
 DESIGN AND IMPLEMENTATION OF FIREWALL AND

PACKET ANALYSIS

SUBMITTED IN THE PARTIAL FULFILLMENT FOR THE DEGREE OF

MASTER OF ENGINEERING

(ELECTRONICS & COMMUNICATION)

(2004-2006)

SUBMITED BY

SAMEER SHARMA (20/ E&C/ 2004)

(UNIVESITY ROLL NO: 8734)

UNDER THE GUIDENCE OF

SH. A.K.SINGH

ELECTRONICS & COMMUNICATION ENGINEERING

DEPATMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI

BAWANA ROAD, NEW DELHI

CERTIFICATE

THIS IS TO CERTIFY THAT THIS DISSERTATION TITLED “A DESIGN AND

IMPLEMENTATION OF FIREWALL AND PACKET ANALYSIS”

BEING SUBMITTED BY SAMEER SHARMA (20/E&C/2004) OF DELHI

COLLEGE OF ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF ENGINEERING IN ELECTRONICS &

COMMUNICATION IS A BONAFIDE WORK CARRIED OUT UNDER OUR GUIDANCE

AND SUPERVISION.

 SH.A.K.SINGH.

 ELECTRONICS & COMMUNICATION

 ENGINEERING DEPTT.

 DELHI COLLAGE OF ENGINEERING

ACKNOWLEDGEMENTS

 I AM HIGHLY INDEBTED AND EXPRESS MY DEEP SENSE OF GRATITUDE TO

MY WORTHY AND REVEREND GUIDE SH.A.K.SINGH, , DEPTT. OF

ELECTRONICS & COMMUNICATION ENGINEERING , DELHI COLLEGE OF

ENGINEERING, NEW DELHI FOR THIS VALUABLE GUIDANCE AND HELP

EXTENDED BY THIS WORTHINESS, WHICH HAVE ENABLED ME TO CARRIED OUT

THE WORK SUCCESSFULLY. HIS COOPERATION CAME FORTH TO HELP ME OUT

OF MY DIFFICULTIES BEFORE IT WAS EVEN CALLED FOR BY ME. HIS PRECIOUS

SUGGESTION AND DEVOTION HAVE ENCOURAGED ME ALL THROUGH TO THE

ADVANTAGE OF MAKING MY CARRIER BRIGHT.

 I SHALL BE FAILING IN MY DUTY IF I DO NOT APPRECIATE AND

APPLAUDED THE SERVICES OF AND THE TIME DEVOTED BY HONOR’ABLE DR.

A.BHATTACHARYA, HEAD OF THE DEPTT. OF ELECTRICAL ENGINEERING.

WITHOUT THE BLESSINGS, GOOD WISHES AND KIND HELP, THIS PROJECT

WOULD NOT HAVE BEEN ACCOMPLISHED.

 MY FAMILY HAD A BIG ROLL IN ENSURING THAT I SUCCESSFULLY

COMPLETE THE PROJECT. THEIR CONSTANT ENCOURAGEMENT AND

UNWAVERING SUPPORT HAVE BEEN A GREAT SOURCE OF STRENGTH FOR ME. I

AM GRATEFUL TO MY FRIENDS FOR THEIR VALUABLE HELP AND GOOD WISHES

WHICH WENT A LONG WAY IN FULFILLING THIS TASK.

SAMEER SHARMA

 (ER.NO.20/E&C/2004, UNIV. R.NO. 8734)

CONTENTS

LIST OF ABBREVIATION 1

LIST OF FIGURES II

LIST OF TABLES III

1. INTRODUCTION TO FIREWALL 1.

1.1 DEFINITION OF FIREWALL 2.

2. TYPE OF FIREWALLS 2

2.1 HARDWARE VS SOFTWARE 2

 2.2 SIMPLE NAT FIREWALL 3.

 2.3 DEDICATED FIREWALL DEVICE 4.

3. DESCRIPTION OF A PERSONAL FIREWALL 6.

 3.1 DESCRIPTION OF FIREWALL 6

 3.2 DIFFERENT TYPES OF FIREWALL 6.

 3.3 BASIC FIREWALL OPERATION 12

4. THE OSI AND TCP/IP NETWORK MODELS 12.

5. DIFFERENT TYPES OF FIREWALL 14.

 5.1 PACKET FILTERS 15

 5.2 CIRCUIT LEVEL GATEWAYS 16.

 5.3 APPLICATIONS LEVEL GATEWAYS 17.

 5.4 STATEFUL MULTLAYER INSPECTION FIREWALL 18.

6. HOW DO I IMPLEMENT A FIREWALL 19.

7. FIREWALL RELATED PROBLEMS 20

8. BENEFITS OF A FIREWALL 20

9. WHAT IS A MAC ADDRESS 21.

 9.1 IMPORTANCE 21.

 9.2 OBTAINING YOUR MAC ADDRESS 22.

 9.3 IP MASQUERADING OR IP MASQ 22.

 9.4 FORWARD, FEEDBACK OR CREDIT 23.

 9.5 HOW DOSE IP MASQUERADE WORK 24.

 9.6 REQUIREMENTS FOR IP MASQUERADE ON LINUX 2.4.X 27.

10. PACKET ANALYSIS AND FILTERING. 31.

11. Application Data, TCP Header, IP header, and Ethernet Header in an Ethernet

(Data Link Layer) Frame 32.

 11.1. IP HEADER 33.

 11.2 .TCP HEADER 36.

12. CONCLUSION 39.

13. PROGRAMMING 40

14. REFERENCE 80.

 I

LIST OF ABBREVIATION

1. IP: INTERNET PROTOCOL

2. MAC: MEDIA ACCESS CONTROL

3. NIC: NETWORK INTERFACE CARD

4. RFC: REQUEST FOR COMMENTS

5. ARP: ADDRESS RESOLUTION PROTOCOL

6. RARP: REVERSE ADDRESS RESOLUTION PROTOCOL

7. DLC: DATA LINK CONTROL

8. LLC: LOGICAL LINK CONTROL

9. TCP: TRANSMISSION CONTROL PROTOCOL

10. UDP: USER DATAGRAM PROTOCOL

11. NAT: NETWORK ADDRESS TRANSLATION

12. VC: VIRTUAL CHANNEL

13. VP: VIRTUAL PATH

14. VPN: VIRTUAL PATH NETWORK

15. RSVP: RESOURCE RESERVATION PROTOCOL

 II

LIST OF FIGURES

SR.NO. NAME OF FIGURE PAGE NO.
1.

SIMPLE NAT FIREWALL
3.

2.
DEDICATED FIREWALL DEVICE

5.

3.
HARDWARE FIREWALL

8.

4.
COMPUTER WITH FIREWALL SOFTWARE.

9.

5.
BASIC FIREWALL OPERATION

12.

6. THE OSI AND TCP/IP MODELS 13.

7. PROFESSIONAL FIREWALLS 14.

8. PACKET FILTERING FIREWALL 15.

9. CIRCUIT LEVEL GATEWAY 16.

10. APPLICATION LEVEL GATEWAY 17

11. STATEFUL MULTILAYER INSPECTION FIREWALL 18.

 III

LIST OF TABLES

SR.NO. NAME OF TABLE PAGE. NO.
1. PACKET ANALYSIS AND FILTERING 31.

2. ETHERNET FRAME 32.

3. IP HEADER 33.

4. TCP HEADER 36.

 1

1. INTRODUCTION TO FIREWALL

NOT TOO LONG AGO, THE “FIREWALL” AS WE KNOW IT TODAY BELONGED TO AN EXCLUSIVE

GROUP OF HIGHLY TRAINED NETWORK ENGINEERS AND PROGRAMMERS AS A TOOL SET FOR

DEFENDING AN ORGANIZATION’S NETWORKS.

BACK THEN, A PERSON REALLY NEEDED TO KNOW WHAT HE WAS DOING TO SET UP A

FIREWALL. LESS THAN A HANDFUL OF TODAY’S COMMERCIAL PRODUCTS WERE AVAILABLE,
AND MOST NETWORK ENGINEERS AND PROGRAMMERS RESORTED TO BUILDING THEIR OWN

FIREWALLS. THIS WAS BECAUSE, AT THE TIME, ONLY A FEW ORGANIZATIONS ON THE INTERNET
HAD TO REALLY WORRY ABOUT PROTECTING THEMSELVES.

WELL, THAT WAS THEN. TODAY, MORE THAN 100 FIREWALL PROVIDERS ADVERTISE THEIR

WARE. UNFORTUNATELY, MANY OF THESE SO-CALLED “FIREWALLS” AREN’T REALLY DOING AS
MUCH AS YOU’D THINK.

TO REALLY UNDERSTAND HOW TO PROTECT NETWORKS, WE NEED TO FIRST UNDERSTAND

WHAT A FIREWALL IS MADE UP OF. WITH THIS KNOWLEDGE, WE CAN INTELLIGENTLY DECIDE IF

WE ARE BUILDING THE FIREWALL THAT SERVES OUR NEEDS.

NOTICE THAT I STILL REFER TO IT AS “BUILDING” A FIREWALL. MOST OF US DO NOT BUILD OUR

OWN FIREWALLS ANYMORE. PERHAPS A FEW STILL DO, BUT THAT’S NO LONGER NECESSARY
WITH TODAY’S TECHNOLOGY. WE MUST, HOWEVER, STILL CHOOSE THE RIGHT COMBINATION
OF PRODUCTS THAT WILL SUCCESSFULLY PROTECT OUR NETWORKS.

NOT ALL FIREWALLS ARE CREATED EQUAL. AND NOT ALL FIREWALLS ARE DOING THE JOB YOU

MAY THINK THEY’RE CREATED TO DO.

A FIREWALL SHOULD REALLY BE DOING MORE THAN SIMPLY FILTERING AND BLOCKING

PARTICULAR NETWORK TRAFFIC. A GOOD FIREWALL SHOULD, AT THE MINIMUM, PROVIDE
ADEQUATE SECURITY FOR ITS ORGANIZATION. HOWEVER, MOST FIREWALL MANUFACTURERS

SEEM TO FORGET THAT GOOD SECURITY INCLUDES: RELIABILITY, PERFORMANCE AND
MANAGEMENT.

BY MANAGEMENT, I MEAN PROVIDING INTELLIGENT INFORMATION ABOUT THE NETWORK AND

FIREWALLS. MOST FIREWALLS TODAY ARE BEING SET UP AND FORGOTTEN. THEY’RE
ABANDONED WITHOUT ROUTINE MAINTENANCES, PENETRATION TESTS AND AUDITING.

 2

1.1 Definition of Firewall

A FIREWALL IS A SYSTEM DESIGNED TO PREVENT UNAUTHORIZED ACCESS TO OR FROM A

PRIVATE NETWORK. FIREWALLS ARE NOW WIDELY USED BECAUSE OF THE VAST AMOUNT OF

BROADBAND CONNECTIONS PRESENT. THEY PROVIDE A FIRST LINE OF DEFENSE FOR YOUR
COMPUTER OR NETWORK. IF IT SUCCEEDS IN KEEPING THE BAD GUYS OUT, WHILE STILL

LETTING YOU HAPPILY USE YOUR NETWORK, IT'S A GOOD FIREWALL¹. EVERY CORPORATE
NETWORK HAS AT LEAST ONE FIREWALL IN USE. FIREWALLS COME IN ALL SHAPES AND SIZES.
MOST COMPUTERS ARE SHIPPED FROM THE FACTORY WITH SOME TYPE OF FIREWALL

SOFTWARE OR MAY USE THE DEFAULT FIREWALL BUILT INTO XP

2. Types of Firewalls

THERE ARE TWO MAIN TYPES OF FIREWALLS: HARDWARE AND SOFTWARE. HIGH LEVEL
HARDWARE FIREWALLS ARE VERY EXPENSIVE AND ARE NOT PRACTICAL FOR THE HOME USER.
HOWEVER, LOW-END ROUTERS THAT PERFORM NAT ACT AS A HARDWARE FIREWALL.
CHEAPER BROADBAND ROUTERS SUCH AS BELKIN, D-LINK, ETC PROVIDE THIS
FUNCTIONALITY. IN A CORPORATE ENVIRONMENT, VERY EXPENSIVE DEVICES SUCH AS THE
CISCO PIX, SYMANTEC FIREWALL, AND SONICWALL ARE COMMONLY USED HARDWARE

SOLUTIONS. HARDWARE FIREWALLS ARE WITH A LARGE AMOUNT OF CLIENTS.

SOFTWARE FIREWALLS ARE PRACTICAL FOR HOME USERS BECAUSE THEY ARE NOTHING MORE

THAN A PROGRAM THAT RUNS WITH YOUR OPERATING SYSTEM. THESE PROGRAMS ARE
USUALLY INEXPENSIVE, FREE, OR COME BUILT INTO THE OPERATING SYSTEM. THEY ARE MANY
DIFFERENT TYPES OF FIREWALLS AVAILABLE WITH MANY DIFFERENT OPTIONS.

2.1 Hardware vs. Software

GENERALLY SPEAKING, HARDWARE FIREWALLS PERFORM BETTER THAN SOFTWARE

FIREWALLS FOR SEVERAL REASONS. FIRST, A HARDWARE FIREWALL IS "DEDICATED" TO
INSPECTING TRAFFIC. UNLIKE A SOFTWARE FIREWALL, IT DOES NOT COMPETE FOR CPU TIME

OR RAM. THE MAIN DOWNSIDE TO A HARDWARE SOLUTION IS COST AND CONFIGURATION.
HIGH-END DEVICES LIKE CISCO'S PIX FIREWALL CAN BE TRICKY TO CONFIGURE. SOFTWARE

FIREWALLS ARE EASY TO INSTALL AND GENERALLY EASY TO CONFIGURE. IF YOU ARE ON A
NETWORK WITH OTHER CLIENTS THAT YOU DO NOT KNOW, SUCH AS A DORM OR APARTMENT
WITH SHARED INTERNET ACCESS, A SOFTWARE FIREWALL IS A MUST! REMEMBER THAT IF

YOUR ROUTER PERFORMS NAT, IT ONLY PROTECTS YOU FROM INTERNET TRAFFIC. YOU ARE
STILL VULNERABLE TO ATTACKS FROM WITHIN YOUR LAN. HACKERS OFTEN TARGET ROUTERS

TO GAIN ACCESS TO OTHER DEVICES OR MACHINES ON A NETWORK.

LET US SAY SUSAN HAS A DSL CONNECTION AT HOME. FROM THERE SHE DOES HER BANKING,
STOCK TRADING, AND OTHER PRIVATE COMMUNICATION. A FIREWALL IS IMPORTANT BECAUSE

IT WOULD BLOCK CONNECTION ATTEMPTS BY A HACKER. IF A HACKER HAS SUSAN'S IP
ADDRESS, HE CAN ESTABLISH A REMOTE CONNECTION. IF A SUCCESSFUL CONNECTION IS
MADE, IT IS POSSIBLE FOR THAT HACKER TO INTERCEPT PASSWORDS OR OTHER DATA THAT

ENDANGERS SUSAN'S ONLINE IDENTITY. ARE YOU WONDERING IF A FIREWALL IS FOR YOU? I'D

 3

SAY "BETTER SAFE THAN SORRY." YOU WOULDN'T WANT TO OWN A STORE IN A DANGEROUS

NEIGHBORHOOD WITHOUT A BURGLAR ALARM. BELOW ARE DIAGRAMS OF HOW A FIREWALLS

CAN BE DEPLOYED IN A NETWORK:

Simple NAT Firewall

FIGURE 1.

 4

THE DIAGRAM ABOVE ILLUSTRATES THE FIREWALL PROTECTION PROVIDED BY NAT. WHILE 3
MACHINES ARE ATTACHED TO THE ROUTER, THE INTERNET/WAN LINK THINKS ONLY 1 DEVICE
IS PRESENT. THIS PROTECTS ALL 3 MACHINES BY LIMITING ACCESS TO IP ADDRESSES AND
PORTS FROM THE INTERNET/WAN CONNECTION. FOR MORE DETAILS ON THIS SEE THE
ARTICLE ON NAT.

 5

2.3 Dedicated Firewall Device

Figure 2.

THE DIAGRAM ABOVE ILLUSTRATES HOW A DEDICATED FIREWALL DEVICE IS USED. NOTICE

THAT THE FIREWALL PROTECTS THE ROUTER, SERVERS, AND NETWORK USERS. THIS IS A
COMMON APPROACH USED WHEN ARE LARGE NUMBER OF USERS NEED TO ACCESS THE

INTERNET. NAT IS NOT MEANT FOR LARGE NETWORKS. USING A DEDICATED FIREWALL DEVICE

IN A HIGH-TRAFFIC ENVIRONMENT DOES NOT NEGATIVELY IMPACT NETWORK PERFORMANCE

LIKE A SOFTWARE FIREWALL OR LOW-END NAT DEVICE.

 6

3. Description of a Personal Firewall

3.1 Description of a Firewall

A FIREWALL IS DESIGNED TO HELP PROTECT YOUR COMPUTER FROM ATTACK BY MALICIOUS

USERS OR BY MALICIOUS SOFTWARE SUCH AS VIRUSES THAT USE UNSOLICITED INCOMING

NETWORK TRAFFIC TO ATTACK YOUR COMPUTER. BEFORE YOU DISABLE YOUR FIREWALL, YOU
MUST DISCONNECT YOUR COMPUTER FROM ALL NETWORKS, INCLUDING THE INTERNET.

A FIREWALL IS A SYSTEM THAT IS DESIGNED TO PREVENT UNAUTHORIZED ACCESS TO OR

FROM A PRIVATE NETWORK. YOU CAN IMPLEMENT FIREWALLS IN HARDWARE, SOFTWARE, OR
BOTH. FIREWALLS ARE FREQUENTLY USED TO PREVENT UNAUTHORIZED INTERNET USERS
FROM ACCESSING PRIVATE NETWORKS THAT ARE CONNECTED TO THE INTERNET

3.2 Different Types of Firewalls

DIFFERENT FIREWALLS USE DIFFERENT TECHNIQUES. MOST FIREWALLS USE TWO OR MORE

OF THE FOLLOWING TECHNIQUES:

PACKET FILTERS: A PACKET FILTER LOOKS AT EACH PACKET THAT ENTERS OR LEAVES THE
NETWORK AND ACCEPTS OR REJECTS THE PACKET BASED ON USER-DEFINED RULES. PACKET
FILTERING IS FAIRLY EFFECTIVE AND TRANSPARENT, BUT IT IS DIFFICULT TO CONFIGURE. IN
ADDITION, IT IS SUSCEPTIBLE TO IP SPOOFING.

APPLICATION GATEWAY: AN APPLICATION GATEWAY APPLIES SECURITY MECHANISMS TO

SPECIFIC PROGRAMS, SUCH AS FTP AND TELNET. THIS TECHNIQUE IS VERY EFFECTIVE, BUT
CAN CAUSE PERFORMANCE DEGRADATION.

