factors in the range of   0.1 < ξ <  3  , then a least squares fit gave the 

approximation 

    ∆ωPO = 2.46 ωn ( ξ +  0.65 ) 

In case of the JK flip-flop, the pull-out range is the frequency step causing the peak phase error to 

exceed π ; in case of PFD, the pull-out range is the frequency step leading to a peak phase error of 2π. 

Least square fit gives : 

For JK flip flop phase detector 

∆ωPO = 5.78 ωn ( ξ +  0.5 )  and 

For PFD phase detector 

∆ωPO = 11.55 ωn ( ξ +  0.5 ) 
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2.8.4      DPLL  DESIGN   

 

• Step 1.  The input and output frequencies of the DPLL must be specified. 

• Step 2. The scalar ratio must be determined. 

• Step 3. Determination of damping factor ξ.(0.7 preferred for butterworth response) 

• Step 4. Choice of Phase Detector (PFD preferred) 

• Step 5. Characteristic of VCO is determined. ω0 and N are decided, range for ω is generated, 

VCO gain K0 is determined 

• Step 6. Specify type of loop filter.(passive lag filter is preferred with PFD for infinite hold 

and pull-in range) 

• Step 7. Determining dynamic properties of DPLL. How the DPLL is used, TP should be key 

parameter ( goto step 8 ) or ∆ωpo should be key parameter ( goto step 12 ) or TL should be key 

parameter ( goto step 13 ). User must resort to specification which makes as much sense as 

possible. 

• Step 8. With TP  known τ1 is calculated. 

• Step 9. With τ1 known  ξ  is calculated. 

• Step 10. With  ωn  and  ξ  known  τ2 is calculated. 

• Step 11. With τ1 and  τ2  (plus eventually K0), the components of loop filter can be determined. 

• Step 12. Given ∆ωpo  and damping factor ξ , natural frequency ωn is calculated. Proceed to 

step 14. 

• Step 13. ωn is calculated from TL, proceed to step 14 

• Step 14. With  ωn  and  ξ  known  τ1 is calculated. 

2.9 ALL DIGITAL PLL (ADPLL) 
 
The Classical DPLL is a semi analog circuit. Because it always needs a couple of external 

components, its key parameters will vary because of parts spread. Even worse, the center frequency 

of a DPLL is influenced by parasitic capacitors on the DPLL chip. Its variation can be so large that 

trimming can become necessary in critical applications. Many parameters are also subject to 

temperature drift. 

The all-digital PLL does away with these analog-circuitry headaches. In contrast to the DPLL, it is 

an entirely digital system. Let us know first that the term “digital” is used here for a number of 

different things. First of all, “digital” means that the system consists exclusively of logical devices. 

But “digital” also signifies that the signals within the system are digital too. Hence it can be a binary 

signal (or “bit” signal) as was the case with the classical DPLL, but it can as well be a “word” signal, 



i.e., a digital code word coming from a data register, from the parallel outputs of a computer, and the 

like. When discussing the various types of ADPLL, we find the whole palette of such digital signals. 

To realize an ADPLL, all function blocks of the system must be implemented by purely digital 

circuits. 

2.9.1       DIGITAL PHASE DETECTORS 

2.9.1.1     Flip-Flop counter phase detector 
 
 
                                                                                   N = content ∼ θe 
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The reference (input) signal u1 and the output (or scaled down output) signal u2 of the DCO (or VCO) 

are binary valued signals. They are used to set or rest an edge triggered RS flip flop. The time period 

in which the Q output of the flip flop is a  logic 1 is proportional to the phase error θe. The Q signal is 

used to gate the high frequency clock signal into the upward counter. Note that the counter is reset on 

every positive edge of the u1 signal. 

The content N of counter is also proportional to the phase error θe, where N is n-bit output of this 

type of phase detector. The frequency of the high frequency clock is usually Mf0 where f0 is the 

frequency of reference signal and M is large positive integer. 

 



2.9.2 DIGITAL LOOP FILTERS  

2.9.2.1     UP/DOWN counter filter 
 

Probably the simplest loop filter is built from an ordinary UP/DOWN counter. The UP/DOWN 

counter loop filter preferably operates in combination with a phase detector delivering UP or DN 

(DOWN) pulses, such as the PFD. It is easily adapted, however, to operate in conjunction with the 

XOR or JK flip flop phase detectors and others, as shown in  figure. A pulse-forming network is first 

needed which converts the incoming UP and DN pulses into a counting clock and a direction 

(ŪP/DN) signal as explained by waveforms in figure.  

On each UP pulse generated by the phase detector, the content N of UP/DOWN counter is 

incremented by 1. A DOWN pulse will decrement N in same manner. The content N is given by the 

n-bit parallel output signal uf  of the loop filter. Because the content N is the weighted sum of the UP 

and DN pulses — the UP pulses have an assigned weight of +1 , the DN pulses, -1 — this filter can 

roughly be considered an integrator having the transfer function 

H(s) = 1/ sTI 

where u1 is the integrator time constant. This is however, a very crude approximation, since the UP 

and DN pulses do not carry any information about the actual size of the phase error; they only tell 

whether the phase of u1 is leading or lagging u2. 

 
                                                                                                  Content N ∼ uf
 
 
                       UP                              clock 
From 
Phase              DN 
Detector                                            UP/DN 
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2.9.2.2     N-before-M counter filter

 

Another digital loop filter is the so called N-before-M counter (shown in figure below). The 

performance of this filter is very non-linear.It is suggested that N-before-M filter operates in 

conjunction with a phase detector generating UP and DOWN pulses, as was the case with the PFD. 

The N-before-M filter uses two frequency counters scaling down the input signal by a factor N and 

one counter scaling down by M, where M > N always. The ÷M counter counts the incoming UP and 

DN pulses. The upper ÷N counter will produce one carry output when it has received N UP pulses. 

But it will generate this CARRY only when the ÷M counter does not receive M pulses. Otherwise 

the ÷N counter would have been reset. We can say the upper ÷N counter will produce a carry pulse 

whenever more than N pulses of an ensemble of M pulses have been UP pulses. A similar statement 

can be made for the lower ÷N counter in figure, which will output BORROW pulses only when the 

majority of incoming pulses are DN pulses. 

The outputs of the N-before-M filter can be used in a similar way to control a DCO, as indicated for 

the K counter. 

 
 
                UP                                                                                                 CARRY 
 
 
 
 
 
 
from 
PD 
 
 
 
 
 
 
 
               DN                                                                                                BORROW 
 
 
 

÷N counter
 
     reset 

÷M counter
 
     reset 

÷N counter
 
     reset 

2.9.3  DIGITAL CONTROLLED OSCILLATORS   
 

A variety of DCO’s can be designed; they can be implemented by hardware or software.  

Probably the simplest solution is the ÷N counter DCO. A ÷N counter is used to scale down the signal 

generated by a high frequency oscillator operating at a fixed frequency. The N-bit parallel output 

signal of a digital loop filter is used to control the scaling factor N of the ÷N counter. 
 -36- 
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2.9.4    EXAMPLE OF AN IMPLEMENTED ADPLL 
 
The Example depicted in Figure below, a JK flip-flop (JK-FF2) is used as a phase detector. The 

Phase detector block has been extended, however, by a pulse forming network consisting of another 

JK flip flop (JK-FF1) and an AND gate. The loop filter is built from an UP/DOWN counter.   ÷N 

counter is used as DCO. The pulse forming network generates the counting clock (CK) for the 

UP/DOWN counter. 
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                                  (a)       Block Diagram 
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The waveforms in figure (b) explain the operating principle of the PD. The JK-FF1 scales down the 

input signal u1 by a factor of 2; the scaled down input signal is designated u1*.The reconstructed 

signal u2 has the same frequency as u1* not u1. The waveforms in have been drawn for two cases: 

1. u1* leading u2 

2. u1* lagging u2 
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up/dn counter 
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up/dn counter 
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ud

Case 2: u1*

u2
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                     (b)     Waveforms

 

The JK-FF2 is an edge-triggered flip-flop.The positive transitions of u1* set this flip flop; the 

positive transition of u2 reset it. The counting clock CK for the UP/DOWN counter occurs at a time 

when the output signal ud or JK-FF2 is stable, that is, high when u1* lags u2 or low when u1* leads u2. 

Consequently the phase-detector output signal ud is used as the direction input ŪP/DOWN for the 

UP/DOWN counter. If the frequencies of u1* and u2 are not identical, the UP/DOWN counter will 
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count upward or downward until N has reached the value that causes ÷N counter to generate the 

correct output frequency. 

Because N can only be varied in steps of 1, the frequency of signal u2 will normally be slightly too 

high or too low. This will force the contents of  N to jitter continuously around the values of  N and 

N+1 if the reference frequency f1 is constant. At equilibrium f1 will be equal to fc/(N-M), where M is 

the scaling factor of the optional  ÷M counter. 

 



   3.              ADPLL IMPLEMENTATION 
 
________________________________________________________________________ 
 
ADPLL implemented by VHDL ,synthesized and tested on Xilinx FPGA. 

