
Major Project Report on

Design and Development of a Workflow Management System
Using UML And C++

Submitted in Partial fulfillment of
 The requirement for the award of Degree of

MASTER OF ENGINEERING

in
 COMPUTER TECHNOLOGY AND APPLICATIONS

by

SIMMI DUTTA

25/CTA/O3
M.E. (Computer Technology and Applications)

Delhi College of Engineering

Under the guidance of

Dr. GOLDIE GABRANI
Delhi College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI-110042

CERTIFICATE

This is to certify that the Thesis entitled “DESIGN AND DEVELOPMENT
OF A WORKFLOW MANAGEMENT SYSTEM USING UML AND C++”
submitted by Simmi Dutta towards the partial fulfillment of requirement for the
degree of Master of Engineering in Computer Technology and Applications is a
bonafide record of her work carried out under the supervision and guidance of
Dr. Goldie Gabrani.

Further it is also certified that this project has not been submitted for any other
degree or diploma in any other college to the best of our knowledge.

Dr. Goldie Gabrani Dr. D. Roy Choudhury
Asstt. Professor Professor & Head
Department of Computer Engg. Department of Computer Engg.
Delhi College of Engg. Delhi College of Engg.

 ii

Acknowledgement

I would first of all like to thank my thesis guide, Dr. Goldie Gabrani, Asstt.
Professor, Deptt. Of Computer Engg., DCE, for her expert guidance, valuable
advice and continuous involvement and encouragement during all the stages of
the work. I would also like to express my gratitude to Dr. D. Roy Choudhary,
Professor and head, Deptt. Of Computer Engg., DCE, for his constructive
criticism and valuable guidance that have contributed a lot to the completion of
my thesis.

I also owe a word of Sincere thanks to my Parents, husband Sanjay for their
unending support and most specially my son Anav, who has sacrificed his
precious two childhood years in the process of my higher studies. A word of
sincere thanks is also due to my sister Anita and her family for providing the
much needed homely environment in an alien city and also my brother Rajeev
without whose efficient guidance, I would be just groping in the dark.

Last but not the least I would like to thank all my friends and batch mates, who
directly or indirectly helped me in the completion of this thesis work.

 SIMMI DUTTA

 iii

Abstract

In modern world all computational and information technology is striving to
become more human centric and ergonomic. The complete process of
information management is more than a pure transfer of information, it involves
interaction with human beings where the latter may modify, modulate or control
its flow. This is the concept behind a workflow management system. The
information is essentially a workitem, which is acted upon by participants in the
workflow. These participants may be humans or automated computer
procedures. The WorkFlow Management System (WFMS) also provides process
definition framework that models the flow of work in an organization and its
instantiation. In the current work, the aim is to develop and implement a
workflow management system. WFMS are a relatively new concept and it is
intended to use open source software to implement a typical infrastructure. This
thesis analyses the workflow in a typical engineering college and develops the
models required in UML. These developed models in UML and the activity
diagrams provide a starting point as a workflow definition in WFMS. This work
used the computing infrastructure on a host system running open source Linux
(Fedora Core 3) and java based open source workflow engine OpenWFE. The
proposed framework is extensible and provides facility to implement more
rigorous workflow solutions based on the departmental / user needs.

 iv

List of Acronyms

 I T Information Technology
 BPR Business Process Re-engineering
 BPM Business Process management
 WFMS Workflow Management System
 WFMC Workflow Management Coalition
 API Application Programming Interface
 Open WFE Open Workflow Engine
 Apre Automatic Participant runtime environment
 JDK Java Development Kit
 JRE Java Runtime Environment
 JSP Java Server Pages
 JMS Java Message Service
 JVM Java Virtual Machine
 EJB Enterprise Java Bean
 SOA Service Oriented Architecture
 EAI Enterprise Application Integration
 BPEL4WS Business Process Execution Language for Web Services
 SQL Structured Query Language
 XML Extensible Markup Language
 XPDL XML Process Definition Language
 OMG Object Management Group
 OW4J Oracle Workflow for Java
 jPDL jBPM Process Definition Language

 v

List of Figures

Figure No. Title Page No.

2.1 Two Tier Model of the Process Logic and Activities 14
3.1 Workflow Reference Model –Components and Interfaces 24
3.2 Use Case Diagram for DCE Registration System 32
3.3 Activity Diagram for Thesis Topic Registration 39
4.1 Droflo Equivalent Activity Diagram for regflow__5.1.xml 45
4.2 Droflo Equivalent Activity Diagram for regflow__5.2.xml 47
4.3 Droflo Equivalent Activity Diagram for regflow__5.3.xml 48
4.4 Droflo Equivalent Activity Diagram for regflow__5.4.xml 50
4.5 Droflo Equivalent Activity Diagram for regflow__5.5.xml 51
4.6 Droflo Equivalent Activity Diagram for regflow__5.6.xml 53
4.7 Droflo Equivalent Activity Diagram for regflow__5.7.xml 55
4.8 Droflo Equivalent Activity Diagram for regflow__5.8.xml 56
4.9 Main Webpage providing link to Workflow Management 67

 4.10 Webclient Interface for Login into WFMS 67
 4.11 Store Interface for Administrator 68
 4.12 Flow Launch Interface 69
 4.13 Workitem Launch Time Interface 70
 4.14 Administrator’s Workitem Edit Interface 71
 4.15 Students Webmail Inbox 72
 4.16 Guide Store 72
 4.17 Guide Workitem Edit Menu 73
 4.18 HOD Workitem Edit Form 74
 4.19 Webmail to student on Approval 75
 4.20 Webmail to Allocated Guide on Approval 75

 vi

List of Tables

Table No. Title Page No.

3.1 Use Case 1 Register for courses 33
3.2 Use Case 2 Register for thesis 33
3.3 Use Case 3 Select courses to teach 34
3.4 Use Case 4 Select Thesis to guide 34
3.5 Use Case 5 Request course information 34
3.6 Use Case 6 Request Thesis information 35
3.7 Use Case 7 Maintain course information 35
3.8 Use Case 8 Maintain Student Information 35
3.9 Use Case 9 Maintain Thesis Information 36

 3.10 Use Case 10 Maintain Professor Information 36
 3.11 Use Case 11 Create Course Catalog 36
 3.12 Use Case 12 Scrutinize Thesis Title 37
 3.13 Use Case 13 Allocate Thesis Guide 37
 3.14 Use Case 14 Generate Bill 37

 vii

Table of Contents

Acknowledgement iii
Abstract iv
List of Acronyms v
List of Figures vi
List of Tables vii

Chapter 1
Introduction

1

 1.1 Basics of Workflow 1
 1.2 Measuring the Benefits 7
 1.3 Workflow Types 8
 1.4 Layout of Thesis 10
 1.5 Purpose of the Thesis 10

Chapter 2
Literature Review

12

 2.1 Workflow Technology 12
 2.1.1 Definitions 13
 2.1.2 Workflow and Process Automation 14
 2.2. The Evolution of Workflow 15
 2.3 Workflow Features 15
 2.3.1 Flow-Independence 15
 2.3.2 Domain-Independence 16
 2.3.3 Monitoring and History 16
 2.3.4 Manual Intervention 17
 2.4 Workflow Standards 17
 2.5 Review of available Workflow System 18
 2.5.1 Workflow systems based on Macros 18
 2.5.2 Systems Based on Workflow Packages 19
 2.6 Review of OpenWFE 22
 2.7 UML and WorkFlow 22

Chapter 3
Problem Definition And Development Of The WFMS

23

 3.1 Workflow Management System 23

 viii

 3.2 UML Activity Diagrams 25
 3.3 Workflow Patterns 26
 3.3.1 Basic Control Flow Patterns 27
 3.3.2 Advanced Branching and Synchronization Patterns 27
 3.3.3 Structural Patterns 28
 3.3.4 Patterns involving Multiple Instances 28
 3.3.5 State-based Patterns 29
 3.3.6 Cancellation Patterns 29
 3.4 Problem Statement 30
 3.4.1 Problem Definition 30
 3.4.2 DCE Course Registration Problem 31
 3.4.3 Modeling 31
 3.4.3.1 Actors in the DCE Course Registration System 31
 3.4.3.2 Use Case diagram and Use Cases in the Course Registration
 System

32

 3.4.3.3 Activity diagrams 38
 3.4.3.4 Designing using c++ 38

Chapter 4
Workflow Management System Implementation

40

 4.1 The Workflow 40
 4.2 Requirements of the WFMS 42
 4.3 Scope 42
 4.4 The Context 42
 4.4.1 Workflow Process Definition 43
 4.4.2 Workflow Centric Activity Diagram 43
 4.5 Process Implementation Overview 57
 4.5.1 The Participant Map 57
 4.5.2 The Stores 60
 4.5.3 The Users and Rights 62
 4.5.4 Ancillary Services Implementation 65
 4.6 WFMS Results 66
 4.6.1 Apache Webserver Homepage 66
 4.6.2 WebClient Interface 66
 4.6.3 Stores Information and Flow Launch Page 68
 4.6.4 Workitem Edit Interface 69
 4.6.5 The Process Flow 70

Chapter 5
Conclusions and Future Scope

76

 ix

 5.1 Conclusions 76
 5.2 Future Scope 77

References 78

Appendix 81
A. Workflow Engines 81
B. Pseudo Code in C++ 82

 x

Chapter 1

Introduction

1.1 Basics of Workflow

What is Workflow?