CIRCUIT-LAYER GATEWAY: THIS TECHNIQUE APPLIES SECURITY MECHANISMS WHEN A

TRANSMISSION CONTROL PROTOCOL (TCP) OR USER DATAGRAM PROTOCOL (UDP)
CONNECTION IS ESTABLISHED. AFTER THE CONNECTION HAS BEEN ESTABLISHED, PACKETS
CAN FLOW BETWEEN THE HOSTS WITHOUT FURTHER CHECKING.

PROXY SERVER: A PROXY SERVER INTERCEPTS ALL MESSAGES THAT ENTER AND LEAVE THE
NETWORK. THE PROXY SERVER EFFECTIVELY HIDES THE TRUE NETWORK ADDRESSES.
APPLICATION PROXIES: APPLICATION PROXIES HAVE ACCESS TO THE WHOLE RANGE OF

INFORMATION IN THE NETWORK STACK. THIS PERMITS THE PROXIES TO MAKE DECISIONS
BASED ON BASIC AUTHORIZATION (THE SOURCE, THE DESTINATION, AND THE PROTOCOL), AND
ALSO TO FILTER OFFENSIVE OR DISALLOWED COMMANDS IN THE DATA STREAM. APPLICATION
PROXIES ARE "STATEFUL," MEANING THAT THEY KEEP THE "STATE" OF CONNECTIONS
INHERENTLY. THE INTERNET CONNECTION FIREWALL FEATURE THAT IS INCLUDED IN

WINDOWS XP IS A "STATEFUL" FIREWALL, AS WELL AS WINDOWS FIREWALL. WINDOWS

FIREWALL IS INCLUDED IN WINDOWS XP SERVICE PACK 2 (SP2).

 7

FOR ADDITIONAL INFORMATION ABOUT THE WINDOWS XP INTERNET CONNECTION FIREWALL

FEATURE, CLICK THE ARTICLE NUMBER BELOW TO VIEW THE ARTICLE IN THE MICROSOFT

KNOWLEDGE BASE:

FIREWALL

A firewall protects networked computers from intentional hostile intrusion that could
compromise confidentiality or result in data corruption or denial of service. It may be a
hardware device (fig 1 or a software programsee fig 2) running on a secure host
computer. In either case, it must have at least two network interfaces, one for the
network it is intended to protect, and one for the network it is exposed to. A firewall sits
at the junction point or gateway between the two networks, usually a private network and
a public network such as the Internet. The earliest firewalls were simply routers. The
term firewall comes from the fact that by segmenting a network into different physical
subnetworks, they limited the damage that could spread from one subnet to another just
like firedoors or firewalls.

 8

1 : Hardware Firewall

Figure 3.

 9

2: Computer with Firewall Software.

Figure 4.

 10

WHAT DOES A FIREWALL DO?

A firewall examines all traffic routed between the two networks to see if it meets certain
criteria. If it does, it is routed between the networks, otherwise it is stopped. A firewall
filters both inbound and outbound traffic. It can also manage public access to private
networked resources such as host applications. It can be used to log all attempts to
enter the private network and trigger alarms when hostile or unauthorized entry is
attempted. Firewalls can filter packets based on their source and destination addresses
and port numbers. This is known as address filtering. Firewalls can also filter specific
types of network traffic. This is also known as protocol filtering because the decision to
forward or reject traffic is dependant upon the protocol used, for example HTTP, ftp or
telnet. Firewalls can also filter traffic by packet attribute or state.

WHAT CAN'T A FIREWALL DO?

A firewall cannot prevent individual users with modems from dialling into or out of the
network, bypassing the firewall altogether. Employee misconduct or carelessness cannot
be controlled by firewalls. Policies involving the use and misuse of passwords and user
accounts must be strictly enforced. These are management issues that should be raised
during the planning of any security policy but that cannot be solved with firewalls alone.

The arrest of the Phonemasters cracker ring brought these security issues to light.
Although they were accused of breaking into information systems run by AT&T Corp.,
British Telecommunications Inc., GTE Corp., MCI WorldCom, Southwestern Bell, and
Sprint Corp, the group did not use any high tech methods such as IP spoofing (see
question 10). They used a combination of social engineering and dumpster diving. Social
engineering involves skills not unlike those of a confidence trickster. People are tricked
into revealing sensitive information. Dumpster diving or garbology, as the name
suggests, is just plain old looking through company trash. Firewalls cannot be effective
against either of these techniques.

WHO NEEDS A FIREWALL?

Anyone who is responsible for a private network that is connected to a public network
needs firewall protection. Furthermore, anyone who connects so much as a single
computer to the Internet via modem should have personal firewall software. Many dial-
up Internet users believe that anonymity will protect them. They feel that no malicious
intruder would be motivated to break into their computer. Dial up users who have been
victims of malicious attacks and who have lost entire days of work, perhaps having to

 11

reinstall their operating system, know that this is not true. Irresponsible pranksters can
use automated robots to scan random IP addresses and attack whenever the
opportunity presents itself.

HOW DOES A FIREWALL WORK?

There are two access denial methodologies used by firewalls. A firewall may allow all
traffic through unless it meets certain criteria, or it may deny all traffic unless it meets
certain criteria (see figure 3). The type of criteria used to determine whether traffic
should be allowed through varies from one type of firewall to another. Firewalls may be
concerned with the type of traffic, or with source or destination addresses and ports.
They may also use complex rule bases that analyse the application data to determine if
the traffic should be allowed through. How a firewall determines what traffic to let
through depends on which network layer it operates at. A discussion on network layers
and architecture follows.

 12

3: Basic Firewall Operation

Figure 5.

4. THE OSI AND TCP/IP NETWORK MODELS

To understand how firewalls work it helps to understand how the different layers of a
network interact. Network architecture is designed around a seven layer model. Each
layer has its own set of responsibilities, and handles them in a well-defined manner. This
enables networks to mix and match network protocols and physical supports. In a given
network, a single protocol can travel over more than one physical support (layer one)
because the physical layer has been dissociated from the protocol layers (layers three to
seven). Similarly, a single physical cable can carry more than one protocol. The TCP/IP

 13

model is older than the OSI industry standard model which is why it does not comply in
every respect. The first four layers are so closely analogous to OSI layers however that
interoperability is a day to day reality.

Firewalls operate at different layers to use different criteria to restrict traffic. The lowest
layer at which a firewall can work is layer three. In the OSI model this is the network
layer. In TCP/IP it is the Internet Protocol layer. This layer is concerned with routing
packets to their destination. At this layer a firewall can determine whether a packet is
from a trusted source, but cannot be concerned with what it contains or what other
packets it is associated with. Firewalls that operate at the transport layer know a little
more about a packet, and are able to grant or deny access depending on more
sophisticated criteria. At the application level, firewalls know a great deal about what is
going on and can be very selective in granting access.

THE OSI AND TCP/IP MODELS

FIGURE 6.

It would appear then, that firewalls functioning at a higher level in the stack must
be superior in every respect. This is not necessarily the case. The lower in the
stack the packet is intercepted, the more secure the firewall. If the intruder
cannot get past level three, it is impossible to gain control of the operating
system.

 14

Professional Firewalls Have Their Own IP Layer

Figure 7.

Professional firewall products catch each network packet before the operating system
does, thus, there is no direct path from the Internet to the operating system's TCP/IP
stack. It is therefore very difficult for an intruder to gain control of the firewall host
computer then "open the doors" from the inside.

According To Byte Magazine*, traditional firewall technology is susceptible to
misconfiguration on non-hardened OSes. More recently, however, "...firewalls have
moved down the protocol stack so far that the OS doesn't have to do much more than
act as a bootstrap loader, file system and GUI". The author goes on to state that newer
firewall code bypasses the operating system's IP layer altogether, never permitting
"potentially hostile traffic to make its way up the protocol stack to applications running on
the system".

5. DIFFERENT TYPES OF FIREWALLS

Firewalls fall into four broad categories: packet filters, circuit level gateways, application
level gateways and stateful multilayer inspection firewalls.

Packet filtering firewalls work at the network level of the OSI model, or the IP layer of
TCP/IP. They are usually part of a router. A router is a device that receives packets from
one network and forwards them to another network. In a packet filtering firewall each
packet is compared to a set of criteria before it is forwarded. Depending on the packet
and the criteria, the firewall can drop the packet, forward it or send a message to the
originator. Rules can include source and destination IP address, source and destination
port number and protocol used. The advantage of packet filtering firewalls is their low
cost and low impact on network performance. Most routers support packet filtering. Even
if other firewalls are used, implementing packet filtering at the router level affords an
initial degree of security at a low network layer. This type of firewall only works at the
network layer however and does not support sophisticated rule based models (see
Figure 5). Network Address Translation (NAT) routers offer the advantages of packet

 15

filtering firewalls but can also hide the IP addresses of computers behind the firewall,
and offer a level of circuit-based filtering.

5.1: Packet Filtering Firewall

Figure 8.

Circuit level gateways work at the session layer of the OSI model, or the TCP layer of
TCP/IP. They monitor TCP handshaking between packets to determine whether a
requested session is legitimate. Information passed to remote computer through a circuit
level gateway appears to have originated from the gateway. This is useful for hiding
information about protected networks. Circuit level gateways are relatively inexpensive
and have the advantage of hiding information about the private network they protect. On
the other hand, they do not filter individual packets.

 16

5.2 Circuit level Gateway

Figure 9.

Application level gateways, also called proxies, are similar to circuit-level gateways
except that they are application specific. They can filter packets at the application layer
of the OSI model. Incoming or outgoing packets cannot access services for which there
is no proxy. In plain terms, an application level gateway that is configured to be a web
proxy will not allow any ftp, gopher, telnet or other traffic through. Because they examine
packets at application layer, they can filter application specific commands such as
http:post and get, etc. This cannot be accomplished with either packet filtering firewalls
or circuit level neither of which know anything about the application level information.
Application level gateways can also be used to log user activity and logins. They offer a
high level of security, but have a significant impact on network performance. This is
because of context switches that slow down network access dramatically. They are not
transparent to end users and require manual configuration of each client computer.

 17

5.3 Application level Gateway

Figure 10.

Stateful multilayer inspection firewalls combine the aspects of the other three types of
firewalls. They filter packets at the network layer, determine whether session packets are
legitimate and evaluate contents of packets at the application layer. They allow direct
connection between client and host, alleviating the problem caused by the lack of
transparency of application level gateways. They rely on algorithms to recognize and
process application layer data instead of running application specific proxies. Stateful
multilayer inspection firewalls offer a high level of security, good performance and
transparency to end users. They are expensive however, and due to their complexity are
potentially less secure than simpler types of firewalls if not administered by highly
competent personnel.

 18

5.4 Stateful Multilayer Inspection Firewall

Figure 11

 19

6.HOW DO I IMPLEMENT A FIREWALL?

We suggest you approach the task of implementing a firewall by going through the
following steps:

a. DETERMINE THE ACCESS DENIAL METHODOLOGY TO USE.

It is recommended you begin with the methodology that denies all access by default. In
other words, start with a gateway that routes no traffic and is effectively a brick wall with
no doors in it.

b. DETERMINE INBOUND ACCESS POLICY.

If all of your Internet traffic originates on the LAN this may be quite simple. A
straightforward NAT router will block all inbound traffic that is not in response to requests
originating from within the LAN. As previously mentioned, the true IP addresses of hosts
behind the firewall are never revealed to the outside world, making intrusion extremely
difficult. Indeed, local host IP addresses in this type of configuration are usually non-
public addresses, making it impossible to route traffic to them from the Internet. Packets
coming in from the Internet in response to requests from local hosts are addressed to
dynamically allocated port numbers on the public side of the NAT router. These change
rapidly making it difficult or impossible for an intruder to make assumptions about which
port numbers to use.

If your requirements involve secure access to LAN based services from Internet based
hosts, then you will need to determine the criteria to be used in deciding when a packet
originating from the Internet may be allowed into the LAN. The stricter the criteria, the
more secure your network will be. Ideally you will know which public IP addresses on the
Internet may originate inbound traffic. By limiting inbound traffic to packets originating
from these hosts, you decrease the likelihood of hostile intrusion. You may also want to
limit inbound traffic to certain protocol sets such as ftp or http. All of these techniques
can be achieved with packet filtering on a NAT router. If you cannot know the IP
addresses that may originate inbound traffic, and you cannot use protocol filtering then
you will need more a more complex rule based model and this will involve a stateful
multilayer inspection firewall.

C. DETERMINE OUTBOUND ACCESS POLICY.

If your users only need access to the web, a proxy server may give a high level of
security with access granted selectively to appropriate users. As mentioned, however,
this type of firewall requires manual configuration of each web browser on each
machine. Outbound protocol filtering can also be transparently achieved with packet
filtering and no sacrifice in security. If you are using a NAT router with no inbound
mapping of traffic originating from the Internet, then you may allow LAN users to freely
access all services on the Internet with no security compromise. Naturally, the risk of
employees behaving irresponsibly with email or with external hosts is a management
issue and must be dealt with as such.

 20

D. DETERMINE IF DIAL-IN OR DIAL-OUT ACCESS IS REQUIRED.

Dial-in requires a secure remote access PPP server that should be placed outside the
firewall. If dial-out access is required by certain users, individual dial-out computers must
be made secure in such a way that hostile access to the LAN through the dial-out
connection becomes impossible. The surest way to do this is to physically isolate the
computer from the LAN. Alternatively, personal firewall software may be used to isolate
the LAN network interface from the remote access interface.

DECIDE WHETHER TO BUY A COMPLETE FIREWALL PRODUCT, HAVE ONE IMPLEMENTED BY A
SYSTEMS INTEGRATOR OR IMPLEMENT ONE YOURSELF.

Once the above questions have been answered, it may be decided whether to buy a
complete firewall product or to configure one from multipurpose routing or proxy
software. This decision will depend as much on the availability of in-house expertise as
on the complexity of the need. A satisfactory firewall may be built with little expertise if
the requirements are straightforward. However, complex requirements will not
necessarily entail recourse to external resources if the system administrator has
sufficient grasp of the elements. Indeed, as the complexity of the security model
increases, so does the need for in-house expertise and autonomy.

7.Firewall related problems

Firewalls introduce problems of their own. Information security involves constraints, and
users don't like this. It reminds them that Bad Things can and do happen. Firewalls
restrict access to certain services. The vendors of information technology are constantly
telling us "anything, anywhere, any time", and we believe them naively. Of course they
forget to tell us we need to log in and out, to memorize our 27 different passwords, not to
write them down on a sticky note on our computer screen and so on.

Firewalls can also constitute a traffic bottleneck. They concentrate security in one spot,
aggravating the single point of failure phenomenon. The alternatives however are either
no Internet access, or no security, neither of which are acceptable in most organizations.

8.BENEFITS OF A FIREWALL

Firewalls protect private local area networks from hostile intrusion from the Internet.
Consequently, many LANs are now connected to the Internet where Internet connectivity
would otherwise have been too great a risk.

Firewalls allow network administrators to offer access to specific types of Internet
services to selected LAN users. This selectivity is an essential part of any information
management program, and involves not only protecting private information assets, but
also knowing who has access to what. Privileges can be granted according to job
description and need rather than on an all-or-nothing basis.

 21

9. What is a MAC Address.

A MAC ADDRESS IS A UNIQUE NUMBER ASSIGNED TO A NETWORK INTERFACE CARD (NIC),
COMMONLY CALLED AN ETHERNET CARD. THIS "ADDRESS" IS CREATED BY THE

MANUFACTURER (NOT BY WASHINGTON UNIVERSITY). A MAC ADDRESS IS A 12-DIGIT
NUMBER. EACH DIGIT IS A NUMBER FROM 0-9 OR A LETTER FROM A-F. SOMETIMES THE DIGITS
OF A MAC ADDRESS ARE SEPARATED BY COLONS OR DASHES. EXAMPLES OF POSSIBLE MAC

ADDRESSES INCLUDE: 080007A92BFC, 09:00:07:A9:B2:EB, OR 09-10-4A-B9-E2-A4.

9.1 IMPORTANCE

DON'T CONFUSE THE MAC ADDRESS WITH APPLE OR MACINTOSH COMPUTERS, WHICH ARE

COMMONLY REFERRED TO AS "MACS." THE NAME "MAC ADDRESS" DOES NOT REFER TO
APPLE/MACINTOSH COMPUTERS, BUT INSTEAD ONLY TO THE PHYSICAL ADDRESS OF YOUR
COMPUTER, REGARDLESS OF WHETHER IT IS A PC OR A MACINTOSH.

YOUR MAC ADDRESS MAY ALSO BE CONFUSED WITH AN INTERNET PROTOCOL (IP) ADDRESS
OR AN E-MAIL ADDRESS. AN IP ADDRESS USES ONLY NUMBERS AND PERIODS: 128.252.93.1

YOUR MAC ADDRESS MAY ALSO LOOK LIKE A MODEM ADDRESS. HOWEVER, MODEM ADDRESS

DESCRIPTION WILL BE TITLED "PPP" OR "MODEM."

 22

9.2 OBTAINING YOUR MAC ADDRESS

IF YOU CANNOT FIND YOUR MAC ADDRESS IN EITHER THE BOX OR ON THE CARD, PLEASE
FOLLOW THE INSTRUCTIONS BELOW, DEPENDING ON YOUR OPERATING SYSTEM (WINDOWS

95, WINDOWS 98, WINDOWS ME, WINDOWS NT, WINDOWS 2000 PROFESSIONAL, WIN XP,
MACINTOSH OS, MACINTOSH OS X, SOLARIS/SUNOS, LINUX, FREEBSD, OR HP).

LINUX

ON LINUX SYSTEMS, THE ETHERNET DEVICE IS TYPICALLY CALLED ETH0. IN ORDER TO FIND
THE MAC ADDRESS OF THE ETHERNET DEVICE, YOU MUST FIRST BECOME ROOT, THROUGH
THE USE OF SU. THEN, TYPE IFCONFIG -A AND LOOK UP THE RELEVANT INFO. FOR EXAMPLE:

IFCONFIG -A ETH0 LINK ENCAP:ETHERNET HWADDR 00:60:08:C4:99:AA INET

ADDR:131.225.84.67 BCAST:131.225.87.255 MASK:255.255.248.0 UP BROADCAST
RUNNING MULTICAST MTU:1500 METRIC:1 RX PACKETS:15647904 ERRORS:0
DROPPED:0 OVERRUNS:0 TX PACKETS:69559 ERRORS:0 DROPPED:0 OVERRUNS:0
INTERRUPT:10 BASE ADDRESS:0X300

THE MAC ADDRESS IS THE HWADDR LISTED ON THE FIRST LINE. IN THE CASE OF THIS
MACHINE, IT IS 00:60:08:C4:99:AA.