3.1     BLOCK DIAGRAM  

ADPLL : 

 
fin                                MSBA 
 
              ADPLL 
 
fc

 
 
This is the symbol of ADPLL synthesized on xilinx FPGA and tested on PCB. 

fin  is the input reference signal and MSBA is output clock signal locked to input. 

fc is standard high frequency clock from any independent clock source. 

The ADPLL comprises of following components: 

 

• Sampling Phase detector 

• Loop filter and DCO control unit 

• DCO circuit 

3.2     SAMPLING PHASE DETECTOR  

D    Q D    Q D    Q D    Q 

en_d 

fc 

fin
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This is the logical diagram of ‘Sampling Phase Detector’ . In this case input reference fin 

is sampled by a high frequency (32 or 64 times) fc. It produces a pulse whenever a positve edge of 

input reference is sensed. 

The circuit was implemented by VHDL and simulated on Altera’s MaxPlus-II tool for various 

conditions i.e., when fc is leading fin or when fc is lagging fin or when fc is in phase with fin etc. 

Following is the VHDL code and simulation results for various cases. An output pulse is generated 

on every positive edge of fin. 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
-- use IEEE.std_logic_misc.all ; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
 
entity adpll is  
port( 
      fc        : in std_logic; 
      fin       : in std_logic; 
      rst       : in std_logic; 
      en_d      : out std_logic 
   ); 
end adpll; 
 
architecture RTL of adpll is 
 
signal f1out        : std_logic; 
signal f2out        : std_logic; 
signal f3out        : std_logic; 
signal en           : std_logic; 
begin 
process(en, rst, fin) 
begin 
        if (rst='0' or en='1') then 
               f1out <= '0'; 
         elsif fin'event and fin = '1' then 
           f1out <= '1'; 
        end if; 
end process; 
 
process(f1out, f2out, f3out, fc, rst) 
begin 
        if rst = '0' then 
               f2out <= '0'; f3out <= '0'; en <= '0' ; 
         elsif fc'event and fc = '1' then 
           f2out <= f1out ; f3out <= f2out ; en <= f3out ; 
        end if; 
end process; 
en_d <= f3out and (not en); 
end RTL; 



PHASE DETECTOR SIMULATIONS : 
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3.3      LOOP FILTER AND DCO CONTROL UNIT  
 

en_d     MSBA     RegBin 
 0             0           000001 
 0             1           000001 
 1             0           000010 
 1             1           000000 

R
E
G
B

R
E
G
A

 
 
      ADDER 

MSBA 

  fc double 
 

 
This circuit simulates loop filter and DCO control unit. Registers A and B are of 6 bits each. (width 

of registers depends on frequencies of fin and fc . Here in this case  

 fc =  26 x fin    , so register width is 6) 

Registers A and B are running on high frequency clock. MSB of Register A is our output clock 

locked to fin. Reset value of Register B is “000001”. If a positive edge of en_d comes and edge of 

MSBA does not come then value of register B is incremented for one clock cycle so as to get MSBA 

edge earlier in next turn. If a positive edge of en_d comes and edge of MSBA had came earlier then 

value of register B is decremented for one clock cycle so as to get MSBA edge later in next turn. In 

this way we get MSBA locked to fin. 
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3.4     DCO CIRCUIT  
 
 
 
 

 
CLK DLL 
 
 
clkfb     clko

bufg

fcHigh 
freq. free 
running 
OSC 

fc double  
 
 
 
 
 
 
 
 
 
 
 
 
This is the DCO circuit implemented by a high frquency free running oscillator and clock doubler 

circuit using DLL  (Delay Locked Loop) of Xilinx FPGA. This is done to double the operating clock 

so as to have minimum jitter in output clock. It is observed that the jitter in output clock does not 

exceed the time period of this high frequency clock. 

So we get less jitter when we double the clock using above circuit and use 2x fc  instead of  simple fc. 

 
IMPLEMENTATION : 

 

The above ADPLL was implemented using VHDL and synthesized in Xilinx FPGA Spartan-II series 

XC2S200-PQ208-5C. The ciruit was tested on PCB.  

fin was selected 2.048 MHz and fc was selected 65.536 MHz. So 2x fc  became 131.072 MHz. 

Another case where fin was 8.448 MHz was also tested (fc  remaing same). 

Following are the VHDL code , VHDL test-bench and simulation results for the proposed ADPLL 

circuit : 

3.5     VHDL CODE  
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_misc.all ; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
 
entity dproj is  
port( 
      fc          : in std_logic; 
      fin         : in std_logic; 
      rst         : in std_logic; 
      f2mb        : out std_logic; 

 -45- 



 -46- 

      f2mb_do     : out std_logic; 
      f8mb        : out std_logic; 
      rec_clk     : out std_logic; 
 fcout       :  out std_logic; 
 finout : out std_logic; 
      fcdoub      : out std_logic; 
      scrdatao    : out std_logic 
  ); 
end dproj; 
 
architecture RTL of dproj is 
 
component clkdll port 
( 
 clkin  : in std_logic; 
 clkfb  : in std_logic; 
 rst             : in std_logic; 
 clk0  : out std_logic; 
 clk90  : out std_logic; 
 clk180      :  out std_logic; 
 clk270 : out std_logic; 
 clk2x  : out std_logic; 
 clkdv  : out std_logic; 
 locked  : out std_logic 
); 
end component; 
 
component bufg port 
( 
 i : in std_logic; 
 o : out std_logic 
); 
end component; 
 
signal f1out        : std_logic; 
signal f2out        : std_logic; 
signal f3out        : std_logic; 
signal en           : std_logic; 
signal en_d         : std_logic; 
signal msba         : std_logic; 
signal regbin       : std_logic_vector(4 downto 0); 
signal regaout      : std_logic_vector(4 downto 0); 
signal regbout      : std_logic_vector(4 downto 0); 
signal adderout     : std_logic_vector(4 downto 0); 
 
signal fcdouble     : std_logic; 
signal clk_out      : std_logic; 
signal clkfb        : std_logic; 
signal ground       : std_logic; 
 
signal f1out_do      : std_logic; 
signal f2out_do      : std_logic; 
signal f3out_do      : std_logic; 
signal en_do         : std_logic; 
signal en_d_do       : std_logic; 
signal msba_do       : std_logic; 
signal regbin_do     : std_logic_vector(5 downto 0); 
signal regaout_do    : std_logic_vector(5 downto 0); 
signal regbout_do    : std_logic_vector(5 downto 0); 
signal adderout_do   : std_logic_vector(5 downto 0); 
 
signal msba_do8        : std_logic; 
signal regbin_do8      : std_logic_vector(8 downto 0); 
signal regaout_do8     : std_logic_vector(8 downto 0); 
signal regbout_do8     : std_logic_vector(8 downto 0); 
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signal adderout_do8    : std_logic_vector(8 downto 0); 
 
signal scrdata          : std_logic; 
signal d1,d2,d3,d4,d5,d6,d7 : std_logic; 
signal f1out_do1        : std_logic; 
signal f2out_do1        : std_logic; 
signal f3out_do1        : std_logic; 
signal en_do1           : std_logic; 
signal en_d_do1         : std_logic; 
signal msba_do1         : std_logic; 
signal regbin_do1       : std_logic_vector(5 downto 0); 
signal regaout_do1      : std_logic_vector(5 downto 0); 
signal regbout_do1      : std_logic_vector(5 downto 0); 
signal adderout_do1     : std_logic_vector(5 downto 0); 
 
 
begin 
 
dll: clkdll port map 
( 
 clkin  => fc , 
  clkfb  => clkfb,  
  rst             => ground ,  
  clk0             => clk_out, 
  -- clk_90  => open, 
  -- clk_180  => open,  
  -- clk_270  => open, 
  clk2x  => fcdouble  
  -- clk_dv  => open, 
  -- locked  => open  
); 
 
fbclk :  bufg port map 
( 
 i => clk_out, 
 o => clkfb 
   ); 
 
process(en, fin, rst) 
begin 
        if (rst = '0'or en = '1') then 
            f1out  <= '0'; 
        elsif fin'event and fin = '1' then 
             f1out <= '1'; 
        end if; 
end process; 
 
process(f1out, fc, rst) 
begin 
        if rst = '0' then 
               f2out <= '0'; f3out <= '0'; en <= '0' ; 
         elsif fc'event and fc = '1' then 
           f2out <= f1out ; f3out <= f2out ; en <= f3out ; 
        end if; 
end process; 
 
 
process(en_d,fc, rst) 
begin 
        if rst = '0' then 
         regaout <= "00000"; regbout <= "00001"; 
        elsif fc'event and fc = '1' then 
            regaout <= adderout; 
            regbout <= regbin ; 
        end if; 
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    if ( en_d='0' and msba='0') then regbin <="00001" ; 
 elsif ( en_d='0' and msba='1') then regbin <="00001" ; 
 elsif ( en_d='1' and msba='0') then regbin <="00010" ; 
 elsif ( en_d='1' and msba='1') then regbin <="00000" ; 
 end if; 
 
end process; 
 
