
A

Dissertation

on

Design And Implementation of Semantic Search Tool With Automatic

Document Classification and Summarization

Submitted in partial fulfilment of the requirement

For the award of Degree of

MASTER OF ENGINEERING

(Computer Technology and Application)

Submitted by

NITIN NIZHAWAN
(University Roll No. 10191)

Under the Guidance of

Dr. DAYA GUPTA

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

BAWANA ROAD, NEW DELHI

(DELHI UNIVERSITY)

June-2008

ABOUT ORGNIZATION

About NIC

National Informatics Center (NIC)

National Informatics Centre (NIC) of the Department of Information Technology is providing

network backbone and e-Governance support to Central Government, State Governments, UT

Administrations, Districts and other Government bodies. It offers a wide range of ICT services

including Nationwide Communication Network for decentralized planning, improvement in

Government services and wider transparency of national and local Governments. NIC assists in

implementing Information Technology Projects, in close collaboration with Central and State

Governments, in the areas of (a) Centrally sponsored schemes and Central sector schemes, (b)

State sector and State sponsored projects, and (c) District Administration sponsored projects.

NIC endeavours to ensure that the latest technology in all areas of IT is available to its users.

The organizational set up of NIC encompasses its Headquarters at New Delhi, State Units in all

the 28 State capitals and 7 Union Territory Headquarters and District centers in almost all the

Districts of India. The Organization employs a large pool of efficient technical manpower.

At the NIC Headquarters, a large number of Application Divisions exist which provide total

Informatics Support to the Ministries and Departments of the Central Government. NIC

computer cells are located in almost all the Ministry Bhawans of the Central Government and

Apex Offices including the Prime Minister’s Office, the Rashtrapati Bhawan and the Parliament

House.

About DCE

Delhi College of Engineering

With a history stretching back over 65 years, providing technical education within a

modern educational environment and strong academic staff, DCE is strongly identified with

engineering education in India. Since its inception and foundation, DCE has constantly lead the

way in reform movements, and in the latter era of the Republic of India, DCE has assumed

pivotal roles in the reconstruction, modernization, and administration of the society. The efforts

and expertise of DCE graduates have been major contributors in the planning and construction of

India's infrastructure. DCE is an institution which defines and continues to update methods of

engineering and architecture in India. It provides its students with modern educational facilities

while retaining traditional values, as well as using its strong industrial contacts to mold young,

talented individuals who can compete in the global arena. The aim of DCE is to rank among

leading universities globally. Consequently, DCE’s mission is to educate individuals to be

competitive not only in India, but all over the world. Within an intensely competitive

environment, the college has adopted a dynamic, global, high-quality, creative and

communicative approach in education, as well as research and development. Keeping abreast

with modern developments, DCE is constantly restructuring itself and renovating its physical

infrastructure as well as its research and education facilities.

Vision

To be a world class knowledge enterprise striving for academic & professional excellence in

technical education, research and development and service to the industry and society

Objectives

• To provide world class quality technical education in engineering and science disciplines.

• To promote R&D in frontal areas of science and technology.

• To nurture innovative and creative abilities of students and faculty.

• To foster enterprising spirit among the students.

• To establish facilities for technology incubation and promote techno-entrepreneurship.

• To network with leading national and international institutions, R&D organization and

professional bodies.

• To develop faculty competence to meet the challenges of rapidly changing technological

environment.

• To promote industrial consultancy and sponsored R&D.

• To strengthen relations with the alumni and involve them in the development of the

institute.

• To transfer the benefits of S&T advancement to the society

CERTIFICATE

 Date: ___________

This is certified that the major project report entitled “Design and Implementation of Semantic

Search Tool With Automatic Document Classification and Summarization” is the work of

Nitin Nizhawan (University Roll No. 10191) a student of Delhi College of Engineering. This

work was completed under my direct supervision and guidance and forms a part of the Master of

Engineering (Computer Technology and Application) course and curriculum. He has completed

his work with utmost sincerity and diligence.

The work embodied in this major project has not been submitted for the award of any other

degree to the best of my knowledge

DELHI COLLEGE OF ENGINEERING

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

(Dr. DAYA GUPTA)

HOD & PROJECT GUIDE

(Dept. of Computer Engineering)

DELHI COLLEGE OF ENGINEERING

ACKNOWLEDGEMENT

This work is not a solo endeavour but rather the amalgamate consequence of contribution

from various people and sources. Therefore, it would be discourteous to present it without

acknowledging their valuable guidance.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my

learned supervisors Dr. Daya Gupta, Mrs. Rama Hariharan (technical director NIC) for their

invaluable guidance, encouragement and patient reviews. Their continuous inspiration only has

made me complete this dissertation. All of them kept on boosting me time and again for putting

an extra ounce of effort to realize this work.

I would also like to take this opportunity to present my sincere regards to my teachers

Prof. D.Roy Choudhary, Mrs. Rajni Jindal, Dr. S. K. Saxena and Mr. Manoj Sethi for their

support and encouragement.

Finally we are also thankful to my classmates for their unconditional support and

motivation during this work. Last but not least, I special thanks to the crowd who are active in

the field of Semantic Web.

(NITIN NIZHAWAN)

Master in Engineering

(Computer Technology & Application)

Dept. of Computer Engineering

DELHI COLLEGE OF ENGINEERING

BRIEF CONTENTS

 ABOUT ORGANIZATION 2

 CERTIFICATE 5

 ACKNOWLEDGEMENT 6

 BRIEF INDEX 7

 TABLE OF CONTENTS 8

 LIST OF FIGURES 11

 ABSTRACT 15

CHAPTER 1 INTRODUCTION 16

CHAPTER 2 SEMANTIC WEB TECHNOLOGIES 27

CHAPTER 3 DOCUMENT CLASSIFICATION AND SUMMARIZATION 42

CHAPTER 4 SEMANTIC SEARCH AND INDEXING 53

CHAPTER 5 TOOL ARCHITECHTURE AND DESIGN 63

CHAPTER 6 IMPLEMENTATION DETAILS 76

CHAPTER 7 CONCLUSION AND FUTURE WORK 85

 PUBLICATION FROM THESIS 87

 REFERENCES 89

 APPENDICES 91

 INDEX 102

TABLE OF CONTENTS

 ABOUT ORGANIZATION 2

 CERTIFICATE 5

 ACKNOWLEDEMENT 6

 BRIEF CONTENTS 7

 TABLE OF CONTENTS 8

 LIST OF FIGURES 11

 ABSTRACT 15

CHAPTER 1 INTRODUCTION 16

 1.1 Introduction to Semantic Web.. 16

 1.1.1 Semantic Web Vision

 1.1.2 Search in semantic web

 1.2 Proposed Research Work... 22

 1.3 Related Work... 22

 1.4 Proposed System.. 23

 1.4.1 Document Summarization

 1.4.2 Document Classification

 1.4.3 Indexing

 1.4.4 Semantic Search

 1.5 Organisation of thesis.. 25

CHAPTER 2 SEMANTIC WEB TECHNOLOGIES 27

 2.1 Overview.. 27

 2.2 Knowledge Representation and Management................................. 30

 2.2.1 RDF/RDFS

 2.2.2 Ontologies and OWL

 2.2.3 Annotation

 2.2.4 Semantic Annotation

 2.2.5 URLs and Semantic Web Architecture

 2.2.6 Information and Non-Information Resources

2.2.7 Introduction to HTTP

2.2.8 XML

CHAPTER 3 DOCUMENT CLASSIFICATION AND SUMMARIZATION 42

 3.1 Introduction to NLP... 42

 3.2 Document Classification.. 44

 3.2.1 Introduction

 3.2.2 Proposed Technique

 3.3 Document Summarization... 49

 3.3.1 Introduction

 3.3.2 Previous work in extractive summarization

 3.3.3 Word Space Model

CHAPTER 4 SEMANTIC SEARCH AND INDEXING 53

 4.1 Semantic Search... 53

 4.1.1 Main Features

 4.1.2 Types of Searches

 4.1.3 Problems in Search and Retrieval

 4.2 Indexing... 60

CHAPTER 5 TOOL ARCHITECHTURE AND DESIGN APPROACH 63

 5.1 Tool Architecture... 63

 5.2 Design Approach... 65

 5.2.1 Ontology based document repositioning (Evaluator)

 5.2.2 Indexer

 5.2.3 Summarizer

 5.2.4 Semantic Searching

CHAPTER 6 IMPLEMENTATON DETAILS 76

 6.1 Ontology Manager... 77

 6.2 Named Entity Extractor... 78

 6.3 Instance Indexer... 78

 6.4 Document Indexer.. 78

 6.5 Summarizer.. 79

 6.6 Evaluator.. 79

 6.7 Searcher... 79

 6.8 Graphical User Interface.. 79

CHAPTER 7 CONCLUSION AND FUTURE WORK 85

PUBLICATIONS FROM THESIS

87

REFERENCES

89

APPENDICES

91

APPENDIX A GATE (General Architecture for Text Engineering)............................. 91

APPENDIX B Protege.. 98

APPENDIX C Lucene ... 101

INDEX

102

LIST OF FIGURES

Figure 2.1 Semantic Web Layer Cake...31

Figure 2.2 RDF/XML syntax representation...32

Figure 2.3 Ontology Description...33

Figure 2.4 Embedded Vs Standoff Mark up..36

Figure 2.5 SW Architecture for non-information sources...38

Figure 3.1 GATE GUI...47

 Subject Object
Predicate

Figure 3.2 Semantic Annotation..48

Figure 3.3 Word Space Model...51

Figure 4.1 Inverted Index..61

Figure 4.2 Forward Index..61

Figure 4.3 Semantic Index...61

Figure 5.1 Tool Architecture..64

Figure 5.2 Document Classification Algorithm..67

Figure 5.3 Index Format..67

Figure 5.4 Summarize Algorithm... 69

Figure 5.5 Context Sensitive Search..71

Figure 5.6 Summary...72

Figure 6.1 Modular View of Tool..77

Figure 6.2 Simple Search Tab..80

Figure 6.3 Advance Search Tab...82

Figure 6.4 Indexing Tab...84

Figure A.1 GATE with ANNIE loaded... 93

Figure A.2 Annie data flow diagram... 96

Figure B.1 Protege.. 99

ABSTRACT

The web, once solely a repository for information, is evolving into a provider of services,

such as e-commerce and searching. With this huge amount of information available the Semantic

Web Technologies are one of the promising solutions for efficiently managing huge free form

data in web documents. The Semantic Web aims to enrich the existing web with a layer of

machine-interpretable metadata so that a computer program can draw conclusions predictably.

 The HTML language has a major drawback. It defines markups that define the format in

which a given text should be displayed but says nothing about the text. Thus internet user is

presented with lot of irrelevant documents by present search engines, because they simply have

no way to tell what is in the documents. More over they have no way to tell what a given word in

the document means. These problems are solved by the Semantic Web Technology.

 Enabling the web with semantic web technologies is one of the promising solutions for

efficiently managing huge free form data in web documents. We present state of art methods

available for semantically annotating documents, to index annotated documents, to provide

semantically related search options, to provide context sensitive search, to present summary of

document & to categorize documents according to “Named Entities” present in the document.

We go on to build a tool for above services. This tool has been designed as a prototype for the

plug-in of National Panchayat Portal at National Informatics Centre (NIC India) to make it as

India’s first semantic portal.

Semantic Search Tool with Automatic Document Classification and Summarization Page 16

Chapter1

INTRODUCTION

“The Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling

 computers and people to work in cooperation.”

- Tim Berners-Lee

1.1 Introduction to Semantic Web[1]

 The Internet has provided us with a new dimension in terms of seeking and retrieving

information for our various needs. Who would have thought about the vast amount of data that is

currently available electronically ten years ago? When we look back and think about what made

the Internet a success we think about physical networks, fast servers, and comfortable

browsers, just to name a few. What one might not think about, a simple but important issue is the

first version of HTML. This language allowed people to share their information in a simple but

effective way. All of a sudden, people were able to define a HTML document and put their

information piece on the Web.

The given language was sloppy and almost anybody with a small amount of knowledge

about syntax or simple programming use could define a web page.

Even when language items such as end-tags or closing brackets were forgotten, the

browser did the work and delivered the content without returning syntax errors. We believe this

Semantic Search Tool with Automatic Document Classification and Summarization Page 17

to be a crucial point when considering the success story of the Internet: give the people a simple

but effective tool with the freedom to provide their information.

Providing information is one thing, searching and retrieving information is at least as

important. Early browsers or search engines offered the opportunity to search for specific

keywords, mostly searching for strings. The user was prompted with results in a rather simple

way and had to choose the required information manually. The more data were added to the

Web, the harder the search for information became. The latest versions of search engines such

as Google provide a far more advanced search based on statistical evidences or smart context

comparisons and rank the results accordingly. However, the users still have to choose the

information they are interested in more or less manually.

Being able to provide data in a rather unstructured or semi-structured way is part of the

problems with automatic information retrieval. This is the situation behind the activities of the

W3C concerning the Semantic Web. The W3C[2] defines the Semantic Web[3][4] on their Web

page as:

“The Semantic Web is the abstract representation of data on the World Wide Web,

based on the RDF standards and other standards to be defined. It is being developed by the

W3C, in collaboration with a large number of researchers and industrial partners.”