In the middle Ages, monks sat at tables carefully copying the scriptures. The father superior

would make the assignments, perhaps giving the illuminated first page of a section to the most

skilled artist, perhaps assigning the proofreading tasks to the elderly scholar with trembling

hands.

Little has changed in centuries—supervisors assign work, perhaps based on training, skills, and

experience, to various resources. At first the resources were only people, eventually supported by

tools such as typewriters, printed forms, and adding machines. Eventually some of the steps were

automated—the invoices were automatically totaled and printed, but only after people sorted the

punched cards, or entered the data. Even though the performance of the work was at least

partially automated, the management of the work had changed little—supervisors assigned work

and monitored performance. Clerks passed the work from station to station. Lists were made to

track the work—to find it when it went astray, and to measure the productivity. And an army of

expediters searched for the problems and errors in the routing, and kept it moving.

In the last 15 years or so we finally have developed tools to not only do the work, but to manage

the workflow. More than just procedural documents, that workflow process is defined formally in

the workflow computer system. The process is managed by a computer program that assigns the

work, passes it on, and tracks its progress.

The workflow process is traditionally defined in office terms—moving the paper, processing the

order, issuing the invoice. But the same principles and tools apply to filling the order from the

warehouse, assembling documents, parts, tools, and people to repair a complex system,

manufacturing the complex device or registering for an academic course in a university or

college.

With the automated workflow management system the following benefits accrue as given by

Charles Plesums [1]:

(a) Work doesn’t get misplaced or stalled—expediters are rarely required to recover

from errors or mismanagement of the work·

(b) The managers can focus on staff and business issues, such as individual

performance, optimal procedures, and specialists, rather than the routine assignment of

tasks. The army of clerks is no longer required to deliver and track the work.

(c) The procedures are formally documented and followed exactly, ensuring that the

work is performed in the way planned by management, meeting all business and regulatory

requirements.

(d) The best person (or machine) is assigned to do each case, and the most important

cases are assigned first. Users don’t waste time choosing which item to work on, perhaps

procrastinating on important but difficult cases.

(e) Parallel processing, where two or more tasks are performed concurrently, is far

more practical than in a traditional, manual workflow.

 2

With the best person doing the most important work following the correct procedures, not only is

the business conducted more effectively, but also costs are lowered and the service to the

customers is generally better. With the work equitably distributed and the confidence that they

are always working on the “right” thing, users are happier. Therefore workflow is good for the

company, good for the customers, and good for the users.

Why workflow?

Work done by the best participant

A simple workflow system could evenly distribute work among all the available resources, or

follow a simple algorithm such as giving the waiting work to the resource with the shortest

queue, or implement assignments made manually by a supervisor. However, there are often

significant benefits when the system can optimize the assignment of the work. In order to do the

assignment, the workflow management system must know who or what is available to perform

the work, and have a profile about each user. This might include what work the resources are

qualified to do, how good they are at that type of work (can they do only routine processing or

can they handle the toughest cases), and whether the supervisor wants the work to be assigned to

them. Generally a priority is calculated, based on the type of work and how long it has been

waiting to be processed.

“Assembly Line” or “Once and Done”

Much work, even office procedures, can be processed in an assembly line, where there each step

in the process is simple and specialized. Most of the steps are simple. Training is minimized.

Staffing is often flexible, because few steps require specialized skills, authority, or licensing.

However, an effort is required to move the work between steps, time is lost waiting at each step,

and there are more chances that the work will be lost or misplaced. The other approach, equally

popular among the experts, is to have highly trained staff handle the complete process, once and

done. Far more training is required, with corresponding delegation of authority, but there is far

less overhead in the work process itself. When the work is managed manually, once and done is

generally superior, because there is less overhead and chance for error. But with an automated

work management system, either approach can be used. The work management system tracks the

 3

work, dramatically reducing the overhead of the assembly line process, with one remaining

disadvantage. The elapsed time to complete the work (as seen by the customer) may be longer

with the assembly line if a queue is allowed to build at each step in the process. Therefore in

practice, a blend seems to be best—separate people to enter data and proofread, to reduce the

chance of errors, with total automation of any step where that is practical. But minimize the

number of steps where practical, to reduce the time waiting in queue, and thus reduce the total

time of service. Once there is a system that tracks the multiple steps, perhaps not all of the steps

need to be done sequentially. Manual systems often include a checklist or routing slip that

accompanies the work, thus sequential processing is the easiest way, by far. The limitations of the

checklist go away with an automated workflow system. Thus most systems allow multiple tasks

to be assigned and performed concurrently, with a function to determine when all the parallel

paths are complete, so the consolidated part of the workflow can continue.

Rendezvous

One of the tougher steps in the paper-processing world is waiting for a supporting document to

arrive. In larger organizations the problem is harder since the recipient cannot remember every

case, or there may be multiple people who could make the final decision. The documents need to

be filed, and each arriving document that could satisfy a requirement needs to be checked that

something isn’t waiting for it. A list must be maintained—a tickler system—to trigger a follow

up, if the missing information doesn’t arrive in a timely manner. Most automated work

management systems support the automatic matching of incoming information to the work that is

suspended, waiting for the arrival of that information. The systems also manage the follow-up

processing when the information does not arrive on time. The most common name is probably

“rendezvous” but some systems call the process “marriage” or other terms.

Distribution

There are a variety of methods to distribute the work to the participants. Work may be pre-

assigned, and then selected from the “in-box” by the user. The user may look through a common

queue and “pull” the desired work. The user may ask the system to select and assign the most

appropriate piece of work—to “push” an item of work. Or the work may be assigned based on

“time.” The ideal way to distribute work is to let the work management system assign the work,

 4

following the rules to optimize that distribution. Sometimes called “Send Work”, “Get Work,” or

“Assign Work,” in each case the system pushes work to the participant.

Vertical Workflow

One function of a workflow system is to get the work to the right person or process—to move the

work through the organization. This is sometimes called “horizontal” workflow. Normally a case

consists of multiple tasks—programs, portions of programs, or manual steps—performed at each

step in the workflow. Therefore another possible workflow function is to see that all the tasks are

completed—the “vertical” workflow.

Completion

When the work is completed, the normal conclusion is to change the status (from waiting for

decision to either approved or rejected or from waiting for input to ready for checking). Each

workflow product has its unique way to move the work to the next step in the process – not all

use the term “status.”

Information easily accessible

As work is processed, computer systems and other data are often accessed. It is critical that the

information necessary to complete the processing is easily accessible. With electronic assignment

possible across multiple locations, the data may even be in a different city. Therefore it is

common for a work management system to:

(a) Interface to existing computer databases and systems

(b) Invoke complex computer systems, possibly through terminal emulation.

(c) Link to document images, fax servers, e-mail, or other “external” sets of data.

(d) Extract key information to move with the workflow—for example, the items in an

order, a credit limit, the limits of an insurance policy, or the current shipping address.

Interface to the data systems

Many organizations are concerned with the complexity of interfacing the workflow system to the

business application, or even feel the need to integrate workflow with the application. On the

contrary, there are many levels of potential interface. Workflow can be used with no interface to

 5

the legacy processing systems. In practice, a minimal interface, to invoke particular programs and

enter key data is popular with users, inexpensive to implement, and contributes to productivity. If

the users only process a single application, it is possible that the embedded workflow approach,

where the application drives the workflow, is sufficient. In practice, most users today must

support multiple applications—perhaps an order entry system. It may be more practical to have a

workflow system that invokes the appropriate legacy computer system, rather than having one

legacy system invoke workflow.

Image systems

Work management systems are often installed in conjunction with document image systems. If

there are paper documents involved in the workflow, it doesn’t do much good to make an

assignment and then have to search for the paper. On the other hand, if the necessary information

is available in another form, there is no requirement for an image system with every work

management system. Image systems often are installed in conjunction with work management

systems. Therefore we should conclude that although image and work management systems often

go together, and often bring synergistic benefits to the other; neither requires the other in all

cases.