msba <= regaout(4) ; 
adderout <= regaout + regbout ; 
f2mb <= msba ; 
fcout <= fc; 
finout <= fin; 
en_d <= (not en) and f3out; 
fcdoub <= fcdouble; 
-------- 
process(en_do, fin, rst) 
begin 
        if (rst = '0'or en_do = '1') then 
            f1out_do  <= '0'; 
        elsif fin'event and fin = '1' then 
             f1out_do <= '1'; 
        end if; 
end process; 
process(f1out_do, fcdouble, rst) 
begin 
        if rst = '0' then 
            f2out_do <= '0'; f3out_do <= '0';  
            en_do <= '0' ; 
         elsif fcdouble'event and fcdouble = '1' then 
           f2out_do <= f1out_do ; f3out_do <= f2out_do ;  
           en_do <= f3out_do ; 
        end if; 
end process; 
process(en_d_do,fcdouble, rst) 
begin 
        if rst = '0' then 
         regaout_do <= "000000"; regbout_do <= "000001"; 
        elsif fcdouble'event and fcdouble = '1' then 
            regaout_do <= adderout_do; 
            regbout_do <= regbin_do ; 
        end if; 
    if ( en_d_do='0' and msba_do='0') then regbin_do <="000001" ; 
 elsif ( en_d_do='0' and msba_do='1') then regbin_do <="000001" ; 
 elsif ( en_d_do='1' and msba_do='0') then regbin_do <="000010" ; 
 elsif ( en_d_do='1' and msba_do='1') then regbin_do <="000000" ; 
end if; 
end process; 
 
msba_do <= regaout_do(5) ; 
adderout_do <= regaout_do + regbout_do ; 
f2mb_do <= msba_do ; 
en_d_do <= (not en_do) and f3out_do; 
ground <= '0' ; 
 
process(en_d_do,fcdouble, rst) 
begin 
      if rst = '0' then 
       regaout_do8 <= "000000000"; regbout_do8 <= "000100001"; 
        elsif fcdouble'event and fcdouble = '1' then 
            regaout_do8 <= adderout_do8; 
            regbout_do8 <= regbin_do8 ; 
        end if; 
    if ( en_d_do='0' and msba_do8='0') then regbin_do8 <="000100001" ; 
 elsif ( en_d_do='0' and msba_do8='1') then regbin_do8 <="000100001" ; 
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 elsif ( en_d_do='1' and msba_do8='0') then regbin_do8 <="000100010" ; 
 elsif ( en_d_do='1' and msba_do8='1') then regbin_do8 <="000100000" ; 
 end if; 
 
end process; 
 
msba_do8 <= regaout_do8(8) ; 
adderout_do8 <= regaout_do8 + regbout_do8 ; 
f8mb <= msba_do8 ; 
 
---- 
process(d1,d2,d3,d4,d5,d6,d7,rst,fin,scrdata) 
begin 
        if rst = '0' then 
        d1<='1'; d2<='1'; d3<='1'; d4<='1'; d5<='1';  
  d6<='1'; scrdata<='1';   
         elsif fin'event and fin = '1' then 
        scrdata <= d6; d6<=d5; d5<=d4; d4<=d3; d3<=d2;  
        d2<=d1; d1<=d7;   
        end if; 
end process; 
d7<= d6 xor scrdata ; 
scrdatao <= scrdata; 
 
process(en_do1, fin, rst) 
begin 
        if (rst = '0'or en_do1 = '1') then 
            f1out_do1  <= '0'; 
        elsif scrdata'event and scrdata = '1' then 
             f1out_do1 <= '1'; 
        end if; 
end process; 
process(f1out_do1, fcdouble, rst) 
begin 
        if rst = '0' then 
               f2out_do1 <= '0'; f3out_do1 <= '0'; en_do1 <= '0' ; 
         elsif fcdouble'event and fcdouble = '1' then 
           f2out_do1 <= f1out_do1 ; f3out_do1 <= f2out_do1 ; 
           en_do1 <= f3out_do1 ; 
        end if; 
end process; 
process(en_d_do1,fcdouble, rst) 
begin 
        if rst = '0' then 
         regaout_do1 <= "000000"; regbout_do1 <= "000001"; 
        elsif fcdouble'event and fcdouble = '1' then 
            regaout_do1 <= adderout_do1; 
            regbout_do1 <= regbin_do1 ; 
        end if; 
    if ( en_d_do1='0' and msba_do1='0') then regbin_do1 <="000001" ; 
 elsif ( en_d_do1='0' and msba_do1='1') then regbin_do1 <="000001" ; 
 elsif ( en_d_do1='1' and msba_do1='0') then regbin_do1 <="000010" ; 
 elsif ( en_d_do1='1' and msba_do1='1') then regbin_do1 <="000000" ; 
end if; 
end process; 
msba_do1 <= regaout_do1(5) ; 
adderout_do1 <= regaout_do1 + regbout_do1 ; 
rec_clk <= msba_do1 ; 
en_d_do1 <= (not en_do1) and f3out_do1; 
 
 
end RTL;         
         
--------------------------------------------------------- 
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3.6   VHDL TEST-BENCH    
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_misc.all ; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
 
entity tb_dproj is 
end tb_dproj; 
 
architecture test of tb_dproj is 
 
component dproj port 
 
 (    fc          : in std_logic; 
      fin         : in std_logic; 
      rst         : in std_logic; 
      f2mb        : out std_logic; 
      f2mb_do     : out std_logic; 
      f8mb        : out std_logic; 
      rec_clk     : out std_logic; 
 fcout       :  out std_logic; 
 finout : out std_logic; 
      fcdoub      : out std_logic; 
      scrdatao    : out std_logic 
  ); 
end component; 
 
signal      fc          :  std_logic; 
signal      fin         :  std_logic; 
signal      rst         :  std_logic; 
signal      f2mb        :  std_logic; 
signal      f2mb_do     :  std_logic; 
signal      f8mb        :  std_logic; 
signal      rec_clk     :  std_logic; 
signal fcout       :   std_logic; 
signal finout :  std_logic; 
signal      fcdoub      :  std_logic; 
signal      scrdatao    :  std_logic; 
 
 
begin 
 
dut :  dproj port map 
 
(     fc          => fc , 
      fin         => fin , 
      rst         => rst, 
      f2mb        => f2mb, 
      f2mb_do     => f2mb_do, 
      f8mb        => f8mb, 
      rec_clk     => rec_clk, 
 fcout     => fcout , 
 finout => finout, 
      fcdoub      => fcdoub, 
      scrdatao    => scrdatao 
  ); 
 
           process 
            begin 
            rst <= '0' ; 
            wait for 50 ns; 
            rst <= '1' ; 



            wait  ; 
            end process; 
 
 
            process 
            begin 
               fin  <= '0'; 
             wait  for 125 ns; 
               fin  <= '1'; 
             wait  for 125  ns; 
            end process; 
  
           process 
           begin 
             fc  <= '0'; 
           wait  for 15.625  ns; 
             fc  <= '1'; 
           wait  for 15.625 ns ; 
          end process; 
 
end test; 
 
configuration cfg_tb_dproj of tb_dproj is 
  for test 
  end for; 
end cfg_tb_dproj; 

3.7   SCHEMATICS : 
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SIMULATIONS   : 
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SYNTHESIZED DESIGN IN FPGA: 
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CONSTRAINTS FILE : 
 
#PACE: Start of Constraints generated by PACE 
 
#PACE: Start of PACE I/O Pin Assignments 
NET "f2mb"  LOC = "P164"  ; 
NET "f2mb_do"  LOC = "P163"  ; 
NET "f8mb"  LOC = "P152"  ; 
NET "fc"  LOC = "P77"  ; 
NET "fcdoub"  LOC = "P160"  ; 
NET "fcout"  LOC = "P161"  ; 
NET "fin"  LOC = "P80"  ; 
NET "finout"  LOC = "P162"  ; 
NET "rec_clk"  LOC = "P150"  ; 
NET "rst"  LOC = "P30"  ; 
NET "scrdatao"  LOC = "P151"  ; 
 
#PACE: Start of PACE Area Constraints 
 
#PACE: Start of PACE Prohibit Constraints 
 
#PACE: End of Constraints generated by PACE 
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4.               SWITCHING 
 
 
4.1 SWITCHING BACKGROUND 

The use of digital techniques has always been essential in providing universal telecommunication 

service: whether it was the digital dexterity of the operators selecting a jack to complete a call, or the 

digits placed into a switching system to control the remote and automatic selection of a 

telecommunication terminal or path. In recent years voice signals that constitute the messages in 

some telecommunication systems have been digitized. This made possible the distortion less robust 

transmission of signals representing the voice. “Digital Transmission” as it is called, has not only 

made possible high speed communication between terminals offering discrete signals, such as alarm, 

computer, and written communication, but has stimulated a new era in switching where the path 

through the switching center is also designed to pass digitized signals. 

Based on this newer application of the “digital” techniques, the term “digital switching” has now 

come into prominent usage. However, many who use the term mean not only the network to switch 

digital signals, but also the digital control process that has been a characteristic of switching since its 

origin. 

 
4.2 ELECTRONICS IN SWITCHING 
 
Switching system designers dreamed from early 1920’s of harnessing the advantages of speed of 

electronics, the technology then being used to advantage in extending transmission capability in 

distance and in capacity. But since for many digital techniques many logic elements were required, 

the number, reliability, and power required for such information processing made it impractical to 

use hot cathode electronic technology. A single electromagnetic relay represents as many as 24 logic 

elements and has a low power duty cycle while a vacuum tube consumed continuos power. This is 

still one of the drawbacks of the large scale use of electronics, but with the reduced size of semi-

conductor devices has come a reduction of power by several orders of magnitude. 