 The same page contains a definition of the Semantic Web that is of similar importance. It

states

 “The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation[5].”

 These definitions indicate the Web of tomorrow. If data have a well-defined meaning,

engines will be able to intelligently seek, retrieve, and integrate information and generate new

knowledge to answer complex queries.

The retrieval and integration of information is the focus of this thesis.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 18

Before going into detail we would like to share some creative ideas, which can be a vision of

what we can expect from the Semantic Web.

1.1.1 Semantic Web Vision

 Bernes-Lee et al. [6] already gave us an insight of what we should be able to do with the help of

data and engines working in the Web. In addition, the following can help to see where

researchers want to arrive in the future. These ideas can be distinguished into four groups:

Short-term: The following tasks are not far away from being solved or, are already solved to a

certain extent.

Being able to reply on an email via telephone call: This requires communication abilities

between a phone and an email client. Nowadays, the first solutions are available, however,

vendors offer a complete solution with a phone and an email client that come in one package

with more or less the same software. An example is the VoiceXML package from RoadNews3.

The beauty of this point is that an arbitrary email client and an arbitrary phone can be used. The

main subject is interoperability between address databases.

Meaningful browsing support: The idea behind this is that the browser is smart enough to detect

the subject the user is looking for. If for instance, the user is looking for the program on

television for a certain day on a web page, the browser could support the user by offering similar

links to other web sites offering the same content.

Mid-term: These tasks are harder to solve and we believe that solutions will be available in the

next few years.

Planning appointments with colleagues by integrating diaries: This is a problem already tackled

by some researchers and the first solutions are available. Pages can be parsed to elicit

relevant information and through reference to published ontologies reasoning support, it is

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 19

possible to provide user assistance. However, this task is not simple and many problems still

have to be addressed. This task serves as one example of the ongoing Semantic Web Challenge

Context-aware applications: Ubiquitous computing might serve as another keyword in this

direction. Context-awareness has to deal with mobile computing, reduction of data, and useful

abstraction (e.g., digital maps in an unknown city on a PDA).

Giving restrictions for a trip and getting the schedule and the booking: The scenario behind this

is giving a computer the constraints for a vacation/trip. An agent is then supposed to check all the

information available on the Web, including the local travel agencies and make the booking

accordingly. Besides some severe technical problems, such as technical interoperability between

agencies, we also have to deal with digital signatures and trust for the actual booking at this

point. First approaches include modern travel portals such as DanCenter4 where restrictions for a

trip can be made and booking is also possible. This issue will be postponed for now.

Long-term: Tasks in this group are again more difficult and the solutions might emerge only in

the next decade.

Information exchange between different devices: Suppose, we are surfing the Web and see some

movies we are interested in which will be shown on television during the next few days.

Theoretically, we are able to directly take this information and program our VCR (e.g.,

WebTV5).

Oral communication with the Semantic Web: So far, plain commands can be given via speech

software to a computer. This task goes even further: here, we think about the discussions of

issues rather than plain commands. We also anticipate inferences and interaction.

Lawn assistant: Use satellite and weather information from the Web, background garden

knowledge issued to program your personal lawn assistant.

Never: Automatic fusion of large databases.

We can identify a number of difficult tasks that will most likely be difficult to solve. The

automatic fusion of large databases is an example for this. On the other hand, we have already

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 20

seen some solutions (or partly solutions) to the tasks that are grouped into short- and mid-term

problems (e.g., integrating diaries). The following research topics can be identified with regard

to theses ideas.

1.1.2 Search on the Web

Seeking information on the Web is widely used and will become more important as the

Web grows. Nowadays, search engines browse through the Web seeking given terms within web

pages or text documents without using ontologies.

Traditional search engines such as Yahoo are based on full-text search.

These search engines are seeking documents, which contain certain terms. In order to

give a more specific query, the user is often able to connect numerous terms with logical

connectors such as AND, OR or NOT. The program extracts the text found from the documents

and delivers the answer (usually a link to the found document) to the user. However, these search

engines also use algorithms that are based on indexing for optimization purposes. The

search engine then uses this index for seeking the answer. Yahoo has shown that this kind of

search can be sufficient if the user knows what they are looking for.

A clear disadvantage here is the fact that these search engines only search textual

documents. Also, they have problems with synonyms, homonyms or a mistake while typing.

These engines usually provide a huge amount of results that fulfill the requirement of the query,

however, most of the results are not what the user intended.

Another type of search is the similarity-based search used in search engines such as

Google. The engine is looking for documents, which contain text that is similar to a given text.

This given text could be formulated by the user who is seeking the information or can be a

document itself. The similarity is analyzed by the words used in the query and the evaluated

documents. The engine usually uses homonyms and synonyms in order to get better results.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 21

The method extracts the text corpus out of the document and reduces it to a number of

terms. A distance measure assigns the similarity to a numerical value between 0 and 1, where the

similarity is the determined by the number of corresponding terms. The advantage of this kind of

search is that there is no empty set of results and the results are ranked. A disadvantage is that

only text documents can be used. Also, the similarity is based in given words and sometimes it is

hard to find appropriate words for the search.

The main problem in these kinds of search is that the amount of results is numerous.

Also, most of the results are not accurate enough. The user has to know the terms they are

looking for and cannot search within documents other that textual-based files and web pages.

The reason for this is that uninformed search methods do not use background knowledge about

certain domains.

Intelligent search methods take this into account and use additional knowledge to get

better results. However, this requires a certain extent of modeling for the knowledge. The given

documents are annotated with extra knowledge (metadata). The search can then be extended by

search about the annotated metadata. This background knowledge can be employed for the

formulation of the query by using ontologies and inference mechanisms. Also, the user can use

this extra knowledge to generate abstract queries such as “all reports of the department X”. The

reports can be project reports, reports about important meetings, annual reports of the department

etc. With ordinary search engines the user would have to ask more than once.

Intelligent search methods also include the classical way of search. The user will get

more sophisticated results if he takes advantage of the additional knowledge. If the users do not

know the exact terms they are looking for, they can also take advantage of the extra knowledge

by using inference mechanisms of the ontology. However, this requires that the knowledge is

formulated in a certain way and inference rules need to be available. The Semantic Web provides

information with a well-defined meaning, and in the following we will use the term “search” for

“intelligent search”.

We have mentioned how intelligent search can help us to get better results. We have also

explained that ontologies are the key to this. Seeking information with ontologies adds a new

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 22

feature to the search process: we are able to use inference mechanisms in order to derive new

knowledge. The search would even be more efficient if we would be able to integrate

information from data sources. Integration in this context means that heterogeneous

information sources can be accessed and processed despite different data types, structures, and

even semantics.

1.2 Proposed Research Work

National Informatics Centre (NIC) has a project National Panchayat portal. The portal’s

aim is to collect all data and information from all Village Panchayats in India. It collects the data

from more than 200 thousand Village Panchayats in India. People upload data on the web portal

in the form of documents. Administrator analyses the files uploaded by the people of Village

Panchayats. People also submit information about the content they are submitting like the name

of author, its main topic, Title etc. These files are stored and indexed. A search engine uses this

metadata to index documents and provide search results to users.

The metadata that users upload is not sufficient for organising the huge amount of data

generated by all over India. Therefore need for the generation of semantic metadata and using

this metadata to provide for better search. And also the use of other natural language processing

techniques to improve the retrieving efficiency of the system.. Therefore we chose to make the

search engine of the portal a semantic search engine, which will allow users to easily find the

information they require, and I chose following topic of research for my thesis work.

 “Design and Implementation of Semantic Search Tool with Automatic Document

Classification and Summarization.”

1.3 Related Work

A lot of work is being done in the field of semantic web. A number of approaches are being

presented. We came across one such paper [7]. This paper presents and alternative way of

creating semantic web. It calls such web, A Soft Semantic Web[7]. This paper presents an

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 23

approach to creating semantic web without using ontology. It proposes to use statistical approach

by taking joint frequency of the keywords as the parameter. It suggests that such joint keyword

frequency can represent concepts. Another paper by Rada F. Mihalcea and Silvana I. Mihalcea

[8] propose the use of WordNet[9] to enhance the information in the documents which can be

used to increase the efficiency of information retrieval. In the Paper by Iraklis Varlamis et al [10]

propose the use link semantics to enhance the web content management. They propose to analyse

the semantics of a link in addition to link structure analysis done by major search engines.

1.4 Proposed System

We found that to meet the challenges of searching a new tool with all the functionalities

integrated together was required. Therefore we developed the tool with required techniques and

algorithms for the project. The integrated tool performs following tasks.

• Summarizing Documents.

• Classifying Annotated Documents.

• Indexing Annotated Documents.

• Providing Semantic Search

The tool that is to be described in this thesis performs all above function and it was design for the

plug-in of National Panchayat Portal at National Informatics Centre (NIC India) to make it as

India’s first semantic portal.

1.4.1 Document Summarization

The main aim of this project is make data and information easily available to the users. One

simple solution that does not use ontology and annotation is to summarize the document. The

summarization of document allows user to know what is in the document before even reading the

complete document. This summarization should be automatic because of sheer size of the data

and number of documents. The summary of the documents can then be listed along side the

search results and reducing the time user will require to reach the required document.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 24

1.4.2 Document Classification

This is another technique that would prove useful in achieving the aim mentioned above. The

idea is to classify document in categories depending upon the type of type of information they

may contain. This enables user to read only those documents that are closest to the content s/he is

looking for. The types into which document should be classified are described in the ontology.

We devise a algorithm that classifies the document into classes described in the ontology. The

algorithm ensures that the hierarchy described in the ontology is maintained after the

classification also, which allows users to choose the class depending upon the generality of the

concept they are searching for.

1.4.3 Indexing

Index is a common data structure used to speed up the searching process. In this application also

the indexing of documents war required to speed up the search later performed by the searcher.

But in this case the documents were annotated, they contain semantic information. Therefore an

index strategy was required that would effectively make use of this additional information which

can later be utilized efficiently by the search engine.

1.4.4 Semantic Search

All above features are background processes; the search is what users do. It provides a basic

search interface to the users. It provides semantic search by analysing the query of the user and

taking action depending upon how that query relates to the ontology. It allows user to give

semantic information about the keyword s/he is searching for and also provides more

information that is semantically related to the user query. This will allow user to search in a more

comprehensive manner. This feature also combines above all features and presents them to user

so that they are able to search faster.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 25

1.5 Organization of Thesis

This thesis is organized as follows

Chapter 1 gives an introduction to semantic web idea and an introduction to this thesis. It

introduces to the main aim and motivation of the thesis.

Chapter 2 describes the semantic web fundamentals with the brief description of semantic web,

RDF/RDFS[11], Ontologies[12] and its language OWL, Annotation with semantic annotation,

URL’s And Semantic web architecture, information and non-information resources, basic idea of

HTTP and XML in brief.

Chapter 3 describes the theory of document summarization and classification. It starts with an

introduction to natural language processing. In its second section it describes document classification

technique used in the project. Last section on summarization describes the summarization introduction,

history and the word space model.

Chapter 4 throws light on searching feature of the semantic web. It describes types of searching

and problems faced by current searching method and It also describes that how indexing of

document should be done to support semantic search feature.

Chapter 5 Describes in detail the architecture of the tool that we have developed. It explains

different modules, data structures and various algorithms used for semantic search, indexing,

summarization of documents and classification.

Chapter 7 covers the implementation details with the block diagram of the tools showing how

various modules communicate with each other. It also shows the state of art GUI we have

developed for the tool.

Chapter 8 Culminates the project thesis with Conclusion. It also throws light on the future

possibilities in the field on semantic web.

Publications from Thesis gives list of research papers that we wrote during our research. It also

gives their status and the conferences and journals in which they have been accepted or

communicated.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 26

References give a list of various research papers, websites, books that we have gone through

during the research

Appendices gives an overview of the tools (Protege[13],GATE[14], Lucene[15]) used in this

project.

Chapter 1: Introduction

Semantic Search Tool with Automatic Document Classification and Summarization Page 27

Chapter 2

 SEMANTIC WEB TECHNOLOGIES

“If I have seen farther than others,

 it is because I was standing on

 the shoulders of giants”

- Sir Isaac Newton (1642-1727)

This section provides a general introduction to the Semantic Web and its associated technologies.

The main components of the Semantic Web including RDF, OWL and URIs are all discussed.

An introduction is given to Open eNRICH a software tool for creation of web portals developed

by National Informatics centre (India), Ontology and Annotation.

2.1 Overview

The World Wide Web as it exists today consists of many millions of documents

accessible through The Internet. Documents can consist of text, audio, video or indeed can be of

any format that can be read on a computer. These documents are mainly produced for human

consumption, i.e. interaction by a user or simply text that can be read. Therefore the majority of

the documents on the Web are meant to be understood by humans and used by humans.