Logging and tracking

Workflow systems typically record the processing history, and provide the opportunity for the

users to enter comments. The history typically includes the date, time, person where each step

was performed, including the disposition of the step—for example, was the process approved and

moved on in the workflow, or was the work suspended for later processing.

Search for work in process

Messages are often received—“What is the status?” or “Change my Request” or “Cancel the

order.” A work management system must not only manage the work in process, but must also

identify the work so that it can be found. Not only must it know that this is a queue of 200 orders,

but it must be able to find a specific order in that queue. And once the order has been found, we

must be able to determine the status of that work.

 6

Control
One of the big advantages of an automated work management system is the control of the

process, manifest by the procedures that are implemented by the system, and the record keeping

to report on the process. In all cases, the user profiles—qualifications, assignments, absences,

vacations, training, and other factors are maintained by the system. Managers need to be able to

manually assign work to an individual—perhaps because they made an error and need to fix it, or

perhaps because it is a special case that they are uniquely qualified to fix. Priorities must be

adjusted to move critical work to the head of the list.

Monitoring

Practically all systems include reporting and analysis such as the total work accomplished—the

volume, and the turn-around time. The systems also maintain data to report the productivity of

the individuals, teams, and groups. A few systems even maintain data about the number and types

of errors that are caught and corrected for each type of process and user. Work management

systems allow managers to examine the backlog of work throughout the day, in real time, so that

they can schedule staff as required, adjust assignments if necessary to meet deadlines, and in

general, manage their teams.

1.2 Measuring the Benefits

The benefits of a work management system have been divided into three categories by Charles

Plesums [1]. The direct cost savings are readily measured and recognized. But there is another set

of benefits that are real and valuable but very difficult to measure, sometimes called the hidden

savings. And still more benefits where the value cannot be quantified—the intangible benefits.

Direct Cost Savings

These are the readily measured benefits. Often they involve better use of staff, or reduction of the

staff.

 7

Hidden Savings
The hidden savings are actual cash savings, but those that are far harder to measure. For example,

better control of the work, savings of manager time, improved productivity of the professional

staff, and the opportunity for process improvement.

Intangible Benefits

There are a number of benefits of work management that most people cannot quantify. Unlike the

hidden benefits that are real and, with enough effort, can be quantified, it is rare that a cash value

can be assigned to improved service, employee satisfaction, organizational options, security, and

privacy. If any of the areas have a quantified value in your company, great—that factor can

simply be added to the direct or hidden savings.

1.3 Workflow Types

For many years, business analysts and authors categorized workflow systems. Although such

categories have fallen into disfavor, they are still instructive—they may help understand the

differences between various systems. The various categories as given by Charles Plesums and

Rob Allen [1,2] are discussed below.

Adhoc

Adhoc, or collaborative, workflow is often used in the professional and administrative areas of an

organization. It is characterized by negotiation, and a new workflow defined for each use. This

type of workflow is tremendously convenient, and provides good control of the process .The ad-

hoc workflows are often built on an e-mail platform.

Production

A production workflow is predefined and prioritized, and thus supports high volumes—there are

no negotiations about who will do the work or how it will be handled. However, there may be

additional tasks or workflows defined and added to the overall process. The production workflow

 8

can be very simple or complex. They can be completely predefined, or follow a general

procedure, with additional steps and processes added as required. They can be altered for

consultations. Normally it has a dedicated delivery channel, rather than using e-mail to deliver

the work. Overall the production workflow system provides control of the process, and

substantial productivity—thus it saves costs.

Administrative

A third type of workflow is sometimes listed, called administrative workflow. This is a cross

between the adhoc and production. The flow is pre-defined, such as the steps required to place an

order or approve an expense report. Sometimes the flow can be reviewed in advance or even

altered. The delivery may be a blend between e-mail, and a custom delivery mechanism.

Horizontal vs. Vertical

Another useful segmentation of the workflow technology is sometimes called horizontal vs.

vertical workflow. Horizontal workflow moves the work through the organization—from person

to person, or to different departments or systems. Once the work gets to a point in the

organization, there may be several steps that are performed. The vertical workflow directs the

processing at each step. It may automatically invoke computer programs, enter key data, and may

provide guidance for each step of the process—at least for beginners if not for everyone.

Embedded

In some cases the workflow process is part of the business application. As previously noted, the

value of workflow may be so great for an application that the vendor of that application includes

workflow, so that “everyone” has it. Many of the embedded workflow systems are simple, but

optimized for that particular type of use so may be adequate.

Autonomous (stand-alone)

If users deal with many applications (as seems to be the normal case) then a separate stand-alone

workflow application may be a better solution, rather than one built into an application. This

separate system can be optimized for the total business requirement, rather than just one

application. These separate systems support many business applications.

 9

1.4 Layout of Thesis

The thesis has been organized to study the concept of a workflow management system and then

to design and implement a workflow for Computer Engineering Department, Delhi College Of

Engineering.

(a) Chapter 1 gives an introduction about the basic concepts of a Workflow

Management System as also the Workflow technology. It also tells about the benefits

derived from using such a system.

(b) Chapter 2 covers the Literature Review. The Workflow Reference Model given by

WFMC is cited along with the current research effort, and also the various existing

Workflow Systems.

(c) Chapter 3 presents the design and analysis of a workflow process using the UML

tools. A brief analysis of Workflow Patterns is given to familiarize with the basic building

blocks for process definition. The problem definition and UML design for “Design and

Development of a Workflow Management System for DCE” is formalized.

(d) Chapter 4 presents the full implementation details followed in this work to

develop the required Workflow Management System and the results are also presented.

(e) Chapter 5 highlights the Conclusion and Future of this work.

1.5 Purpose of the Thesis

The purpose of this Thesis work is to conceptualize, design and develop the WorkFlow

Management System in the Computer Engineering Department and implement a framework,

which facilitates workflow process design. This framework should provide features in

consonance with the current technology levels available in enterprise process management,

adapted to a professional institute. The framework needed to be open to modifications, extension

and upgrade for process implementation as per the user requirements. This workflow

management system should include the following functional and operational mandates:

 10

(a) Process Modeling: The system must support modeling and automation of

processes across multiple process categories.

(b) Process Interoperability: The system must support Communication and

interoperability between separate Workflow applications.

(c) Infrastructure Leverage: The system must provide complete and seamless support

for existing IT network infrastructures, leveraging all available system services and

complying wherever with existing standards, policies and procedures.

(d) Internet and Messaging-based Interaction: The system must support the use of the

Internet and standard store and forward messaging services.

 11

Chapter 2

Literature Review

Since this is a thesis about workflow management, this chapter delineates what workflow is and

what it is not. Workflow shares characteristics with many other systems. This chapter also

discusses the characteristics that set workflow apart from them. Understanding the differences

helps developers adapt techniques developed for these systems to workflow management.

2.1 Workflow Technology

Workflow technology has been used for decades. In the 1970s, focus was on procedures for

Office Information Systems [1, 2]. Research during the 1980s placed more emphasis on process

models as Ellis and Nutt [3] worked on Petri net models. Workflow expanded into fields like

office automation and document imaging. But the technology didn’t meet the expectations of

business users. Unlike the rigid workflow solutions of that time, environments for situated work

offered a less restrictive alternative and captured some of the momentum. Researchers realized

that the success of workflow technology was limited by their narrow perspective. Therefore, they

reconsidered workflow as a multidisciplinary endeavor, located at the intersection of different

 12

areas of computer, management and social sciences. This broad perspective contributed to the

return of interest in workflow technology in the 1990s. During the last few years workflow has

been the focus of intense activity in terms of products, standards and research work as discussed

by Mohan [4].

2.1.1 Definitions

Since its early days, researchers have proposed various definitions for workflow. Many of these

definitions define workflow within a single domain. Probably the most notable and widely

documented domain is Business Process Reengineering (BPR/BPM) as discussed by David

Hollingsworth [5, 6]. Later workflow technology was widely deployed in banking, accounting,

manufacturing, brokerage, insurance, healthcare, telecommunications, customer service, and

engineering, and more recently, scientific experiments. Therefore, the following definition is

preferred because it doesn’t depend on a particular domain.

 “A workflow represents the operational aspects of a work procedure, the structure of tasks, the

applications and humans that perform them; the order of task invocation; task synchronization

and the information flow to support the tasks; and the tracking and reporting mechanisms that

measure and control the tasks.”

The workflow literature refers to the software that enables people to define and execute

workflows as WorkFlow Management Systems (WFMS). A workflow management system

automates processes by managing jobs and resources. The WFMC [6] provides the following

definition for a workflow management system:

“A system that completely defines, manages and executes workflows” through the execution of

software whose order of execution is driven by a computer representation of the workflow

logic. A workflow management system automates the process logic.”