Even prior to the invention of the transistor, the principle of time-sharing was recognized as a way of 

taking advantage of the speed of electronics. Systems using vacuum tubes for logic operations were 

applied to computer, time division transmission and switching. The sampling of speech led H. 

Nyquist to postulate a criterion for frequency for sampling and accurately reproducing a given 

bandwidth signal. Sample from different sources could then “time share” the transmission medium if 

its bandwidth was great enough. The time sharing of a communication medium to transmit samples 

of varying amplitude captured the imagination of many electronic experts fresh from their World 



War II experiences in radar and the like and who were looking for an opportunity to apply their skills 

to such civilian pursuits as telecommunications. 

The World War II effort also stimulated more serious consideration of serial transmission of on and 

off or “digital” signals first proposed in 1926 in connection with picture transmission. With digital 

transmission the samples of the signal amplitude were coded as one method to make feasible speech 

secrecy. In a sense this was the beginning of digital switching because for the first time the digitized 

speech samples were processed for than other digital/analog conversion and retransmission. Special 

electron tubes, also from these wartime efforts, gave rise to electronic storage, scanning and coding. 

Prior to the concept of time sharing, all circuit switching networks established continuos and separate 

two-way transmission paths. This is known as “space division”. With sampled speech time sharing, 

known initially as “time sharing”, and now as “time division” switching became possible. 

With the invention of the transistor, electronic logic for switching controls became feasible. This 

meant that several competing common controls were necessary to serve offered calls in real time 

with relay logic, only a single control taking advantage of the higher speed of electronics would be 

adequate as the common control for a switching system. Shortly thereafter, the ideas of using bulk 

electronic memory with random access and electronic semiconductor logic were combined to 

produce3 the first real time programmed common control. 

 
4.3 DEFINITIONS 
A “digital switching system” is the one in which signals representing messages aretransmitted 

through the switch in digital form. 

As shown in figure all speech signals start out as continuos analog signals – from sound to varying 

electrical signals. If speech signals reach a digital switch in analog form they must first be converted 

by sampling techniques to any one of several digital forms. Usually for central office switching the 

form chosen matches the form used by most transmission systems,  that is 8-bit per sample pulse 

code modulation (PCM). 
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4.4 DIGITAL SWITCHING FUNDAMENTALS 
 
There are many ways to switch speech signals that have been digitized. An electro-mechanical 

switch may be used to interconnect digital transmission facilities, a function required for example to 

use spare facilities when trouble develops in another line on the same route, known as “span 

switching”. Digitized signals may be passed through an electro-mechanical switch (such as crossbar). 

This is a metallic space division digital circuit switching system. However, even to do this efficiently 

requires some new concepts that are useful in understanding the fundamentals of any digital switch. 

To be efficiently transmitted both outside and generally within a switching office, coded digital 

samples are usually time multiplexed. As a result, a plurality of channels is available for transmitting 

messages simultaneously over one transmission channel. Here, as in frequency multiplex for analog 

trans-mission, the greater the useful bandwidth, the greater the capacity. In time division multiplex 

(TDM) each position for a sample, or channel, is known as a “time slot”. Collectively, one sample 

from each channel constitutes a “frame” of signals. The individual pulses of a sample are usually 

transmitted 

serially. 

Generally, a switching system serves several TDM lines. To switch calls then requires digital signals 

from individual time slots on one line to be placed in the same or different time slots on other lines. 

To efficiently use a digital line requires that most time slots be assigned and used. Under these 

circum-stances it is quite likely that the signals from one time slot would have to be placed into a 

different time slot on another line. This “shifting” or “interchanging” of time slots isessential to 

efficient time division switching as it relates to integrated digital transmission and switching. This 

principle was early recognized by Messrs. H. hose and J. P. Runyon in 1960. 

If metallic space division switching is used for switching digital signals, time buffering and TSI are 

required for all time slots in other lines to be accessible. Placing and later removing coded speech 

samples from buffers or memories inherently introduces delay in transmission which must be kept as 

short as possible. Generally each memory or time stage (T) through which a sample passes may 

introduce a maximum delay of almost two frames since it is necessary to store the samples for one 

frame while reading out from another section of memory the samples from the preceding frame. 

Memory may be provided in any of several forms. In the early days of digital switching variable 

delay lines were popular. They received and delivered signals serially. Now 

most memories use integrated circuit technology with parallel access. 

Switching between the same time slots on different digital transmission lines may use a common 

multiplex and time stage or a form of space division switching. When switching is purely sequential, 

it is known as multiplexing. In a multi-TI-line system channels enter the system time divided on each 

line and separated in space (space division) from different lines. The time and space divided channels 
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are then converted to time division by multiplexing. In this process concentration is possible with 

more channels as sources than there are time slots. In some systems to improve the traffic 

performance expansion it is also introduced by serving fewer channels than time slots. Multiplexers 

operate in a fixed order and provide for concentration by skipping channels not being served. 

The rate at which the multiplex stage loads a time division internal link is an indication of the degree 

to which the electronic technology is being pressed. Within a modern digital 

TDM switching system the digitized samples are read into and out of memory in parallel. Since the 

bits of the samples to and from lines are serial, buffers are required for serial to parallel (and reverse) 

conversion. In some systems to increase the capacity with a given technology the samples are passed 

between stages within the system on parallel buses or 

a combination of serial and parallel. 

Multiplexing is generally not considered to be a switching network function, but when strictly’ 

considered, including the TSI memory access, it and de-multiplexing are functions that enable digital 

TDM networks to be composed of only T stages. In general, multiplexing is used for space to time 

conversion.  

Unlike space division switching for analog signals where connections are maintained continuously 

for each message, space division switches for time division networks are used to interconnect 

(permute) time division transmission lines for each time slot period. This has become known as 

“time multiplex switching” (TMS), but for simplicity, it is in the context of time division switching 

known as “space” (S) switching. These are multiplex stages with random rather than fixed order of 

gating with access to a common set of inlets or outlets. Furthermore, they are usually arranged so 

that each channel is gated in each time slot. As indicated earlier, systems with only S stages are 

inefficient from a traffic standpoint. However, using combinations of S and T stages is a popular way 

of increasing network capacity. In particular, the S stages facilitate system growth.  

From a traffic handling point of view, the T stages are non-blocking and the S stages may be 

engineered to be non-blocking. Non-blocking S stages act non-blocking for all time slots. Therefore 

it is relatively inexpensive for the non-concentrating portions of TDM switching systems to be made 

non-blocking. The total number of input (and therefore output) time slots is equal to the number of 

independent time slots provided within the system. This total is equal to tm where m equals the 

number of buses or highways and t equals the number of time slots per bus. Each TSI memory 

section has at least as many addresses as there are time slots. Single and three or more switching 

stages of square switches are also non-blocking by rearrangement. Generally to insure this 

characteristic without rearrangement, more internal time slots are provided. In addition to providing 

more time slots, the inputs from several sources that are multiplexed together may be decorrelated so 

that heavy traffic or failure from a particular digital line will be spread throughout the remainder of 

the switch. 
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In any switching network the connection relationships are stored in memory, In space division 

electromechanical systems this memory is usually inherent in the device states. In time division 

switching the connection relationship is in cyclical bulk memory. These memories are loaded for 

each connection and provide the TSI memory read out addresses and the TMS connection 

permutations. 

Concentration, that is, more input channels than output time slots, may be included in the 

multiplexing process. Further multiplexing is usually employed to bring together several time 

division sources, sometimes with a slight expansion (more output time slots than total input time 

slots). Also, in multiplexing it is not unusual to decorrelate the time slots from each of the several 

sources. Since there may be different pulse transmission rates and the pulse may come from 

unrelated sources, intermediate buffer storage of coded samples is often required before 

multiplexing.  

All multiplexing is in preparation for the actual switching. Concentration, expansion, and 

decorrelation are switching functions. Switching provides for the association of input time slots with 

output time slots for all or any portion of the network. To do this requires a random access control 

memory that contains the required input-output time slot associations regardless of how the 

switching is accomplished. 

The association of coded samples in given input time slots with assigned output time slots may occur 

in either of two ways. One is by storing the samples. This implies a time ( T ) 

delay to affect a change in time slot. The other way is by establishing a direct connection, that is 

switching (S), directly to an output link or line in the same time slot without delay. 

When viewed from an input or output this high speed time slot switching is random access 

multiplexing, with a restriction that no more than one input or output may be simultaneously 

connected. In some systems this is known as “time multiplex switching (TMS)”. 

Generally switching networks are composed of T stages which are non-blocking or combinations of 

T and S stages in any order. Network types are denoted by the order of the stages, such as T , TST, or 

STS. For specific systems some authors indicate the actual number of stages by repeated use of the 

letters, such as TSSSST In larger systems to insure service continuity in the presence of device 

failure, part or all of the network is made redundant. 