Semantic Search Tool with Automatic Document Classification and Summarization Page 28

Although the Web has provided a useful and sometimes invaluable resource, there is a potential

to make the Web even more useful than it is today. A new level of functionality could be added

to the Web if, instead of being human oriented, the web or documents on the web could be

understood by machines as well as humans. The need to make The Web machine understandable

sparked the beginning of The Semantic Web [4].

The Semantic Web is an effort, to effectively organize all of the knowledge on the Web,

Make it machine understandable using a common set of standards, make it universally available

to different forms of devices; and provide services that will help us achieve tasks that, at the

moment, require some amount of time and effort.

To give us an idea of what The Semantic Web would look like a futuristic scenario was

presented in which electronic intelligent agents communicate with each other using the Semantic

Web to automatically create doctors appointments and buy medication on prescription

(BernersLee 2001). There are many such scenarios in which The Semantic Web could fully

automate our everyday tasks. When somebody would like to go on holiday abroad, The Semantic

Web would enable the flights, travel, accommodation and entertainment to be booked

automatically. When someone would need to replace a part of their computer, they would only

need to describe that component and then all of the manufacturers and sellers would

automatically be contacted and the best priced component would be ordered. This is obviously a

very challenging goal and requires a lot of effort and research in order to make it a reality. The

approach so far has been to build each part of the ‘cake’ (see next section) piece by piece until

eventually all the different areas of research converge. During the last few

Year’s significant progress has been made in laying the foundation of The Semantic Web which

has now culminated in W3C approved specifications for knowledge representation (RDF) [11]

and ontology definition (OWL). With these specifications in place applications are now being

developed that demonstrate the potential power of The Semantic Web (Shadbolt et al. 2004),

(Karger et al. 2005), (Noy et al. 2000).

Semantic Web is being developed in order to overcome the following main limitations of the

current Web:

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 29

• No structured information - the majority of web documents has a lack of structure

regarding the representation of information;

• Ambiguity of web content - the inexistence or poor aggregation of information to specific

contexts;

• Inadequacy for automatic information transfers;

• Increasing difficulty to locate, access, present and maintain an online trustful content for

an increasing number of users;

• Inexistence of universal mechanisms able to provide the capacity to machines to

understand the information.

Semantic Web goal is not to make computers understand the human language, but to define

an universal model for the information expression and a set of inference rules that machines can

easily use in order to process and to relate the information as if they really understand it Though,

as the current Web allowed the sharing of documents among previously incompatible computers,

the Semantic Web intends to go beyond, allowing stovepipe systems, hardwired computers and

other devices to share contents embedded in different documents. The main advantages of

Semantic Web can be grouped into several features as follows:

• Allows the description and spread of the current Web, adding to it a concept layer.

• Allows machine-readable, interpretable and editable web content.

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 30

• Offers a way to enable semantic annotations that could be easily organized and found.

• Enhances search mechanisms with the use of Ontologies.

• Enables software agents to carry automatically sophisticated tasks - through the use of

smart data.

• Allows better communication between platform independent software agents.

• Enables the use of levels of trust for information.

2.2 Knowledge Representation and Management

2.2.1 RDF/RDFS

The Semantic Web is based around a core set of standards that have been developed by the W3C

(World Wide Web Consortium). This is commonly described as the Semantic Web Layer Cake’,

(BernersLee, T., 2007) and is shown in Figure

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 31

Figure 2.1 Semantic Web Layer Cake

The most important language shown in figure 2.1 is RDF [11] and its associated vocabulary

description framework RDF Schema. The Resource Description Framework is a standard that

‘provides interoperability between applications that exchange machine understandable

information on the Web’ (Lassila & Swick 2002). The specification enables things in the real

world to be described in the same way that humans use sentences to describe things.

The basic description takes the form:

<subject> <predicate> <object>

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 32

A subject takes the form of a URI (Uniform Resource Identifier), which is a way of

identifying any object in the world. It looks the same as a URL but the address which is given

may not be accessible or may not even exist on the Web, instead it is used as a way of linking

objects to some definite identifier. The predicate part, which is also a URI, describes the property

of the subject. The object is the thing that is doing the predicate. For example the sentence, ‘The

Delhi Engineering College has a student called Nitin Nizhawan’, contains a subject, ‘The Delhi

engineering College’, a predicate, ‘student’ and an object, ‘Nitin Nizhawan’. Such a sentence is

easy to translate into basic RDF/XML syntax and is expressed as:

<rdf:RDF>

<rdf:Description about="http://www.dce.ac.in”>

<akt:hasstudent>Nitin Nizhawan</akt:hasstudent>

</rdf:Description>

</rdf:RDF>

This assumes that the entity The Delhi Engineering College is represented by the URI,

“http://www.dce.ac.in”. The ‘akt:’ refers to a namespace prefix that is declared in a namespace

declaration at the beginning of the RDF document. The declaration contains the identifier where

 Subject

Object

Predicate

Figure 2.2 RDF/XML syntax representations

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 33

the schema to describe the property ‘has student’ can be found. RDF also contains many other

features such as containers and ways to make statements about statements. The RDF

specification can express a number of different properties of entities and relationships between

those entities. The RDFS specification builds on RDF to allow the creation of classes and

subclasses to be used in much the same way as they are used in taxonomic classifications.

Together, RDF and RDFS have become the accepted way of describing knowledge of specific

domains and information about real world entities.

2.2.2 Ontologies and OWL

Ontologies[12] can play a crucial role in enabling Web-based knowledge processing,

sharing, and reuse between applications. Generally defined as shared formal conceptualizations

of particular domains, ontologies provide

a common understanding of topics that can be communicated between people and application

systems.

There are some disputes in knowledge representation as to what exactly ‘Ontology' is We

consider 'Ontology' is built which includes a collection of domain-specific concepts, and it is a

system description which should include categories, relationships and constraints between them.

Ontology, Thesaurus and Taxonomy are method of the information organization.

Figure 2.3 Ontology Description

CONCEPTS

RELATIONSHIP

PROPERTIES

CONSTRAINTS

INDIVIDUALS

ON

TO

LO

GY

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 34

In the design of ontology[16][17], the basic element is a 'category', which meaning its domain.

Each category should have 'individual' and 'instance'. Their basic relation is 'inheritance' and

'implement'. In order to depict them, 'Slot' could be used. At the same time, slot is divided into

attribute and relationship and limited with facet.

In order for a machine to be able to understand objects in the real world, there needs to be a way

to represent and classify these objects. We define and associate objects in the real world by the

knowledge that we have about them. Ontology is a means of being able to store knowledge about

a particular subject area or for multiple subjects within some specific domain, and process it in

some way.

These descriptions are rather vague and there is no way of showing how ontology can be

represented in a form that a computer can read and process. Previous research has led to the

development of languages to represent ontologies such as description logics, Frame Logic (Kifer

et al. 1995) and Knowledge Interchange Format (KIF) (Genesereth et al. 1992). There have also

been full scale applications made from these languages that are in use today (Fensel, 2001).

The main use of ontology is to describe a domain using an appropriate vocabulary and define

relationships between the terms taken from the vocabulary. One of the most natural ways for

humans to classify objects is to use hierarchies. The RDFS [11] specification reflects this by

using classes and subclasses and has the ability to define properties that can be given to an

instance of a class. However, in order to establish more complex relations, such as cardinality

constraints, optional constraints or disjointness, a more complex syntax is required. This has led

to the development of OWL (Web Ontology Language) which has now become the standard for

ontology

definition. This language defines syntax for describing classes and properties as well as more

complex relationships. The OWL language ‘is designed for use by applications that need to

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 35

process the content of information instead of just presenting information to humans’ (McGuiness

& Harmelen 2004).

There are three types or ‘flavours’ of OWL: OWL Lite, OWL DL and OWL Full. OWL Lite is a

subset of OWL DL and OWL DL is a subset of OWL Full. The main difference between OWL

full and the other two flavors of OWL is that in OWL Full instances of a class can be classes,

where as in OWL Lite and OWL DL, instances of a class must be individuals. In practice, this

means that working with OWL Full is generally too complex for a logic reasoner to use for

logical deduction, but OWL DL is both complete and decidable and is therefore easier to reason

over and use.

2.2.3 Annotation

Annotation', in contemporary English, according to WordNet [18], have two meanings:

1. Note, annotation, and notation: a comment (usually added to a text).

2. Annotation, annotating -- the act of adding notes.

In linguistics (and particularly in computational linguistics) an annotation is considered a

formal note added to a specific part of the text. There are number of alternative approaches

regarding the organization, structuring, and preservation of annotations[19]. For instance, all the

markup languages (HTML, SGML, XML, etc.) can be considered schemata for embedded or in-

line annotation. On the contrary, open hypermedia systems use stand-off annotation models

where annotations are kept detached, i.e. non-embedded in the content.

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 36

Figure 2.4 Embedded Vs Standoff Mark up

We annotate data all the time: when we read a paragraph, and mark “great!” in the margin, that is

an annotation. When our text editor underlines a misspelled word, which is also an annotation.

Annotations add some information to some other information; to annotate means “to make notes

or comments”.

Another way to view annotations is metaphorically: URIs are the “atoms” of the Semantic Web

and semantic annotations are the “molecules”. The Semantic Web is about shared terminology,

achieved through consistent use of URIs. Annotations create a relationship between URIs and

build up a network of data.

2.2.4 Semantic Annotation

Semantically annotated [20] documents play an important role in semantic web by using

and inserting tags according to the meaning of the word in context. The semantic meanings and

interpretations of keywords are bound to that domain and therefore the retrieval is likely to be

more efficient.

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 37

2.2.5 URLs and Semantic Web Architecture

The base of the layer cake shown in figure is URIs and IRIs. Uniform Resource

Identifiers and their corresponding Internationalized Resource Identifiers are central to the

design and use of the Semantic Web. A URI provides a common syntax that can be used to name

or identify any entity in the world.

For example, the URI “http://id.dce.ac.in/person/6751” is an identifier used to refer to the

person ‘Nitin Nizhawan’ that has been provided by DCE. This URI uses the http naming scheme

although other schemes are available such as urn, dav, file and ftp. The universality of the URI is

a fundamental part of Web architecture. The idea of using URIs is that they should be something

into which any system’s identifiers can be mapped. Providing a name for different entities and

resources means that descriptions of objects can be easily made and published so that other

agents or systems can combine knowledge from different sources. This relies on the assumption

that every object will have a unique URI. However, anyone who wants to make statements or

give knowledge about an object can introduce their own URI to refer to that object. Thus, there

maybe many URIs that refer to the same real world entity. The relationship between a URI and a

URL is a subtle one. In the early days of the Web it was thought that the URL was a subclass or

special type of URI (W3C, 2001). The contemporary view is that a URL is only an informal

concept that provides the address of a location to access a resource. Therefore it can be said that

a URI that uses the ‘http’ scheme is also a URL.

2.2.6 Information and Non-Information Resources

The current Semantic Web architecture divides entities and objects that have URIs into

two categories: information resources and non-information resources. Non-Information resources

are those entities that cannot be represented as a byte stream or serialized into a character format.

This category of objects covers things such as cars, people, places, books and concepts that exist

in the real world and not on the Web. The category of information resources on the other hand,

consist of resources that can be

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 38

accessed on the Web such as HTML pages, JPEG images, PDF documents and RDF

descriptions. Information resources can be used to describe non-information resources in a way

that can be accessed using HTTP. The two categories of resource have been made in order to be

able to represent real world entities on the Web. The URI of an object cannot also contain the

description of that object.

In order to use URIs and make statements about the objects that the URIs refers to, a

mechanism had to be constructed so that the URI and description stay separated. The way that

this is accomplished is to introduce an HTTP 303 redirection when the URI of a resource is

resolved or dereferenced on the Web. For example, when the URI for ‘Nitin Nizhawan ’ is put

into a Web browser, the browser will issue an HTTP GET to the server, who in turn will redirect

the browser, via 303, to a description of the URI in the format that was requested by the browser.

Each description of the URI will itself have a URI so that the distinction between information

and noninformation resources is preserved. The architecture is illustrated in Figure with the URI

for ‘Nitin Nizhawan’ used together with the URIs for a text/html and rdf+xml description of the

URI.

Figure 2.5 SW Architechture for non- information sources

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 39

2.2.7 Introduction to HTTP

The Hypertext Transfer Protocol (HTTP) is a generic and stateless protocol for

distributed, collaborative, hypermedia information systems. It allows performing operations on

resources which are identified by URIs. It has been widely used for more than one decade and

now comes to version 1.1. It has four main methods:

a. Get means get the information that is identified by the request URI. Usually it is the action we

take when browsing sites and clicking hyperlinks, we ask the web server for the resources that is

identified by Request-URLs.

b. Post means make a request to the web server so that the server accepts the resources

encapsulated in the request, which will be the new subordinate of the resource identified by the

Request-URI in the Request-Line. Usually it is what we do when filling and sending the HTML

form to the server to buy something like CDs, books etc. -- making a request of the server.

c. Put means make a request that sends updated information about a resource if the resource

identified by the Request-URI exists, otherwise the URI will be regarded as a new resource. The

main difference between the POST and PUT requests lies in the different meaning of the

Request-URI. In a POST request, the URI is to identify the resource that will handle the enclosed

entity. As for the PUT request, the user agent knows what URI is its aim and the web server

cannot redirect the request to other resources. Unfortunately most web browsers don’t implement

this functionality, which makes the Web, to some extent, a one-way medium.

d. Head is similar to GET except that the server don’t return a message-body in the response.