 13

 Humans and software applications (processing entities) perform workflow tasks, thus

implementing the task logic. This separation of process and task logic allows workflow users to

modify one without affecting the other. It also promotes software reuse and the integration of

heterogeneous software applications.

2.1.2 Workflow and Process Automation

Workflow Management Coalition (WFMC) [5] recommends a two tier model for processes that

are automated with workflow. The coalition recommends a flow tier that automates the process

logic and a work tier that contains the process activities as shown in Figure No. 2.1. Process

technology has become ubiquitous and as per Sheth et all [7]. Workflow users who design and

optimize these processes work with the high-level process descriptions on the flow tier.

Process Logic
What?

Process Activities
How?

Flow Tier

Work Tier

Controls
and

Automates

Perform
activities

for

 Figure No. 2.1 The Two Tier Model of the Process Logic and Activities

 14

2.2 The Evolution of Workflow

Many types of products in the IT market have supported aspects of workflow functionality for a

number of years, yet it is only comparatively recently that its importance has been recognized in

its own right. The evolution of workflow as a technology has thus encompassed a number of

different product areas as highlighted by David Hollingsworth [6]. These processes span Image

and document management, Electronic mail and directories, Groupware applications, Transaction

based applications and Business process Re-engineering.

2.3 Workflow Features

In a recent study Sheth et all [7] estimates the number of available workflow products between

200 and 300. Typically a new workflow system differentiates itself from others by offering

features that are not available in other systems but the majority of these systems share a small set

of common features. The minimal common set of features aim at providing the flow

independence, domain independence, process logic monitoring and history log and provisions for

manual intervention.

2.3.1 Flow-Independence

There are many different concerns in a piece of software. Data management and user interface

represent two of the aspects that many applications have to deal with. It is required to separate the

issues of low-level data management and user interfaces. The application manages its data

through the mechanisms provided by the database system. Therefore, applications that rely on

database technology for data management become data-independent. Likewise, user interface

frameworks handle the issues of user interfaces. They enable developers to build interface-

independent applications. Workflow enables developers to separate the flow between an

application’s components/modules/objects from the application (i.e., the process). Flow-

dependent software implements application-specific components and the flow between them.

 15

Most applications fall into this category since usually the underlying process emerges as the

application evolves. Software developers implement the process models within their applications

with workflow technology. Since application components have no knowledge of the sequencing

of activities and their interdependencies, changing the process doesn’t affect them. Thus,

workflow applications become flow-independent. Additionally, workflow technology allows

developers to use workflow-specific features that otherwise would be too expensive to handcraft

every time they build a new application.

2.3.2 Domain-Independence

The partitioning typical of flow-independent applications (Figure No. 2.1) keeps the workflow

outside the application domain. Thus applying workflow to a particular application domain

requires providing components that perform domain-specific work. This characteristic makes

workflow technology applicable to a large number of application domains and Georgakopoulos et

all [8] discuss good examples from the telecommunications industry. Workflow implementations

that focus on vertical markets discussed by Changengine [9] targets business administration and

METEOR2 [10] provides workflow solutions for the health care industry etc. A wide range of

application domains can benefit from current workflow technology.

2.3.3 Monitoring and History

The separation of process logic from the application components as proposed by WFMC [5]

enables workflow to tap into the process level and collect information about its execution.

Workflow systems provide this data at run time and after the process is complete. A workflow

monitor enables workflow users to examine this information at run time. Workflow management

systems also record the state of the running processes as these unfold in time. Workflow history

involves a persistent store and aims at providing an audit trail after the workflow completes.

Some workflow systems use the logged information for recovery. Workflow designers use it for

process analysis, where history information forms the basis for improving the process.

 16

2.3.4 Manual Intervention

Workflow management systems ensure that at run time processes execute according to their

definition. Under exceptional circumstances, the workflow user needs to override the process

definition and manually change the course of the process. Han et all [11] discuss feature that

enable workflow systems to handle exceptions and unique situations. Early workflow systems

didn’t provide this functionality. Current workflow systems aim at providing various degrees of

flexibility. Consequently, applications that use workflow to implement processes allow their

users to manually change running processes by simply leveraging this feature of the workflow

management system.

2.4 Workflow Standards

Despite the fact that people have used workflow technology for over two decades, a few years

ago no workflow standards were available. But as workflow expanded from image and

document-routing to business reengineering to mainstream middleware for process automation,

interoperability issues became important. Consequently, during the last few years the workflow

community has been working on standardization. The first standardization effort dates from

1994. The Workflow Management Coalition (WFMC), an organization of workflow product

vendors, researchers, and users founded in 1993, developed the Workflow Reference Model [6,

12]. Initially the reference model focused on defining programmatic interfaces to workflow

engines, aiming at standardizing the following five interfaces:

(a) Interface 1: Defines a common format for the interchange of static process

 specifications.

(b) Interface 2: Enables workflow participants to control process execution and

 manipulate work items.

(c) Interface 3: Provides access to the workflow applications.

(d) Interface 4: Enables different workflow servers to interact with each other.

(e) Interface 5: Provides an entry point for administration and monitoring tools.

 17

Consequently, the focus shifted from specifying APIs towards the specification of meta-models

and abstract interfaces. The recently adopted OMG Workflow Management facility adapts the

WFMC runtime standard to a business object execution environment. The OMG is currently

working on finalizing the standardization of the workflow facility. Research efforts in the

workflow domain have uncovered weaknesses in the implementations based on reference models

proposed by the WFMC and the OMG [13]. Paul et al [14] highlights that the WFMC standard

represents a necessary step in the direction of workflow system interoperability; the current

version of the standard has significant weaknesses that limit its value in a heterogeneous,

distributed environment. Most of the weaknesses in the standard stem from the monolithic nature

of the workflow server, which impedes the flexibility and scalability of workflow systems.

2.5 Review of available Workflow System

The definition of workflow as the automation of a process is very general and there are very

many ways to design and implement a workflow system [2, 15,]. At the simpler end of the scale,

a business process can be built into documents, such as spreadsheets, with macros, which of

course is not very flexible. At the other end of the scale, highly complex workflows can be

implemented using dedicated commercial workflow tools such as that built into Oracle or BEA

WebLogic.

2.5.1 Workflow systems based on Macros

Both Microsoft Excel and Word allow documents to have functionality embedded within them in

the form of macros. Using Visual Basic for Applications (VBA) a static document can be

extended to perform actions based on button clicks or values that are modified. Workflow

systems can evolve from simple beginnings rather than being designed up front in a large analysis

phase. If the system grows in an informal way with no upfront analysis of the process, it can

become difficult to maintain Version control of spreadsheet templates can become a problem.

 18

The quality and robustness of the system will depend on the level of programming skill of the

people writing the macros. This is a very rudimentary implementation of workflow with no set

norms and rules and is not a viable option for serious workflow usage.

2.5.2 Systems Based on Workflow Packages

2.5.2.1 Oracle Workflow and Oracle Workflow for Java (OW4J)

Oracle comes with a Business Process Management (BPM) tool called Oracle Workflow [16, 17],

and is being evolved in Oracle 10g with the next generation of Java based tools in the form of

Oracle Workflow for Java, or OW4J. Oracle Workflow supports business process modelling,

execution and monitoring. A graphical user interface allows an analyst to model a business

process as a flowchart. When the workflow is executed tasks can be assigned, email notifications

sent and application code executed. The workflow definition itself is saved to a database and can

be version controlled. Defining a workflow in this way gives greater flexibility than hard-coded

solutions. Oracle Workflow for Java (OW4J) is the next generation of J2EE-based business

process management solution. The user interface for defining workflows is found in JDeveloper,

which is Oracle’s development environment for Java developers. OW4J complements rather than

replaces the Oracle workflow engine.

2.5.2.2 BEA WebLogic and Business Process Management

BEA WebLogic Platform [18] is a service-oriented architecture (SOA) consisting of an

application server, JVM (Java Virtual Machine), enterprise portal and application development

framework. BEA’s tools offer a standards-based application infrastructure that provides

customers with business flexibility. The Business Process Management functionality within the

BEA WebLogic suite of applications provides a sophisticated workflow engine to help automate

business processes. BPM is all about managing enterprise level business processes and

incorporates the integration of heterogeneous systems, also known as EAI (Enterprise

Application Integration). BEA WebLogic’s Integration Studio allows specialists to design,

execute and monitor complex processes spanning multiple systems and people. As with Oracle

Workflow, a graphical user interface is provided in which a business process can be modeled as a

flowchart. Then a workflow template is saved to a database such as Oracle or SQL Server. An

 19

action might be to invoke an EJB (Enterprise Java Bean) method or send an XML message to

another application. The process engine manages execution of the workflow. XML is used to

represent data and JMS (Java Message Service) is used for communication with other workflows

and applications.