9.3 IP Masquerading or IP MASQ

This document describes how to enable the Linux IP Masquerade feature on a given
Linux host. IP Masquerade, called "IPMASQ" or "MASQ" for short, is a form of Network
Address Translation (NAT) which allows internally connected computers that do not
have one or more registered Internet IP addresses to communicate to the Internet via
the Linux server's Internet IP address. Since IPMASQ is a generic technology, you can
connect the Linux server's internal and external to other computers through LAN
technologies like Ethernet, TokenRing, and FDDI, as well as dialup connections line
PPP or SLIP links. This document primarily uses Ethernet and PPP connections in
examples because it is most commonly used with DSL / Cablemodems and dialup
connections.

This document is intended for systems running stable Linux kernels like 2.4.x, 2.2.x, and
2.0.x preferably on an IBM-compatible PC. IP Masquerade does work on other Linux-
supported platforms like Sparc, Alpha, PowerPC, etc. but this HOWTO doesn't cover
them in as much detail. Beta kernels such as 2.5.x, 2.3.x, 2.1.x, and ANY kernels less
than 2.0.x are NOT covered in this document. The primary reason for this is because
many of the older kernels are considered broken. If you are using an older kernel
version, it is highly advisable to upgrade to one of the stable Linux kernels before using
IP Masquerading.

 23

9.4 Foreword, Feedback & Credits

As a new user, I found it very confusing to setup IP masquerade on the Linux kernel,
(back then, its was a 1.2.x kernel). Although there was a FAQ and a mailing list, there
was no documentation dedicated to this. There was also some requests on the mailing
list for a HOWTO manual. So, I decided to write this HOWTO as a starting point for new
users and possibly create a building block for other knowledgeable users. If you, the
reader, have any additional ideas, corrections, or questions about this document, please
feel free to contact us.

This document was originally written by Ambrose Au back in August, 1996, based on the
1.x kernel IPMASQ FAQ written by Ken Eves and numerous helpful messages from the
original IP Masquerade mailing list. In particular, a mailing list message from Matthew
Driver inspired Ambrose to set up IP Masquerade and eventually write version 0.80 of
this HOWTO. In April 1997, Ambrose created the Linux IP Masquerade Resource Web
site at which has provided up-to-date information on Linux IP Masquerading ever since.
In February 1999, David Ranch took over maintenance of the HOWTO. David then re-
wrote the HOWTO and added a substantial number of sections to the document. Today,
the HOWTO is still maintained by David where he constantly updates it and fixes any
reported bugs, etc.

Please feel free to send any feedback or comments regarding this HOWTO to if you
have any corrections or if any information/URLs/etc. is missing. Your invaluable
feedback will certainly influence the future of this HOWTO!

This HOWTO is meant to be a fairly comprehensive guide to getting your Linux IP
Masquerading system working in the shortest time possible. David only plays a technical
writer on T.V. so you might find the information in this document not as general and/or
objective as it could be. If you think a section could be clearer, etc.. please let David
know. The latest version of the MASQ HOWTO can be found at Additional news, mirrors
of the HOWTO, and information regarding IPMASQ can be found at the IP Masquerade
Resource web page. If you have any technical questions on IP Masquerade, please join
the IP Masquerade Mailing List instead of sending email to David or Ambrose. Most
MASQ problems are -common- for ALL MASQ users and can be easily solved by users
on the list. In addition to this, the response time of the IP MASQ email list will be much
faster than a reply from either David or Ambrose

 24

9.5 How does IP Masquerade Work

Based from the original IP Masquerade FAQ by Ken Eves: Here is a drawing of the most
simplistic setup:

PPP/ETH/etc. +------------+ +-------------+
to ISP provider | Linux #1 | PPP/ETH/etc. | Anybox |
 | | | |
 <---------- modem1| |modem2 ----------- modem3| |
 | | | |
 111.222.121.212 | | 192.168.0.100 | |
 +------------+ +-------------+

In the above drawing, a Linux box with IP_MASQUERADING is installed as Linux #1
and is connected to the Internet via PPP, Ethernet, etc. It has an assigned public IP
address of 111.222.121.212. It also has another network interface (e.g. modem2)
connected to allow incoming network traffic be it from a PPP connection, Ethernet
connection, etc.

The second system (which does not need to be Linux) connects into the Linux #1 box
and starts its network traffic to the Internet. This second machine does NOT have a
publicly assigned IP address from the Internet, so it uses an RFC1918 private address,
say 192.168.0.100. (see below for more info)

With IP Masquerade and the routing configured properly, this second machine "Anybox"
can interact with the Internet as if it was directly connected to the Internet with a few
small exceptions [noted later].

Quoting Pauline Middelink (the founder of Linux's IPMASQ):

"Do not forget to mention that the "ANYBOX" machine should have the Linux #1 box
configured as its default gateway (whether it be the default route or just a subnet is no
matter). If the "ANYBOX" machine is connected via a PPP or SLIP connection, the Linux
#1 machine should be configured to support proxy arp for all routed addresses. But, the
setup and configuration of proxy arp is beyond the scope of this document. Please see
the PPP-HOWTO for more details."

The following is an excerpt on how IPMASQ briefly works though this will be explained in
more detail later. This short text is based from a previous post on
comp.os.linux.networking which has been edited to match the names used in the above
example:

 25

 o I tell machine ANYBOX that my PPP or Ethernet connected Linux box is its
 gateway.

 o When a packet comes into the Linux box from ANYBOX, it will assign the
 packet to a new TCP/IP source port number and insert its own IP address
 inside the packet header, saving the originals. The MASQ server will
 then send the modified packet over the PPP/ETH interface onto the
 Internet.

 o When a packet returns from the Internet into the Linux box, Linux
 examines if the port number is one of those ports that was assigned
 above. If so, the MASQ server will then take the original port and
 IP address, put them back in the returned packet header, and send
 the packet to ANYBOX.

 o The host that sent the packet will never know the difference.

:A typical example is given in the diagram below:

 Ethernet
 192.168.0.x
 +----------+
 | |
 | A-box |::::::
 | |.2 :
 +----------+ :
 : +----------+ PPP/ETH
 +----------+ : .1 | Linux | link
 | | :::::::| Masq-Gate|:::::::::::::::::::>> Internet
 | B-box |:::::: | | 111.222.121.212
 | |.3 : +----------+
 +----------+ :
 :
 +----------+ :
 | | :
 | C-box |::::::
 | |.4
 +----------+

 | | | >
 | <-Internal Network--> | | <- External Network ----> >
 | connected via an | | Connected from the >
 | Ethernet hub or | | Linux server to your >
 | switch | | Internet connection >

 26

In this example, there are (4) computer systems that we are concerned about. There is
also presumably something on the far right that your PPP/ETH connection to the Internet
comes through (modem server, DSL DSLAM, Cablemodem router, etc.). Out on the
Internet, there exists some remote host (very far off to the right of the page) that you are
interested in communicating with). The Linux system named Masq-Gate is the IP
Masquerading gateway for ALL internal networked machines. In this example, the
machines A-box, B-box, and C-box would have to go through the Masq-Gate to reach
the Internet. The internal network uses one of several RFC-1918 assigned private
network addresses, where in this case, would be the Class-C network 192.168.0.0. If
you aren't familiar with RFC1918, it is encouraged to read the first few chapters of the
RFC but the jist of it is that the TCP/IP addresses 10.0.0.0/8, 172.16-31.0.0/12, and
192.168.0.0/16 are reserved. When we say "reserved", we mean that anyone can use
these addresses as long as they aren't routed over the Internet. ISPs are even allowed
to use this private addressing space as long as they keep these addresses within their
own networks and NOT advertise them to other ISPs. Unfortunately, this isn't always the
case but thats beyond the scope of this HOWTO.

Anyway, the Linux box in the diagram above has the TCP/IP address 192.168.0.1 while
the other systems has the addresses:

• A-Box: 192.168.0.2
• B-Box: 192.168.0.3
• C-Box: 192.168.0.4

The three machines, A-box, B-box and C-box, can have any one of several operating
systems, just as long as they can speak TCP/IP. Some such as Windows 95, Macintosh
MacTCP or OpenTransport , or even another Linux box have the ability to connect to
other machines on the Internet. When running the IP Masquerade, the masquerading
system or MASQ-gate converts all of these internal connections so that they appear to
originate from the masq-gate itself. MASQ then arranges so that the data coming back to
a masqueraded connection is relayed to the proper originating system. Therefore, the
systems on the internal network are only able to see a direct route to the internet and are
unaware that their data is being masqueraded. This is called a "Transparent"
connection.

• The differences between NAT, MASQ, and Proxy servers.
• How packet firewalls work

 27

9.6 Requirements for IP Masquerade on Linux 2.4.x

The newest 2.4.x kernels are now using both a completely new TCP/IP network stack as
well as a new NAT sub-system called NetFilter. Within this NetFilter suite of tools, we
now have a tool called IPTABLES for the 2.4.x kernels much like there was IPCHAINS
for the 2.2.x kernels and IPFWADM for the 2.0.x kernels. The new IPTABLES system is
far more powerful (combines several functions into one place like true NAT functionality),
offers better security (stateful inspection), and better performance with the new 2.4.x
TCP/IP stack. But this new suite of tools can be a bit complicated in comparison to older
generation kernels. Hopefully, if you follow along with this HOWTO carefully, setting up
IPMASQ won't be too bad. If you find anything unclear, downright wrong, etc. please
email David about it.

Unlike the migration to IPCHAINS from IPFWADM, the new NetFilter tool has kernel
modules that can actually support older IPCHAINS and IPFWADM rulesets with minimal
changes. So re-writing your old MASQ or firewall ruleset scripts is not longer required.
BUT.. with the 2.4.x kernels, you cannot use the old 2.2.x MASQ modules like
ip_masq_ftp, ip_masq_irc, etc. AND IPCHAINS is incompatible with the new IPTABLES
modules like ip_conntrack_ftp, etc. So, what does this mean? It basically means that if
you want to use IPMASQ or PORTFW functionality under a 2.4.x kernel, you shouldn't
use IPCHAINS rules but IPTABLES ones instead. Please also keep in mind that there
might be several benefits in performing a full ruleset re-write to take advantage of the
newer IPTABLES features like stateful tracking, etc. but that is dependant upon how
much time you have to migrate your old rulesets..

 28

Some new 2.4.x functionalities include the following:

Status = Module name = Description and notes
--------- ----------- ----------------------------------
 Ported CuSeeme Used for Video conferencing

NotPorted DirectPlay Used for online Microsoft-based games

 Ported FTP Used for file transfers
 - NOTEs: Built into the kernel and
 fully supports PORTFWed FTP

ReWritten H.323 Used for Video conferencing

NotPorted ICQ Used for Instant messaging
 * No longer required for modern ICQ clients

 Ported Irc Used for Online chat rooms

 Ported Quake Used for online Quake games

 Ported PPTP Allow for multiple clients to the same server

NotPorted Real Audio Used for Streaming video / audio
 * No longer required for modern RealVideo clients

NotPorted VDO Live Used for Streaming audio?

Documentation on how to perform MASQ module porting is available at If you have the
time and knowledge, your talent would highly be appreciated in porting these modules.

If you'd like to read up more on NetFilter and IPTables, please see: and more specifically

 29

Linux 2.4.x IP Masquerade requirements include:

Any decent computer hardware. See for more details.

The 2.4.x kernel source is available from

NOTE: Most modern Linux distributions, that natively come with 2.4.x kernels are
typically modular kernels and have all the IP Masquerade functionality already included.
In such cases, there is no need to compile a new Linux kernel. If you are UPGRADING
your kernel, you should be aware of other programs that might be required and/or need
to be upgraded as well (mentioned later in this HOWTO).

The program "iptables" version 1.2.4 or newer (1.2.7a or newer is highly recommended)
archive available from.

NOTE #1: All versions of IPTABLES less than 1.2.3 have a FTP module issue that can
bypass any existing firewall rulesets. ALL IPTABLES users are highly recommended to
upgrade to the newest version. The URL is above.

NOTE #2: All versions of IPTABLES less than 1.2.2 have a FTP "port" security
vulnerability in the ip_conntrack_ftp module. All IPTABLES users are highly
recommended to upgrade to the newest version. The URL is above.

This tool, much like the older IPCHAINS and IPFWADM tools enables the various
Masquerding code, more advanced forms of NAT, packet filtering, etc. It also makes use
of additional MASQ modules like the FTP and IRC modules. Additional information on
version requirements for the newest IPTABLES howto, etc. is located at the Unreliable
IPTABLES HOWTOs page.

Loadable kernel modules, preferably 2.1.121 or higher, are available from A properly
configured and running TCP/IP network running on the Linux machine as covered in
Linux NET HOWTO and the Network Administrator's Guide . Also check out the
TrinityOS document which is also authored by David Ranch. TrinityOS is a very
comprehensive guide for Linux networking. Some topics include IP MASQ, security,
DNS, DHCP, Sendmail, PPP, Diald, NFS, IPSEC-based VPNs, and performance
sections, to name a few. There are over Fifty sections in all!

 30

2.7. Requirements for IP Masquerade on Linux 2.2.x

NOTE: Most modern Linux distributions, that natively come with 2.2.x kernels are
typically modular kernels and have all the IP Masquerade functionality already included.
In such cases, there is no need to compile a new Linux kernel. If you are UPGRADING
your kernel, you should be aware of other programs that might be required and/or need
to be upgraded as well (mentioned later in this HOWTO).

NOTE #1: --- UPDATE YOUR KERNEL --- Linux 2.2.x kernels less than version 2.2.20
contain several different security vulnerabilities (some were MASQ specific). Kernels
less than 2.2.20 have a few local vulnerabilities. Kernel versions less than 2.2.16 have a
TCP root exploit vulnerability and versions less than 2.2.11 have a IPCHAINS
fragmentation bug. Because of these issues, users running a firewall with strong
IPCHAINS rulesets are open to possible instrusion. Please upgrade your kernel to a
fixed version.

NOTE #2: Some newer such as Redhat 5.2 might not be Linux 2.2.x ready
(upgradable). Tools like DHCP, NetUtils, etc. will need to be upgraded. More details can
be found later in the HOWTO.

Loadable kernel modules, preferably 2.1.121 or higher, are available from

A properly configured and running TCP/IP network running on the Linux machine as
covered in Linux NET HOWTO and the Network Administrator's Guide . Also check out
the TrinityOS document which is also authored by David Ranch. TrinityOS is a very
comprehensive guide for Linux networking. Some topics include IP MASQ, security,
DNS, DHCP, Sendmail, PPP, Diald, NFS, IPSEC-based VPNs, and performance
sections, to name a few. There are over Fifty sections in all!

 31

10. PACKET ANALYSIS AND FILTERING

TABLE 1.

HERE OUR TASK IS CAPTURE THE LIVE PACKET ON THE NETWORK AND ANALYZE THE PACKET.
ANALYSIS MEANS WE HAVE TO READ THE WHOLE CONTENTS OF THE PACKET. PACKETS
COMPOSE OF DIFFERENT FIELDS LIKE MAC HEADER, IP ADDRESS, TCP HEADER AND DATA.
HERE WE HAVE TO READ ALL FIELDS.

 Packet filtering means we have to filter the packet based on some critera, which may be
ip address, Mac address and port number.

SUPPOSE WE HAVE TO MONITOR YAHOO MESSENGER PACKET THAN WE HAVE TO MONITOR

5050 PORT. SO WE HAVE TO FILTER PACKET BASED ON PORT 5050 (FILTERING BASED ON
PORT NUMBER) .
THAN WE ARE ABLE TO ANALYZE THE WHOLE DATA.

FOR CAPTURING AND ANALYZE THE DATA WE ARE USING PCAP LIBRARY. WE ARE ALSO

USING TCPDUMP AND TCPSLICE LIBRARY

DATA LINK
HEADER
22 BYTES

(PREAMBLE 8,
DST MAC 6,
SRC MAC 6,
TYPE 2)

NETWORK (IP)
HEADER
20 BYTES

TRANSPORT
(TCP) HEADER

20 BYTES

(APPLICATION
LAYER MESSAGE)
TRANSPORT (TCP)

DATA
(MSS=1460 OR

536)

(TRANSPORT SEGMENT)
NETWORK (IP) DATA

(NETWORK DATAGRAM)
DATA LINK DATA (MTU=1500 OR 576)

DATA LINK
TRAILER
(CRC = 4
BYTES)

MAC HEADER IP HEADER TCP HEADER DATA :::

 32

11. Application Data, TCP Header, IP header, and Ethernet Header in
an Ethernet (Data Link Layer) Frame

ETHERNET FRAME: ---

Ethernet traffic is transported in units of a frame, where each frame has a definite
beginning and end. The form of the frame is in the figure below.

TABLE 2.

• PREAMBLE FIELD USED FOR SYNCHRONIZATION, 64-BITS
• DESTINATION ADDRESS ETHERNET ADDRESS OF THE DESTINATION HOST, 48-BITS
• SOURCE ADDRESS ETHERNET ADDRESS OF THE SOURCE HOST, 48-BITS
• TYPE TYPE OF DATA ENCAPSULATED, E.G. IP, ARP, RARP, ETC, 16-BITS.
• DATA FIELD DATA AREA, 46-1500 BYTES, WHICH HAS

DESTINATION ADDRESS INTERNET ADDRESS OF DESTINATION HOST
SOURCE ADDRESS INTERNET ADDRESS OF SOURCE HOST

• CRC CYCLICAL REDUNDANCY CHECK, USED FOR ERROR DETECTION

The data to be sent is encapsulated by each layer, from the Application down to the
Physical, and each adds it's own header information. When data is received each layer
strips off it's header and then passes the packet up to the next layer. The Transport
Layer makes sure that the source and destination, hosts and ports, can be identified,
and includes a sequence number so that a file can be broken into multiple packets and
recombined on the receiving end. The Internet Layer determines how the frames will be
delivered, including fragmenting them to send along a path with a smaller maximum
transmission unit (MTU) or recombining them for a larger MTU path. It determines the
routing used to get to the destination. The Network Layer provides the encapsulation of
the datagram into the frame to be transmitted over the network. It includes the ethernet
addresses of the source machine and of the next hop towards the destination. These
addresses are rewritten with each hop.

 33

11.1 IP HEADER: ---

TABLE 3.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VERSION IHL TOS TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET

TTL PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

OPTIONS AND PADDING :::

Version. 4 bits.

Specifies the format of the IP packet header

IHL, Internet Header Length. 4 bits.

Specifies the length of the IP packet header in 32 bit words. The minimum value for a
valid header is 5.

TOS, Type of Service. 8 bits.

Specifies the parameters for the type of service requested. The parameters may be
utilized by networks to define the handling of the datagram during transport. The M bit
was added to this field in.

Precedence. 3 bits.