The benefit of this method is that we can get meta-information about the entity implied by the

request without transferring the entity-body itself. We can use this method to check if hypertext

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 40

links are valid, or if the content is modified recently .By using HTTP, Semantic Web can benefit

all these functionalities for free. In addition, almost all HTTP servers and clients support all these

features.

2.2.8 XML

Extensible Markup Language (XML) is a subset of SGML (the Standard Generalized

Markup Language), i.e. it is totally compatible with SGML. But it is simple and flexible. It’s

original aim to tackle the problems of large-scale electronic publishing. However, it is also very

important in data exchange on the Web. Despite its name, XML is not a markup language but a

set of rules to build markup languages.

Markup language

“Markup is information added to a document that enhances its meaning in certain ways,

in that it identifies the parts and how they relate to each other.” - Erik T. Ray, Markup language

is kind of mechanism organizing the document with a set of symbols, e.g. this article is labeled

with different fonts for headings. Markup use similar methods to achieve its aims. Markup is

important to implement machine-readable documents since a program need to treat different part

of a document individually.

Namespaces

We can expand our vocabulary by namespaces which are groups of element and attribute

names. Suppose, if you want to include a symbol encoded in another markup language in an

XML document, you can declare the namespace that the symbol belongs to. In addition, we can

avoid the situation that two XML objects in different namespaces with the same name have

different meaning by the feature of namespaces. The solution is to assign a prefix that indicates

which namespace each element or attribute comes from. The syntax is shown below:

ns-prefix: local-name

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 41

XML Schemas

XML itself does not do anything, i.e., it is just structure and store information. But if we

need a program to process the XML document, there must be some constraints on sequence of

tags, nesting of tags, required elements and attributes, data types for elements and attributes,

default and fix values for elements and attributes and so on. XML Schema is an XML based

alternative to Document Type Definition (DTD) . There are some features of XML Schemas that

overweigh DTD:

a.) XML Schemas support data types, which brings a lot of benefits, e.g. easy to validate the

correctness of data, easy to work with databases, easy to convert data between different types.

b.) XML Schemas have the same syntax as XML so that it can benefit all features of XML.

c.) XML Schemas secure data communication since it can describe the data in a machine-

understandable way.

d.) XML Schemas are extensible because they are actually XML and then share this feature of

XML.

e.) Well-formed is not enough since it also may contain some semantic confusion which can be

caught by XML Schemas.

Chapter 2: Semantic Web Technologies

Semantic Search Tool with Automatic Document Classification and Summarization Page 42

Chapter 3

DOCUMENT SUMMARIZATION AND CLASSIFICATION

“No, I'm not interested in developing a powerful brain. All I'm after is

 just a mediocre brain, something like the President of the

 American Telephone and Telegraph Company (AT&T)”

- Alan Turing (1912 – 1954)

3.1 Introduction to NLP

Natural language processing provides a potential means of gaining access to the

information inherent in the large amount of text made available through the Internet. In today

web environment where terabytes of data generated everyday, it is hard to read all the data

generated everyday manually. So, for this some kind of natural language processing is necessary

for computer to process this data.

Natural Language Processing (NLP) is an area of research and application that explores

how computers can be used to understand and manipulate natural language text or speech to do

useful things. NLP[21] researchers aim to gather knowledge on how human beings understand

and use language so that appropriate tools and techniques can be developed to make computer

systems understand and manipulate natural languages to perform the desired tasks. The

foundations of NLP lie in a number of disciplines, viz. computer and information sciences,

linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics,

Semantic Search Tool with Automatic Document Classification and Summarization Page 43

psychology, etc. Applications of NLP include a number of fields of studies, such as machine

translation, natural language text processing and summarization, user interfaces, multilingual and

cross language information retrieval (CLIR), speech recognition, artificial intelligence and expert

systems, and so on.

At the core of any NLP task there is the important issue of natural language

understanding. The process of building computer programs that understand natural language

involves three major problems: the first one relates to the thought process, the second one to the

representation and meaning of the linguistic input, and the third one to the world knowledge.

Thus, an NLP system may begin at the word level – to determine the morphological structure,

nature (such as part-of-speech, meaning) etc. of the word – and then may move on to the

sentence level – to determine the word order, grammar, meaning of the entire sentence, etc.—

and then to the context and the overall environment or domain. A given word or a sentence may

have a specific meaning or connotation in a given context or domain, and may be related to many

other words and/or sentences in the given context.

Liddy (1998) and Feldman (1999) suggest that in order to understand natural languages, it is

important to be able to distinguish among the following seven interdependent levels, that people

use to extract meaning from text or spoken languages:

 • phonetic or phonological level that deals with pronunciation

 • morphological level that deals with the smallest parts of words, that carry a meaning,

and suffixes and prefixes

 • lexical level that deals with lexical meaning of words and parts of speech analyses

 • syntactic level that deals with grammar and structure of sentences

 • semantic level that deals with the meaning of words and sentences

 • discourse level that deals with the structure of different kinds of text using document

structures and

 • Pragmatic level that deals with the knowledge that comes from the outside world, i.e.,

from outside the contents of the document.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 44

A natural language processing system may involve all or some of these levels of analysis.

3.2 Document Classification

3.2.1 Introduction

Document classification/categorization is a problem in information science. The task is to

assign an electronic document to one or more categories, based on its contents. Document

classification tasks can be divided into two sorts: supervised document classification where some

external mechanism (such as human feedback) provides information on the correct classification

for documents, and unsupervised document classification, where the classification must be done

entirely without reference to external information. There is also a semi-supervised document

classification, where parts of the documents are labelled by the external mechanism.

Document classification techniques include:

• naive Bayes classifier

• tf-idf

• latent semantic indexing

• support vector machines

• artificial neural network

• kNN

• decision trees, such as ID3

• Concept Mining

Unsupervised Document Classification

Document clustering or unsupervised document classification has been used to enhance

information retrieval. This is based on the clustering hypothesis, which states that documents

having similar contents are also relevant to the same query. A fixed collection of text is clustered

into groups or clusters that have similar contents. The similarity between documents is usually

measured with the associative coefficients from the vector space model, e.g., the cosine

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 45

coefficient. Hierarchical clustering algorithms have been primarily been used in document

clustering. The single link method has mostly been used, as it is computationally feasible, but the

complete link method seems to be the most effective but is very computationally demanding.

Other methods than document vector similarity have been used for clustering. Neural models

have been implemented for unsupervised document clustering.

The long computation time has always been the problem when using document clustering

on-line. More recently fast algorithms for clustering have been introduced to use for browsing

through collection when the user has little information about the collection and wants to brows

for topics. Suffix Tree Clustering is new clustering method, which creates clusters based on

phrases shared between documents, works fast and intended for Web document clustering.

Different projections techniques, LSI and truncation, have been investigate to speed up the

distance calculations of clustering. An interesting application of clustering is topic clustering, i.e.

clustering documents returned from a specific query, using -means clustering.

Supervised Document Classification

Pattern recognition and machine learning has also been applied to document classification. As

before the term frequency is used as feature. A number of classifiers have been used to classify

documents. An example of these classifiers are neural networks, support vector machines ,

genetic programming, Kohonen type self-organizing maps, hierarchically organized neural

network built up from a number of independent self-organizing maps, fuzzy -means,

hierarchical Bayesian clustering , Bayesian network classifier , and naive Bayes classifier .

Some of these classifiers can be used with unsupervised learning, i.e., unlabeled documents, but

the accuracy of a classifier can be enhanced by using a small set of labelled documents. The aim

is to use a classifier which need small amount of manually classified documents to be

generalized.

The use of semi-supervised machine learning has emerged recently. The learning scheme lies

somewhere between supervised and unsupervised, where the class information are learned from

the labelled data and the structure of the data from the unlabeled data.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 46

3.2.2 Proposed Technique

The technique used is to first semantically annotate the documents. Semantic Annotation

[19] is about assigning to the entities in the text links to their semantic descriptions. This sort of

metadata provides both class and instance information about the entities. It is a matter of

terminology whether these annotations should be called “semantic”, “entity” or some other way.

To the best of our knowledge there is no well-established term for this task; neither there is a

well-established meaning for “semantic annotation”. What is more important, the automatic

semantic annotations enable many new applications: highlighting, indexing and retrieval,

categorization, generation of more advanced metadata, smooth traversal between unstructured

text and available relevant knowledge. Semantic annotation is applicable for any sort of text –

web pages, regular (non-web) documents, text fields in databases, etc.

Noun phrasing is considered to be an important NLP technique used in information

retrieval. One of the major goals of noun phrasing research is to investigate the possibility of

combining traditional keyword and syntactic approaches with semantic approaches to text

processing in order to improve the quality of information retrieval. We use here this feature of

NLP to populate our ontology and for semantically annotating of web documents. The nouns and

proper nouns identified by using the noun phrasing technique are the candidate entities for

populating the ontology and for annotating the documents. The complete approach for annotating

and ontology population is described in the section given below.

Manual annotation is difficult, time consuming and expensive. Convincing millions of users to

annotate documents for the Semantic Web is difficult and requires a world-wide action of

uncertain outcome .For our tool to perform automatic semantic annotation in the documents we

have used GATE[14] General Architecture for Text Engineering or GATE is a Java software

toolkit originally developed at the University of Sheffield since 1995 and now used worldwide

by a wide community of scientists, companies, teachers and students for all sorts of natural

language processing tasks, including information extraction in many languages.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 47

Figure 3.1 GATE GUI

The GATE tool provides a list of all the named entities in the document. The type of these

named entities is first determined using the ontology and then it is encoded in the document this

process of semantic annotation is shown in figure below.

After the document is annotated it is analysed to find out the type of entities is mainly contains.

The algorithm used for this is described in the next chapter. The criteria used for classification

should be such that if a document is classified in a class then it should also belong to its super

lass according to same criteria. This is done to maintain the taxonomic relation ship between the

classes defined in the ontology. For example in the figure above if the document has been

classified as of lass ‘country’ then it should also belong to lass ‘Location’ using sae criteria Such

an automatic classification allows users to focus easily on what they want classification

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 48

Figure 3.2 Semantic Annotation

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 49

3.3 Document Summarization

3.3.1 Introduction

Automatic Text Summarization is an important and challenging area of Natural Language

Processing. The task of a text summarizer is to produce a synopsis of any document or a set of

documents submitted to it.

Summaries differ in several ways. A summary can be an extract i.e. certain portions (sentences

or phrases) of the text is lifted and reproduced verbatim, whereas producing an abstract involves

breaking down of the text into a number of different key ideas, fusion of specific ideas to get

more general ones, and then generation of new sentences dealing with these new general ideas.

A summary can be of a single document or multiple documents, generic (author’s perspective) or

query oriented (user specific), indicative (using keywords indicating the central topics) or

informative (content laden).

3.3.2 Previous Work in Extractive Text Summarization

Various methods have been proposed to achieve extractive summarization. Most of them are

based on scoring of the sentences. Maximal Marginal Relevance scores the sentences

according to their relevance to the query, Mutual Reinforcement Principle for

Summary generation uses clustering of sentences to score them according to how close they are

to the central theme. QR decomposition method scores the sentences using column pivoting.

The sentences can also be scored by certain predefined features. These features may

include linguistic features and statistical features, such as location, rhetorical structure, presence

or absence of certain syntactic features and presence of proper names, and statistical measures of

term prominence.

Rough set based extractive summarization has been proposed that aims at selecting important

sentences from a given text using rough sets, which has been traditionally used to discover

patterns hidden in data.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 50

Methods using similarity between sentences and measures of prominence of certain semantic

concepts and relationships to generate an extractive summary have also been proposed.

Some commercially available extractive summarizers like Copernic and Word summarizers

use certain statistical algorithms to create a list of important concepts and hence generate a

summary.

 The paper [22] proposes to achieve extractive summarization as a three-step process:

1. Mapping the words and sentences onto a semantic space (Word Space)

2. Computing similarities between them.

3. Employing the use of graph-based ranking algorithms [23] to remove the redundant sentences

in the text.

The task involves simple mathematical computations, such as addition of vectors, and thus is far

more effective than other algorithms based on semantic similarities, such as LSA based

summarization that involves expensive matrix computations.

3.3.3 The Word Space Model

The Word-Space Model [24] is a spatial representation of word meaning. The complete

vocabulary of any text (containing n words) can be represented in an n-dimensional space in

which each word occupies a specific point in the space and has a vector associated with it

defining its meaning.

The Word Space Model is based entirely on language data available. It does not rely on

previously compiled lexicons or databases to represent the meaning. It only represents what is

really there in the current universe of discourse. When meanings change, disappear or appear

in the data at hand, the model changes accordingly. If an entirely different set of language data is

used, a complete different model of meaning is obtained.

 The Word Space Hypotheses The Word Space is so constructed that the following two

hypotheses hold true.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 51

1. The Proximity Hypothesis: The words which lie closer to each other in the word space have

similar meanings while the words distant in the word space have dissimilar meanings.