2.5.2.3 Jboss jBPM – open source extensible workflow management system

JBoss [19] is an established open source company with a focus on Java based middleware. The

JBoss application server is a very popular J2EE platform. JBoss jBPM is a workflow

management system in which a process is defined formally in a specialist language called JBoss

jBPM Process Definition Language (jPDL). jBPM is a workflow engine that sits in the middle of

a system of enterprise applications allowing integration and coordination of the separate

applications. Enterprise Application Integration (EAI) is a big topic in the industry at the

moment, which is why JBoss, Oracle, BEA etc are all offer competing workflow based products

to meet this need.

2.5.3 Web-based workflow systems and BPEL

Web Services (using SOAP, WSDL and XML) are now the standard for doing business over the

web. The idea behind a web service is that organizations provide services that are available to be

called programmatically over the web [15]. Extending the concept to the next level it has been

realized that often a business process may involve multiple business partners offering web

services that can be hooked up to define an end-to-end business process. Web services alone do

not provide the technology to do this and so BEA, IBM and Microsoft got together in 2002 to

come up with a new language called BPEL (Business Process Execution Language for Web

Services). BPEL is an abstract, XML based process definition language for defining an end-to-

end business process flow. It supports asynchronous transactions, flow control and compensating

business logic. In order to execute a process a BPEL script is parsed by a BPEL engine. The

script is a definition of the workflow and can be executed by any BPEL compliant engine. It is

not platform or vendor specific.

 20

2.5.4 Other high-level workflow engines
As well as the offerings from Oracle, BEA, JBoss etc, there are organizations that have

developed their own workflow engines, which are designed as components that can be integrated

into new and existing systems. Below are just four examples, but there are literally dozens of

products, each offering a unique set of features and with varying levels of compliance with

emerging standards.

2.5.4.1 Verity Liquid BPM

The Verity Liquid BPM [15] (formerly the Drala workflow engine from Drala Software Inc) is an

embeddable Java component, which can handle hundreds of workflows simultaneously. The

engine supports persistence of workflows to a relational database. Complementing the workflow

engine is the Workflow Studio, a visual environment for modelling workflows. The Workflow

Manager provides monitoring and management services. The BPEL Orchestrator provides tools

to build and automate processes using web services based on the BPEL4WS (Business Process

Execution Language for Web Services) standard.

2.5.4.2 Enhydra Shark

Enhydra Shark [20] is an open source extendable workflow engine based on Workflow

Management Coalition (WFMC) specifications using XPDL (XML Process Definition

Language). It is built using Java/XML technology. XPDL is a workflow definition language

similar in concept to BPEL.

2.5.4.3 OpenSymphony OSWorkflow

OpenSymphony [21] is another open source project dedicated to J2EE enterprise components.

OSWorkflow is a workflow engine, which the designers claim stands out from the crowd due to

its very high flexibility. This might be of interest to someone who feels that many of the high-

level workflow engines lack flexibility, but who doesn’t want to go completely down the road of

writing everything from scratch. The recommended approach here is to write XML process

descriptors “by hand” rather than in a graphical tool (though a graphical tool has now been

included).

 21

2.4.5.4 OpenWF
OpenWF [22] is a workflow management solution from OpenWF.com. It is developed using

Microsoft technology including .NET, APS.NET, SQL Server. On offer are a workflow graphic

designer, and a workflow engine. A web application interface is provided so no special client

software is needed.

The various Workflow Engines reviewed in this chapter, along with their web addresses are

attached as Annexure A.

2.6 Review of OpenWFE

Open WFE is an Open source Workflow Engine and is the choice for the implementation of the

Workflow for this thesis. It is also a complete workflow management system [23] and is designed

from scratch in conformity with WFMC specifications. This engine has the capability to use

python base APRE invocation that extends its capability to interface with a variety of

applications in the work tier. The WFMS uses the XML process definition language, which

generated the flexibility in modification and implementation of new processes quickly and

efficiently. This feature also provides interoperability with standard workflow definition

languages like XPDL as recommended by WFMC. Since the workflow system is an open source,

it gives that flexibility to evolve based on the requirement of the specific implementation.

2.7 UML and WorkFlow

UML activity diagrams are intended to model both computational and organisational processes

[24]. However, if activity diagrams are to succeed as a standard in the area of organisational

process modeling, they should compare favorably to the languages currently used for this

purpose, that is, those supported by existing Workflow Management Systems (WFMS). Many of

the workflow patterns offered by these languages are documented in [25, 26].

 22

Chapter 3

Problem Definition and Development of WFMS

3.1 Workflow Management System

A typical workflow management system is standardized by WFMC and is depicted in Figure No.

3.1. It essentially has five interfaces that interact with the system engine to implement a WFMS.

Interface 1

This interface defines a common format for the interchange of static process specifications.

Through this interface process definition is implemented. Various languages may be used for

process definition but the current standards are XPDL (XML Process Definition Language) and

XML (Extensible Markup Language) based.

Interface 2

This interface is the front-end of the system what a user will see. It enables workflow participants

to initiate, control process execution and manipulate work items.

 23

Interface 3
This interface provides access to the workflow applications. These applications are generally the

helper operating system provided facilities like email, database, word processing etc that are

required by the flow logic to propagate work items as per the process definition.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
- Interoperability

Interface 5
Workflow Enactment Service Other Workflow

Enactment Service(s)

Worklist
Handler

Interface 3Interface 2

Invoked
Applications

Tool Agent

Process Definition Import/Export

Client
Apps

Legacy,
Desktop, etc

Workflow
Engine(s) Workflow

Engine(s)

 Figure No. 3.1 Workflow Reference Model –Components and Interfaces

Interface 4

This interface implements the scalability of the WFMS. It enables different workflow servers to

interact with each other. These servers may be functionally or geographically distributed.

Examples are like marketing department workflow process initiates a process in the shipping

department to dispatch an item.

Interface 5

This interface is the entry point for administration and monitoring of the WFMS. This is used to

control users, monitor work items etc when the workflow server is operative and dynamically

control the server, if required.

 24

3.2 UML Activity Diagrams

UML activity diagrams are intended to model both computational and organisational processes.

Thus the UML diagrams logically form the first step in modeling of a business process

corresponding to any application of workflow. The UML activity diagram for a process is the

basic of designing and modeling an organisational process.

States and transitions

UML activity diagrams are special cases of UML state diagrams, which in turn are graphical

representations of state machines. State machines are transition systems whose arcs are labeled

by ECA (Event- Condition-Action) rules. The occurrence of an event results in a transition if (i)

the machine is in the source state of the transition, (ii) the type of the event occurrence matches

the event description of the transition, and (iii) the condition of the transition holds. The event

(also called trigger), condition (also called guard), and action parts of a transition are all optional.

A transition without an event is said to be triggerless. Triggerless transitions are enabled when

the action or activity attached to their source state is completed. A state can contain an entire state

machine within it, leading to the concept of compound state.

In the context of workflow specification, the strong points of activity diagrams with respect to

alternative languages provided by commercial WFMS are essentially the following:

(a) They support signal sending and receiving at the conceptual level.

(b) They support both waiting states and processing states.

(c) They provide a seamless mechanism for decomposing an activity specification

into sub-activities. The combination of this decomposition capability with signal sending

yields a powerful approach to handling activity interruptions.

However, activity diagrams exhibit the following drawbacks:

(a) Some of their constructs lack a precise syntax and semantics. For instance, the

well-formedness rules linking forks with joins are not fully defined, nor are the concepts of

dynamic invocation and deferred events, among others.

(b) They do not fully capture important kinds of synchronization such as the

discriminator and the N-out-of-M join.

 25

(c) They do not fully support the producer-consumer pattern with termination activity

3.3 Workflow Patterns

The primary task of a workflow management system is to enact case-driven business processes

by allowing workflow models to be specified, executed, and monitored. Workflow process

definitions (workflow schemas) are defined to specify which activities need to be executed and in

what order (i.e. the routing or control). An elementary activity is an atomic piece of work.

Workflow process definitions are instantiated for specific cases. Since a case is an instantiation of

a process definition, it corresponds to the execution of concrete work according to the specified

routing. Activities are connected through transitions and we use the notion of a thread of

execution control for concurrent executions in a workflow context. Activities are undertaken by

roles, which define organizational entities, such as humans and devices. Control data are data

introduced solely for workflow management purposes, e.g. variables introduced for, routing

purposes. Production data are information objects (e.g. documents, forms, and tables) whose

existence does not depend on workflow management. Elementary actions are performed by roles

while executing an activity for a specific case, and are executed using applications.