D. 1 bit.

Minimize delayT. 1 bit.
Maximize throughput.. R. 1 bit.
Maximize reliability.M. 1 bit.
Minimize monetary cost

 34

Total length. 16 bits.

Contains the length of the datagram.

Identification. 16 bits.

Used to identify the fragments of one datagram from those of another. The originating
protocol module of an internet datagram sets the identification field to a value that must
be unique for that source-destination pair and protocol for the time the datagram will be
active in the internet system. The originating protocol module of a complete datagram
clears the MF bit to zero and the Fragment Offset field to zero.

Flags. 3 bits.

R, reserved. 1 bit.

Should be cleared to 0.

DF, Don't fragment. 1 bit.

Controls the fragmentation of the datagram.

MF, More fragments. 1 bit.

Indicates if the datagram contains additional fragments.

Fragment Offset. 13 bits.

Used to direct the reassembly of a fragmented datagram.

TTL, Time to Live. 8 bits.

A timer field used to track the lifetime of the datagram. When the TTL field is
decremented down to zero, the datagram is discarded.

Protocol. 8 bits.

This field specifies the next encapsulated protocol

 35

Fragment Offset. 13 bits.

Used to direct the reassembly of a fragmented datagram.

TTL, Time to Live. 8 bits.

A timer field used to track the lifetime of the datagram. When the TTL field is
decremented down to zero, the datagram is discarded.

Protocol. 8 bits.

This field specifies the next encapsulated protocol

C, Copy flag. 1 bit.

Indicates if the option is to be copied into all fragments

Class. 2 bits.

Option. 5 bits.

Padding.Variable length Used as a filler to guarantee that the data starts on a 32 bit
boundary.

 36

11.2 TCP HEADER:-

TABLE 4.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3
1

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGMENT NUMBER

DATA OFFSET RESERVED ECN CONTROL BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS AND PADDING :::

DATA

TCP HEADER FORMAT

TCP segments are sent as internet datagrams. The Internet Protocol header carries
several information fields, including the source and destination host addresses [2]. A
TCP header follows the Internet header, supplying information specific to the TCP
protocol. This division allows for the existence of host level protocols other than TCP.
TCP Header Format
Source Port: 16 bits
 The source port number.
Destination Port: 16 bits
 The destination port number.
Sequence Number: 32 bits
 The sequence number of the first data octet in this segment (except
 When SYN is present). If SYN is present the sequence number is the
 Initial sequence number (ISN) and the first data octet is ISN+1.
Acknowledgment Number: 32 bits
 If the ACK control bit is set this field contains the value of the
 next sequence number the sender of the segment is expecting to
 receive. Once a connection is established this is always sent.
Data Offset: 4 bits
 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.
Reserved: 6 bits
 Reserved for future use. Must be zero.
Control Bits: 6 bits (from left to right):
 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function

 37

 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender
Window: 16 bits
 The number of data octets beginning with the one indicated in the
 acknowledgment field which the sender of this segment is willing to
 accept.
Checksum: 16 bits
 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header and text. If a
 segment contains an odd number of header and text octets to be
 checksummed, the last octet is padded on the right with zeros to
 form a 16 bit word for checksum purposes. The pad is not
 transmitted as part of the segment. While computing the checksum,
 the checksum field itself is replaced with zeros.
 The checksum also covers a 96 bit pseudo header conceptually
 prefixed to the TCP header. This pseudo header contains the Source
 Address, the Destination Address, the Protocol, and TCP length.
 This gives the TCP protection against misrouted segments. This
 information is carried in the Internet Protocol and is transferred
 across the TCP/Network interface in the arguments or results of
 calls by the TCP on the IP.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+

 The TCP Length is the TCP header length plus the data length in
 octets (this is not an explicitly transmitted quantity, but is
 computed), and it does not count the 12 octets of the pseudo
 header.
Urgent Pointer: 16 bits
 This field communicates the current value of the urgent pointer as a
 positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet following
 the urgent data. This field is only be interpreted in segments with
 the URG control bit set.
Options: variable
 Options may occupy space at the end of the TCP header and are a
 multiple of 8 bits in length. All options are included in the
 checksum. An option may begin on any octet boundary. There are two
 cases for the format of an option:

 Case 1: A single octet of option-kind.
 Case 2: An octet of option-kind, an octet of option-length, and
 the actual option-data octets.
 The option-length counts the two octets of option-kind and

 38

 option-length as well as the option-data octets.
 Note that the list of options may be shorter than the data offset
 field might imply. The content of the header beyond the
 End-of-Option option must be header padding (i.e., zero).

 A TCP must implement all options.
 Currently defined options include (kind indicated in octal):

 Kind Length Meaning
 ---- ------ -------
 0 - End of option list.
 1 - No-Operation.
 2 4 Maximum Segment Size.

 Specific Option Definitions
 End of Option List
 +--------+
 |00000000|
 +--------+
 Kind=0
 This option code indicates the end of the option list. This
 might not coincide with the end of the TCP header according to
 the Data Offset field. This is used at the end of all options,
 not the end of each option, and need only be used if the end of
 the options would not otherwise coincide with the end of the TCP
 header.
 No-Operation
 +--------+
 |00000001|
 +--------+
 Kind=1
 This option code may be used between options, for example, to
 align the beginning of a subsequent option on a word boundary.
 There is no guarantee that senders will use this option, so
 receivers must be prepared to process options even if they do
 not begin on a word boundary.

 Maximum Segment Size
 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+
 Kind=2 Length=4
 Maximum Segment Size Option Data: 16 bits
 If this option is present, then it communicates the maximum
 receive segment size at the TCP which sends this segment.
 This field must only be sent in the initial connection request
 (i.e., in segments with the SYN control bit set). If this
 option is not used, any segment size is allowed.
Padding: variable
 The TCP header padding is used to ensure that the TCP header ends.

 39

Conclusion

In the course of this article, we have examined several Internet-centric firewall designs in an

attempt to meet security and performance requirements of multitier applications. In all scenarios,

servers hosting application components were separated from the company's corporate network

used to conduct internal business, as an initial step to segregate resources with different security

requirements. To tightly control interactions between the application's tiers, we looked at hosting

tiers of the application on dedicated subnets. By deploying firewalls in series, we were able to

significantly increase the difficulty of obtaining unauthorized access to sensitive resources from

the Internet. At the same time, each firewall layer increased the design's complexity, contributing

to the cost of deploying and maintaining the infrastructure, and increasing the likelihood that it

will be misconfigured.

The network design appropriate for your environment depends on the nature of your application

and the risks that you are trying to mitigate by setting up a security perimeter around your servers.

As we discussed, relying on a single firewall or combining application tiers into a single subnet

often decreases the amount of control that you have over how application components are

accessed.

However, beware of jumping to a design that incorporates three firewalls in series without first

considering less expensive alternatives. In this article, we only touched upon some of the many

ways of deploying firewalls with respect to each other, and we did not to examine the relationship

between firewalls and other perimeter-defense devices. When designing your network, consider

how other components of its perimeter, such as intrusion-detection systems, routers, and VPNs,

may impact security of the infrastructure, and select a design that matches your application's

architecture and your company's business needs.

 40

PROGRAMMING

 41

INTERNET ACCESS CONTROL SYSTEM DESIGN BASED ON MAC ADDRESS
WRITTEN AND MAINTAINED BY SAMEER SHARMA (M.I.T ENGG. COLLEGE

AURANGABAD,M.H)

VERSION=1.A
ECHO -E "\NLOADING VERSION $VERSION............\N"
WE HAVE TO FIND LOCATION OF IPTABLES
IF YOUR LINUX DISTRIBUTION CAME WITH A COPY OF IPTABLES, MOST
LIKELY IT IS LOCATED IN /SBIN. IF YOU MANUALLY COMPILED
IPTABLES, THE DEFAULT LOCATION IS IN /USR/LOCAL/SBIN
TYPE "WHEREIS IPTABLES" COMMAND TO FIND LOCATION OF IPTABLES
AS REDHAT LINUX-9.0 CAME WITH COPY OF IPTABLES,SO IPTABLES
LOCATED IN /SBIN DIRECTORY.
ECHO -E "\N ALL DECLERATION.................................\N"
IPTABLES=/SBIN/IPTABLES
LSMOD=/SBIN/LSMOD
GREP=/BIN/GREP
AWK=/BIN/AWK
IFCONFIG=/SBIN/IFCONFIG
DEPMOD=/SBIN/DEPMOD
MODPROBE=/SBIN/MODPROBE
SETTING THE EXTERNAL AND INTERNAL INTERFACES FOR THE NETWORK

HERE WE NEED TWO NETWORK ONE FOR EXTERNAL AND ONE INTERNAL NETWORK.
THE EXTERNAL NETWORK MEANS ETH0 (EXTERNAL NETWORK CARD WHERE ADSL LINE
CONNECTED) IS WHERE THE NATTING WILL OCCUR AND THE INTERNAL NETWORK
SHOULD PREFERABLY BE ADDRESSED WITH A RFC1918 PRIVATE ADDRESS
SCHEME.
WE USED "ETH0" AS EXTERNAL
AND "ETH1" AS INTERNAL"

NOTE: SOMETIMES CONFIGURATION MAY BE DIFFERENT
SO WE HAVE TO MAKE CHANGES AS GIVEN BELOW
CHANGE THE EXTIF OR INTIF VARIABLES ABOVE. FOR EXAMPLE:
IF YOU ARE A PPPOE OR ANALOG MODEM USER:
THAN CHANGE EXTIF="PPP0"

ECHO -E "\N ALL DECLERATION OF NETWORK........................\N"
ECHO "PLEASE ENTER EXTERNAL INTERFACE "
READ NAME
EXTIF=$NAME
ECHO "PLEASE ENTER INTERNAL INTERFACE "
READ NAME1
INTIF=$NAME1
#LOOIF= "LO" # SYSTEM NAMES IT..........
INTNET="192.168.1.0/24"
INTIP="192.168.1.1/32"
#LOO_HO="127.0.0.1/32"
#LOC_BC="255.0.0.0"
ANYWHERE="0.0.0.0/0"

 42

ECHO " ---"

EXTIP="`$IFCONFIG $EXTIF | $AWK \
/$EXTIF/'{NEXT}//{SPLIT($0,A,":");SPLIT(A[2],A," ");PRINT A[1];EXIT}'`"
ECHO " EXTERNAL IP: $EXTIP"
ECHO " ---"
ECHO " INTERNAL NETWORK: $INTNET"
ECHO " EXTERNAL INTERFACE: $EXTIF"
ECHO " INTERNAL INTERFACE: $INTIF"
ECHO " INTERNAL IP: $INTIP"
ECHO " LOOP BACK INTERFACE:$LOOIF"
ECHO " ---"
ECHO " - VERIFYING THAT ALL KERNEL MODULES ARE OK"
$DEPMOD -A

ECHO -EN " LOADING KERNEL MODULES: "

ECHO -EN "IP_TABLES, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT
IF [-Z "` $LSMOD | $GREP IP_TABLES | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_TABLES
FI

ECHO -EN "IP_CONNTRACK, "

LOAD THE STATEFUL CONNECTION TRACKING FRAMEWORK - "IP_CONNTRACK"
THE CONNTRACK MODULE IN ITSELF DOES NOTHING WITHOUT OTHER SPECIFIC
CONNTRACK MODULES BEING LOADED AFTERWARDS SUCH AS THE "IP_CONNTRACK_FTP"
MODULE
THIS MODULE IS LOADED AUTOMATICALLY WHEN MASQ FUNCTIONALITY IS
ENABLED
LOADED MANUALLY TO CLEAN UP KERNEL AUTO-LOADING TIMING ISSUES

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IP_CONNTRACK | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_CONNTRACK
FI

ECHO -EN "IP_CONNTRACK_FTP, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IP_CONNTRACK_FTP | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_CONNTRACK_FTP
FI

LOAD THE GENERAL IPTABLES NAT CODE - "IPTABLE_NAT"

 43

LOADED AUTOMATICALLY WHEN MASQ FUNCTIONALITY IS TURNED ON
LOADED MANUALLY TO CLEAN UP KERNEL AUTO-LOADING TIMING ISSUES

#LOAD THE GENERAL IPTABLES NAT CODE - "IPTABLE_NAT"

ECHO -EN "IPTABLE_NAT, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IPTABLE_NAT | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IPTABLE_NAT
FI
#LOADS THE FTP NAT FUNCTIONALITY INTO THE CORE IPTABLES CODE
REQUIRED TO SUPPORT NON-PASV FTP.
ENABLED BY DEFAULT -- INSERT A "#" ON THE NEXT LINE TO DEACTIVATE

ECHO -E "IP_NAT_FTP"
IF [-Z "` $LSMOD | $GREP IP_NAT_FTP | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_NAT_FTP
FI

ECHO " ---"

ECHO " ENABLING FORWARDING.."
ECHO "1" > /PROC/SYS/NET/IPV4/IP_FORWARD
ECHO " ---"
DEFAULTS CHAINS SETTING (INPUT, OUTPUT, AND FORWARD) TO DROP

ECHO " CLEARING ANY EXISTING RULES AND SETTING DEFAULT POLICY TO DROP.."
$IPTABLES -P INPUT DROP
$IPTABLES -F INPUT
$IPTABLES -P OUTPUT DROP
$IPTABLES -F OUTPUT
$IPTABLES -P FORWARD DROP
$IPTABLES -F FORWARD
$IPTABLES -F -T NAT

DELETE ALL USER-SPECIFIED CHAINS
$IPTABLES -X

RESET ALL IPTABLES COUNTERS
$IPTABLES -Z
#LATER CHECK AS PER MEMORY.....RIGHT NOW KEEP IT UP...
#CONFIGURING SPECIFIC CHAINS FOR LATER USE IN THE RULESET

ECHO " CREATING A DROP CHAIN.."
$IPTABLES -N REJECT-AND-LOG-IT
$IPTABLES -A REJECT-AND-LOG-IT -J LOG --LOG-LEVEL INFO
$IPTABLES -A REJECT-AND-LOG-IT -J REJECT

 44

######################### IP SPOOFING #############################

IP SPOOFING IS A TECHNIQUE USED TO GAIN UNAUTHORIZED ACCESS TO COMPUTERS,
WHEREBY THE INTRUDER SENDS MESSAGES TO A COMPUTER WITH AN IP ADDRESS
INDICATING THAT THE MESSAGE IS COMING FROM A TRUSTED HOST. TO ENGAGE
IN IP SPOOFING, A HACKER MUST FIRST USE A VARIETY OF TECHNIQUES TO FIND
AN IP ADDRESS OF A TRUSTED HOST AND THEN MODIFY THE PACKET HEADERS SO THAT
IT APPEARS THAT THE PACKETS ARE COMING FROM THAT HOST.

HERE THE FOLLOWING LINES ARE USED TO PREVENT THE IP SPOOFING

################## ### PREVENT SPOOF PRIVATE IP #####################

$IPTABLES -A FORWARD -P TCP -S 192.168.1.0/24 -I $EXTIF -J DROP
$IPTABLES -A FORWARD -P UDP -S 192.168.1.0/24 -I $EXTIF -J DROP

ECHO " THIS IS SPOOFING CONTROL SECTION "
ECHO " PREVENT IP SPOOFING IN INPUT TABLE "
$IPTABLES -A INPUT -I $EXTIF -S $INTNET -D $ANYWHERE -J REJECT
ECHO " PREVENT IP SPOOFING IN FORWARD TABLE (PRIVATE IP)"
$IPTABLES -A FORWARD -P TCP -S $INTNET -I $EXTIF -J DROP
$IPTABLES -A FORWARD -P UDP -S $INTNET -I $EXTIF -J DROP
ECHO " PREVENT IP SPOOFING IN NAT PREROUTING TABLE (PRIVATE IP)"
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S $INTNET -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 10.0.0.0/8 -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 172.16.0.0/12 -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 127.0.0.0/8 -J DROP

SETTING THE RULES FOR INPUT TABLE OF IPTABLES
ECHO -E "\N - LOADING INPUT RULESETS"
LOOPBACK INTERFACES ARE VALID.

$IPTABLES -A INPUT -I LO -S $ANYWHERE -D $ANYWHERE -J ACCEPT

LOCAL INTERFACE, LOCAL MACHINES, GOING ANYWHERE IS VALID
$IPTABLES -A INPUT -I $INTIF -S $INTNET -D $ANYWHERE -J ACCEPT

$IPTABLES -A INPUT -I $EXTIF -S $INTNET -D $ANYWHERE -J REJECT-AND-LOG-IT

EXTERNAL INTERFACE, FROM ANY SOURCE, FOR ICMP TRAFFIC IS VALID

IF YOU WOULD LIKE YOUR MACHINE TO "PING" FROM THE INTERNET,
ENABLE THIS NEXT LINE

#$IPTABLES -A INPUT -I $EXT_IF -P ICMP -S $UNIVERSE -D $EXT_IP -J ACCEPT

REMOTE INTERFACE, ANY SOURCE, GOING TO THE MASQ SERVERS IP ADDRESS IS VALID

 45

STATEFULLY TRACKED

$IPTABLES -A INPUT -I $EXTIF -S $ANYWHERE -D $EXTIP -M STATE --STATE
ESTABLISHED,RELATED -J ACCEPT

$IPTABLES -A INPUT -S $ANYWHERE -D $ANYWHERE -J REJECT-AND-LOG-IT

SETTING RULES FOR OUTPUT TABLE OF IPTABLES

ECHO -E " - LOADING OUTPUT RULESETS"
#OUTPUT: OUTGOING TRAFFIC FROM VARIOUS INTERFACES. ALL RULESETS ARE
ALREADY FLUSHED AND SET TO A DEFAULT POLICY OF DROP.
$IPTABLES -A OUTPUT -M STATE -P ICMP --STATE INVALID -J DROP

LOOPBACK INTERFACE IS VALID.

$IPTABLES -A OUTPUT -O LO -S $ANYWHERE -D $ANYWHERE -J ACCEPT

LOCAL INTERFACES, ANY SOURCE GOING TO LOCAL NET IS VALID

$IPTABLES -A OUTPUT -O $INTIF -S $EXTIP -D $INTNET -J ACCEPT

LOCAL INTERFACE, MASQ SERVER SOURCE GOING TO THE LOCAL NET IS VALID

$IPTABLES -A OUTPUT -O $INTIF -S $INTIP -D $INTNET -J ACCEPT

OUTGOING TO LOCAL NET ON REMOTE INTERFACE, STUFFED ROUTING, DENY

$IPTABLES -A OUTPUT -O $EXTIF -S $ANYWHERE -D $INTNET -J REJECT-AND-LOG-IT

ANYTHING ELSE OUTGOING ON REMOTE INTERFACE IS VALID

$IPTABLES -A OUTPUT -O $EXTIF -S $EXTIP -D $ANYWHERE -J ACCEPT

$IPTABLES -A OUTPUT -S $ANYWHERE -D $ANYWHERE -J REJECT-AND-LOG-IT

ECHO -E " - LOADING FORWARD RULESETS"

 46

FORWARD: ENABLE FORWARDING AND THUS IPMASQ
SETTING THE FORWARD TABLE OF IPTABLES

################# ###########MAIN TESTING ############################

#######################CONTROLL OVER LOCAL N/W #####################

ECHO " - FWD: ALLOW ALL CONNECTIONS OUT AND ONLY EXISTING/RELATED IN"
$IPTABLES -A FORWARD -I $EXTIF -O $INTIF -M STATE --STATE
ESTABLISHED,RELATED -J ACCEPT

$IPTABLES -A FORWARD -I $INTIF -O $EXTIF -J ACCEPT

CATCH ALL RULE, ALL OTHER FORWARDING IS DENIED AND LOGGED.