2. The Distributional Hypothesis: Once the language data is obtained, the word space model uses

the statistics about the distributional properties of the words. The words which are used within

similar group of words (i.e. similar context) should be placed nearer to each other.

An environment in linguistics is called a context. A context of a word can easily be understood

as the linguistic surrounding of the word. As an illustration, consider the following sentence.

‘A friend in need is a friend indeed’ If we define the context of a focus word as one

preceding and one succeeding word, then the context of ‘need’ is ‘in’ and ‘is’, whereas the

context of ‘a’ is ‘is’ and ‘friend’.

To tabulate this context information a co-occurrence matrix of the following form can be created,

in which the (i,j)th element denotes the number of times word i occurs in the context of word j

within the text.

Figure 3.3 Word Space Model

Here the context vector for ‘need’ is [0 0 1 0 1 0] and for ‘a’ is [0 2 0 0 1 0]. They effectively

sum up the environments (contexts) of the words in question, and can be represented in a six-

dimensional geometric space (since the text contains 6 words). A context vector thus obtained

can be used to represent the distributional information of the word into geometrical space. (Note

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 52

that this is similar to assigning a unary index vector to ‘is’ ([0 0 0 0 1 0]) and to ‘in’ ([0 0 1 0 0

0]) and adding them up to get the context vector of ‘need’.)

 Similarity in Mathematical Terms Context vectors as such do not convey any

beneficial information. They just give the location of the word in the word space. To get a clue

on ‘how similar the words are in their meaning’ a similarity measure of the context vectors is

required.

Various schemes, such as scalar product of vectors, Euclidean distance, Minkowski metrics, can

be used to compute similarity between vectors.

Cosine of two vectors is used to calculate similarity between vectors.

The cosine measure corresponds to taking the scalar product of the vectors and then dividing by

their norms. The cosine measure is the most frequently utilized similarity metric in word-space

research. The advantage of using cosine metric over other metrics to calculate similarity is that it

provides a fixed measure of similarity, which ranges from 1 (for identical vectors), to 0 (for

orthogonal vectors) and -1 (for vectors pointing in the opposite directions). Moreover, it is also

comparatively efficient to compute.

 The sentences that are most similar to other sentences and to the whole document are

considered to be most important and such sentences constitute the summary of the document.

Chapter 3: Document Summarization and Classification

Semantic Search Tool with Automatic Document Classification and Summarization Page 53

Chapter 4

SEMANTIC SEARCH AND INDEXING

“The ultimate search engine would basically understand everything in the world, and

it would always give you the right thing. And we're a long, long ways from that.”

Larry Page (Cofounder Google)

4.1 Semantic Search

 The Semantic Web is an extension of the current Web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation. It is the idea

of having data on the Web defined and linked in a way that it can be used for more effective

discovery, automation, integration, and reuse across various applications. In particular, the

Semantic Web will contain resources corresponding not just to media objects (such as

Web pages, images, audio clips, etc.) as the current Web does, but also to objects such as people,

places, organizations and events. Further, the Semantic Web will contain not just a single kind of

relation (the hyperlink) between resources, but many different kinds of relations between the

different types of resources mentioned above.

Semantic Search Tool with Automatic Document Classification and Summarization Page 54

4.1.1 Main Features

Documents vs Real World Objects: The Semantic Web is not a Web of documents, but a Web

of relations between resources denoting real world objects, i.e., objects such as people,

places and events. In the first example we have objects such as the city of Paris, the musician

Yo-Yo Ma, an auction event, the music album Appalachian Journey, etc. In the second

example, we have the person Eric Miller, the W3C Semantic Web Activity, the organization

W3C, the city of Dublin Ohio, etc.

Human vs Machine Readable Information: There are resources corresponding to Eric Miller.

This is not the string”Eric Miller”, but a resource denoting a person. There are many people with

the name Eric Miller. This denotes only one particular person with that name. The salient point

about the Semantic Web is that it contains rich machine readable information about these

resources.

Relation between the HTML & Semantic Web: The Semantic Web is an extension of the

current Web. There is a rich set of links from the nodes in the Semantic Web to HTML

documents. These relations typically connect a concept in the Semantic Web with the pages that

most pertain to it.

Distributed Extensibility: An important aspect of the Semantic Web is that different sites may

contribute data about a particular resource. This distributed extensibility is a very important

aspect of the Semantic Web.

Of course, this feature leads to problems of its own. In a world where anyone can publish

anything, a lot of what gets published cannot be trusted. In the current Web, we, as humans, use

our intelligence, invoking concepts of brand, who recommended what, etc. to decide whether to

believe what a Web site says. Programs, on the other hand, being relatively unintelligent, do not

have recourse to all these facilities to decide whether to believe the data from a new site on the

Semantic Web.

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 55

4.1.2 The Types Of Searches

As with the WWW, the growth of the Semantic Web will be driven by applications that

use it. Semantic search is an application of the Semantic Web to search. Search is both one of the

most popular applications on the Web and an application with significant room for improvement.

We believe that the addition of explicit semantics can improve search. Semantic Search attempts

to augment and improve traditional search results (based on Information Retrieval technology)

by using data from the Semantic Web.

Traditional Information Retrieval (IR) technology is based almost purely on the occurrence of

words in documents. Search engines like Google, augment this in the context of the Web with

information about the hyperlink structure of the Web. The availability of large amounts of

structured, machine understandable information about a wide range of objects on the Semantic

Web offers some opportunities for improving on traditional search.

Before getting into the details of how the Semantic Web can contribute to search, we need to

distinguish between two very different kinds of searches[25].

Navigational Searches: In this class of searches, the user provides the search engine a phrase or

combination of words which s/he expects to find in the documents. There is no

straightforward, reasonable interpretation of these words as denoting a concept. In such cases,

the user is using the search engine as a navigation tool to navigate to a particular intended

document.

We are not interested in this class of searches.

Research Searches: In many other cases, the user provides the search engine with a phrase

which is intended to denote an object about which the user is trying to gather/research

information.

There is no particular document which the user knows about that s/he is trying to get to. Rather

the user is trying to locate a number of documents which together will give him/her the

information s/he is trying to find. This is the class of searches we are interested in.

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 56

Example: A search query like “W3C track 2pm Panel” does not denote any concept. The user is

likely just trying to find the page containing all these words. On the other hand, search queries

like “Eric Miller” or “Dublin Ohio”, denote a person or a place. The user is likely doing an

research search on the person or place denoted by the query.

Semantic search attempts to improve the results of research searches in 2 ways.

Traditional search results take the form of a list of documents/ Web pages. We augment this list

of documents with relevant data pulled out from Semantic Web. The Semantic Web based results

are independent of and augment the results obtained via traditional IR techniques. So, for

example, a search for Yo-Yo Ma might get augmented with his current concert schedule, his

music albums, his image, etc. The search phrase in Research Searches typically denotes one (or

occasionally two) real-world concepts. We believe that it might be useful for the text retrieval

part of the search engine to have an understanding of these concepts denoted by the search

phrase. Understanding the denotation can help understand the context of the search, the activity

the user is trying to perform, drive expectations on the categories of documents (pertaining to the

object) likely to exist, etc.

 Current statistics show that the number of Web pages is in excess of one billion

(Madhavan et al., 2007). With such a huge amount of data available some means had to be put in

place so that exact information, relating to a particular purpose, could be searched for and

retrieved. This need for relevant information spawned the production of search engines dedicated

to sift through the Web and pick out documents and content that satisfy the requirements given to

the engine by a user. However, a successful search for information can only be as good as the

ability of the search engine to retrieve that information. Web pages, and any form of information

given as text, is only read by a machine but is not understood by a machine. This means that

although a text search for a word will be able to find that particular word, the machine cannot

attach any meaning to the words it finds or is looking for. This severely limits the ability of a

machine to retrieve data according to the needs of a human.

For example, if a person wanted to search a document or group of documents for

information about ‘men’s clothes’ they would have to tailor their thinking to extract the words

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 57

that they thought an article that talked about this subject would contain, such as shirts, ties, coats,

sizes, materials, price and so on. If, however, the machine somehow knew that a shirt was an

item of clothing, or that coats come in four sizes and knew that ties could be of silk or cotton

then the machine could automatically give all this information without the need for multiple

searches.

 4.1.3 Problems of Search and Retrieval on the Web

One of the major uses of the World Wide Web today is to use search engines to find out

about information. Due to the increase in the number of Web pages available, finding the desired

information can often be an arduous and complex task. There are a number of problems with the

current approach to finding results on the web:

• The most basic problem is that the information that you are looking for cannot be

found. This could happen for a number of reasons:

1. The information simply does not exist on the web.

2. The search engine could not find the information that does exist.

3. The information is in a web page that is not on the first page of returned results and the user

does not try and look on through the next few results pages.

Passin gives an example where he could not find a replacement part for an old stove,

even though there was a shop with a website that sold the part.

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 58

• There may be too many irrelevant results returned.

The ratio of the number of relevant results retrieved to the total number of irrelevant and relevant

results retrieved is called the precision of a search. As a brief example, if a person wanted to

know about the Isle of Wight Mosque, then entering this search term into Google produces a

total number of 38600 results. However, out of these there are only 2 results that are about the

Mosque. This gives a precision value of 0.00005%. The other results are pages that contain the

words ‘Isle of Wight’ and the word ‘Mosque’ with little or no connection between them.

• Only some of the relevant results to the query are returned.

The ratio of the number of relevant results retrieved to the total number of relevant results

indexed by the search engine is called the recall of a search. This value is harder to measure as it

is virtually impossible to calculate how many relevant results to a search exist on the web.

However, Clarke and Willett (1997) produce a relative estimation of recall based on pooling the

results of a number of search engines to the same query. Shafi and Rather (2005) use this method

to compare the precision and recall of five search engines in the retrieval of scholarly

information in the field of

biotechnology.

• The search engine searches for the query term in the wrong context and returns results

in that context.

There are many cases where words have more than one meaning. If a user does not correctly add

extra keywords to their search to contextualise the topic, they could receive anomalous results.

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 59

For example, if somebody wanted to know about the Greek deity ‘Nike’, simply entering this

word into a search engine will return results about the sportswear company Nike.

At present, Google has 46.3% (Sullivan 2006) of the search engine market. The reason

for Google’s success is claimed to be down to the PageRank algorithm (Brin et al. 1998) which

ranks pages, not just by keyword frequency, but also according to how many pages link to a site,

how many hits a site has and how often a site is updated, as well as other varying criteria (Arnold

2005). However, statistics also show that other search engines return results that are not found by

Google (Notess 2002). This all means that the end user cannot make best use of the Web since

the information or knowledge that the user requires is either difficult to find or search engine

dependent.

The lack of a suitable search engine for the web stems from the fact that all search

engines rely heavily on keyword frequency, and in essence, string matching to find their results.

When a person enters the term ‘football’ into a search engine it has no knowledge about the

concept of football, it will base its results on the number of times this keyword is mentioned in a

document. There are algorithms that enhance this approach somewhat but the underlying

principle is the same (Langville & Meyer 2004).

What is needed is a system that knows that football is a type of sport and that it has a

World Cup and that it is played by 11 players etc. This kind of knowledge awareness is exactly

what The Semantic Web is trying to achieve. If there was ontology for football then all of the

above facts could be easily modelled and used to enhance query results. Then, if someone was to

make a query about football, the system would try and attain the concept of the search such as, is

the person looking for football tickets? Are they looking for football kit? Or are they interested in

a particular team? And so on.

 The Semantic Web promises a new generation of World Wide Web infrastructure that

will make it possible for machines to ‘understand’ the data on the web instead of merely

presenting it. In order to encourage the increase of semantic web technologies there have been

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 60

suggestions that a ‘killer app’ may be needed to convince those that are still unsure about the

benefits that semantic web technologies can bring.

The search engine is an example of a potential ‘killer app’ that has been responsible for

increased usage of the current web. As described in this section there are a number of problems

with searching the Web today. Despite the improving quality of modern search engines, statistics

show that only 17% of people find exactly the information they were looking for (Fallows,

2005). Furthermore, a study has shown that the recall of some search engines can be as low as

18% (Shafi & Rather, 2005). There is therefore a need to improve the quality of search results

and user experience. The Semantic Web provides an opportunity to achieve such a goal. The use

of RDF and OWL as knowledge representation formats can provide structured content to

describe a given domain or set of domains. Using this knowledge, it should be possible to add a

sense of ‘understanding’ to a search engine when searching for results whose knowledge has

been partly or fully described in a knowledge representation format.