Workflow patterns are typically realized in a specific language using one or more constructs

available for this language. Sometimes workflow constructs available for a given language are

not sufficient to realize a given pattern and workflow implementers have to resort to

programming techniques such as event queuing, database triggers, etc to circumvent the

limitations of a given workflow tool. A standard set of workflow patterns were studied by Van

der Aalst, Hofstede, Kiepuszewski and Barros [25, 26] and are used to model any complex

workflow process definition. These patterns have been accepted as standard patterns by WFMC

and are detailed in following paragraphs. All the process design activities aim at synthesizing the

major task into a combination of these patterns.

 26

3.3.1 Basic Control Flow Patterns

These patterns closely match the definitions of elementary control concepts provided by the

WFMC. These are:

(a) Pattern 1 (Sequence): The second activity occurs after the first one is completed.

(b) Pattern 2 (Parallel Split): Multiple activities start based on the completion of an

activity.

(c) Pattern 3 (Synchronization): Activity is executed only after multiple prerequisite

activities are completed.

The next two patterns are used to specify conditional routing. In contrast to parallel routing only

one selected thread of control is activated.

(a) Pattern 4 (Exclusive Choice): This activity is executed if the result of a previous

activity is exclusively tested true.

(b) Pattern 5 (Simple Merge): In this pattern the activity is executed if one of the split

branches generates a result.

3.3.2 Advanced Branching and Synchronization Patterns

Here the focus will be on more advanced patterns for branching and synchronization. As opposed

to the patterns in the previous section, these patterns do not have straightforward support in most

workflow engines.

(a) Pattern 4 (Exclusive choice): assumes that exactly one of the alternatives is

selected and executed.

(b) Pattern 6 (Multi-choice): A point in the workflow process where, based on a

decision or workflow control data, a number of branches are chosen.

(c) Pattern 7 (Synchronizing Merge): A point in the workflow process where multiple

paths converge into one single thread. If more than one path is taken, synchronization of the

active threads needs to take place. If only one path is taken, the alternative branches should

re converge without synchronization.

(d) Pattern 8 (Multi-merge): A point in a workflow process where two or more

branches reconverge without synchronization. If more than one branch gets activated,

 27

possibly concurrently, the activity following the merge is started for every activation of

every incoming branch.

(e) Pattern 9 (Discriminator): The discriminator is a point in a workflow process that

waits for one of the incoming branches to complete before activating the subsequent

activity. Once all incoming branches have been triggered, it resets itself so that it can be

triggered again Example: To improve query response time, a complex search is sent to two

different databases over the Internet. The first one that comes up with the result should

proceed the flow. The second result is ignored.

3.3.3 Structural Patterns

Different workflow management systems impose different restrictions on their workflow models.

These restrictions are not always natural from a modeling point of view and tend to restrict the

specification freedom of the business analyst. As a result, business analysts either have to

conform to the restrictions of the workflow language from the start, or they model their problems

freely and transform the resulting specifications afterwards.

(a) Pattern 10 (Arbitrary Cycles): A point in a workflow process where one or more

activities can be done repeatedly.

(b) Pattern 11 (Implicit Termination): A given sub process should be terminated when

there is nothing else to be done.

3.3.4 Patterns involving Multiple Instances

The patterns in this subsection involve a phenomenon that is referred to as multiple instances.

From a theoretical point of view the concept is relatively simple and corresponds to multiple

threads of execution referring to a shared definition. From a practical point of view it means that

an activity in a workflow graph can have more than one running, active instance at the same time.

(c) Pattern 12 (Multiple Instances without Synchronization): Within the context of a

single case (i.e., workflow instance) multiple instances of an activity can be created, i.e.,

 28

there is a facility to spawn off new threads of control. Each of these threads of control is

independent of other threads. Moreover, there is no need to synchronize these threads.

(d) Pattern 13 (Multiple Instances with a Priori Design Time Knowledge): For one

process instance an activity is enabled multiple times. Once all instances are completed

some other activity needs to be started.

(e) Pattern 14 (Multiple Instances with a Priori Runtime Knowledge): For one case an

activity is enabled multiple times. The number of instances of a given activity for a given

case varies and may depend on characteristics of the case or availability of resources, but is

known at some stage during runtime, before the instances of that activity have to be

created. Once all instances are completed some other activity needs to be started.

3.3.5 State-based Patterns

In real workflows, most workflow instances are in a state awaiting processing rather than being

processed. Many computer scientists, however, seem to have a frame of mind, typically derived

from programming, where the notion of state is interpreted in a narrower fashion and is

essentially reduced to the concept of data.

(a) Pattern 16 (Deferred Choice): A point in the workflow process where one of

several branches is chosen. In contrast to the XOR-split, the choice is not made explicitly

(e.g. based on data or a decision) but several alternatives are offered to the environment.

(b) Pattern 17 (Interleaved Parallel Routing): A set of activities is executed in an

arbitrary order: Each activity in the set is executed, the order is decided at run-time, and no

two activities are executed at the same moment (i.e. no two activities are active for the

same workflow instance at the same time).

3.3.6 Cancellation Patterns

These patterns are used to cancel and terminate the flow.

(a) Pattern 19 (Cancel Activity): An enabled activity is disabled, i.e. a thread waiting

for the execution of an activity is removed.

 29

(b) Pattern 20 (Cancel Case): A case, i.e. workflow instance, is removed completely

(i.e., even if parts of the process are instantiated multiple times, all descendants are

removed).

3.4 Problem Statement

The Computer Engineering Department of Delhi College Of Engineering caters to students at

undergraduate, graduate and postgraduate levels in engineering. The administration requirements

of each level of students are different with different informational needs. Currently a manual

system of administration processes exists, which is inherently slow (physical progress of

workitem), not amenable to a realtime status query and prone to loss of workitems. A system was

required to automate the administration processes in the department so that the interacting faculty

and students could access and work the specific admin chores in an efficient and effective

manner.

3.4.1 Problem Definition

The problem taken up in this thesis is to develop a workflow management system for the

fulfillment of the above mentioned functional and operational goals, so as to provide a framework

for further implementation of various workflow processes based upon the departmental

requirements.

The first step in this direction was to study the various administrative activities that are typically

carried out in the computer engineering department and based on these the Use Case diagrams

were created using Unified Modeling Language. Rational Rose software was used for preparing

this representation of the actors, roles and their relationships.

 30

3.4.2 DCE Course Registration Problem

At the beginning of each semester, students may request a course catalog containing a list of

course offerings for the semester and the faculty. Information about each course, such as

Professor, department, and prerequisites will be included through a web based interface to help

students make informed decisions. Similarly the research interests of each professor are also

made available through web based database browsing facility.

Once the student has selected the courses or the thesis topic he wants to register for he would

initiate a workflow for the formal approval. Once the registration process is completed for a

student, the registration system sends information to the billing system so that the student can be

billed for the semester. Once the workflow for the registration is completed the system should

update the database so that the Professors and students can access the relevant information

through a web based interface.

The administrator is responsible for the generation of course catalog for a semester and for the

maintenance of all information about the curriculum, the thesis, the students and the professors

needed by the system. Head of department is involved with the approval of thesis research topic

as well as the guiding faculty.

3.4.3 Modeling

The Behavior of the system under development (i.e. the functionality to be provided by the

system) is documented in the Use Case model that illustrates the system’s intended functions (use

cases), its surroundings (actors), and the relationships between the use cases and actors.

3.4.3.1 Actors in the DCE Course Registration System

Analysis of the registration problem revealed that five principal actors in the system were:

(a) Student- a person who wants to register for courses/Thesis.

(b) Administrator- The person who is responsible for and controls the whole

registration system.

 31

(c) Professor-a person who is certified to take courses and to guide Thesis

(d) HOD- a person who is authorized to approve research guide and arbitrate in case

of a dispute over multiple acceptance of thesis topic.

(e) Billing system-the external system responsible for student billing.

3.4.3.2 Use Case diagram and Use Cases in the Course Registration System

The Use Case Diagram is a graphical view of some or all of the actors, Use Cases and their

interactions identified for the system under development. The main Use Case diagram for the

DCE Registration system is made using Rational Rose software and is as shown in Figure No.3.2.

request thesis information
request course information

valiadte user

select course to teach

select Thesis to guide

professor

student

register for courses
register for thesis

generate billbilling system

maintain course information

maintain Thesis information

create course catalogue

maintain professor information

maintain student information

Scrutinise thesis titles

Administrator

HODallocate thesis guide

Figure No. 3.2 Use Case Diagram for DCE Registration System

 32

Based on this Use Case Diagram, various use cases identified for the system along with their

description were formulated. The Use Cases descriptions with associated contents are given in

Table Nos. 3.1 through 3.12.