$IPTABLES -A FORWARD -J REJECT-AND-LOG-IT

ONLY WE HAVE TO DO CHANGES HERE.

IN FOLLOWING COMMAND WE HAVE TO PUT CLIENT MAC ADDRESS AND PORT NUMBER

WHICH WE HAVE TO BLOCK............

#$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT (HERE WE HAVE TO

WRITE PORT NUMBERS) -I $INTIF -M MAC --MAC-SOURCE (HERE WE HAVE TO WRITE MAC

ADDRESS) -J REJECT

FOR EXAMPLE

$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 80,25 -I $INTIF -M
MAC --MAC-SOURCE 00:03:A1:A0:31:BA -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 25 -I $INTIF -M MAC -
-MAC-SOURCE 00:00:00:00:00:01 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 1860,25 -I $INTIF -M
MAC --MAC-SOURCE 00:00:00:00:00:02 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 80 -I $INTIF -M MAC -
-MAC-SOURCE 00:00:00:00:00:03 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 22,21,80,25 -I
$INTIF -M MAC --MAC-SOURCE 00:00:00:00:00:04 -J REJECT

ECHO " - NAT: ENABLING SNAT (MASQUERADE) FUNCTIONALITY ON $EXT_IF"

 47

#$IPTABLES -T NAT -A POSTROUTING -O $EXTIF -J MASQUERADE
$IPTABLES -T NAT -A POSTROUTING -O $EXTIF -J SNAT --TO $EXTIP
INTERNET ACCESS CONTROL SYSTEM DESIGN BASED ON MAC ADDRESS
WRITTEN AND MAINTAINED BY SAMEER SHARMA (M.I.T ENGG. COLLEGE

AURANGABAD,M.H)

ECHO -E "\NLOADING VERSION $VERSION............\N"
WE HAVE TO FIND LOCATION OF IPTABLES
IF YOUR LINUX DISTRIBUTION CAME WITH A COPY OF IPTABLES, MOST
LIKELY IT IS LOCATED IN /SBIN. IF YOU MANUALLY COMPILED
IPTABLES, THE DEFAULT LOCATION IS IN /USR/LOCAL/SBIN
TYPE "WHEREIS IPTABLES" COMMAND TO FIND LOCATION OF IPTABLES
AS REDHAT LINUX-9.0 CAME WITH COPY OF IPTABLES,SO IPTABLES
LOCATED IN /SBIN DIRECTORY.
ECHO -E "\N ALL DECLERATION.................................\N"
IPTABLES=/SBIN/IPTABLES
LSMOD=/SBIN/LSMOD
GREP=/BIN/GREP
AWK=/BIN/AWK
IFCONFIG=/SBIN/IFCONFIG
DEPMOD=/SBIN/DEPMOD
MODPROBE=/SBIN/MODPROBE
SETTING THE EXTERNAL AND INTERNAL INTERFACES FOR THE NETWORK

HERE WE NEED TWO NETWORK ONE FOR EXTERNAL AND ONE INTERNAL NETWORK.
THE EXTERNAL NETWORK MEANS ETH0 (EXTERNAL NETWORK CARD WHERE ADSL LINE
CONNECTED) IS WHERE THE NATTING WILL OCCUR AND THE INTERNAL NETWORK
SHOULD PREFERABLY BE ADDRESSED WITH A RFC1918 PRIVATE ADDRESS
SCHEME.
WE USED "ETH0" AS EXTERNAL
AND "ETH1" AS INTERNAL"

NOTE: SOMETIMES CONFIGURATION MAY BE DIFFERENT
SO WE HAVE TO MAKE CHANGES AS GIVEN BELOW
CHANGE THE EXTIF OR INTIF VARIABLES ABOVE. FOR EXAMPLE:
IF YOU ARE A PPPOE OR ANALOG MODEM USER:
THAN CHANGE EXTIF="PPP0"

ECHO -E "\N ALL DECLERATION OF NETWORK........................\N"
ECHO "PLEASE ENTER EXTERNAL INTERFACE "
READ NAME
EXTIF=$NAME
ECHO "PLEASE ENTER INTERNAL INTERFACE "
READ NAME1
INTIF=$NAME1
#LOOIF= "LO" # SYSTEM NAMES IT..........
INTNET="192.168.1.0/24"
INTIP="192.168.1.1/32"
#LOO_HO="127.0.0.1/32"
#LOC_BC="255.0.0.0"

 48

ANYWHERE="0.0.0.0/0"

ECHO " ---"

EXTIP="`$IFCONFIG $EXTIF | $AWK \
/$EXTIF/'{NEXT}//{SPLIT($0,A,":");SPLIT(A[2],A," ");PRINT A[1];EXIT}'`"
ECHO " EXTERNAL IP: $EXTIP"
ECHO " ---"
ECHO " INTERNAL NETWORK: $INTNET"
ECHO " EXTERNAL INTERFACE: $EXTIF"
ECHO " INTERNAL INTERFACE: $INTIF"
ECHO " INTERNAL IP: $INTIP"
ECHO " LOOP BACK INTERFACE:$LOOIF"
ECHO " ---"
ECHO " - VERIFYING THAT ALL KERNEL MODULES ARE OK"
$DEPMOD -A

ECHO -EN " LOADING KERNEL MODULES: "

ECHO -EN "IP_TABLES, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT
IF [-Z "` $LSMOD | $GREP IP_TABLES | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_TABLES
FI

ECHO -EN "IP_CONNTRACK, "

LOAD THE STATEFUL CONNECTION TRACKING FRAMEWORK - "IP_CONNTRACK"
THE CONNTRACK MODULE IN ITSELF DOES NOTHING WITHOUT OTHER SPECIFIC
CONNTRACK MODULES BEING LOADED AFTERWARDS SUCH AS THE "IP_CONNTRACK_FTP"
MODULE
THIS MODULE IS LOADED AUTOMATICALLY WHEN MASQ FUNCTIONALITY IS
ENABLED
LOADED MANUALLY TO CLEAN UP KERNEL AUTO-LOADING TIMING ISSUES

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IP_CONNTRACK | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_CONNTRACK
FI

ECHO -EN "IP_CONNTRACK_FTP, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IP_CONNTRACK_FTP | $AWK {'PRINT $1'} `"]; THEN

 49

 $MODPROBE IP_CONNTRACK_FTP
FI

LOAD THE GENERAL IPTABLES NAT CODE - "IPTABLE_NAT"
LOADED AUTOMATICALLY WHEN MASQ FUNCTIONALITY IS TURNED ON
LOADED MANUALLY TO CLEAN UP KERNEL AUTO-LOADING TIMING ISSUES

#LOAD THE GENERAL IPTABLES NAT CODE - "IPTABLE_NAT"

ECHO -EN "IPTABLE_NAT, "

#VERIFY THE MODULE ISN'T LOADED. IF IT IS, SKIP IT

IF [-Z "` $LSMOD | $GREP IPTABLE_NAT | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IPTABLE_NAT
FI
#LOADS THE FTP NAT FUNCTIONALITY INTO THE CORE IPTABLES CODE
REQUIRED TO SUPPORT NON-PASV FTP.
ENABLED BY DEFAULT -- INSERT A "#" ON THE NEXT LINE TO DEACTIVATE

ECHO -E "IP_NAT_FTP"
IF [-Z "` $LSMOD | $GREP IP_NAT_FTP | $AWK {'PRINT $1'} `"]; THEN
 $MODPROBE IP_NAT_FTP
FI

ECHO " ---"

ECHO " ENABLING FORWARDING.."
ECHO "1" > /PROC/SYS/NET/IPV4/IP_FORWARD
ECHO " ---"
DEFAULTS CHAINS SETTING (INPUT, OUTPUT, AND FORWARD) TO DROP

ECHO " CLEARING ANY EXISTING RULES AND SETTING DEFAULT POLICY TO DROP.."
$IPTABLES -P INPUT DROP
$IPTABLES -F INPUT
$IPTABLES -P OUTPUT DROP
$IPTABLES -F OUTPUT
$IPTABLES -P FORWARD DROP
$IPTABLES -F FORWARD
$IPTABLES -F -T NAT

DELETE ALL USER-SPECIFIED CHAINS
$IPTABLES -X

RESET ALL IPTABLES COUNTERS
$IPTABLES -Z
#LATER CHECK AS PER MEMORY.....RIGHT NOW KEEP IT UP...
#CONFIGURING SPECIFIC CHAINS FOR LATER USE IN THE RULESET

ECHO " CREATING A DROP CHAIN.."

 50

$IPTABLES -N REJECT-AND-LOG-IT
$IPTABLES -A REJECT-AND-LOG-IT -J LOG --LOG-LEVEL INFO
$IPTABLES -A REJECT-AND-LOG-IT -J REJECT

######################### IP SPOOFING #############################

IP SPOOFING IS A TECHNIQUE USED TO GAIN UNAUTHORIZED ACCESS TO COMPUTERS,
WHEREBY THE INTRUDER SENDS MESSAGES TO A COMPUTER WITH AN IP ADDRESS
INDICATING THAT THE MESSAGE IS COMING FROM A TRUSTED HOST. TO ENGAGE
IN IP SPOOFING, A HACKER MUST FIRST USE A VARIETY OF TECHNIQUES TO FIND
AN IP ADDRESS OF A TRUSTED HOST AND THEN MODIFY THE PACKET HEADERS SO THAT
IT APPEARS THAT THE PACKETS ARE COMING FROM THAT HOST.

HERE THE FOLLOWING LINES ARE USED TO PREVENT THE IP SPOOFING

########################PREVENT SPOOF PRIVATE IP ####################

$IPTABLES -A FORWARD -P TCP -S 192.168.1.0/24 -I $EXTIF -J DROP
$IPTABLES -A FORWARD -P UDP -S 192.168.1.0/24 -I $EXTIF -J DROP

ECHO " THIS IS SPOOFING CONTROL SECTION "
ECHO " PREVENT IP SPOOFING IN INPUT TABLE "
$IPTABLES -A INPUT -I $EXTIF -S $INTNET -D $ANYWHERE -J REJECT
ECHO " PREVENT IP SPOOFING IN FORWARD TABLE (PRIVATE IP)"
$IPTABLES -A FORWARD -P TCP -S $INTNET -I $EXTIF -J DROP
$IPTABLES -A FORWARD -P UDP -S $INTNET -I $EXTIF -J DROP
ECHO " PREVENT IP SPOOFING IN NAT PREROUTING TABLE (PRIVATE IP)"
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S $INTNET -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 10.0.0.0/8 -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 172.16.0.0/12 -J DROP
$IPTABLES -T NAT -A PREROUTING -I $EXTIF -S 127.0.0.0/8 -J DROP

SETTING THE RULES FOR INPUT TABLE OF IPTABLES
ECHO -E "\N - LOADING INPUT RULESETS"
LOOPBACK INTERFACES ARE VALID.

$IPTABLES -A INPUT -I LO -S $ANYWHERE -D $ANYWHERE -J ACCEPT

LOCAL INTERFACE, LOCAL MACHINES, GOING ANYWHERE IS VALID
$IPTABLES -A INPUT -I $INTIF -S $INTNET -D $ANYWHERE -J ACCEPT

$IPTABLES -A INPUT -I $EXTIF -S $INTNET -D $ANYWHERE -J REJECT-AND-LOG-IT

EXTERNAL INTERFACE, FROM ANY SOURCE, FOR ICMP TRAFFIC IS VALID

IF YOU WOULD LIKE YOUR MACHINE TO "PING" FROM THE INTERNET,
ENABLE THIS NEXT LINE

#$IPTABLES -A INPUT -I $EXT_IF -P ICMP -S $UNIVERSE -D $EXT_IP -J ACCEPT

 51

REMOTE INTERFACE, ANY SOURCE, GOING TO THE MASQ SERVERS IP ADDRESS IS VALID

STATEFULLY TRACKED

$IPTABLES -A INPUT -I $EXTIF -S $ANYWHERE -D $EXTIP -M STATE --STATE
ESTABLISHED,RELATED -J ACCEPT

$IPTABLES -A INPUT -S $ANYWHERE -D $ANYWHERE -J REJECT-AND-LOG-IT

SETTING RULES FOR OUTPUT TABLE OF IPTABLES

ECHO -E " - LOADING OUTPUT RULESETS"
#OUTPUT: OUTGOING TRAFFIC FROM VARIOUS INTERFACES. ALL RULESETS ARE
ALREADY FLUSHED AND SET TO A DEFAULT POLICY OF DROP.
$IPTABLES -A OUTPUT -M STATE -P ICMP --STATE INVALID -J DROP

LOOPBACK INTERFACE IS VALID.

$IPTABLES -A OUTPUT -O LO -S $ANYWHERE -D $ANYWHERE -J ACCEPT

LOCAL INTERFACES, ANY SOURCE GOING TO LOCAL NET IS VALID

$IPTABLES -A OUTPUT -O $INTIF -S $EXTIP -D $INTNET -J ACCEPT

LOCAL INTERFACE, MASQ SERVER SOURCE GOING TO THE LOCAL NET IS VALID

$IPTABLES -A OUTPUT -O $INTIF -S $INTIP -D $INTNET -J ACCEPT

OUTGOING TO LOCAL NET ON REMOTE INTERFACE, STUFFED ROUTING, DENY

$IPTABLES -A OUTPUT -O $EXTIF -S $ANYWHERE -D $INTNET -J REJECT-AND-LOG-IT

ANYTHING ELSE OUTGOING ON REMOTE INTERFACE IS VALID

$IPTABLES -A OUTPUT -O $EXTIF -S $EXTIP -D $ANYWHERE -J ACCEPT

$IPTABLES -A OUTPUT -S $ANYWHERE -D $ANYWHERE -J REJECT-AND-LOG-IT

ECHO -E " - LOADING FORWARD RULESETS"

 52

FORWARD: ENABLE FORWARDING AND THUS IPMASQ
SETTING THE FORWARD TABLE OF IPTABLES

############################## MAIN TESTING #########################

######################## CONTROLL OVER LOCAL N/W ###################

ECHO " - FWD: ALLOW ALL CONNECTIONS OUT AND ONLY EXISTING/RELATED IN"
$IPTABLES -A FORWARD -I $EXTIF -O $INTIF -M STATE --STATE
ESTABLISHED,RELATED -J ACCEPT

$IPTABLES -A FORWARD -I $INTIF -O $EXTIF -J ACCEPT

CATCH ALL RULE, ALL OTHER FORWARDING IS DENIED AND LOGGED.

$IPTABLES -A FORWARD -J REJECT-AND-LOG-IT

ONLY WE HAVE TO DO CHANGES HERE.

IN FOLLOWING COMMAND WE HAVE TO PUT CLIENT MAC ADDRESS AND PORT NUMBER

WHICH WE HAVE TO BLOCK............

#$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT (HERE WE HAVE TO

WRITE PORT NUMBERS) -I $INTIF -M MAC --MAC-SOURCE (HERE WE HAVE TO WRITE MAC

ADDRESS) -J REJECT

FOR EXAMPLE

$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 80,25 -I $INTIF -M
MAC --MAC-SOURCE 00:03:A1:A0:31:BA -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 25 -I $INTIF -M MAC -
-MAC-SOURCE 00:00:00:00:00:01 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 1860,25 -I $INTIF -M
MAC --MAC-SOURCE 00:00:00:00:00:02 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 80 -I $INTIF -M MAC -
-MAC-SOURCE 00:00:00:00:00:03 -J REJECT
$IPTABLES -I FORWARD -P TCP -M MULTIPORT --DESTINATION-PORT 22,21,80,25 -I
$INTIF -M MAC --MAC-SOURCE 00:00:00:00:00:04 -J REJECT

ECHO " - NAT: ENABLING SNAT (MASQUERADE) FUNCTIONALITY ON $EXT_IF"

#$IPTABLES -T NAT -A POSTROUTING -O $EXTIF -J MASQUERADE

 53

$IPTABLES -T NAT -A POSTROUTING -O $EXTIF -J SNAT --TO $EXTIP.