In the past, such a proposal may not have been viable due to the lack of ontologies and

RDF resources available on the web. However, at the present time there are estimated to be more

than 5 million RDF or OWL documents available on the Web (Ding, 2006). Even if most of

those documents contain knowledge about a limited set of concepts, RDF data from sources such

as DBpedia and Wordnet provide a suitable base from which to begin exploring the enhancement

that can be made to ordinary Web searches. More importantly, there will be a number of

knowledge bases that will be used to store RDF instance data and OWL ontologies that have the

ability of being

4.2 Indexing

When the users fire a query the system does not start searching the documents. Even in a

simple search engine documents are indexed beforehand. Index is basically a table that links

words to documents. These tables or data structures allow system to quickly find the list of

documents that contain words that user is looking for. These are the data structures that speed up

the searching. There are two types of index

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 61

1. Inverted Index

Words List of Documents

Word1 Doc1, Doc3, Doc 3, Doc 6…

Word2 Doc2, Doc10 , Doc4, Doc11…

Figure 4.1 Inverted Index

2. Forward Index.

Documents List of words

Doc1 Word1 Word5 Word9…

Doc2 Word2 Word13 Word14…

Figure 4.2 Forward Index

Inverted index contains list of documents for each word found the document collection or

corpus. Forward Index on the other hand contains list of words contained in each of the

documents. These indexes normally contain more information that just this. They may contain

more information such as number documents, unique words in each document, number of

documents in which a given word was found etc. Both indexes are useful for an efficient search

engine. To enhance the performance of search many other techniques such as hierarchical

indexing, hashing etc. are used. Indexes often contain more than one field. Fields are created

when all words in a document are not to be treated equal. For example, words found in the

Fields Doc1 Doc2

Filename Doc1.txt Doc2.txt

path /doc1.txt /doc2.txt

PERSON gates,Sachin, bill

BUSINESSMAN gates, bill

ELEC._DEVICE gates, resistor

SEMICON._DEVICE gates

Figure 4.3 Semantic Index

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 62

description MetaTag of an HTML document may be given higher weight. When fields are

included in the index a separate index is created for each field in case of inverse index. An in

case of forward index the list also specifies the field in which the word was found.

Indexing for semantic documents is much more complex. The document is indexed not

only for words but also for named entities, their classes and relations between named entities etc.

All this semantic information must be encoded in the index such that search engine can quickly

take advantage of it. In fact it does not matter how much semantic information is present in the

semantic document if it is not indexed properly. If the indexer is a simple document indexer than

the search results will be no different than a syntactic search engine. One way to index a

semantic document is to create a separate field for each class in the ontology and to index all the

named entities that are direct or indirect instances of a class in the field for that class. This type

of index allows user to express the type of the entity user is searching to any degree of precision

as permitted by the ontology.

Chapter 4: Semantic Search and Indexing

Semantic Search Tool with Automatic Document Classification and Summarization Page 63

Chapter 5

 TOOL ARCHITECHTURE AND DESIGN APPROACH

An algorithm must be seen to be believed.

- Donald Knuth

5.1 Tool Architecture

This section describes the overall architecture of the tool[26]. The functional

diagram[27] for the system is shown in Figure 5.1. It consists of several components. There are

four data stores and five processes. The four data sources are Ontology, Document Collection

and two indexes Document Index and Instance Index. The Five processes are Annotator,

Evaluator, Indexer, Summarizer and finally the searcher. Except searcher all other processes are

offline processes. There collective job is to transform a document collection into a pair of index

table that can be later on searched by the searcher to present the user with the information

relevant to the user query.

 These processes operate in a sequence. First the annotator annotates the document that is

it embeds the semantic i.e. meaning related information in the documents using the ontology.

Once the documents are annotated these are analyzed by evaluator and categorized and stored in

different clusters/groups. Now indexer prepares the index of these annotated documents taking

the advantage of both annotated documents and the ontology. Indexer also indexes the summary

of the documents; this summary is produced by the summarizer. Finally when the user fires a

Semantic Search Tool with Automatic Document Classification and Summarization Page 64

query searcher searches the index and ontology extract as relevant information as possible for

user.

Figure 5.1 Tool Architecture

Role of Administrator: Administrator is person or a team of personnel employed by the

organization. The Administrator interacts with the annotator, Indexer, Summarizer and Ontology

Population. The Administrators job is to annotate the documents that are uploaded by the users

on the web portal using Annotator. Once they are annotated the administrator runs the indexer

which automatically prepares the index. The Administrator is also responsible for keep the

ontology up-to-date and consistent. He runs the ontology population tool to add new instances to

the ontology. Once the new instances are added then administrator has to manually update the

relations present in the ontology.

Role of User: The User consists of the people who visit the web portal. User uploads the

document on the portal. They also retrieve information from the portal using the search engine.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 65

Here in this thesis I am going to explain with design approach & implementation details the

following sections of the tool.

� Indexing Annotated Documents

� Document repositioning

� Document Summarizing

� Semantic Searching

Here we also present the block diagram with implementation of the tool.

As Described in the above section, the output of Semantic Annotator is a Document in which

mark up has been added for each Named Entity identified in the document. This document

contains semantic information. Before Indexing the document is first analyzed and stored at a

specific location according to its content by Evaluator Process. It is then indexed by the indexer

which calls the summarizer process when needed to create the summary of the document. It is

then searched by the searcher. Therefore first the Evaluator is explained and then Indexer. After

this summarizer is explained and at last the searcher.

5.2 Design Approach

5.2.1 Ontology based document repositioning (Evaluator)

Once the documents have been annotated it has been enriched by the information from

the ontology. We can use this information from ontology to find out to which category the

uploaded document belongs. We use following algorithm to do it.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 66

Method 1 Evaluate Document

1. Create a table with a row for each of the class in the ontology. We fill the first column

with name of the class and second column with the number of annotations that belong to

this class and all the subclasses of this class.

2. set cur class to topmost class

3. create a list of all direct subclasses

4. Find two winners first and second.

5. if number of annotations that belong to first is more than twice of the second

a. Set cur class to first class and go to step 3.

 Else

 Return with cur class as the type of the document.

The above algorithm ensures an important property of the classification.

 That is if in the ontology class c1 is a super-class of class c2, and if document is

of type c2 then it is also of type c1.

The working of the algorithm is shown in fig 5.2. In this algorithm the test criterion is

applied at each level in the ontology until the check fails, at this point the current class becomes

the type of the document. The criteria is that number of annotations that belong to current class

should exceed twice the number of annotations that belong to any other class at that level.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 67

Figure 5.2 Document Classification Algorithm

Once the type of the document is known it is stored in the file system under the folder/directory

of its type as name. The folders/directories have hierarchy that is same as the class hierarchy in

the ontology. For this prototypical application we save the documents in a directory that

corresponds to the type just found for this class.

5.2.2 Indexer

Indexer is a module that creates index which is used by the search engine to reply to user queries.

It is the final step in the processing of documents. An index is a set of documents; each

document is a set of fields. The structure of the index is shown in figure 5.3

Figure 5.3 Index Format

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 68

The first field is the name of the file. The second field is the Path, where the file is stored. The

third field stores the time and date when the file was last modified. Fourth field stores the

summary of the document which is calculated by the summarizer which is described in next

section. There is a filed for each class in the ontology. These fields store the named entities in the

document that are direct or indirect instances of respective class. These are the fields that

empower search engine with semantic features.

 A separate index for the instances in the ontology was also created. This was done to

find out the class of a particular ontology quickly online without requirement for loading the

whole ontology in the memory. We simply create two fields one with name of the instance in

the ontology and the other with content that we should match in document for that Instance.

5.2.3 Summarizer

It would be very helpful to users if we give the summary of the documents that are listed by

search engine instead of snippets. We use the algorithm presented in [2]. This paper presents the

randomized approach to document summarization. Randomized approach does reduce the space

requirements but at the cost of precision. We implement a mixture of non-randomized and

randomized indexing,

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 69

Figure 5.4 Summarize Algorithm

For summarization of documents, first similarity of each sentence with respect to each other

sentence in the document is calculated. These similarity scores are later used as edge weights for

the graph that is constructed. This graph has sentences as nodes. For initial node weights,

importance of sentence in the document is calculated. Final scores are calculated by repeatedly

applying weighted page rank which is a modified algorithm of the famous page rank algorithm

[5].

 The sentence with highest weight denoted the most important sentence i.e the sentence

most similar to other sentences and import in the document. This sentence must be in the

summary. Summary is constructed by sorting the sentences by their weights and taking top few

sentences.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 70

The algorithm used is :

1. Construct Completely Connected Graph of sentences

2. Calculate Edge Weights

• Construct Context vector for each word

• Construct Semantic Vector For each Sentence (sv)

• DotProduct(sv_i,sv_j)

3. Calculate Node Weights

• Sentence Context Vector (scv) , Average Document Vector (adv)

• DotProduct(acv,adv)

4. Apply Weighted Page Rank Algorithm iteratively.

• PWvi = (1-d) + d* Σ wij * PWvj /(Σwjk)

5. Sort Results, Output Top few Sentences

5.2.4 Semantic Searching

The Searcher is a module that is run every time user hits a query. It searches the index and the

ontology to provide user with relevant information.

 The main idea of semantic search is make information available in much easier way.

Thus, reducing the time that user spends on the search engine. This is possible if the computer

itself does a lot of processing on each document before it is presented to user. Documents are

processed to analyze the document with respect to the user queries. So that only most relevant

documents are presented to user.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 71

 To achieve above objective we add many features to our search engine. First it allows

user to search a word in given context. Second, it gives summary of each document so that user

can get idea of what is in the document without actually reading the whole document. Third, we

categorize document themselves in addition to categorizing entities. Fourth, we provide search

options that are semantically related to guide the user. These options allow users to expand their

search thus making the search results more comprehensive.

Context Sensitive Search

 In the current search engines when user fires a query the search engine searches for the

word in the documents and prints them in order using some ranking method. Today’s search

engines fail when same word (text) means many different things. Like, if user searches for gates,

she may mean electrical gates or Bill Gates. In traditional search engines user doesn’t have

power to specify this, but semantic search engine has.

 Consider this scenario User fires a query “gates”. And we have two documents indexed,

one of them contains gates in the context of electronic gates and the other document contains

gates in the context of Bill Gates. And suppose our ontology has two top level classes,

ELECTRONIC_DEVICE and PERSON. PERSON has a sub class BUSINESSMAN and

Fields Doc1 Doc2

Filename Doc1.txt Doc2.txt

path /doc1.txt /doc2.txt

PERSON gates,Sachin,

bill

BUSINESSMAN gates, bill

ELEC._DEVICE gates,

resistor

SEMICON._DEVICE gates

Figure 5.5 Context Sensitive Search

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 72

ELECTRONIC_DEVICE has a sub class SEMICONDUCTOR_DEVICE. And consider that

index for these two documents have following structure.

Now user can specify any class to get more refined results. If she specifies PERSON only Doc2

will be presented .This reduces the number of documents returned by the searcher.

Summarizing the documents.

 In order to further reduce the time user spends reading relevant documents, it’s a good

idea to provide summary of each of the document in the result set of the searcher. User can read

the summary before deciding to open and read the entire document.

Figure 5.6 Summary

Summary is shown for the index document. These summaries were created offline during

indexing, therefore it does not affect the query response time.

Document Classification

 As described in section 5, documents are classified and stored in the file system under

directories that form same hierarchy as the classes in the ontology. Thus a document that has

been classified as of type ‘City’ is stored in a directory named ‘CITY’ which is a subdirectory of

‘LOCATION’. Thus when the results of the user query are displayed, the path of the document

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 73

gives an indication of the content in the document, before the user even opens it. Therefore, if

user can choose to open the document that appears to be closest to what he is looking for.

 Semantically Related Search options

 Above three features enable searcher to make sense of as much information user has

about the information she wants, which it uses to streamline the results, thus reducing the

number of documents returned. But in some cases user herself does not have enough

information that is sufficient to guide search engine towards the documents that contain the

information user is searching for. In such cases the searcher must provide the user some

information. Consider following scenario.

 User floats a query “bill”, now this query is not sufficient for search engine give relevant

information to the user. The word bill may mean almost anything; it may mean a electricity bill,

telephone bill, Bill Gate or may be that user is interested in knowing about Microsoft or even

about the America Corporate world. One solution is to accept some more information from user

about the word “bill”, this solution is presented by three features presented above in sections. But

if user does not know anything more than this then searcher must provide some options. These

options must be semantic/(meaning fully) related to the search query.

 One way to generate semantically related options is to traverse ontology in an ordered

way. We devise a measure of semantic closeness. It is measured by two variables VDist (Vertical

Distance) and HDist (Horizontal Dist). Distance is number of edges in the path between two

entities/instances in the ontology. When measuring vertical distance all edges are formed by

IS_A or the taxonomic relations are considered and when measuring horizontal distance the

edges are formed by non-taxonomic (all other relations except IS_A relations). Searcher

component uses following algorithms to present user with semantically related options with a

specified HDist and VDist by user.