An important area that has been explored in depth deals with the subject of pulse timing or 

synchronization, to ensure that switching centers and transmission lines are able to operate 

together so that frames of pulses will not be lost or repeated. Most important in this process is 

the distribution of standard frequencies from which all pulses generated in the network may be 

derived. Pulses derived from a national-wide standard trigger or drive the transmission and 

switching system pulse generators, known as “clocks”. In some systems the clocks are 



synchronized with pulses derived by averaging the pulse rates of all incoming digital 

transmission lines. 

 
4.5 TIME MULTIPLEXED SPACE SWITCHING 
 
In time division switches where an inlet or an outlet corresponds to single subscriber line with one 

speech sample appearing every 125µs on the line. Such switches are used in local exchanges. We 

now consider switches that are required in transit exchanges. Here, inlets and outlets are the trunks 

which carry time division multiplexed data streams. We call such switches time multiplexed 

switches. 

A time multiplexed time division space switch is shown in figure. There are N incoming trunks and 

N outgoing trunks, each carrying a time division multiplexed stream of M samples per frame. Each 

frame is of 125 µs time duration. In one frame time, a total number of MN speech samples have to be 

switched. One sample duration, 125/M microseconds, is usually referred to as a time slot. In one time 

slot, N samples are switched. In case of output controlled switch (which is our present case), the 

output is cyclically scanned. There is a 1-to-M relationship between the outlets and the control 

memory locations, i.e., there are M locations in the control memory corresponding to each outlet. 
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The control memory has MN words, If we view the control memory as M blocks of N words each, a 

location address may be specified in a two dimensional form, (i,j), where i is the block address and j 

is the word within the block. We have 1 ≤ i ≤ M and 1 ≤ j ≤ N. The block address i corresponds to 

the time slot i and the word address j to outlet j. The first N locations of control memory correspond 

to the first time slot, the next N locations, i.e., Locations N+1 to 2N when addressed linearly, or 

locations (2,1) to (2,N) when addressed in a two dimensional form, correspond to the time slot 2 and 

so on. Therefore, if location (i,j) contains an inlet address k, it implies that inlet k is connected to the 

outlet j during the time slot i . The number of trunks that can be supported on this switch is given by     

N= 125/ Mts

Where  ts is the switching time including memory access time per inlet-outlet pair. The cost of the 

switch is estimated as 

C = No. of switches + No. of memory words 

    = 2N + MN 

The cost of an equivalent single-stage space division network is (MN)2. 
 
 
4.6 TIME MULTIPLEXED TIME SWITCH 
 

Unlike time multiplexed space switches, time multiplexed time switches permit time slot interchange 

(TSI) of sample values. In TSI, a speech sample input during one time slot may be sent to the output 

during a different time slot. Such an operation necessarily implies a delay between the reception and 

transmission of a sample. We illustrate the principle of TSI by considering a time switch with one 

incoming trunk and one outgoing trunk as shown in figure. M channels are multiplexed on each 

trunk. The switch is organized in the sequential write/random read fashion. The time slot duration is 

given by 

 tTS = 125/M 

The time slot clock runs at the time slot rate, i.e. at the rate of one pulse every 125/M microseconds. 

The time slot counter is incremented by one at the end of each time slot. The contents of the counter 

provides location addresses for the data memory and the control memory. Data memory and control 

memory access takes place simultaneously in the beginning of the time slot. Thereafter contents of 

the control memory are used as the address of the data memory and the data is read out to output 

trunk. The operation carried in one time slot is depicted in figure. The input sample is available for 

reading in at the beginning of the time slot and the sample is ready to be clocked in on the output 

stream at the end of time slot. Even if there is no time slot interchange, a sample is delayed by a 

minimum of one time slot in passing from the input stream to the output stream because of the 

storage action. In other words a time slot switch may be considered to have an inherent time delay of 



one time slot. In effect, the output stream is delayed by tTS microseconds when compared to 

incoming data stream. Depending on the output time  
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slot to which an input slot contents are switched, the sample experiences the delay in the range of tTS 

to M tTS microseconds. In the example entries, shown in the control memory of figure, the first 

location contains the value 1. This implies that the contents of input time slot 1 is switched to output 

time slot 1. The sample, in this case, experiences a delay of tTS microseconds. The second location of 

the control memory contains the value 7 and, therefore, the input time slot 7 is switched to output 

time slot 2. This sample experiences a delay of ((M – 7) + 2 + 1) tTS or (M - 4) tTS microseconds. 

Output time slot 3 carries the contents of input time slot 4 and the delay experienced by the sample is 

(M – (4-3) + 1) tTS or MtTS, i.e. 125 microseconds. There are two sequential memory accesses per 

time slot and hence the time constraint may be stated as 

tTS = 2tm,  125 = 2Mtm. 
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where tm is the access time of the memory modules in microseconds. When there is a two-way traffic 

and the network is non-folded, another set of data and control memories is used. In the second 

control memory, the locations 1, 7 and 4 contain the values 1, 2 and 3 respectively, corresponding to 

the sample entries shown in figure. When the 125µs cycle is complete, the values in the input time 

slots 1, 7 and 4 are interchanged with the output time slots 1,2 and 3 respectively. When the network 

is folded, there is only one set of data and control memories even for two way traffic. For the 

example shown in figure, control memory locations of 7 and 4 contain the values 2 and 3 

respectively. When the 125µs cycle is complete, the values in the time slots 7 and 2 and the time 

slots 3 and 4 are interchanged. For a folded network, transferring the data between the same input 

and output slots, e.g. from input slot 1 to output slot 1, is not relevant. 

Since there are no switching elements in this configuration, the cost is equal to the number of 

memory locations. There are M locations each in the control and in the data memory. Therefore, the 

cost is given by  C = 2M units. 

 

4.7 SWITCH FABRICS 
• Basic concepts 

• Time and space switching 

• Two stage switches 

• Three stage switches 

 4.7.1 BASIC CONCEPTS 

                            • Accessibility 

                            • Blocking 

                            • Complexity 

                            • Scalability 

                            • Reliability 

                            • Throughput 
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4.7.1.1    Accessibility 

– A network has full accessibility (=connectivity) when each inlet can be connected to each 

outlet (in case there are no other I/O connections in the network) 

– A network has a limited accessibility when the above given property does not exist 

– Interconnection networks applied in today’s switch fabrics usually have full accessibility 

 
Example of full accessibility                Example of limited accessibility 
 
 

 
 
4.7.1.2   Blocking 
 
Blocking is defined as failure to satisfy a connection request and it depends strongly on the 
combinatorial properties of the switching networks. 
 

 
 
• Non-blocking - a path between an arbitrary idle inlet and arbitrary idle outlet can always be 

established independent of network state at set-up time 

• Blocking - a path between an arbitrary idle inlet and arbitrary idle outlet cannot be established 

owing to internal congestion due to the already established connections 

• Strict-sense non-blocking - a path can always be set up between any idle inlet and any idle outlet 

without disturbing paths already set up 

• Wide-sense non-blocking - a path can be set up between any idle inlet and any idle outlet without 

disturbing existing connections, provided that certain rules are followed. These rules prevent network 

from entering a state for which new connections cannot be made. 

• Rearrangeably non-blocking - when establishing a path between an idle inlet and an idle outlet, 

paths of existing connections may have to be changed (rearranged) to set up that connection 
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4.7.1.3   Complexity 
 
Complexity of an interconnection network is expressed by cost index of switching network. 

Traditional definition of cost index gives the number of cross-points in a network. This is used to 

be a reasonable measure of space division switching systems. 

Nowadays cost index alone does not characterize cost of an interconnection network for broadband 

applications. 

VLSIs and their integration degree has changed the way how cost of a switch fabric is formed 

(number of ICs, power consumption). Management and control of a switching system has a 

significant contribution to cost. 

 
Cost index of an 8x8 crossbar            Cost index of an 8x8 banyan 
is 64 (cross-points)                              is 12x4= 48 (cross-points) 
 

 
 
4.7.1.4   Scalability 
 
Scalability of a switching system has become a key parameter in choosing a switch fabric 

architecture due to constant increase of transport links and data rates on links. Scalability describes 

ability of a system to evolve with increasing requirements 

Issues that are usually matter of scalability are: 

– number of switching nodes 

– number of interconnection links between nodes 

– bandwidth of interconnection links and inlets/outlets 

– throughput of switch fabric 

– buffering requirements 
– number of inlets/outlets supported by switch fabric 

 
Example of scalability: 

Suppose a switching equipment has room for 20 line-cards and the original design 

supports 10 Mbit/s interfaces (one per line card) and the throughput of switch fabrics is scalable from 

500 Mbit/s to 2 Gbit/s. Original switch fabric can support new line cards that implement two 10 

Mbit/s interfaces each.  
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Now when line interfaces are replaced with 100 Mbit/s rates(one per line-card), the switch fabric has 

to be updated (scaled up) to 2 Gbit/s speed. Buffering memories need to be replaced by faster (and 

possible larger) ones. Larger number of line cards implies at least new physical design. Increase of 

line rates beyond 100 Mbit/s means redesign of switch fabric. 

 
4.7.1.5    Reliability 
 
Reliability and fault tolerance are system measures that have an impact on all functions of a 

switching system. Reliability defines probability that a system does not fail within a given time 

interval provided that it functions correctly at the start of the interval. 