Primary Actor A Student
Description This allows the student to register for courses.
Flow of events
Basic Flow
Alternate Flow

The student logs in and enters the password and after viewing the
Course Catalog registers for the desired courses.
If the password is invalid alternate flow is started.

Special
requirements

No special requirements

Preconditions The Request Course catalog use case must execute before this use
case begins.

Post conditions The generate bill use case should be executed after registration.

Table No.3.1: Use case1- Register for courses

Primary Actor A Student
Description This use case allows the student to register for Thesis. It allows

student to submit a topic and name of the two guides for his proposed
work.

Flow of events
Basic Flow
Alternate Flow

The student logs in and is validated. It allows student to submit a
topic and name of the two guides for his proposed work.
If password is invalid, alternate flow is started.

Special
requirements

No special requirements.

Preconditions The request for Thesis use case should be executed.
Post conditions The Scrutinize Thesis Title use case should be executed after

registration.

 Table No.3.2: Use case2- Register for thesis

 33

Primary Actor A Professor
Description This use case is started by the professor and it provides the capability

to select courses to teach for a selected semester.
Flow of events
Basic flow
Alternate flow

The Professor logs on to the system and enters the password and
performs the desired actions and the case ends successfully.
If password is invalid the alternate flow is executed.

Special
requirements

No Special requirements.

Preconditions The Maintain Course information use case must execute before this
use case begins.

Post conditions The Create Course Catalog Use Case executes after this Use Case
ends.

Table No.3.3: Use Case3- Select courses to teach

Primary Actor A Professor
Description The professor starts this use case and it provides the capability to

select Thesis to guide.
Flow of events
Basic flow

Alternate flow

The Professor logs on to the system and enters the password and
requests for the Thesis information and performs the desired actions
and the case ends successfully.
If password is invalid the alternate flow is executed.

Special
requirements

No Special requirements.

Preconditions The request Thesis information use case must execute before this use
case begins.

Post conditions Maintain Thesis Information Use Case executes after this Use Case
ends Successfully

Table No.3.4: Use Case4- Select Thesis to guide

Primary Actor A Student or a Professor
Description The student/Professor requests for the course information after

logging in.
Flow of events
Basic flow
Alternate Flow

The Actor logs in successfully and requests for the information to
make their individual decisions.
If password is invalid, alternate flow is executed.

Special
requirements

No Special requirements.

Preconditions The maintain course information should be executed before the
request for information use case begins.

Post conditions There are no Post conditions.

Table No.3.5: Use Case5- Request course information

 34

Primary Actor A Student or a Professor
Description The student/Professor requests for the thesis information after logging

in.
Flow of events
Basic flow
Alternate Flow

The Actor logs in successfully and requests for the information to
make their individual decisions.
If password is invalid, alternate flow is executed.

Special
requirements

No Special requirements.

Preconditions The maintain Thesis information should be executed before the
request for information use case begins.

Post conditions There are no Post conditions.

Table No.3.6: Use Case6- Request Thesis information

Primary Actor An Administrator
Description The Administrator maintains updated information based upon the

information received by him.
Flow of events
Basic Flow
Alternate Flow

The Administrator logs in successfully and updates the course
information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The register for Course use case is executed.
Post conditions The create course catalog use case executes after this.

Table No.3.7: Use Case7 - Maintain course information

Primary Actor An Administrator
Description The Administrator maintains updated information based upon the

information received by him.
Flow of events
Basic Flow
Alternate Flow

The Administrator logs in successfully and updates the student
information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The student wants to register for a course.
Post conditions No Post conditions.

Table No.3.8: Use Case8- Maintain Student Information

 35

Primary Actor An Administrator
Description The Administrator maintains updated information based upon the

information received by him.
Flow of events
Basic Flow
Alternate Flow

The Administrator logs in successfully and updates the thesis
information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The Register for Thesis use case is executed.
Post conditions No Post conditions.

Table No.3.9: Use Case 9- Maintain Thesis Information

Primary Actor An Administrator
Description The Administrator maintains updated information based upon the

information received by him.
Flow of events
Basic Flow
Alternate Flow

The Administrator logs in successfully and updates the Professor
information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions No preconditions.
Post conditions No Post conditions.

Table No.3.10: Use Case 10- Maintain Professor Information

Primary Actor An Administrator
Description The Administrator is allowed to create a course catalog based upon

the information received by him.
Flow of events
Basic flow
Alternate flow

The Administrator logs in successfully and creates the course catalog
based on the professor and student information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The register for course and select a course to teach use cases are
executed before this use case executes.

Post conditions No Post conditions.

Table No.3.11: Use case11- Create Course Catalog

 36

Primary Actor An Administrator
Description The Administrator is allowed to Scrutinize the title submitted by the

student for Thesis.
Flow of events
Basic flow
Alternate flow

The Administrator logs in successfully and Scrutinizes the title based
upon Thesis information.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The register for Thesis use cases is executed before this use case
executes.

Post conditions Maintain Thesis information is executed after this use case ends
successfully.

Table No.3.12: Use case12- Scrutinize Thesis Title

Primary Actor HOD
Description The HOD is allowed to allocate a thesis guide based on the

information received by him.
Flow of events
Basic flow
Alternate flow

The HOD logs in successfully.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The Scrutinize thesis title and select Thesis to guide use Cases are
executed before this use case executes.

Post conditions Maintain Thesis information is executed for updation.

Table No.3.13: Use Case13- Allocate Thesis Guide

Primary Actor Billing system
Description The billing system generates a bill once the registration is done.
Flow of events
Basic flow
Alternate flow

The Billing system generates a bill whenever a successful registration
happens.
If password is invalid, alternate flow is executed.

Special
requirements

No special requirements

Preconditions The Register for Thesis or Register for Courses use cases are
executed before this use case executes.

Post conditions Maintain Thesis information or Maintain Course information use
cases are executed for updation.

Table No.3.14: Use case14- Generate Bill

 37

3.4.3.3 Activity diagrams
At this stage Activity Diagrams may be created to represent the dynamics of the system. They are

flowcharts that are used to show the Workflow of the system; that is they show the flow of

control from activity to activity in the system, parallel activities and any alternate paths through

the flow. For the DCE course registration system two major activities are identified as

registration for thesis and Create Catalog.

The activity diagram for registration of thesis is shown in Figure No. 3.3. This activity diagram

shows the interaction between the four principal actors in the Use Case. This swim lane diagram

forms the basis of moulding the specification for establishing the process definition in the

workflow management system.

3.4.3.4 Designing using c++

Once the Use Case Diagram and the Activity Diagram had been developed, the next step was to

go through the various stages of Rational Rose Software and in the end to generate the code in

C++. It was observed that C++ language was not very amenable for the development of the

Workflow Management System, as it was very difficult to capture the dynamic nature of the

workflow and the proper routing of the workitems was very crude using the available language

constructs. The overall structure of various classes used, based on the initial design was

developed and is attached as Annexure B. On observing the various problems in using the said

software, the decision to implement this work in C++ was not followed beyond the designing

stage. In order to fully provide the functionality of the required nature as per the Use Case and

Activity Diagrams, the choice had to be made of a workflow Engine that was latest and readily

available for use, so as to be able to demonstrate the complete working WFMS and such an

Engine was not compatible with C++. The various choices made and the subsequent building up

of the WFMS along with the full implementation details and results is given in the following

chapter.

 38

Figure No. 3.3 Activity Diagram for Thesis Topic Registration

 39

Chapter 4

Workflow Management System Implementation

4.1 The Workflow

The activity diagrams conceptualized and developed for the problem in question depict the flow

of information, the actions by individual actors on the workitems and dynamic routing of these

work items based on actor response. A workflow management system is now needed for

capturing this dynamic flow of information and interactions with the environment.

The first step in this direction was to establish the structure of the workflow management system.

Recognized structure for a workflow management systems proposed by WFMC (as discussed in

literature review) was the obvious starting point for concept building and implementation. The

concept implementation involved a sequence of decisions and selection issues for the software

components, which would shape the complete Workflow system as a single entity.

The Operating system of choice was the Linux Fedora Core 3. This was selected since it is an

Open Source OS, extendable and upgradeable under GNU license and as such is readily available

 40

for use and has no limitations of cost and features usage and so it is suitable for the development

effort whose results are open to modifications and extensions.

The next part of the problem was the selection of participating services and software tools. For

this OpenWFE 1.5.1 was selected. It is the only open source beta software available, which in

itself is a full workflow management development system and comprises of the basic five

components in consonance with the WFMC recommended structure. These components are:

Workflow Engine

The heart of the system, which is workflow enactment and execution environment, is built around

JAVA. It requires JDK from Sun Microsystems which is again open source software. This engine

works based on JAVA JDK1.4.2, and requires a POSIX compliant OS, which was selected to be

Fedora Core 3 for this work.