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 74

Main Method

 traverseOntology (HDist, VDist, Instance)

1. create Empty String output

2. create Empty HashTable ‘HHashTable’

3. output+=HTravel(HDist,Instance, HHashTable)

4. create Empty Hash Table ‘VHashTable’

5. output+=VTravel(VDist,typeOf(instance),VHashTable)

6. return output;

 SubMethod 1

HTravel(HDist, Instance, HHashTable)

1. create Empty String output

2. if(HDist>0)

a. output+=Instance.getName()

b. put Instance in HHashTable

c. get All properties of Instance

d. for each property get instance I

e. output+=I.getName()

f. if(instance is not in HHashTable)

i. output+=HTravel(HDist-1,I,HHashTable)

3. return output

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 75

SubMethod2

 VTravel(VDist, class, VHashTable)

1. create Empty String output

2. if VDist>0

a. getAll the instances I

b. for each I

i. if(instance is not in VHashTable)

1. output+=I.getName()

c. put I in VHashTable

d. output+=VTravel(VDist- 1,superclass(class),VHashTable)

Chapter 5: Tool Architecture and Design Approach

Semantic Search Tool with Automatic Document Classification and Summarization Page 76

Chapter 6

IMPLEMENTATION DETAILS

Measuring programming progress by lines of code is

like measuring aircraft building progress by weight.

- Bill Gates (Cofounder Microsoft Co.)

There are two main modules in the system. First is OntologyManager. It provides all the

functions related to ontology. All other modules call functions of this module when ever they

require any information related to ontology. The second module is AnnieManager/Named Entity

Extractor. Its an interface to GATE’s ANNIE plugin. It provides functions that are used to find

annotations from the documents. The figure given shows the different modules of the tool.

Semantic Search Tool with Automatic Document Classification and Summarization Page 77

Figure 6.1 Modular View of Tool

6.1 OntologyManager

It has been implemented as a single OntologyManager.java class. It provides all the

functions related to ontology. All other modules call functions of this module when ever they

require any information related to ontology. It uses protégé OWL API to read/save ontology

from the file. It also initializes many data-structures which are used by other modules.

1. Subclass Hash table.

Structure

Class Name Reference to list of subclasses

2. Instance Hash Table.

Instance Name Reference to Instance Object

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 78

3. Class Hash Table

Instance Name Reference of the Class

6.2 Named Entity Extractor

 It is wrapper around GATE’s ANNIE plug-in. It does the task of Initializing

GATE, and loading ANNIE. It also provides functions to set the file to be annotated and to find

annotations of that file. It provides a simple Iterator type interface to access Named entities of

the set document. It has been implemented as AnnieManager.java. The named entities provided

by this class are used by Annotator to create annotations in the document

6.3 Instance Indexer

 It gets all the instances in the ontology from Ontology Manager. Creates a Index of them

using Lucene. It saves the index in OntoIndex folder under Tomcat folder.

6.4 Document Indexer

 It has been implemented as a multithreaded java class. It reads the documents from

uploadedDocuments folder and adds each document one by one to the index. It also creates a

queue of the names of document being indexed which is read by the GUI for displaying.

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 79

6.5 Summarizer

 Summarizer has been implemented as a java class. It’s an implementation of Extraction

based summarization proposed in [22]. It is called by Document Indexer class for each document

it indexes.

6.6 Evaluator

Evaluator has been implemented as a function in myAnnotate class. It takes the annotated

document and finds out the class of that document. This class is passed to another function which

finds out the path at which this document should be store.

6.7 Searcher

Searcher has been implemented as two different classes. One class performs simple search

facilities provided by Lucene. Second class performs semantic search by using class fields of

Document Index, Instance Index and Ontology.

6.8 Graphical User Interface

This tool has been developed as a web application. Application such as this requires a very rich

Graphic User Interface. Its GUI has been made using JavaScript. It has different tabs for each of

the module. Its GUI consists of tabs each from simple search, advance search, Indexing,

Annotation and Ontology population. Below are the screen shots of the various tabs.

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 80

Figure 6.2 Simple Search Tab

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 81

Advance Search Tab

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 82

Figure 6.3 Advance Search Tab

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 83

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 84

Figure 6.4 Indexing Tab

Chapter 6: Implementation Details

Semantic Search Tool with Automatic Document Classification and Summarization Page 85

Chapter 7

CONCLUSION AND FUTURE WORK

“When you have a great and difficult task, something perhaps almost

impossible, if you only work a little at a time, every day a little,

 suddenly the work will finish itself.”

 - Isak Dinesen (Author)

All above algorithms and tool have been implemented in java as the National Panchayat

Portal is also developed using java. We use a combination of java [28], jsp and AJAX to create

this tool. It provides a very good graphic user interface with all sorts of pop-up menus, trees and

custom controls etc. We also integrated web protégé [29] with the application for free form

editing of ontology.

Our approach makes use ontology to represent concepts and we use available tools and

techniques of semantic web to improve information retrieval processes. The tool we have

developed provides integrated framework for semantic annotation, semi automatic ontology

population, which can further be extended to complete semantic web infrastructure including

semantic search.

This work was appreciated a lot by NIC people. This tool will also be used as a prototype

for the plug-in for the National Panchayat Portal to make it as India’s first Semantic Portal[30].

Semantic Search Tool with Automatic Document Classification and Summarization Page 86

We also received a certificate from them. We are really thankful for the help and support by NIC

staff. Many issues regarding scalability, securities etc. are yet to be addressed. Below is a list for

possible future extensions for this project.

Future Work

1. Co-reference Resolution

2. Relational to RDF conversion

3. Use of Attributes in semantic annotation

4. Ontology Evolution

5. Natural Language Processing

6. Using Different Ontologies on Same Domain.

Chapter 7: Conclusion and Future Work

Semantic Search Tool with Automatic Document Classification and Summarization Page 87

PUBLICATIONS FROM THESIS

 During the period of working over this project we interacted with International

community working on semantic web. We discussed our approach for developing semantic web

infrastructure with them and collected the reviews and worked over the suggestion send to us.

Two research papers have been accepted in International conferences for presentation and will be

published in their proceedings. Also we have communicated a journal paper, so that our work

can be recognized and validated .These papers presents the methods and algorithm we have

developed with detailed tool architecture that we have developed during the course of the

project. The details of publications are as follows:

1. Conference Name : “Semantic E-business and enterprise computing” SEEC 2008

 URL : http://www.seec.eu/about.html

 Paper Title : “An Approach to Semantic Web”

 Authors : Nitin Nizhawan, Anuj Kumar, Daya Gupta.

 Location : Kerala, India.

 Conference Date : September 17-19, 2008

 . 2. Conference Name : “Semantic Web & Web Services” SWWS 2008

 URL : http://www.world-academy-of-science.org/worldcomp08/

 Paper Title : “Semantic Search and Annotation Tool”

 Authors : Nitin Nizhawan, Anuj Kumar, Daya Gupta.

 Location : Las Vegas, USA.

Semantic Search Tool with Automatic Document Classification and Summarization Page 88

 Conference Date : July 14-17, 2008

 3. Journal Name : International Journal on Knowledge Management

 URL : http://www.igi-pub.com/journals/details.asp?ID=4288

 Paper Title :”Semantic Web: An Approach”

 Authors : Nitin Nizhawan, Anuj Kumar, Kartar Jat, Daya Gupta

 Status :Communicated

Semantic Search Tool with Automatic Document Classification and Summarization Page 89

REFERENCES

[1] J. G. Carbonell and J. Siekmann, “Intelligent information integration for the semantic

web”, Springer, 2005

[2] W3C website , http://www.w3c.org

[3] Tim Berners-Lee. “Realising the Full Potential of the Web.” W3C Document, URL

http://www.w3.org/1998/02/Potential.html, Dec 1997.

[4] Tim Berners-lee. Semantic Web Road Map. W3C Design Issues. URL

http://www.w3.org/DesignIssues/Semantic.html, Oct. 1998.

[5] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K.Govindarajan, A. Karp, H. Kuno,

M. Lemon, G. Pogossiants, S. Sharma, S. Williams: Web Services Conversation

Language (WSCL), HP, 2001.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web.” Scientific

American, 2001(5), 2001.

[7] Ramon F. Brena, Eduardo H. Ramirez, “A Soft Semantic Web”, IEEE 2006.

Rada F. Mihalcea, Silvana I. Mihalcea, “Word Semantics for Information Retrieval:

Moving One Step Closer to the Semantic Web”.

[8] “WordNet”, http://wordnet.princeton.edu/

[9] Iraklis Varlamis, Michalis Vazirgiannis, Maria Halkidi, Memeber, IEEE Computer

Society, Benjamin Nguyen, “THESUS, a Closer View on Web Content Management

Enhanced with Link Smenatics”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 16, No.6, June 2004

[10] D. Brickley and R.V. Guha, Resource Description Framework (RDF)Schema

Specification 1.0, W3C Candidate Recommendation, March 27, 2000.

[11] Staab, S., Studer, R. editors: “Handbook on Ontologies”, Springer, 2004.

[12] “Protégé”, http://protege.stanford.edu.

[13] “GATE, General Architecute for Text Engineering”, http://www.gate.ac.uk

[14] “Lucene”, http://lucene.apache.org/

Semantic Search Tool with Automatic Document Classification and Summarization Page 90

[15] Trent Apted , Judy Kay,” Automatic Construction of Learning Ontologies” ,

Proceedings of the International Conference on Computers in Education (ICCE’02) 2002

IEEE.

[16] Xu Binfeng, Luo Xiaogang, Peng Chenglin and Huang Qian, “Based on Ontology:

Construction and application of Medical Knowledge Base”, 2007 IEEE/ICME

Inrenational conference on complex medical engineering.

[17] “WordNet”, http://wordnet.princeton.edu/

[18] Brooke Abrahams. Wei Dai,” Architecture for Automated Annotation and Ontology

Based Querying of Semantic Web Resources”, Proceedings of the 2005 IEEE/WIC/ACM

International Conference on Web Intelligence (WI’05).

[19] Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff, Dimitar Manov, Angel Kirilov,

Miroslav Goranov,” Semantic Annotation, Indexing, and Retrieval”, Ontotext Lab, Sirma

AIEOOD, 138 Tsarigradsko Shose, Sofia 1784, Bulgaria.

[20] Gobinda G. Chowdhury “Natural Language Processing”,Dept. of Computer and

Information Sciences University of Strathclyde, Glasgow G1 1XH, UK .

[21] Niladri Chatterjee, Shiwali Mohan, “Extraction-Based Single-Document Summarization

Using Random Indexing”, 19th IEEE International Conference on Tools with Artificial

Intelligence, IEEE 2007,

[22] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine”,

Computer Networks and ISDN Systems, 1998.

[23] Magnus Sahlgren, “The Word-Space Model, Using distributional analysis to represent

syntagmatic and paradigmatic relations between words in high-dimensional vector

spaces”,2006

[24] R. Guha,Rob McCool,Eric Miller, Semantic Search,2002

[25] Kumar A. Nizhawan N. Gupta D.”Semantic Search and AnnotationTool(SSAT)”

.SWWS’08.

[26] Kumar A. Nizhawan N. Gupta D.”An approach to Semantic web”, SEEC 2008.

[27] Jayson Falkner, Kevin Jones, “Servlets and Java ServerPages”, Addison-Wesley, 2000

[28] ”Protégé Web Interface”, http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeWebBrowser.

[29] Matt Perry, Eric Stiles, “SEMPL: A SEMantic PortaL” 2004

Semantic Search Tool with Automatic Document Classification and Summarization Page 91

APPENDIX A

AN INTRODUCTION TO

GATE

(General Architecture for Text Engineering)

URL: http://gate.ac.uk/

GATE is an infrastructure for developing and deploying software components that process

human language. GATE helps scientists and developers in three ways:

1. by specifying an architecture, or organizational structure, for language processing software;

2. By providing a framework or class library that implements the architecture and can be used to

embed language processing capabilities in diverse applications;

3. By providing a development environment built on top of the framework made up of

convenient graphical tools for developing components.

GATE can be thought of as a Software Architecture for Language Engineering

Language Engineering (LE) may be defined as:

. . . the discipline or act of engineering software systems that perform tasks involving processing

human language. Both the construction process and its outputs are measurable and predictable.

The literature of the field relates to both application of relevant scientific results and a body of

practice.

Semantic Search Tool with Automatic Document Classification and Summarization Page 92

GATE as an architecture suggests that the elements of software systems that process

natural language can usefully be broken down into various types of component, known as

resources. Components are reusable software chunks with well-defined interfaces, and are a

popular architectural form, used in Sun’s Java Beans and Microsoft’s .Net, for example. GATE

components are specialised types of Java Bean, and come in three flavours:

• LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies.

• ProcessingResources (PRs) represent entities that are primarily algorit- -hmic, such as

parsers, generators or ngram modelers.

• VisualResources (VRs) represent visualisation and editing components that participate in GUIs.

Semantic Search Tool with Automatic Document Classification and Summarization Page 93

Figure A.1 GATE with ANNIE loaded

Built-in Components:

ANNIC

ANNotations In Context: a full-featured annotation indexing and retrieval system

designed to support corpus querying and JAPE rule authoring. It is provided as part of an

extention of the Serial Datastores, called Searchable Serial Datastore.

Semantic Search Tool with Automatic Document Classification and Summarization Page 94

Machine learning API

A brand new machine learning layer specifically targetted at NLP tasks including text

classification, chunk learning (e.g. for named entity recognition) and relation learning.

Ontology API

A new ontology API, based on OWL In Memory (OWLIM), which o_ers a better API,

revised ontology event model and an improved ontology editor to name but few.

OCAT

Ontology-based Corpus Annotation Tool to help annotators to manually annotate

documents using ontologies.