Availability defines probability that a system will function at a given time instant. 

Fault tolerance is the capability of a system to continue its intended function in spite of having a 
fault(s). 
Reliability measures are: 

– MTTF (Mean Time To Failure) 

– MTTR (Mean Time To Repair) 

– MTBF (Mean Time Between Failures) 

 

Relation of reliability R(t) to availability F(t) is given by F(t) = 1 – R(t). 

Relation of MTTF, MTTR and MTBF is shown in figure: 

 

 
 
 
4.7.1.6    Throughput 
 
Throughput gives forwarding/switching speed/efficiency of a switch fabric. It is measured in bits/s, 

octets/s, cells/s, packet/s, etc. Quite often throughput is given in the range (0 ... 1.0], i.e. the obtained 

forwarding speed is normalized to the theoretical 

maximum throughput. 

 
4.7.2  TIME AND SPACE SWITCHING   
 
A switched connection requires a mechanism that attaches the right information streams to each 

other. Switching takes place in the switching fabric, the structure of which depends on network’s 

mode of operation, available technology and required capacity. 

Communicating terminals may use different physical links and different time-slots, so there is an 

obvious need to switch both in time and in space domain. 
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Time and space switching are basic functions of a switch fabric. 



4.7.2.1   SPACE DIVISION SWITCHING 
 
A space switch directs traffic from input links to output links. An input may set up one connection (1, 
3, 6 and 7), multiple connections (4) or no connection (2, 5 and 8). In this type of switching a 
particular time slot is switched in the same time slot of a different channel. 
 

 
 
Cross bar switch matrix: 

Crossbar matrix introduces the basic structure of a space switch. Information flows are controlled 
(switched) by opening and closing of cross-points. 
For  m inputs and n outputs => mn cross-points (connection points). 

Only one input can be connected to an output at a time, but an input can be connected to multiple 

outputs (multi-cast) at a time. 

 

 
 
 
Example of space switch 

mx1 -multiplexer used to implement a space switch. In this type of space switch every input is fed to 

every output multiplexer and multiplexer control signals are used to select which input signal is 

connected through each multiplexer. 
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4.7.2.2    TIME DIVISION SWITCHING 
 
Time-slot interchanger is a device, which buffers m incoming timeslots, e.g. 32 time-slots of an E1 

frame, arranges new transmit order and transmits n time-slots. Time-slots are stored in buffer 

memory usually in the order they arrive or in the order they leave the switch. Additional control logic 

is needed to decide respective output order or the memory slot where an input slot is stored. 

 
 
 
 
 
 
 
 
 
 
 
 
Time Slot Interchange: 
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Time Switch Implementation : Example 1 

Incoming time-slots are written cyclically into switch memory. Output logic reads cyclically control 

memory, which contains a pointer for each output time-slot. Pointer indicates which input time-slot 

to insert into each output time-slot. 

 

 
 
Time Switch Implementation : Example 2 

Incoming time-slots are written into switch memory by using write-addresses read from control 

memory. A write address points to an output slot to which the input slot is addressed. Output time-

slots are read cyclically from switch memory. 

 

 
 
Properties of time switches 

Input and output frame buffers are read and written at wire-speed, i.e. m R/Ws for input and n R/Ws 

for output. Interchange buffer (switch memory) serves all inputs and outputs 

and thus it is read and written at the aggregate speed of all inputs and outputs. Speed of an 

interchange buffer is a critical parameter in time switches and limits performance of a switch. 

Utilizing parallel to serial conversion, memory speed requirement can be cut. 

Speed requirement of control memory is half of that of switch memory (in fact a little more than that 
to allow new control data to be updated). 
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Time Space Analogy 

A time switch can be logically converted into a space switch by setting time-slot buffers into vertical 

position => time-slots can be considered to correspond to input/output links of a space switch. But is 

this logical conversion fair ? 

 

 
 
Space-Space Analogy 

A space switch carrying time multiplexed input and output signals can be logically converted into a 

pure space switch (without cyclic control) by distributing each time-slot into its own space switch. 

 

 
 
4.7.2.3   Properties of space and time switches 

 
        SPACE SWITCHES 
• Number of cross-points (e.g. AND-gates) 
   m input x n output = mn 
   when m=n => n2

• Output bit rate determines the speed 
requirement for the switch components 
• Both input and output lines deploy “bus” 
structure so fault location is difficult 
 

 
         TIME SWITCHES 
• Size of switch memory (SM) and control 
memory (CM) grows linearly as long as 
memory speed is sufficient, i.e. SM + CM 
+ input buffering + output buffering = 2 x 2 
x number of time-slots 
• A simple and cost effective structure 
when memory speed is sufficient 
• Speed of available memory determines 
the maximum switching capacity 
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4.7.3 TWO STAGE SWITCHES 
 
Switch fabric can be implemented as a combination of space and time switches. 

This improves over all performance of switch fabric. 

Two stage switches can be of following types: 

• Time-Time (TT) switch 

• Time-Space (TS) switch 

• Space-Time (ST) switch 

• Space-Space (SS) switch 

TT-switch gives no advantage compared to a single stage T-switch. 

SS-switch increases blocking probability. 

ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary   

      bus, e.g. slots from two different buses attempting to flow to a common output). 

TS-switch has low blocking probability, because T-switch allows rearrangement of time- 

      slots so that S-switching can be done blocking free. 

 

 
 

 
 
4.7.3.1   TIME MULTIPLEXED SPACE (TMS) SWITCH 
 
In this type of switch space divided inputs and each of them carry a frame of three time-slots(in this 

example). Input frames on each link are synchronized to the crossbar switch. 

A switching plane for each time-slot is there to direct incoming slots to destined output links of the 

corresponding time-slot.  

In the following figure space switch is shown as horizontal planes switching each time slot arriving. 
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Connection conflicts in a TMS switch 

If a connection request pointing to some time slot and that time slot is already occupied, then first the 

time slot is interchanged to resolve the conflict and then it is switched. 

 

 
 
4.7.3.2   TS switch interconnecting TDM links 
 
Time division switching applied prior to space switching. Incoming time-slots can always be 
rearranged such that output requests become conflict free for each slot of a frame, provided that the 
number of requests for each output is no more than the number of slots in a frame. 
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4.7.4 THREE STAGE SWITCH 
 
Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in 

any order in the output frame. If a specific input slot is to carry data of a specific output slot then a 

time-slot interchanger is needed at each output also. 

By this we have three stage switch configuration. 

In this type of configuration any time-slot on any input can be connected to any time-slot on any 
output. And blocking probability is also minimized. 
Such a 3-stage configuration is named TST-switching. 
 
 

 
                                   TST Switch 
 
4.7.4.1   Three stage switch combinations 
 
There are other combinations also possible for three stage switch. Possible three stage switch 

combinations are: 

• Time-Time-Time (TTT) ( not significant, no connection from PCM to PCM) 

• Time-Time-Space (TTS) (=TS) 

• Time-Space-Time (TST) 
• Time-Space-Space (TSS) 
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• Space-Time-Time (STT) (=ST) 

• Space-Time-Space (STS) 

• Space-Space-Time (SST) (=ST) 

• Space-Space-Space (SSS) (not significant, high probability of blocking) 

• Three interesting combinations TST, TSS and STS 

 
4.7.4.2   Time-Space-Space switch 

Time-Space-Space switch can be applied to increase switching capacity 

 
 

 
 
4.7.4.3   Space-Time-Space switch 
 
Space-Time-Space switch has a high blocking probability (like ST-switch) - not a    desired feature 
in public networks. 
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 5.            IMPLEMENTATION OF TIME AND SPACE SWITCH 
 
 
5.1 IMPLEMENTATION OF TIME SWITCH 
 
To achieve the functionality of time switch, the incoming data is written into data memory serially 

and read from data memory according to the addresses provided by control memory. For our case we 

consider an incoming PCM data frame of 32 bytes, which is written into data memory 1 with the 

same clock on which data is coming. Addresses are provided by a counter running with the same 

clock. So data memory capacity is of  32 X 8. Now depending upon which slot should come first 

locations of control memory is written by processor. Control memory is a dual port memory, so at 

the same time it can be written by processor from one port and read by addresses provided by a 

counter from other port. This counter runs with the same clock as of data rate. Control memory is of 

32 X 5. 

Arrangement is done so that when incoming data frame is being written into data memory 1, data for 

output should be read from data memory 2 and when incoming data frame is being written into data 

memory 2, data for output should be read from data memory 1. 

 

5.1.2 FUNCTIONAL DIAGRAM OF TIME SWITCH 
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Single port block memories of 32 X 8 for Data Memories and dual port block memory of 32 X 5 for 

Control Memory were generated by Xilinx CoreGen. VHDL code for time switch is written by 

instantiating these memories. 

 

5.2 IMPLEMENTATION OF SPACE SWITCH 

To achieve the functionality of space switch, the incoming data is given to the input of multiplexers. 

We have chosen four multiplexers for a 4 X 4 space switch. 
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Control signals for the multiplexers are provided by control memory. There are four buses going to 

each multiplexers so we need two control signals for each multiplexer. So, total eight control signals 

are needed per time slot. Control memory capacity is of 32 X 8. Because there are 32 slots and eight 

control signals per slot. Control memory is a dual port memory, so at the same time it can be written 

by processor from one port and read by addresses provided by a counter from another port. This 

counter runs with the same clock as of data rate. Thus we can change the space switch configuration 

on per time slot basis, this type of space switch is called Time Multiplexed Space Switch. 