#!/BIN/SH
CHKCONFIG: 2345 11 89
WRITTEN AND MAINTAINED BY SAMEER SHARMA
THIS PROGRAM USED TO RUN FIREWALL NAME AS VIRAT-FIREWALL STORE IN /ETC/RC.D
DIRECTORY
LINE AFTER "#" ARE COMMENTS..IT'S ONLY USE TO UNDERSTAND THE PROGRAM
USAGES:-----
SERVICE VIRAT-FIREWALL START " TO RUN FIREWALL"
SERVICE VIRAT-FIREWALL STOP " TO STOP FIREWALL"
SERVICE VIRAT-FIREWALL STATUS " TO CHECK STATUS OF FIREWALL"
SERVICE VIRAT-FIREWALL RESTART " TO RESTART THE FIREWALL"

DESCRIPTION: LOADS THE FIREWALL-IPTABLES RULESET.
PROCESSNAME: FIREWALL
PIDFILE: /VAR/RUN/FIREWALL.PID
CONFIG: /ETC/RC.D/VIRAT-FIREWALL (FIREWALL NAME AND PATH)
PROBE: TRUE

SOURCE FUNCTION LIBRARY.
. /ETC/RC.D/INIT.D/FUNCTIONS

CHECK THAT NETWORKING IS UP.
["XXXX${NETWORKING}" = "XXXXNO"] && EXIT 0

[-X /SBIN/IFCONFIG] || EXIT 0

IF YOUR LINUX DISTRIBUTION CAME WITH A COPY OF IPTABLES, MOST
LIKELY IT IS LOCATED IN /SBIN. IF YOU MANUALLY COMPILED
IPTABLES, THE DEFAULT LOCATION IS IN /USR/LOCAL/SBIN

PLEASE USE THE "WHEREIS IPTABLES" COMMAND TO FIGURE OUT

IPTABLES=/SBIN/IPTABLES

SEE HOW WE WERE CALLED.
CASE "$1" IN
 START)
 /ETC/RC.D/VIRAT-FIREWALL
 ;;

 STOP)
 ECHO -E "\NFLUSHING FIREWALL AND SETTING DEFAULT POLICIES TO DROP\N"

 54

 $IPTABLES -P INPUT DROP
 $IPTABLES -F INPUT
 $IPTABLES -P OUTPUT DROP
 $IPTABLES -F OUTPUT
 $IPTABLES -P FORWARD DROP
$IPTABLES -F FORWARD
 $IPTABLES -F -T NAT

 # DELETE ALL USER-SPECIFIED CHAINS
 $IPTABLES -X
 #
 # RESET ALL IPTABLES COUNTERS
 $IPTABLES -Z
 ;;

 RESTART)
 $0 STOP
 $0 START
 ;;

 STATUS)
 $IPTABLES -L
 ;;

 MLIST)
 CAT /PROC/NET/IP_CONNTRACK
 ;;

 *)
 ECHO "USAGE: VIRAT-FIREWALL {START|STOP|STATUS|MLIST}"
 EXIT 1
ESAC

EXIT 0

 55

/* AUTHOR: SAMEER SHARMA
* LAST MODIFIED:2006-MAY-26 10:05:35 AM
*
* DESCRIPTION:
*
* COMPILE WITH:
* GCC PACKET_CAPTURE_PROGRAM.C -LPCAP
*
* USAGE:
* ./A.OUT (# OF PACKETS) "FILTER STRING"
* MEANS.........
 ./A.OUT 10 "PORT 5050"
 OR
 ./A.OUT -1 "SRC WWW.GOOGLE.COM"
*** */

#INCLUDE <PCAP.H>
#INCLUDE <STDIO.H>
#INCLUDE <STDLIB.H>
#INCLUDE <ERRNO.H>
#INCLUDE <SYS/SOCKET.H>
#INCLUDE <NETINET/IN.H>
#INCLUDE <ARPA/INET.H>
#INCLUDE <NETINET/IF_ETHER.H>
#INCLUDE <NET/ETHERNET.H>
#INCLUDE <NETINET/ETHER.H>
#INCLUDE <NETINET/IP.H>
#INCLUDE <NETINET/TCP.H>
//#INCLUDE <FEATURES.H>
/* TCPDUMP HEADER (ETHER.H) DEFINES ETHER_HDRLEN) */
//#DEFINE _BSD_SOURCE 1
//#IFNDEF _FAVOR_BSD
//#DEFINE __FAVOR_BSD 1
//#ENDIF
//#IFNDEF _BSD_SOURCE
//#DEFINE _BSD_SOURCE 1
//#ENDIF
#IFNDEF ETHER_HDRLEN
#DEFINE ETHER_HDRLEN 14
#ENDIF
TYPEDEF U_INT32_T TCP_SEQ;
U_INT16_T HANDLE_ETHERNET(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR*
PKTHDR,CONST U_CHAR* PACKET);
 U_CHAR* HANDLE_IP(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR* PKTHDR,CONST
U_CHAR* PACKET);

 56

// ##
 U_CHAR* HANDLE_TCP(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR* PKTHDR,CONST
U_CHAR* PACKET);
 ###

STRUCT MY_IP {
 U_INT8_T IP_VHL; /* HEADER LENGTH, VERSION */
#DEFINE IP_V(IP) (((IP)->IP_VHL & 0XF0) >> 4)
#DEFINE IP_HL(IP) ((IP)->IP_VHL & 0X0F)
 U_INT8_T IP_TOS; /* TYPE OF SERVICE */
 U_INT16_T IP_LEN; /* TOTAL LENGTH */
 U_INT16_T IP_ID; /* IDENTIFICATION */
 U_INT16_T IP_OFF; /* FRAGMENT OFFSET FIELD */
#DEFINE IP_RF 0X8000 /* DONT FRAGMENT FLAG */
#DEFINE IP_DF 0X4000 /* DONT FRAGMENT FLAG */
#DEFINE IP_MF 0X2000 /* MORE FRAGMENTS FLAG */
#DEFINE IP_OFFMASK 0X1FFF /* MASK FOR FRAGMENTING BITS */
 U_INT8_T IP_TTL; /* TIME TO LIVE */
 U_INT8_T IP_P; /* PROTOCOL */
 U_INT16_T IP_SUM; /* CHECKSUM */
 STRUCT IN_ADDR IP_SRC,IP_DST; /* SOURCE AND DEST ADDRESS */
};
// ###

STRUCT MY_TCP
 {

 U_INT16_T TH_SPORT;
 U_INT16_T TH_DPORT;
 // U_SHORT TH_SPORT;
 // U_SHORT TH_DPORT;
 TCP_SEQ TH_SEQ;
 TCP_SEQ TH_ACK;
IF __BYTE_ORDER == __LITTLE_ENDIAN
 U_INT TH_X2:4;
 U_INT TH_OFF:4;
ENDIF
IF __BYTE_ORDER == __BIG_ENDIAN
 U_INT TH_OFF:4;
 U_INT TH_X2:4;
ENDIF
 U_CHAR TH_FLAGS;
DEFINE TH_FIN 0X01
DEFINE TH_SYN 0X02
DEFINE TH_RST 0X04
DEFINE TH_PUSH 0X08
DEFINE TH_ACK 0X10
DEFINE TH_URG 0X20
DEFINE TH_ECE 0X40
DEFINE TH_CWR 0X80

 57

DEFINE TH_FLAGS
(TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)
 U_SHORT TH_WIN;
 U_SHORT TH_SUM;
 U_SHORT TH_URP;
 };

VOID MY_CALLBACK(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR* PKTHDR,CONST
U_CHAR* PACKET)
{
 //##
 HANDLE_TCP(ARGS,PKTHDR,PACKET);
 // ###
 U_INT16_T TYPE = HANDLE_ETHERNET(ARGS,PKTHDR,PACKET);
 IF(TYPE == ETHERTYPE_IP)
 {
 /* HANDLE IP PACKET */
 HANDLE_IP(ARGS,PKTHDR,PACKET);
 }
 ELSE IF(TYPE == ETHERTYPE_ARP)
 {
 /* HANDLE ARP PACKET */
 }
 ELSE IF
 (TYPE == ETHERTYPE_REVARP)
 {/* HANDLE REVERSE ARP PACKET */
 }
}

U_INT16_T HANDLE_ETHERNET(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR*
PKTHDR,CONST U_CHAR* PACKET)
{
 U_INT CAPLEN = PKTHDR->CAPLEN;
 U_INT LENGTH = PKTHDR->LEN;
 STRUCT ETHER_HEADER *EPTR; /* NET/ETHERNET.H */

 INT SIZE_ETH = SIZEOF(STRUCT ETHER_HEADER);
 PRINTF("\N SIZE OF ETHERNET%D\N\N\N\N",SIZE_ETH);

// LATER WE VE TO SEE IT......................
 STRUCT PCAP_PKTHDR HDR;
 U_SHORT ETHER_TYPE;

 IF (CAPLEN < ETHER_HDRLEN)
 {
 FPRINTF(STDOUT,"PACKET LENGTH LESS THAN ETHERNET HEADER LENGTH\N");
 RETURN -1;
 }

 /* LETS START WITH THE ETHER HEADER... */

 58

 EPTR = (STRUCT ETHER_HEADER *)(PACKET);
 ETHER_TYPE = NTOHS(EPTR->ETHER_TYPE);
 /* LETS PRINT SOURCE DEST TYPE LENGTH */
//WE WILL SEE LATER FPRINTF(STDOUT,"SOURCE ETHERNET ADDRESS : ");
 FPRINTF(STDOUT,"DESTINATION ETHERNET ADDRESS : ");
 FPRINTF(STDOUT,"%S\N",ETHER_NTOA((STRUCT ETHER_ADDR*)EPTR->ETHER_SHOST));
// WE WILL SEE LATER FPRINTF(STDOUT,"DESTINATION ETHERNET ADDRESS : ");
 FPRINTF(STDOUT,"SOURCE ETHERNET ADDRESS : ");
 FPRINTF(STDOUT,"%S\N",ETHER_NTOA((STRUCT ETHER_ADDR*)EPTR->ETHER_DHOST));
 /* CHECK TO SEE IF WE HAVE AN IP PACKET */
 IF (ETHER_TYPE == ETHERTYPE_IP)
 {
 FPRINTF(STDOUT,"\NTYPE(IP)CAPTURED PACKET LENGTH : ");
 }
 ELSE IF (ETHER_TYPE == ETHERTYPE_ARP)
 {
 FPRINTF(STDOUT,"\NTYPE(ARP)CAPTURED PACKET LENGTH : ");
 }
 ELSE IF (EPTR->ETHER_TYPE == ETHERTYPE_REVARP)
 {
 FPRINTF(STDOUT,"\NTYPE(RARP)CAPTURED PACKET LENGTH: ");
 }
 ELSE
 {
 FPRINTF(STDOUT,"(?)");
 }
 FPRINTF(STDOUT," %D\N",LENGTH);
 PRINTF("RECIEVED AT........ %S\N",CTIME((CONST TIME_T*)&HDR.TS.TV_SEC));
 PRINTF("ETHERNET ADDRESS LENGTH IS : %D\N",ETHER_HDR_LEN);
 RETURN ETHER_TYPE;
}

U_CHAR* HANDLE_IP(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR* PKTHDR,CONST
U_CHAR* PACKET)
{
 CONST STRUCT MY_IP* IP;
 U_INT LENGTH = PKTHDR->LEN;
 U_INT HLEN,OFF,VERSION;
 INT I;
 INT LEN;
// TESTING........
 INT SIZE_IP = SIZEOF(STRUCT MY_IP);
 PRINTF("\N\N\NSIZE OF IP \N\%D\N\N\N\N",SIZE_IP);
 INT ETHER1;
 ETHER1=SIZEOF(STRUCT ETHER_HEADER);
// PRINTF("\NETHER============%D\N",ETHER1);
 /* JUMP PASS THE ETHERNET HEADER */
 IP = (STRUCT MY_IP*)(PACKET + ETHER1);
// IP = (STRUCT MY_IP*)(PACKET + SIZEOF(STRUCT ETHER_HEADER));

// LENGTH -= (SIZEOF(STRUCT ETHER_HEADER)+SIZEOF(STRUCT MY_TCP));

 59

 LENGTH -= SIZEOF(STRUCT ETHER_HEADER);
 /* CHECK TO SEE WE HAVE A PACKET OF VALID LENGTH */
// IF (LENGTH < SIZEOF(STRUCT MY_IP))
// {
// PRINTF("TRUNCATED IP %D \N",LENGTH);
// RETURN NULL;
// }

 LEN = NTOHS(IP->IP_LEN);
 HLEN = IP_HL(IP); /* HEADER LENGTH */
 VERSION = IP_V(IP);/* IP VERSION */
 /* CHECK VERSION */
 IF(VERSION != 4)
 {
 FPRINTF(STDOUT,"UNKNOWN VERSION %D\N",VERSION);
 RETURN NULL;
 }

 /* CHECK HEADER LENGTH */
 IF(HLEN < 5)
 {
 FPRINTF(STDOUT,"BAD-HLEN %D\N",HLEN);
 }

 /* SEE IF WE HAVE AS MUCH PACKET AS WE SHOULD */
 IF(LENGTH < LEN)
 PRINTF("\NTRUNCATED IP - %D BYTES MISSING\N",LEN - LENGTH);
 /* CHECK TO SEE IF WE HAVE THE FIRST FRAGMENT */
 OFF = NTOHS(IP->IP_OFF);
 IF((OFF & 0X1FFF) == 0)/* AKA NO 1'S IN FIRST 13 BITS */
 {/* PRINT SOURCE DESTINATION HLEN VERSION LEN OFFSET */
// LATER WE WILL SEE FPRINTF(STDOUT,"SOURCE IP ADDRESS : ");
 FPRINTF(STDOUT,"DESTINATION IP ADDRESS : ");
 FPRINTF(STDOUT,"%S\N",INET_NTOA(IP->IP_SRC));
// LATER WE WILL SEE FPRINTF(STDOUT,"DESTINATION IP ADDRESS : ");
 FPRINTF(STDOUT,"SOURCE IP ADDRESS : ");
 FPRINTF(STDOUT,"%S\N\N",INET_NTOA(IP->IP_DST));
 // FPRINTF(STDOUT,"%D\N%D\N%D\N%D\N",HLEN,VERSION,LEN,OFF);
 FPRINTF(STDOUT,"FRAGMENT OFFSET LENGTH :%D\N",OFF);
 FPRINTF(STDOUT,"LENGTH OF THE IP PACKET:%D\N",LEN);
 FPRINTF(STDOUT,"VERSION OF THE PACKET:%D\N",VERSION);
 FPRINTF(STDOUT,"HEADER LENGTH OF PACKET:%D\N",HLEN);
 }
 RETURN NULL;
}
// ###

U_CHAR* HANDLE_TCP(U_CHAR *ARGS,CONST STRUCT PCAP_PKTHDR* PKTHDR,CONST
U_CHAR* PACKET)
{

 60

 CONST STRUCT MY_TCP* TCP;
 U_INT LENGTH = PKTHDR->LEN;
 // U_INT16_T SPORT=0;
 // U_INT16_T DPORT=0;
 U_SHORT SPORT=0;
 U_SHORT DPORT=0;
 TCP_SEQ SEQ;
 TCP_SEQ ACK;
 SEQ=TCP->TH_SEQ;
 ACK=TCP->TH_ACK;
 INT WIN,SUM,URP;
 WIN=TCP->TH_WIN;
 SUM=TCP->TH_SUM;
 URP=TCP->TH_URP;
// INT SPORT=0,DPORT=0;
 INT SIZE_TCP = SIZEOF(STRUCT MY_TCP);
 PRINTF(" CAPTURED PACKET OF LENGTH %D",LENGTH);
 PRINTF("\N\N\NSIZE OF TCP \N\%D\N\N\N\N",SIZE_TCP);
 TCP = (STRUCT MY_TCP*)(PACKET+34);
 PRINTF("\N\N\N\NTCP HEADER IS %D",LENGTH);
 SPORT=NTOHS(TCP->TH_SPORT);//13056
 DPORT=NTOHS(TCP->TH_DPORT);//44 28 VARRYING.......TCP 33
 WIN=NTOHS(TCP->TH_WIN);
 SUM=NTOHS(TCP->TH_SUM);
 URP=NTOHS(TCP->TH_URP);
// SPORT=TCP->TH_SPORT;//SRC 51
// DPORT=TCP->TH_DPORT;// 40912 VARRYING
 FPRINTF(STDOUT,"SOURCE PORT: %D\N",SPORT);
 FPRINTF(STDOUT,"DESTINATION PORT: %D\N",DPORT);
 FPRINTF(STDOUT,"SEQUENCE NO.: %D\N",SEQ);
 FPRINTF(STDOUT,"SEQUENCE NO.: %D\N",ACK);
 FPRINTF(STDOUT,"SUM.: %D\N",SUM);
 FPRINTF(STDOUT,"WIN.: %D\N",WIN);
 FPRINTF(STDOUT,"URP : %D\N",URP);
 RETURN NULL;
}

 61

// ###

INT MAIN(INT ARGC,CHAR **ARGV)
{
 CHAR *DEV;
 CHAR *MASK;
 CHAR ERRBUF[PCAP_ERRBUF_SIZE];
 PCAP_T* DESCR;
 STRUCT BPF_PROGRAM FP; /* HOLD COMPILED PROGRAM */
 BPF_U_INT32 MASKP; /* SUBNET MASK */
 BPF_U_INT32 NETP; /* IP */
 STRUCT IN_ADDR ADDR;
 INT RESULT;
 U_CHAR* ARGS = NULL;

 /* OPTIONS MUST BE PASSED IN AS A STRING BECAUSE I AM LAZY */
 IF(ARGC < 2){
 FPRINTF(STDOUT,"USAGE: %S NUMPACKETS \"OPTIONS\"\N",ARGV[0]);
 RETURN 0;
 }
 /* GRAB A DEVICE TO PEAK INTO... */
 DEV = PCAP_LOOKUPDEV(ERRBUF);
 PRINTF("DEVICE NAME : %S\N",DEV);
 IF(DEV == NULL)
 {
 PRINTF("%S\N",ERRBUF);
 EXIT(1);
 }
 /* ASK PCAP FOR THE NETWORK ADDRESS AND MASK OF THE DEVICE */
 RESULT=PCAP_LOOKUPNET(DEV,&NETP,&MASKP,ERRBUF);
 IF(RESULT == -1)
 {
 PRINTF("%S\N",ERRBUF);
 EXIT(1);
 }
 ADDR.S_ADDR = MASKP;
 MASK = INET_NTOA(ADDR);

 IF(MASK == NULL)
 {
 PERROR("INET_NTOA");
 EXIT(1);
 }
 PRINTF("NETWORK MASK : %S\N\N",MASK);

 /* OPEN DEVICE FOR READING. NOTE: DEFAULTING TO
 * PROMISCUOUS MODE*/
 DESCR = PCAP_OPEN_LIVE("ETH0",BUFSIZ,1,-1,ERRBUF);
 IF(DESCR == NULL)
 {
 PRINTF("PCAP_OPEN_LIVE(): %S\N",ERRBUF);

 62

 EXIT(1);
 }
 IF(ARGC > 2)
 {
 /* LETS TRY AND COMPILE THE PROGRAM.. NON-OPTIMIZED */
 IF(PCAP_COMPILE(DESCR,&FP,ARGV[2],0,NETP) == -1)
 {
 FPRINTF(STDERR,"ERROR CALLING PCAP_COMPILE\N");
 EXIT(1);
 }
 /* SET THE COMPILED PROGRAM AS THE FILTER */
 IF(PCAP_SETFILTER(DESCR,&FP) == -1)
 {
 FPRINTF(STDERR,"ERROR SETTING FILTER\N");
 EXIT(1);
 }
 }
 /* ... AND LOOP */
 PCAP_LOOP(DESCR,ATOI(ARGV[1]),MY_CALLBACK,ARGS);
 FPRINTF(STDOUT,"\NTHE PACKET CAPTURING OPERATION IS COMPLETED\NFINISHED\N");
 RETURN 0;
}

 63

PCAP LIBRARY: ---

THE PACKET CAPTURE LIBRARY PROVIDES A HIGH LEVEL INTERFACE TO PACKET CAPTURE

SYSTEMS. ALL PACKETS ON THE NETWORK, EVEN THOSE DESTINED FOR OTHER HOSTS, ARE
ACCESSIBLE THROUGH THIS MECHANISM.