Alignment Tools

A new set of components (e.g. CompoundDocument, AlignmentEditor etc.) that help in

building alignment tools and in carrying out cross-document processing.

New HTML Parser

A new HTML document format parser, based on Andy Clark’s NekoHTML. This parser

is much better than the old one at handling modern HTML and XHTML constructs, JavaScript

blocks, etc., though the old parser is still available for existing applications that depend on its

behaviour.

Ontotext Japec Compiler

Semantic Search Tool with Automatic Document Classification and Summarization Page 95

Japec is a compiler for JAPE grammars developed by Ontotext Lab. It has some

limitations compared to the standard JAPE transducer implementation, but can run JAPE

grammars up to five times as fast.

Ontogazetteer

The Ontogazetteer, or Hierarchical Gazetteer, is an interface which makes ontologies

“visible” in GATE, supporting basic methods for hierarchy management and traversal. In GATE,

an ontology is represented at the same level as a document, and has nodes called classes.

Ontogazetteer Editor

This is for editing the class hierarchy of an ontology. it provides storing to and loading

from RDF/RDFS, and provides load/edit/store of the class hierarchy of an ontology.

JAPE

Java Annotation Patterns Engine. JAPE provides finite state transduction over

annotations based on regular expressions. JAPE is a version of CPSL

– Common Pattern Specification Language.

ANNIE: a Nearly-New Information Extraction System

GATE was originally developed in the context of Information Extraction (IE) R&D, and

IE systems in many languages and shapes and sizes have been created using GATE with the IE

components that have been distributed with it.

Semantic Search Tool with Automatic Document Classification and Summarization Page 96

ANNIE components form a pipeline which appears in figure.

Figure A.2 Annie data flow diagram

Tokeniser

The tokeniser splits the text into very simple tokens such as numbers, punctuation and

words of different types. For example, we distinguish between words in uppercase and

lowercase, and between certain types of punctuation.

Semantic Search Tool with Automatic Document Classification and Summarization Page 97

Gazetteer

The gazetteer lists used are plain text files, with one entry per line. Each list represents a

set of names, such as names of cities, organisations, days of the week, etc. An index file

(lists.def) is used to access these lists.

GATE includes resources for common LE data structures and algorithms, including

documents, corpora and various annotation types, a set of language analysis components for

Information Extraction and a range of data visualisation and editing components. GATE supports

documents in a variety of formats including XML, RTF, email, HTML, SGML and plain text. In

all cases the format is analysed and converted into a single unified model of annotation.

Semantic Search Tool with Automatic Document Classification and Summarization Page 98

APENDIX B

An Introduction to Protégé

URL: http://protege.stanford.edu.//

Protégé is the latest tool in an established line of tools developed at Stanford University

for knowledge acquisition. Protégé has thousands of users all over the world who use the system

for projects ranging from modeling cancer-protocol guidelines to modeling nuclear-power

stations. Protégé is freely available for download under the Mozilla open-source license.

Protégé provides a graphical and interactive ontology-design and knowledge-base–

development environment. It helps knowledge engineers and domain experts to perform

knowledge-management tasks. Ontology developers can access relevant information quickly

whenever they need it, and can use direct manipulation to navigate and manage an ontology.

Tree controls allow quick and simple navigation through a class hierarchy. Protégé uses forms as

the interface for filling in slot values. The knowledge model of Protégé-2000 includes support

for classes and the class hierarchy with multiple inheritance; template and own slots;

specification of pre-defined and arbitrary facets for slots, which include allowed values,

cardinality restrictions, default values, and inverse slots, metaclasses and metaclass hierarchy. In

addition to highly usable interface, two other important features distinguish Protégé from most

ontology-editing environments: its scalability and extensibility.

Semantic Search Tool with Automatic Document Classification and Summarization Page 99

Figure B.1 Protege

One of the major advantages of the Protégé architecture is that the system is constructed

in an open, modular fashion. Its component-based architecture enables system builders to add

new functionality by creating appropriate plugins. The Protégé Plugin Library3 contains

contributions from developers all over the world.

The Protégé-OWL API is an open-source Java library for the Web Ontology Language

(OWL) and RDF(S). The API provides classes and methods to load and save OWL files, to

query and manipulate OWL data models, and to perform reasoning based on Description Logic

engines. Furthermore, the API is optimized for the implementation of graphical user interfaces.

The Protégé-OWL API is centred around a collection of Java interfaces from the model package.

These interfaces provide access to the OWL model and its elements like classes, properties, and

individuals.

Semantic Search Tool with Automatic Document Classification and Summarization Page 100

The API is designed to be used in two contexts:

• For the development of components that are executed inside of the Protégé-OWL

editor's user interface

• For the development of stand-alone applications (e.g., Swing applications, Servlets, or

Eclipse plug-ins)

 Protégé is a flexible, configurable platform for the development of arbitrary model-driven

applications and components. Protégé has an open architecture that allows programmers to

integrate plug-ins, which can appear as separate tabs, specific user interface components

(widgets), or perform any other task on the current model. The Protégé-OWL editor provides

many editing and browsing facilities for OWL models, and therefore can serve as an attractive

starting point for rapid application development. Developers can initially wrap their components

into a Protégé tab widget and later extract them to distribute them as part of a stand-alone

application.

Semantic Search Tool with Automatic Document Classification and Summarization Page 101

APPENDIX C

AN INTRODUCTION TO LUCENE

Apache Lucene is a high-performance, full-featured text search engine library written entirely in

Java. It is a technology suitable for nearly any application that requires full-text search,

especially cross-platform. Lucene is a free/open source information retrieval library, originally

implemented in Java by Doug Cutting. It is supported by the Apache Software Foundation and is

released under the Apache Software License. Lucene has been ported to programming languages

including Delphi, Perl, C#, C++, Python, Ruby and PHP.

 While suitable for any application which requires full text indexing and searching

capability, Lucene has been widely recognized for its utility in the implementation of Internet

search engines and local, single-site searching. Lucene itself is just an indexing and search

library and does not contain crawling and HTML parsing functionality. The Apache

project Nutch is based on Lucene and provides this functionality; the Apache project Solr is a

fully-featured search server based on Lucene.

At the core of Lucene's logical architecture is a notion of a document containing fields of

text. This flexibility allows Lucene's API to be agnostic of file format. Text

from PDFs, HTML, Microsoft Word documents, as well as many others can all be indexed so

long as their textual information can be extracted

Semantic Search Tool with Automatic Document Classification and Summarization Page 102

INDEX

A

algorithm 63, 65, 66, 68, 69

ANNIE ... 76, 95, 96

annotated 15, 21, 36, 63, 64, 65

annotating .. 15, 35, 46

annotation .. 35, 36, 46, 93, 97

Annotation 9, 27, 35, 36, 46, 94, 95

annotations 30, 35, 36, 46, 66, 76, 95

architecture 3, 25, 37, 38, 63, 91, 92, 99, 100, 101

Architecture 9, 37, 46, 63, 91

artificial neural network ... 44

Automatic .. 19, 49

B

Bayesian network classifier 45

block diagram .. 65

C

class .. 3, 34, 35, 46, 55, 66, 67, 68, 71, 72, 75, 77, 78,

91, 95, 98

classes 33, 34, 35, 71, 72, 95, 98, 99

Context Sensitive Search ... 71

Copernic .. 50

Corpus .. 94

Cosine .. 52

cosine measure ... 52

D

D.Roy Choudhary .. 6

Daya Gupta .. 6, 87

DCE ... 3, 37

decision trees ... 44

Delhi College of Engineering 3

Design approach .. 63

discourse level .. 43

Distributional Hypothesis .. 51

Document Classification 1, 5, 72

document repositioning 10, 65

Document Type Definition 41

DTD ... 41

E

Evaluate Document .. 66

Evaluator .. 10, 63, 65

F

ftp ... 37

G

GATE 10, 11, 14, 26, 46, 47, 76, 78, 89, 91, 92, 93,

95, 97

Get ... 39

grammar ... 43

H

HDist .. 73, 74

Head .. 39

hierarchical Bayesian clustering 45

Horizontal Dist ... 73

HTML 15, 16, 35, 38, 39, 54, 94, 97, 101

HTTP ... 9, 38, 39, 40

hyperlink .. 53, 55

I

IE 95

implementation 65, 95, 99, 101

Implementation .. 1, 5

Semantic Search Tool with Automatic Document Classification and Summarization Page 103

Indexer .. 63, 64, 65, 67, 78

Indexing .. 65

Information 2, 9, 19, 37, 38, 54, 55, 95, 97

information extraction ... 46

Information Extraction 95, 97

Integration .. 22

IS_A ... 73

J

JAPE .. 93, 95

java .. 77, 78

Java .. 46, 92, 95, 99, 101

Journal ... 88

K

Kerala ... 87

kNN ... 44

L

language 15, 16, 29, 31, 34, 40, 42, 43, 44, 46, 50, 51,

91, 92, 97

latent semantic indexing .. 44

lexical .. 43

Lucene ... 10, 78, 101

M

Machine Readable ... 54

Manoj Sethi ... 6

Markup ... 40

Maximal Marginal Relevance 49

meaning . 16, 17, 21, 34, 36, 39, 40, 43, 46, 50, 52,

53, 63, 73

modules .. 76, 77

morphological .. 43

multilingual .. 43

N

naive Bayes classifier .. 44, 45

Named Entity ... 65, 76

namespaces .. 40

National Informatics Centre 2

Natural Language Processing 42, 49

NIC ... 2, 15

Nitin Nizhawan 32, 37, 38, 87

NLP .. 42, 43, 46, 94

O

object ... 31, 32, 37, 38, 55, 56

Objectives ... 3

ontologies 18, 20, 21, 33, 34, 92, 94, 95

Ontologies .. 9, 30, 33

ontology 21, 28, 34, 46, 63, 64, 65, 66, 67, 68, 70, 71,

72, 73, 76, 77, 78, 94, 95, 98

Ontology 10, 27, 33, 34, 63, 64, 65, 78, 94, 98, 99

OntologyManager .. 76, 77

Ontotext .. 94, 95

OWL 9, 27, 28, 33, 34, 35, 77, 94, 99, 100

OWL DL .. 35

OWL Full ... 35

OWL Lite ... 35

P

page rank .. 69

parser .. 94

Parser .. 94

phonetic .. 43

plugin ... 76

population .. 46, 64

Population .. 64

Post .. 39

Pragmatic level .. 43

predicate ... 31, 32

property .. 32, 33, 66, 74

protégé ... 77

Protégé .. 98, 99, 100

Proximity Hypothesis ... 51

Put ... 39

Q

QR decomposition method 49

Semantic Search Tool with Automatic Document Classification and Summarization Page 104

R

Rajni Jindal .. 6

Rama Hariharan ... 6

ranking ... 50, 71

RDF 9, 17, 27, 28, 30, 31, 32, 38, 95, 99

RDFS ... 9, 30, 33, 34, 95

relations 4, 34, 53, 54, 64, 73

Research ... 55, 56

Rough set based extractive summarization 49

S

S. K. Saxena .. 6

Schemas ... 41

search engine 20, 53, 55, 56, 64, 67, 68, 70, 71, 73,

101

searcher .. 63, 64, 65, 72, 73

Searcher ... 70, 73

semantic 15, 25, 30, 36, 41, 43, 46, 50, 63, 65, 68, 70,

71, 73

Semantic 1, 5, 9, 15, 16, 17, 18, 19, 21, 27, 28, 29, 30,

36, 37, 40, 46, 53, 54, 55, 56, 65

Semantic Search and Annotation Tool 87

Semantic Web . 6, 8, 11, 15, 16, 17, 22, 27, 28, 29, 30,

31, 36, 53, 54, 55, 56, 59, 60, 87, 89, 90

Semantically Related Search options 73

SGML .. 35, 40, 97

software 18, 19, 27, 30, 46, 91, 92

sorting .. 69

speech .. 19, 42, 43

Standard Generalized Markup Language 40

subject ... 18, 31, 32, 34

Summarization ... 1, 49

Summarizer .. 63, 64, 68

Summarizing .. 65, 72

Summary .. 13, 49, 69, 72

Supervised Document Classification 45

support vector machines 44, 45

syntactic ... 43, 46, 49

syntax ... 16, 32, 34, 37, 40, 41

T

taxonomic ... 33, 73

text processing ... 43, 46

tf-idf ... 44

Tim Berners-Lee ... 16

tool 15, 17, 25, 27, 46, 55, 63, 64, 65, 76, 98

translation ... 43

U

Unsupervised Document Classification 44

URI ... 32, 37, 38, 39

URL ... 32, 37, 91, 98

V

VDist .. 73, 74, 75

Vertical Distance .. 73

Vision ... 3, 18

VoiceXML ... 18

W

W3C ... 17, 28, 30, 37, 54, 56

Web ... 9, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30, 31,

32, 33, 34, 36, 37, 38, 39, 40, 46, 53, 54, 55, 56, 99

Word Space Model ... 50

WordNet ... 35

World Wide Web ... 17, 27, 30

WWW .. 55

X

XML ... 9, 32, 35, 40, 41, 97

Y

Yahoo ... 20