5.2.2 FUNCTIONAL DIAGRAM OF SPACE SWITCH  
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Dual port block memory of 32 X 8 for Control Memory was generated by Xilinx CoreGen software. 

VHDL code for space switch switch is written by instantiating this memory. 
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5.3 VHDL CODES 
5.3.1 PROJECT HEIRARCHY 

 

 

•  ‘tswitch’ is entity of time switch. ‘tb_tswitch’ is test bench of ‘tswitch’. It uses xilinx coregen 

component ‘conmem’ and ‘dataram’ instantiated by ‘conmem32x5’ and ‘datamem’. 

• ‘sswitch’ is entity of space switch. ‘tb_sswitch’ is test bench of ‘sswitch’. It uses xilinx coregen 

component ‘spswmem’ instantiated by ‘swmem32x8’. 

• ‘tstswitch’ is 4x4 time-space-time switch instantiating ‘tswitch’ and ‘sswitch’. ‘tb_tstswitch’ is 

its test bench. 

 

5.3.2 VHDL CODE OF TST SWITCH 
------------------------------------------------- 
-- Company:  
-- Engineer: Praveen 
-- Create Date:    13:45:49 06/21/06 
-- Design Name:     
-- Module Name:    tstswitch - Behavioral 
-- Project Name:    
-- Target Device:   
-- Tool versions:   
-- Description: 
-- Dependencies: 
-- Revision: 
-- Revision 0.01 - File Created 
-- Additional Comments: 
-------------------------------------- 
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library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity tstswitch is 
    Port ( ip1 : in std_logic_vector(7 downto 0); 
           ip2 : in std_logic_vector(7 downto 0); 
           ip3 : in std_logic_vector(7 downto 0); 
           ip4 : in std_logic_vector(7 downto 0); 
           op1 : out std_logic_vector(7 downto 0); 
           op2 : out std_logic_vector(7 downto 0); 
           op3 : out std_logic_vector(7 downto 0); 
           op4 : out std_logic_vector(7 downto 0); 
           reset : in std_logic; 
           clkin : in std_logic; 
           proc_addr : in std_logic_vector(8 downto 0); 
           proc_datain : in std_logic_vector(7 downto 0); 
           proc_dataout : out std_logic_vector(7 downto 0); 
           proc_clk : in std_logic; 
           proc_rwb : in std_logic; 
           proc_csb : in std_logic); 
end tstswitch; 
 
architecture Behavioral of tstswitch is 
 
component tswitch is 
    Port ( proc_addr : in std_logic_vector(4 downto 0); 
           proc_data_in : in std_logic_vector(7 downto 0); 
           proc_data_out : out std_logic_vector(7 downto 0); 
           csb : in std_logic; 
           rwb : in std_logic; 
           proc_clk : in std_logic; 
           reset : in std_logic; 
           data_in : in std_logic_vector(7 downto 0); 
           data_out : out std_logic_vector(7 downto 0); 
     count_out : out std_logic_vector(4 downto 0); 
     con_mem_data :  out std_logic_vector(4 downto 0); 
           clk : in std_logic); 
end component; 
 
component sswitch is 
    Port ( addr_sw : in std_logic_vector(4 downto 0); 
           din_sw : in std_logic_vector(7 downto 0); 
           dout_sw : out std_logic_vector(7 downto 0); 
           clk_sw : in std_logic; 
           rwb_sw : in std_logic; 
           csb_sw : in std_logic; 
           ip1 : in std_logic_vector(7 downto 0); 
           ip2 : in std_logic_vector(7 downto 0); 
           ip3 : in std_logic_vector(7 downto 0); 
           ip4 : in std_logic_vector(7 downto 0); 
           op1 : out std_logic_vector(7 downto 0); 
           op2 : out std_logic_vector(7 downto 0); 
           op3 : out std_logic_vector(7 downto 0); 
           op4 : out std_logic_vector(7 downto 0); 
           count_out : out std_logic_vector(4 downto 0); 
     clkin : in std_logic; 
     reset : in std_logic); 
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end component; 
 
signal csb1,csb2,csb3,csb4,csb5 : std_logic; 
signal csb6,csb7,csb8,csb9      : std_logic; 
signal iip1,iip2,iip3,iip4 : std_logic_vector(7 downto 0); 
signal oop1,oop2,oop3,oop4 : std_logic_vector(7 downto 0); 
signal count_out1,count_out2,count_out3:std_logic_vector(4 downto 0); 
signal count_out4,count_out5,count_out6:std_logic_vector(4 downto 0); 
signal count_out7,count_out8,count_out9:std_logic_vector(4 downto 0); 
signal con_mem_data1,con_mem_data2 :std_logic_vector(4 downto 0); 
signal con_mem_data3,con_mem_data4 :std_logic_vector(4 downto 0); 
signal con_mem_data5,con_mem_data6 :std_logic_vector(4 downto 0); 
signal con_mem_data7,con_mem_data8 :std_logic_vector(4 downto 0); 
signal chipsel :std_logic_vector(3 downto 0); 
 
begin  --of architecture 
 
 chipsel(3 downto 0) <= proc_addr(8 downto 5); 
 
process(chipsel) --generating enble signals for different memories 
begin 
case chipsel is 
when "0000" => csb1<='0';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
when "0001" => csb1<='1';csb2<='0';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
when "0010" => csb1<='1';csb2<='1';csb3<='0';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
when "0011" => csb1<='1';csb2<='1';csb3<='1';csb4<='0';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
when "0100" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='0'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
when "0101" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='0';csb7<='1';csb8<='1';csb9<='1'; 
when "0110" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='0';csb8<='1';csb9<='1'; 
when "0111" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='0';csb9<='1'; 
when "1000" => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='0'; 
when others => csb1<='1';csb2<='1';csb3<='1';csb4<='1';csb5<='1'; 
               csb6<='1';csb7<='1';csb8<='1';csb9<='1'; 
end case; 
end process; 
 
-- instantiating eight time switches and one space switch 
-- one time switch each for four incoming and four outgoing buses 
 
ts1 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb1 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => ip1 , 
  data_out => iip1 , 
  count_out => count_out1, 
  con_mem_data => con_mem_data1, 
  clk => clkin ); 
 
ts2 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
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  proc_data_out => proc_dataout, 
  csb => csb2 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => ip2 , 
  data_out => iip2 , 
  count_out => count_out2, 
  con_mem_data => con_mem_data2, 
  clk => clkin ); 
 
ts3 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb3 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => ip3 , 
  data_out => iip3 , 
  count_out => count_out3, 
  con_mem_data => con_mem_data3, 
  clk => clkin ); 
 
ts4 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb4 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => ip4 , 
  data_out => iip4 , 
  count_out => count_out4, 
  con_mem_data => con_mem_data4, 
  clk => clkin ); 
 
ts5 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb5 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => oop1 , 
  data_out => op1 , 
  count_out => count_out5, 
  con_mem_data => con_mem_data5, 
  clk => clkin ); 
 
ts6 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb6 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => oop2 , 
  data_out => op2 , 
  count_out => count_out6, 
  con_mem_data => con_mem_data6, 
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  clk => clkin ); 
 
ts7 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb7 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => oop3 , 
  data_out => op3 , 
  count_out => count_out7, 
  con_mem_data => con_mem_data7, 
  clk => clkin ); 
 
ts8 : tswitch PORT MAP( 
  proc_addr => proc_addr(4 downto 0), 
  proc_data_in => proc_datain, 
  proc_data_out => proc_dataout, 
  csb => csb8 , 
  rwb => proc_rwb, 
  proc_clk => proc_clk, 
  reset => reset, 
  data_in => oop4 , 
  data_out => op4 , 
  count_out => count_out8, 
  con_mem_data => con_mem_data8, 
  clk => clkin ); 
 
ss1 : sswitch PORT MAP( 
  addr_sw => proc_addr(4 downto 0), 
  din_sw => proc_datain, 
  dout_sw => proc_dataout, 
  clk_sw => proc_clk, 
  rwb_sw => proc_rwb, 
  csb_sw => csb9 , 
  ip1 => iip1, 
  ip2 => iip2, 
  ip3 => iip3, 
  ip4 => iip4, 
  op1 => oop1, 
  op2 => oop2, 
  op3 => oop3, 
  op4 => oop4, 
  count_out => count_out9, 
  clkin => clkin, 
  reset => reset ); 
 
end Behavioral; 
 