PCAP - PACKET CAPTURE LIBRARY

#include <pcap.h>
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t *pcap_open_live(const char *device, int snaplen,
 int promisc, int to_ms, char *errbuf)
pcap_t *pcap_open_dead(int linktype, int snaplen)
pcap_t *pcap_open_offline(const char *fname, char *errbuf)
pcap_dumper_t *pcap_dump_open(pcap_t *p, const char *fname)
int pcap_setnonblock(pcap_t *p, int nonblock, char *errbuf);
int pcap_getnonblock(pcap_t *p, char *errbuf);
int pcap_findalldevs(pcap_if_t **alldevsp, char *errbuf)
void pcap_freealldevs(pcap_if_t *alldevs)
char *pcap_lookupdev(char *errbuf)
int pcap_lookupnet(const char *device, bpf_u_int32 *netp,
 bpf_u_int32 *maskp, char *errbuf)
int pcap_dispatch(pcap_t *p, int cnt,

 pcap_handler callback, u_char *user)
int pcap_loop(pcap_t *p, int cnt,
 pcap_handler callback, u_char *user)
void pcap_dump(u_char *user, struct pcap_pkthdr *h,
 u_char *sp)
int pcap_compile(pcap_t *p, struct bpf_program *fp,
 char *str, int optimize, bpf_u_int32 netmask)
int pcap_setfilter(pcap_t *p, struct bpf_program *fp)
void pcap_freecode(struct bpf_program *);
const u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h)
int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header,
 const u_char **pkt_data)
void pcap_breakloop(pcap_t *)
int pcap_datalink(pcap_t *p)
int pcap_list_datalinks(pcap_t *p, int **dlt_buf);
int pcap_set_datalink(pcap_t *p, int dlt);
int pcap_datalink_name_to_val(const char *name);
const char *pcap_datalink_val_to_name(int dlt);
const char *pcap_datalink_val_to_description(int dlt);
int pcap_snapshot(pcap_t *p)
int pcap_is_swapped(pcap_t *p)
int pcap_major_version(pcap_t *p)

 64

int pcap_minor_version(pcap_t *p)
int pcap_stats(pcap_t *p, struct pcap_stat *ps)
FILE *pcap_file(pcap_t *p)
int pcap_fileno(pcap_t *p)
void pcap_perror(pcap_t *p, char *prefix)
char *pcap_geterr(pcap_t *p)
char *pcap_strerror(int error)
const char *pcap_lib_version(void)
void pcap_close(pcap_t *p)
int pcap_dump_flush(pcap_dumper_t *p)
FILE *pcap_dump_file(pcap_dumper_t *p)
void pcap_dump_close(pcap_dumper_t *p)

 65

pcap_open_live() is used to obtain a packet capture descriptor to look at packets on the
network. device is a string that specifies the network device to open; on Linux systems
with 2.2 or later kernels, a device argument of "any" or NULL can be used to capture
packets from all interfaces. snaplen specifies the maximum number of bytes to capture.
If this value is less than the size of a packet that is captured, only the first snaplen bytes
of that packet will be captured and provided as packet data. A value of 65535 should be
sufficient, on most if not all networks, to capture all the data available from the packet.
promisc specifies if the interface is to be put into promiscuous mode. (Note that even if
this parameter is false, the interface could well be in promiscuous mode for some other
reason.) For now, this doesn't work on the "any" device; if an argument of "any" or NULL
is supplied, the promisc flag is ignored. to_ms specifies the read timeout in milliseconds.
The read timeout is used to arrange that the read not necessarily return immediately
when a packet is seen, but that it wait for some amount of time to allow more packets to
arrive and to read multiple packets from the OS kernel in one operation. Not all platforms
support a read timeout; on platforms that don't, the read timeout is ignored. A zero value
for to_ms, on platforms that support a read timeout, will cause a read to wait forever to
allow enough packets to arrive, with no timeout. errbuf is used to return error or warning
text. It will be set to error text when pcap_open_live() fails and returns NULL. errbuf
may also be set to warning text when pcap_open_live() succeds; to detect this case the
caller should store a zero-length string in errbuf before calling pcap_open_live() and
display the warning to the user if errbuf is no longer a zero-length string.
pcap_open_dead() is used for creating a pcap_t structure to use when calling the other
functions in libpcap. It is typically used when just using libpcap for compiling BPF code.
pcap_open_offline() is called to open a ``savefile'' for reading. fname specifies the
name of the file to open. The file has the same format as those used by tcpdump(1) and
tcpslice(1). The name "-" in a synonym for stdin. errbuf is used to return error text and
is only set when pcap_open_offline() fails and returns NULL.
pcap_dump_open() is called to open a ``savefile'' for writing. The name "-" in a
synonym for stdout. NULL is returned on failure. p is a pcap struct as returned by
pcap_open_offline() or pcap_open_live(). fname specifies the name of the file to
open. If NULL is returned, pcap_geterr() can be used to get the error text.
pcap_setnonblock() puts a capture descriptor, opened with pcap_open_live(), into
``non-blocking'' mode, or takes it out of ``non-blocking'' mode, depending on whether the
nonblock argument is non-zero or zero. It has no effect on ``savefiles''. If there is an
error, -1 is returned and errbuf is filled in with an appropriate error message; otherwise, 0
is returned. In ``non-blocking'' mode, an attempt to read from the capture descriptor with
pcap_dispatch() will, if no packets are currently available to be read, return 0
immediately rather than blocking waiting for packets to arrive. pcap_loop() and
pcap_next() will not work in ``non-blocking'' mode.
pcap_getnonblock() returns the current ``non-blocking'' state of the capture descriptor;
it always returns 0 on ``savefiles''. If there is an error, -1 is returned and errbuf is filled in
with an appropriate error message.
pcap_findalldevs() constructs a list of network devices that can be opened with
pcap_open_live(). (Note that there may be network devices that cannot be opened with
pcap_open_live() by the process calling pcap_findalldevs(), because, for example,
that process might not have sufficient privileges to open them for capturing; if so, those
devices will not appear on the list.) alldevsp is set to point to the first element of the list;
each element of the list is of type pcap_if_t, and has the following members:

NEXT IF NOT NULL, A POINTER TO THE NEXT ELEMENT IN THE LIST; NULL FOR THE
LAST ELEMENT OF THE LIST

 66

NAME A POINTER TO A STRING GIVING A NAME FOR THE DEVICE TO PASS TO

PCAP_OPEN_LIVE() DESCRIPTION
IF NOT NULL, A POINTER TO A STRING GIVING A HUMAN-READABLE DESCRIPTION OF
THE DEVICE
ADDRESSES A POINTER TO THE FIRST ELEMENT OF A LIST OF ADDRESSES FOR THE

INTERFACE
FLAGS INTERFACE FLAGS:
PCAP_IF_LOOPBACK SET IF THE INTERFACE IS A LOOPBACK INTERFACE

Each element of the list of addresses is of type pcap_addr_t, and has the following
members:

NEXT IF NOT NULL, A POINTER TO THE NEXT ELEMENT IN THE LIST; NULL FOR THE
LAST ELEMENT OF THE LIST
ADDR A POINTER TO A STRUCT SOCKADDR CONTAINING AN ADDRESS
NETMASK IF NOT NULL, A POINTER TO A STRUCT SOCKADDR THAT CONTAINS THE
NETMASK CORRESPONDING TO THE ADDRESS POINTED TO BY ADDR
BROADADDR IF NOT NULL, A POINTER TO A STRUCT SOCKADDR THAT CONTAINS THE
BROADCAST ADDRESS CORRESPONDING TO THE ADDRESS POINTED TO BY ADDR; MAY
BE NULL IF THE INTERFACE DOESN'T SUPPORT BROADCASTS
DSTADDR IF NOT NULL, A POINTER TO A STRUCT SOCKADDR THAT CONTAINS THE
DESTINATION ADDRESS CORRESPONDING TO THE ADDRESS POINTED TO BY ADDR;
MAY BE NULL IF THE INTERFACE ISN'T A POINT-TO-POINT INTERFACE

-1 is returned on failure, in which case errbuf is filled in with an appropriate error
message; 0 is returned on success.
pcap_freealldevs() is used to free a list allocated by pcap_findalldevs().
pcap_lookupdev() returns a pointer to a network device suitable for use with
pcap_open_live() and pcap_lookupnet(). If there is an error, NULL is returned and
errbuf is filled in with an appropriate error message.
pcap_lookupnet() is used to determine the network number and mask associated with
the network device device. Both netp and maskp are bpf_u_int32 pointers. A return of -1
indicates an error in which case errbuf is filled in with an appropriate error message.
pcap_dispatch() is used to collect and process packets. cnt specifies the maximum
number of packets to process before returning. This is not a minimum number; when
reading a live capture, only one bufferful of packets is read at a time, so fewer than cnt
packets may be processed. A cnt of -1 processes all the packets received in one buffer
when reading a live capture, or all the packets in the file when reading a ``savefile''.
callback specifies a routine to be called with three arguments: a u_char pointer which is
passed in from pcap_dispatch(), a const struct pcap_pkthdr pointer to a structure with
the following members:

TS A STRUCT TIMEVAL CONTAINING THE TIME WHEN THE PACKET WAS CAPTURED
CAPLEN A BPF_U_INT32 GIVING THE NUMBER OF BYTES OF THE PACKET THAT ARE
AVAILABLE FROM THE CAPTURE
LEN A BPF_U_INT32 GIVING THE LENGTH OF THE PACKET, IN BYTES (WHICH MIGHT BE

MORE THAN THE NUMBER OF BYTES AVAILABLE FROM THE CAPTURE, IF THE LENGTH
OF THE PACKET IS LARGER THAN THE MAXIMUM NUMBER OF BYTES TO CAPTURE)

and a const u_char pointer to the first caplen (as given in the struct pcap_pkthdr a
pointer to which is passed to the callback routine) bytes of data from the packet (which
won't necessarily be the entire packet; to capture the entire packet, you will have to
provide a value for snaplen in your call to pcap_open_live() that is sufficiently large to
get all of the packet's data - a value of 65535 should be sufficient on most if not all
networks).

 67

The number of packets read is returned. 0 is returned if no packets were read from a live
capture (if, for example, they were discarded because they didn't pass the packet filter,
or if, on platforms that support a read timeout that starts before any packets arrive, the
timeout expires before any packets arrive, or if the file descriptor for the capture device
is in non-blocking mode and no packets were available to be read) or if no more packets
are available in a ``savefile.'' A return of -1 indicates an error in which case
pcap_perror() or pcap_geterr() may be used to display the error text. A return of -2
indicates that the loop terminated due to a call to pcap_breakloop() before any packets
were processed. If your application uses pcap_breakloop(), make sure that you
explicitly check for -1 and -2, rather than just checking for a return value < 0.
NOTE: when reading a live capture, pcap_dispatch() will not necessarily return when
the read times out; on some platforms, the read timeout isn't supported, and, on other
platforms, the timer doesn't start until at least one packet arrives. This means that the
read timeout should NOT be used in, for example, an interactive application, to allow the
packet capture loop to ``poll'' for user input periodically, as there's no guarantee that
pcap_dispatch() will return after the timeout expires.
pcap_loop() is similar to pcap_dispatch() except it keeps reading packets until cnt
packets are processed or an error occurs. It does not return when live read timeouts
occur. Rather, specifying a non-zero read timeout to pcap_open_live() and then calling
pcap_dispatch() allows the reception and processing of any packets that arrive when
the timeout occurs. A negative cnt causes pcap_loop() to loop forever (or at least until
an error occurs). -1 is returned on an error; 0 is returned if cnt is exhausted; -2 is
returned if the loop terminated due to a call to pcap_breakloop() before any packets
were processed. If your application uses pcap_breakloop(), make sure that you
explicitly check for -1 and -2, rather than just checking for a return value < 0.
pcap_next() reads the next packet (by calling pcap_dispatch() with a cnt of 1) and
returns a u_char pointer to the data in that packet. (The pcap_pkthdr struct for that
packet is not supplied.) NULL is returned if an error occured, or if no packets were read
from a live capture (if, for example, they were discarded because they didn't pass the
packet filter, or if, on platforms that support a read timeout that starts before any packets
arrive, the timeout expires before any packets arrive, or if the file descriptor for the
capture device is in non-blocking mode and no packets were available to be read), or if
no more packets are available in a ``savefile.'' Unfortunately, there is no way to
determine whether an error occured or not. pcap_next_ex() reads the next packet and
returns a success/failure indication:

1 THE PACKET WAS READ WITHOUT PROBLEMS
0 PACKETS ARE BEING READ FROM A LIVE CAPTURE, AND THE TIMEOUT EXPIRED
-1 AN ERROR OCCURRED WHILE READING THE PACKET
-2 PACKETS ARE BEING READ FROM A ``SAVEFILE'', AND THERE ARE NO MORE
PACKETS TO READ FROM THE SAVEFILE.

If the packet was read without problems, the pointer pointed to by the pkt_header
argument is set to point to the pcap_pkthdr struct for the packet, and the pointer pointed
to by the pkt_data argument is set to point to the data in the packet.
pcap_breakloop() sets a flag that will force pcap_dispatch() or pcap_loop() to return
rather than looping; they will return the number of packets that have been processed so
far, or -2 if no packets have been processed so far.
This routine is safe to use inside a signal handler on UNIX or a console control handler
on Windows, as it merely sets a flag that is checked within the loop.
The flag is checked in loops reading packets from the OS - a signal by itself will not
necessarily terminate those loops - as well as in loops processing a set of packets
returned by the OS. Note that if you are catching signals on UNIX systems that support

 68

restarting system calls after a signal, and calling pcap_breakloop() in the signal handler,
you must specify, when catching those signals, that system calls should NOT be
restarted by that signal. Otherwise, if the signal interrupted a call reading packets in a
live capture, when your signal handler returns after calling pcap_breakloop(), the call will
be restarted, and the loop will not terminate until more packets arrive and the call
completes.
Note that pcap_next() will, on some platforms, loop reading packets from the OS; that
loop will not necessarily be terminated by a signal, so pcap_breakloop() should be used
to terminate packet processing even if pcap_next() is being used.
pcap_breakloop() does not guarantee that no further packets will be processed by
pcap_dispatch() or pcap_loop() after it is called; at most one more packet might be
processed.
If -2 is returned from pcap_dispatch() or pcap_loop(), the flag is cleared, so a
subsequent call will resume reading packets. If a positive number is returned, the flag is
not cleared, so a subsequent call will return -2 and clear the flag.
pcap_dump() outputs a packet to the ``savefile'' opened with pcap_dump_open(). Note
that its calling arguments are suitable for use with pcap_dispatch() or pcap_loop(). If
called directly, the user parameter is of type pcap_dumper_t as returned by
pcap_dump_open().
pcap_compile() is used to compile the string str into a filter program. program is a
pointer to a bpf_program struct and is filled in by pcap_compile(). optimize controls
whether optimization on the resulting code is performed. netmask specifies the IPv4
netmask of the network on which packets are being captured; it is used only when
checking for IPv4 broadcast addresses in the filter program. If the netmask of the
network on which packets are being captured isn't known to the program, or if packets
are being captured on the Linux "any" pseudo-interface that can capture on more than
one network, a value of 0 can be supplied; tests for IPv4 broadcast addreses won't be
done correctly, but all other tests in the filter program will be OK. A return of -1 indicates
an error in which case pcap_geterr() may be used to display the error text.
pcap_compile_nopcap() is similar to pcap_compile() except that instead of passing a
pcap structure, one passes the snaplen and linktype explicitly. It is intended to be used
for compiling filters for direct BPF usage, without necessarily having called
pcap_open(). A return of -1 indicates an error; the error text is unavailable.
(pcap_compile_nopcap() is a wrapper around pcap_open_dead(), pcap_compile(),
and pcap_close(); the latter three routines can be used directly in order to get the error
text for a compilation error.)
pcap_setfilter() is used to specify a filter program. fp is a pointer to a bpf_program
struct, usually the result of a call to pcap_compile(). -1 is returned on failure, in which
case pcap_geterr() may be used to display the error text; 0 is returned on success.
pcap_freecode() is used to free up allocated memory pointed to by a bpf_program
struct generated by pcap_compile() when that BPF program is no longer needed, for
example after it has been made the filter program for a pcap structure by a call to
pcap_setfilter().
pcap_datalink() returns the link layer type; link layer types it can return include:

DLT_NULL BSD LOOPBACK ENCAPSULATION; THE LINK LAYER HEADER IS A 4-BYTE
FIELD, IN HOST BYTE ORDER, CONTAINING A PF_ VALUE FROM SOCKET.H FOR THE
NETWORK-LAYER PROTOCOL OF THE PACKET.
NOTE THAT ``HOST BYTE ORDER'' IS THE BYTE ORDER OF THE MACHINE ON WHICH THE

PACKETS ARE CAPTURED, AND THE PF_ VALUES ARE FOR THE OS OF THE MACHINE
ON WHICH THE PACKETS ARE CAPTURED; IF A LIVE CAPTURE IS BEING DONE, ``HOST
BYTE ORDER'' IS THE BYTE ORDER OF THE MACHINE CAPTURING THE PACKETS, AND

 69

THE PF_ VALUES ARE THOSE OF THE OS OF THE MACHINE CAPTURING THE PACKETS,
BUT IF A ``SAVEFILE'' IS BEING READ, THE BYTE ORDER AND PF_ VALUES ARE NOT
NECESSARILY THOSE OF THE MACHINE READING THE CAPTURE FILE.

pcap_list_datalinks() is used to get a list of the supported data link types of the
interface associated with the pcap descriptor. pcap_list_datalinks() allocates an array
to hold the list and sets *dlt_buf. The caller is responsible for freeing the array. -1 is
returned on failure; otherwise, the number of data link types in the array is returned.
pcap_set_datalink() is used to set the current data link type of the pcap descriptor to
the type specified by dlt. -1 is returned on failure.
pcap_datalink_name_to_val() translates a data link type name, which is a DLT_ name
with the DLT_ removed, to the corresponding data link type value. The translation is
case-insensitive. -1 is returned on failure.
pcap_datalink_val_to_name() translates a data link type value to the corresponding
data link type name. NULL is returned on failure.
pcap_datalink_val_to_description() translates a data link type value to a short
description of that data link type. NULL is returned on failure.
pcap_snapshot() returns the snapshot length specified when pcap_open_live() was
called.
pcap_is_swapped() returns true if the current ``savefile'' uses a different byte order
than the current system.
pcap_major_version() returns the major number of the file format of the savefile;
pcap_minor_version() returns the minor number of the file format of the savefile. The
version number is stored in the header of the savefile.
pcap_file() returns the standard I/O stream of the ``savefile,'' if a ``savefile'' was opened
with pcap_open_offline(), or NULL, if a network device was opened with
pcap_open_live().
pcap_stats() returns 0 and fills in a pcap_stat struct. The values represent packet
statistics from the start of the run to the time of the call. If there is an error or the
underlying packet capture doesn't support packet statistics, -1 is returned and the error
text can be obtained with pcap_perror() or pcap_geterr(). pcap_stats() is supported
only on live captures, not on ``savefiles''; no statistics are stored in ``savefiles'', so no
statistics are available when reading from a ``savefile''.
pcap_fileno() returns the file descriptor number from which captured packets are read, if
a network device was opened with pcap_open_live(), or -1, if a ``savefile'' was opened
with pcap_open_offline().
pcap_perror() prints the text of the last pcap library error on stderr, prefixed by prefix.
pcap_geterr() returns the error text pertaining to the last pcap library error. NOTE: the
pointer it returns will no longer point to a valid error message string after the pcap_t
passed to it is closed; you must use or copy the string before closing the pcap_t.
pcap_strerror() is provided in case strerror(1) isn't available.
pcap_lib_version() returns a pointer to a string giving information about the version of
the libpcap library being used; note that it contains more information than just a version
number.
pcap_close() closes the files associated with p and deallocates resources.
pcap_dump_file() returns the standard I/O stream of the ``savefile'' opened by
pcap_dump_open().
pcap_dump_flush() flushes the output buffer to the ``savefile,'' so that any packets
written with pcap_dump() but not yet written to the ``savefile'' will be written. -1 is
returned on error, 0 on success.
pcap_dump_close() closes the ``savefile.''