-------------------------------------------- 
 

5.3.3 VHDL CODE OF TIME SWITCH 

 
----------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
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--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity tswitch is 
    Port ( proc_addr : in std_logic_vector(4 downto 0); 
           proc_data_in : in std_logic_vector(7 downto 0); 
           proc_data_out : out std_logic_vector(7 downto 0); 
           csb : in std_logic; 
           rwb : in std_logic; 
           proc_clk : in std_logic; 
           reset : in std_logic; 
           data_in : in std_logic_vector(7 downto 0); 
           data_out : out std_logic_vector(7 downto 0); 
     count_out : out std_logic_vector(4 downto 0); 
     con_mem_data :  out std_logic_vector(4 downto 0); 
           clk : in std_logic); 
end tswitch; 
 
architecture Behavioral of tswitch is 
 
component datamem is 
    Port ( datain : in std_logic_vector(7 downto 0); 
           clk : in std_logic; 
           dataout : out std_logic_vector(7 downto 0); 
           con_datain : in std_logic_vector(4 downto 0); 
           reset : in std_logic); 
end component; 
 
component conmem32x5 is 
    Port ( proc_addr : in std_logic_vector(4 downto 0); 
           proc_data_in : in std_logic_vector(7 downto 0); 
           proc_clk : in std_logic; 
           csb : in std_logic; 
           rwb : in std_logic; 
           proc_data_out : out std_logic_vector(7 downto 0); 
           reset : in std_logic; 
           clk : in std_logic; 
     count_out : out std_logic_vector(4 downto 0); 
           data_out : out std_logic_vector(4 downto 0)); 
end component; 
 
signal condata : std_logic_vector(4 downto 0); 
 
begin 
 
 con_mem_data <= condata ; 
 
 -- instantiating data memory 
 module1 : datamem 
        port map ( 
           datain => data_in, 
           clk    => clk, 
           dataout => data_out, 
           con_datain => condata, 
           reset =>  reset);  
   
 -- instantiating control memory 
 module2 : conmem32x5 
      port map ( 
     proc_addr => proc_addr, 
           proc_data_in => proc_data_in, 
           proc_clk => proc_clk, 
           csb => csb , 
           rwb => rwb , 
           proc_data_out => proc_data_out, 
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           reset => reset, 
           clk => clk , 
     count_out => count_out , 
           data_out => condata);   
             
end Behavioral; 
 
 
5.3.4 VHDL CODE OF SPACE SWITCH 
 

------------------------------------------ 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity sswitch is 
    Port ( addr_sw : in std_logic_vector(4 downto 0); 
           din_sw : in std_logic_vector(7 downto 0); 
           dout_sw : out std_logic_vector(7 downto 0); 
           clk_sw : in std_logic; 
           rwb_sw : in std_logic; 
           csb_sw : in std_logic; 
           ip1 : in std_logic_vector(7 downto 0); 
           ip2 : in std_logic_vector(7 downto 0); 
           ip3 : in std_logic_vector(7 downto 0); 
           ip4 : in std_logic_vector(7 downto 0); 
           op1 : out std_logic_vector(7 downto 0); 
           op2 : out std_logic_vector(7 downto 0); 
           op3 : out std_logic_vector(7 downto 0); 
           op4 : out std_logic_vector(7 downto 0); 
           count_out : out std_logic_vector(4 downto 0); 
     clkin : in std_logic; 
     reset : in std_logic); 
end sswitch; 
 
architecture Behavioral of sswitch is 
 
component swmem32x8 is 
    Port ( addra_sw : in std_logic_vector(4 downto 0); 
           dina_sw : in std_logic_vector(7 downto 0); 
           douta_sw : out std_logic_vector(7 downto 0); 
           clka_sw : in std_logic; 
           rwba_sw : in std_logic; 
           csba_sw : in std_logic; 
     addrb_sw : in std_logic_vector(4 downto 0); 
     doutb_sw : out std_logic_vector(7 downto 0); 
           clkb_sw : in std_logic); 
  
end component; 
 
signal   addra_sw :  std_logic_vector(4 downto 0); 
signal   dina_sw :  std_logic_vector(7 downto 0); 
signal   douta_sw : std_logic_vector(7 downto 0); 
signal   clka_sw :  std_logic; 
signal   rwba_sw :  std_logic; 
signal   csba_sw :  std_logic; 
signal   count :  std_logic_vector(4 downto 0); 
signal   ctrl  : std_logic_vector(7 downto 0); 
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signal   ctrl1,ctrl2,ctrl3,ctrl4:std_logic_vector(1 downto 0); 
 
begin 
 -- instantiating space switch control memory 
swmemory: swmem32x8 port map 
      (    addra_sw => addr_sw , 
           dina_sw  => din_sw , 
           douta_sw => dout_sw  , 
           clka_sw  => clk_sw  , 
           rwba_sw  => rwb_sw , 
           csba_sw  => csb_sw , 
     addrb_sw => count , 
           doutb_sw => ctrl  , 
           clkb_sw  => clkin  ); 
 
 
process(reset,clkin) 
begin 
 if reset ='0' then count <= "00000"; 
 elsif clkin'event and clkin='1' then 
 count <= count + 1; 
 end if; 
end process; 
 
process(ctrl1,ip1,ip2,ip3,ip4) 
begin    -- implementing multiplexers 
case ctrl1 is 
when "00" => op1 <= ip1 ; 
when "01" => op1 <= ip2 ; 
when "10" => op1 <= ip3 ; 
when "11" => op1 <= ip4 ; 
when others => null ; 
end case; 
end process; 
process(ctrl2,ip1,ip2,ip3,ip4) 
begin 
case ctrl2 is 
when "00" => op2 <= ip1 ; 
when "01" => op2 <= ip2 ; 
when "10" => op2 <= ip3 ; 
when "11" => op2 <= ip4 ; 
when others => null ; 
end case; 
end process; 
process(ctrl3,ip1,ip2,ip3,ip4) 
begin 
case ctrl3 is 
when "00" => op3 <= ip1 ; 
when "01" => op3 <= ip2 ; 
when "10" => op3 <= ip3 ; 
when "11" => op3 <= ip4 ; 
when others => null ; 
end case; 
end process; 
process(ctrl4,ip1,ip2,ip3,ip4) 
begin 
case ctrl4 is 
when "00" => op4 <= ip1 ; 
when "01" => op4 <= ip2 ; 
when "10" => op4 <= ip3 ; 
when "11" => op4 <= ip4 ; 
when others => null ; 
end case; 
end process; 
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ctrl1 <= ctrl(1 downto 0); 
ctrl2 <= ctrl(3 downto 2); 
ctrl3 <= ctrl(5 downto 4); 
ctrl4 <= ctrl(7 downto 6); 
count_out <= count; 
 
end Behavioral; 
 
 

5.4 SIMULATION RESULTS 

• TIME SWITCHING 

• SPACE SWITCHING 

• TIME-SPACE SWITCHING 

• TIME-SPACE-TIME SWITCHING 1 

• TIME-SPACE-TIME SWITCHING 1 

• TIME-SPACE-TIME SWITCHING 1 

• PROCESSOR ACCES 1 

• PROCESSOR ACCES 2 
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6. PRACTICAL UTILITY AND FUTURE ENHANCEMENTS 
 
 
6.1 IMPLEMENTED ADPLL 

Implemented ADPLL is a very optimize circuit, hardware wise. This type of circuit can 

practically be used anywhere, where there is need of locking clock with standard reference 

clock. This type of ADPLL is very useful when the PLL is to be fabricated inside an 

Integrated Circuit or to be programmed inside an FPGA or PLD. 

Presently the ADPLL is designed in keeping standard E1 (2.048 Mbps) bit rate for PCM 

frames. For this frequency, a standard high frequency oscillator of 65.536 MHz is used (2.048 

x 26 = 65.536).Thus registers in loop filter are chosen to be of 6 bits each. Maximum output 

jitter in this type of ADPLL is one clock period of standard high frequency clock. 

Future enhancements can be done by upgrading this design for other standard bit rates also, 

as is already done for 8.192 Mbps in the present design. Moreover maximum output jitter can 

also be reduced by using higher bit rate standard clock. 

For this only register bits of the registers of loop filter are to be increased and rest of the 

design will remain same. Number of register bits can be calculated from the formula: 

 (output clock rate) x 2(no. of register bits) = Standard high frequency clock rate. 

 

6.2 IMPLEMENTED TST SWITCH 

By the elements “time switch” and “space switch” a complete TST switch is implemented. 

 
 

TIME 
SWITCH 1 

TIME 
SWITCH 2 

TIME 
SWITCH 3 

TIME 
SWITCH 4 

TIME 
SWITCH 5 

TIME 
SWITCH 6 

TIME 
SWITCH 7 

TIME 
SWITCH 8 

 
 
 
 
 
 
SPACE 
SWITCH 
   4 X 4 

IMPLEMENTED TST SWITCH

OUTPUT 
BUSES 

INPUT 
BUSES 
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Presently the time and space switches are designed according to PCM frames i.e., 32 bytes 

per frame. This design can be used in any system where there is need to interchange time 

slots in PCM frame at 2.048 Mbps rate. This design can also be used while mapping E1 

(2.048 Mbps) tributaries on higher bit rate synchronous frames. This design can also be used 

in ISDN systems, after the line interface unit, for switching or interchanging time slots. 

This system can be enhanced for more number of buses (presently it is for four input and four 

output buses only). 

This system can also be enhanced for larger frame sizes and other bit rate signals. 

These enhancements can easily be implemented in present framework of VHDL code. For 

more number of buses, more time switch units are needed and capacity of space switch is to 

be increased. For larger frames, memory requirements at time and space switch units will be 

more.  
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