 70

ETHERNET STRUCTURE

 #include<net/ethernet.h>
 net/ethernet.h –defination for media access control protocol(mac)
#ifndef _SYS_ETHERNET_H
#define _SYS_ETHERNET_H
 #pragma ident "@(#)ethernet.h 1.21 05/06/08 SMI"

#ifdef __cplusplus
extern "C" {
 #endif

 #define ETHERADDRL (6) /* ethernet address length in
octets */
 #define ETHERFCSL (4) /* ethernet FCS length in octets
*/

 /*
* Ethernet address - 6 octets
*/
 typedef uchar_t ether_addr_t[ETHERADDRL];

 /*
* Ethernet address - 6 octets
 */
 struct ether_addr {
 ether_addr_t ether_addr_octet;
};

/*
 * Structure of a 10Mb/s Ethernet header.
 */
struct ether_header {
 struct ether_addr ether_dhost;
 struct ether_addr ether_shost;
 ushort_t ether_type;
};

#define ETHER_CFI 0

struct ether_vlan_header {
 struct ether_addr ether_dhost;
struct ether_addr ether_shost;
 ushort_t ether_tpid;
 ushort_t ether_tci;
 ushort_t ether_typ;};

#define ETHERTYPE_PUP (0x0200) /* PUP protocol */
#define ETHERTYPE_802_MIN (0x0600) /* Min valid ethernet type */
 /* under IEEE 802.3 rules */

 71

#define ETHERTYPE_IP (0x0800) /* IP protocol */
#define ETHERTYPE_ARP (0x0806) /* Addr. resolution protocol */
 #define ETHERTYPE_REVARP (0x8035) /* Reverse ARP */
 #define ETHERTYPE_AT (0x809b) /* AppleTalk protocol */
 #define ETHERTYPE_AARP (0x80f3) /* AppleTalk ARP */
 #define ETHERTYPE_IPV6 (0x86dd) /* IPv6 */
 #define ETHERTYPE_SLOW (0x8809) /* Slow Protocol */
 #define ETHERTYPE_PPPOED (0x8863) /* PPPoE Discovery Stage */
 #define ETHERTYPE_PPPOES (0x8864) /* PPPoE Session Stage */
 #define ETHERTYPE_MAX (0xffff) /* Max valid ethernet type */
 /*
 * The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have
 * (type-ETHERTYPE_TRAIL)*512 bytes of data followed
 * by an ETHER type (as given above) and then the (variable-length) header.
 */
 #define ETHERTYPE_TRAIL (0x1000) /* Trailer packet */
 #define ETHERTYPE_NTRAILER (16)

 #define ETHERMTU (1500) /* max frame w/o header or fcs */
 #define ETHERMIN (60) /* min frame w/header w/o fcs */
 #define ETHERMAX (1514) /* max frame w/header w/o fcs */
 /*
 * Compare two Ethernet addresses - assumes that the two given
 * pointers can be referenced as shorts. On architectures
 * where this is not the case, use bcmp instead. Note that like
 * bcmp, we return zero if they are the SAME.
 */
 #if defined(__sparc) || defined(__i386) || defined(__amd64)
 #define ether_cmp(a, b) (((short *)b)[2] != ((short *)a)[2] || \
 ((short *)b)[1] != ((short *)a)[1] || \
 ((short *)b)[0] != ((short *)a)[0])
 #else
 #define ether_cmp(a, b) (bcmp((caddr_t)a, (caddr_t)b, 6))
 #endif

 /*
 * Copy Ethernet addresses from a to b - assumes that the two given
 * pointers can be referenced as shorts. On architectures
 * where this is not the case, use bcopy instead.
 */
 #if defined(__sparc) || defined(__i386) || defined(__amd64)
 #define ether_copy(a, b) { ((short *)b)[0] = ((short *)a)[0]; \
 ((short *)b)[1] = ((short *)a)[1]; ((short *)b)[2] = ((short *)a)[2]; }
 #else
 #define ether_copy(a, b) (bcopy((caddr_t)a, (caddr_t)b, 6))
 #endif

 #ifdef _KERNEL
 extern int localetheraddr(struct ether_addr *, struct ether_addr *);
 extern char *ether_sprintf(struct ether_addr *);
 extern int ether_aton(char *, uchar_t *);

 72

 #else /* _KERNEL */
 #ifdef __STDC__
extern char *ether_ntoa(const struct ether_addr *);
extern struct ether_addr *ether_aton(const char *);
extern int ether_ntohost(char *, const struct ether_addr *);
extern int ether_hostton(const char *, struct ether_addr *);
extern int ether_line(const char *, struct ether_addr *, char *);
#else /* __STDC__ */
extern char *ether_ntoa();
extern struct ether_addr *ether_aton();
extern int ether_ntohost();
extern int ether_hostton();
extern int ether_line();
#endif /* __STDC__ */
#endif /* _KERNEL */
#ifdef __cplusplus
 }
#endif
#endif /* _SYS_ETHERNET_H */

 73

IP STRUCTURE

 #include <netinet/ip.h>
 netinet/ip.h - definitions for the Internet Protocol (IP)

IP STRUCTURE DEFINATION:--

#ifndef _NETINET_IP_H_
#define <>_NETINET_IP_H_

/*
 * Definitions for internet protocol version 4.
 * Per RFC 791, September 1981.
 */
#define <>IPVERSION 4

/*
 * Structure of an internet header, naked of options.
 */
struct <>ip {
#ifdef _IP_VHL
 u_char ip_vhl; /* version << 4 | header length >> 2 */
#else
#if BYTE_ORDER == LITTLE_ENDIAN
 u_int ip_hl:4, /* header length */
 ip_v:4; /* version */
#endif
#if BYTE_ORDER == BIG_ENDIAN
 u_int ip_v:4, /* version */
 ip_hl:4; /* header length */
#endif
#endif /* not _IP_VHL */
 u_char ip_tos; /* type of service */
 u_short ip_len; /* total length */
 u_short ip_id; /* identification */
 u_short ip_off; /* fragment offset field */
#define <>IP_RF 0x8000 /* reserved fragment flag */
#define <>IP_DF 0x4000 /* dont fragment flag */
#define <>IP_MF 0x2000 /* more fragments flag */
#define <>IP_OFFMASK 0x1fff /* mask for fragmenting bits */
 u_char ip_ttl; /* time to live */
 u_char ip_p; /* protocol */
 u_short ip_sum; /* checksum */
 struct in_addr ip_src,ip_dst; /* source and dest address */
};

#ifdef _IP_VHL

 74

#define <>IP_MAKE_VHL(v, hl) ((v) << 4 | (hl))
#define <>IP_VHL_HL(vhl) ((vhl) & 0x0f)
#define <>IP_VHL_V(vhl) ((vhl) >> 4)
#define <>IP_VHL_BORING 0x45
#endif

#define <>IP_MAXPACKET 65535 /* maximum packet size */

/*
 * Definitions for IP type of service (ip_tos)
 */
#define <>IPTOS_LOWDELAY 0x10
#define <>IPTOS_THROUGHPUT 0x08
#define <>IPTOS_RELIABILITY 0x04
#define <>IPTOS_MINCOST 0x02
/* ECN bits proposed by Sally Floyd */
#define <>IPTOS_CE 0x01 /* congestion experienced */
#define <>IPTOS_ECT 0x02 /* ECN-capable transport */

/*
 * Definitions for IP precedence (also in ip_tos) (hopefully unused)
 */
#define <>IPTOS_PREC_NETCONTROL 0xe0
#define <>IPTOS_PREC_INTERNETCONTROL 0xc0
#define <>IPTOS_PREC_CRITIC_ECP 0xa0
#define <>IPTOS_PREC_FLASHOVERRIDE 0x80
#define <>IPTOS_PREC_FLASH 0x60
#define <>IPTOS_PREC_IMMEDIATE 0x40
#define <>IPTOS_PREC_PRIORITY 0x20
#define <>IPTOS_PREC_ROUTINE 0x00

/*
 * Definitions for options.
 */
#define <>IPOPT_COPIED(o) ((o)&0x80)
#define <>IPOPT_CLASS(o) ((o)&0x60)
#define <>IPOPT_NUMBER(o) ((o)&0x1f)

#define <>IPOPT_CONTROL 0x00
#define <>IPOPT_RESERVED1 0x20
#define <>IPOPT_DEBMEAS 0x40
#define <>IPOPT_RESERVED2 0x60

#define <>IPOPT_EOL 0 /* end of option list */
#define <>IPOPT_NOP 1 /* no operation */

#define <>IPOPT_RR 7 /* record packet route */
#define <>IPOPT_TS 68 /* timestamp */
#define <>IPOPT_SECURITY 130 /* provide s,c,h,tcc */
#define <>IPOPT_LSRR 131 /* loose source route */

 75

#define <>IPOPT_SATID 136 /* satnet id */
#define <>IPOPT_SSRR 137 /* strict source route */
#define <>IPOPT_RA 148 /* router alert */

/*
 * Offsets to fields in options other than EOL and NOP.
 */
#define <>IPOPT_OPTVAL 0 /* option ID */
#define <>IPOPT_OLEN 1 /* option length */
#define <>IPOPT_OFFSET 2 /* offset within option */
#define <>IPOPT_MINOFF 4 /* min value of above
*/

/*
 * Time stamp option structure.
 */
struct <>ip_timestamp {
 u_char ipt_code; /* IPOPT_TS */
 u_char ipt_len; /* size of structure (variable) */
 u_char ipt_ptr; /* index of current entry */
#if BYTE_ORDER == LITTLE_ENDIAN
 u_int ipt_flg:4, /* flags, see below */
 ipt_oflw:4; /* overflow counter */
#endif
#if BYTE_ORDER == BIG_ENDIAN
 u_int ipt_oflw:4, /* overflow counter */
 ipt_flg:4; /* flags, see below */
#endif
 union <>ipt_timestamp {
 n_long ipt_time[1];
 struct <>ipt_ta {
 struct in_addr ipt_addr;
 n_long ipt_time;
 } ipt_ta[1];
 } ipt_timestamp;
};

/* flag bits for ipt_flg */
#define <>IPOPT_TS_TSONLY 0 /* timestamps only */
#define <>IPOPT_TS_TSANDADDR 1 /* timestamps and
addresses */
#define <>IPOPT_TS_PRESPEC 3 /* specified modules only */

/* bits for security (not byte swapped) */
#define <>IPOPT_SECUR_UNCLASS 0x0000
#define <>IPOPT_SECUR_CONFID 0xf135
#define <>IPOPT_SECUR_EFTO 0x789a
#define <>IPOPT_SECUR_MMMM 0xbc4d
#define <>IPOPT_SECUR_RESTR 0xaf13
#define <>IPOPT_SECUR_SECRET 0xd788
#define <>IPOPT_SECUR_TOPSECRET 0x6bc5

 76

/*
 * Internet implementation parameters.
 */
#define <>MAXTTL 255 /* maximum time to live
(seconds) */
#define <>IPDEFTTL 64 /* default ttl, from RFC 1340 */
#define <>IPFRAGTTL 60 /* time to live for frags, slowhz */
#define <>IPTTLDEC 1 /* subtracted when forwarding */

#define <>IP_MSS 576 /* default maximum segment
size */

#endif

 77

TCP STRUCTURE

#include <netinet/tcp.h>

NETINET/TCP.H - DEFINITIONS FOR THE INTERNET TRANSMISSION CONTROL

PROTOCOL (TCP)

THE <NETINET/TCP.H> HEADER SHALL DEFINE THE FOLLOWING MACRO FOR

USE AS A SOCKET OPTION AT THE IPPROTO_TCP LEVEL:

TCP_NODELAY
AVOID COALESCING OF SMALL SEGMENTS.

The macro shall be defined in the header. The implementation need not
allow the value of the option to be set via retrieved via

 78

TCP STRUCTURE DEFINATION:--

#ifndef _NETINET_TCP_H_
#define <>_NETINET_TCP_H_

typedef u_int32_t <>tcp_seq;
typedef u_int32_t <>tcp_cc; /* connection count per rfc1644 */

#define <>tcp6_seq tcp_seq /* for KAME src sync over BSD*'s */
#define <>tcp6hdr tcphdr /* for KAME src sync over BSD*'s */

/*
 * TCP header.
 * Per RFC 793, September, 1981.
 */
struct <>tcphdr {
 u_short th_sport; /* source port */
 u_short th_dport; /* destination port */
 tcp_seq th_seq; /* sequence number */
 tcp_seq th_ack; /* acknowledgement number */
#if BYTE_ORDER == LITTLE_ENDIAN
 u_int th_x2:4, /* (unused) */
 th_off:4; /* data offset */
#endif
#if BYTE_ORDER == BIG_ENDIAN
 u_int th_off:4, /* data offset */
 th_x2:4; /* (unused) */
#endif
 u_char th_flags;
#define <>TH_FIN 0x01
#define <>TH_SYN 0x02
#define <>TH_RST 0x04
#define <>TH_PUSH 0x08
#define <>TH_ACK 0x10
#define <>TH_URG 0x20
#define <>TH_ECE 0x40
#define <>TH_CWR 0x80
#define <>TH_FLAGS
 (TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)

 u_short th_win; /* window */
 u_short th_sum; /* checksum */
 u_short th_urp; /* urgent pointer */
};

#define <>TCPOPT_EOL 0
#define <>TCPOPT_NOP 1
#define <>TCPOPT_MAXSEG 2

 79

#define <>TCPOLEN_MAXSEG 4
#define <>TCPOPT_WINDOW 3
#define <>TCPOLEN_WINDOW 3
#define <>TCPOPT_SACK_PERMITTED 4 /* Experimental */
#define <>TCPOLEN_SACK_PERMITTED 2
#define <>TCPOPT_SACK 5 /* Experimental */
#define <>TCPOPT_TIMESTAMP 8
#define <>TCPOLEN_TIMESTAMP 10
#define <>TCPOLEN_TSTAMP_APPA (TCPOLEN_TIMESTAMP+2) /*
appendix A */
#define <>TCPOPT_TSTAMP_HDR \

(TCPOPT_NOP<<24|TCPOPT_NOP<<16|TCPOPT_TIMESTAMP<<8|TCPOLEN_TIME
STAMP)

#define <>TCPOPT_CC 11 /* CC options: RFC-1644 */
#define <>TCPOPT_CCNEW 12
#define <>TCPOPT_CCECHO 13
#define <>TCPOLEN_CC 6
#define <>TCPOLEN_CC_APPA (TCPOLEN_CC+2)
#define <>TCPOPT_CC_HDR(ccopt) \
 (TCPOPT_NOP<<24|TCPOPT_NOP<<16|(ccopt)<<8|TCPOLEN_CC)

/*
 * Default maximum segment size for TCP.
 * With an IP MSS of 576, this is 536,
 * but 512 is probably more convenient.
 * This should be defined as MIN(512, IP_MSS - sizeof (struct tcpiphdr)).
 */
#define <>TCP_MSS 512

/*
 * Default maximum segment size for TCP6.
 * With an IP6 MSS of 1280, this is 1220,
 * but 1024 is probably more convenient. (xxx kazu in doubt)
 * This should be defined as MIN(1024, IP6_MSS - sizeof (struct tcpip6hdr))
 */
#define <>TCP6_MSS 1024

#define <>TCP_MAXWIN 65535 /* largest value for (unscaled) window */
#define <>TTCP_CLIENT_SND_WND 4096 /* dflt send window for T/TCP
client */

#define <>TCP_MAX_WINSHIFT 14 /* maximum window shift */

#define <>TCP_MAXBURST 4 /* maximum segments in a burst
*/

#define <>TCP_MAXHLEN (0xf<<2) /* max length of header in bytes */
#define <>TCP_MAXOLEN (TCP_MAXHLEN - sizeof(struct tcphdr))
 /* max space left for options */

 80

/*
 * User-settable options (used with setsockopt).
 */
#define <>TCP_NODELAY 0x01 /* don't delay send to coalesce packets */
#define <>TCP_MAXSEG 0x02 /* set maximum segment size */
#define <>TCP_NOPUSH 0x04 /* don't push last block of write */
#define <>TCP_NOOPT 0x08 /* don't use TCP options */

#endif

 1

REFERECNES

http://www.skullbox.net/firewalls.php
http://support.microsoft.com/?kbid=321050
http://www.vicomsoft.com/knowledge/reference/firewalls1.html
http://www.firewall-software.com/firewall_faqs/types_of_firewall.html
http://www.tldp.org/HOWTO/html_single/IP-Masquerade-HOWTO/#IPMASQ-INTRO1.0
http://www.tldp.org/
http://www.netfilter.org/projects/iptables/index.html
http://www.securityfocus.com/infocus/1674
http://www.google.co.in/search?hl=en&lr=&defl=en&q=define:Spoofing&sa=X&oi=glossa
ry_definition&ct=title
http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Technical/Spo
ofing/default.htm
http://www.google.co.in/search?hl=en&lr=&defl=en&q=define:MAC+Address&sa=X&oi=
glossary_definition&ct=title
http://compnetworking.about.com/od/networkprotocolsip/l/aa062202a.htm
http://www.artsci.wustl.edu/ASCC/documentation/macaddrss.html
http://en.wikipedia.org/wiki/IP_address
http://www.google.co.in/search?hl=en&lr=&defl=en&q=define:IP+Address&sa=X&oi=glo
ssary_definition&ct=title
http://www.google.co.in/search?hl=en&lr=&defl=en&q=define:Private+IP+address&sa=X
&oi=glossary_definition&ct=title
http://www.duxcw.com/faq/network/privip.htm
http://en.wikipedia.org/wiki/Private_IP_address
http://www.auditmypc.com/internal-ip.html
http://kb.iu.edu/data/aijr.html
http://www.xo.com/products/smallgrowing/internet/dsl/glossary/publicip.html
http://www.vicomsoft.com/glossary/addresses.html