Worklist

The worklist is a set of stores for workitems. Workitems are emitted by the engine upon

encountering a Participant Expression. A worklist stores workitems and lets participants retrieve

and use them. (Interface 2)

Webclient

This is also called the webappserver. The webclient is in fact a JAVA based web application

devised to interact with the worklist. (Interface 2 and Interface 5)

Automatic Participant Runtime Environment

The APRE is a carrier for agent implemented either in java or in jython. This facility enables the

engine to use the services of the applications residing on the host system. For example there is an

agent named ’EmailNotificationAgent’ that is implemented in jython and that does what its name

stands for. (Interface 3)

 41

Droflo
Droflo is a web based workflow design tool. It means that you can build / edit workflows with

your web browser and then save their XML process definition. OpenWFE uses its own process

definition language, which is very powerful, flexible and which is extensible. (Interface 1)

4.2 Requirements of the WFMS

The system should provide skeletal infrastructure to define workflows, route workitems as per the

flow definition. The student actor should be able to initiate flows based on his specific

requirements and monitor its progress. The participants should be able to retrieve the pending

task items, act upon them and handover to the WFMS. WFMS should route the work items as per

the defined flows to the next participant. Administrator should be able to define new workflows

and extend existing ones and view the flow across the complete process.

4.3 Scope

The scope of this work was to set up a WFMS Framework that was amenable to extensions and

up-gradations. In doing so, various software were selected and integrated to provide a seamless

support for existing IT network infrastructures, leveraging all available system services and

complying with existing standards, policies and procedures. The implementation required to

demonstrate a Working Model of this WFMS.

4.4 The Context

Within the scope of the thesis work, in order to demonstrate a working model of WFMS the

scenario of thesis registration process, as conceptualized in the previous chapter, was chosen for

implementation. A typical administration process in Computer Engineering Department at Delhi

 42

College of Engineering involves the registration of Projects/Thesis by students at different levels

and approval and allotment of faculty as Thesis guides. This process was implemented as a pilot

process during this work and it essentially demonstrates the complete functionality of the WFMS.

4.4.1 Workflow Process Definition

A final year B.E. / M.E. student who wants to submit a topic for the Project/Thesis Work Logs on

to the Workflow Management system and selects the link for ‘Register for Thesis’. As a result the

WFMS serves him/her the form to fill up the necessary details required as per the departmental

Administration Policies for registering the choice. The student fills up a registration form with

certain Personal information like the enrollment number and also the level i.e. whether the

registration is for Graduate or for Post Graduate Thesis Work. The student then fills up the fields

for the Project Title and also the choices for the names of two guides for the same. On submission

the WFMS forwards it to the scrutinizer who will check for the validity of the student Personal

information and if all is correct, validation of the title is done against an available database of all

project Work undertaken by the Department so far. After validation WFMS duplicates the form

and routes it to the next participant in the hierarchy i.e. the two guides for required action. The

Guides shall find the Pending Workitems whenever they logon to the system. The guides can

approve or disapprove the student request and also they can annotate the form and submit it to the

WFMS. At any instant, the student can view the progress of his Workitem in the Workflow

Management System. The form is then routed to the Head of the Department who can accept or

reject the form. Based on his response the system will send a mail to the selected Guide and also

intimation to the concerned student. In Addition the automatic updation of the database is done

by the WFMS.

4.4.2 Workflow Centric Activity Diagram

The process definition as proposed in the preceding paragraph was implemented into a workflow

centric process diagram. This process diagram used the UML activity diagram as its basis of

definition. The process diagram comprises of several sub-processes that are executed on the main

 43

engine through interface 1. Each of these diagrams has an XML code corresponding to it that is

also detailed along with the diagram. The principle flow process is modeled in Droflo application

that represents the graphical equivalent of the process XML code. The process and sub-process

diagrams are shown in Figure Nos. 4.1 through 4.8. The registration process consists of eight

activity process diagrams bearing nomenclature “regflow__5.1.xml” to “regflow__5.8.xml”. The

first code file “regflow__5.1.xml” is used to generate a launch form.

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.1">
<description>This flow is initiated by student for registration of thesis project</description>

 <sequence>
 <set value="false" type="boolean" field="Approved Topic" />
 <participant filter="closed1" ref="Administrator" />
 <if>
 <equals field-value="Approved Topic" other-value="true" />
 <subprocess ref="mainEngine::http://192.168.0.1:7079/regflow__5.2.xml" forget="true" />
 <subprocess ref="mainEngine::http://192.168.0.1:7079/regflow__5.3.xml" forget="true" />
 </if>
 </sequence>

<filter-definition
 name="closed1"
 type="closed"
 add="false"
 >
 <field regex="Approved Topic" permissions="rw" />
 <field regex="Proposed_Guide1" permissions="r" />
 <field regex="Proposed_Guide2" permissions="r" />
 <field regex="Thesis Topic" permissions="r" />
 <field regex="Students Name" permissions="r" />
 <field regex="Students Enrolment No" permissions="r" />
 <field regex="Email Id" permissions="r" />
 <field regex="Subject" permissions="r" />
</filter-definition>

</workflow-definition>

Listing 4.1 XML Code Listing for regflow__5.1.xml

 44

Figure No. 4.1 Droflo Equivalent Activity Diagram for regflow__5.1.xml

 45

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.2">
<description>This flow Topic Request for approval to guides</description>
<sequence>
 <concurrence
 sync="generic"
 merge="last"
 merge-type="mix"
 >
 <sequence>
 <set field="Approved Guide1" value="false" type="boolean"/>
 <participant ref="Guide1" filter="closed2"/>
 </sequence>
 <sequence>
 <set field="Approved Guide2" value="false" type="boolean" />
 <participant ref="Guide2" filter="closed3"/>
 </sequence>
 </concurrence>
 <if>
 <and>
 <equals field-value="Approved Guide1" other-value="true" />
 <equals field-value="Approved Guide2" other-value="true" />
 </and>
 <!-- then -->
 <subprocess ref="mainEngine::http://localhost:7079/regflow__5.4.xml" forget="true" />
 </if>
 <if>
 <and>
 <equals field-value="Approved Guide1" other-value="false" />
 <equals field-value="Approved Guide2" other-value="false" />
 </and>
 <!-- then -->
 <subprocess ref="mainEngine::http://localhost:7079/regflow__5.5.xml" forget="true" />
 </if>
 <if>
 <or>
 <and>
 <equals field-value="Approved Guide1" other-value="true" />
 <equals field-value="Approved Guide2" other-value="false" />
 </and>
 <and>
 <equals field-value="Approved Guide1" other-value="false" />
 <equals field-value="Approved Guide2" other-value="true" />
 </and>
 </or>
 <!-- then -->
 <subprocess ref="mainEngine::http://localhost:7079/regflow__5.6.xml" forget="true" />
 </if>
</sequence>
<filter-definition
 name="closed2"
 type="closed"
 add="false"
 >
 <field regex="Approved Guide1" permissions="rw" />

 46

 <field regex="Thesis for BE / ME" permissions="r" />
 <field regex="Students Name" permissions="r" />
 <field regex="Students Enrolment No" permissions="r" />
 <field regex="Thesis Topic" permissions="r" />
 <field regex="Email Id" permissions="r" />
 <field regex="Subject" permissions="r" />
</filter-definition>
<filter-definition
 name="closed3"
 type="closed"
 add="false" >
 <field regex="Approved Guide2" permissions="rw" />
 <field regex="Thesis for BE / ME" permissions="r" />
 <field regex="Students Name" permissions="r" />
 <field regex="Students Enrolment No" permissions="r" />
 <field regex="Thesis Topic" permissions="r" />
 <field regex="Email Id" permissions="r" />
 <field regex="Subject" permissions="r" />
</filter-definition>
</workflow-definition>

Listing 4.2 XML Code Listing for regflow__5.2.xml

Figure No.4.2 Droflo Equivalent Activity Diagram for regflow__5.2.xml

 47

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.3">
<description>This flow sends email to student about rejection of thesis topic</description>
<sequence>
 <set field-value="Email Id" field="__emailTarget__" />
 <set field-value="Subject" field="__emailSubject__" />
 <set value="Your Thesis topic has been rejected, Please resubmit the topic." field="__emailText__" />
 <participant ref="email-notif-agent" description="Thesis topic not accepted" />
 <set value="${field:Students Name} ${field:Students Enrolment No}" field="__subject__" />
 <participant ref="Thesis" filter="readall" />
</sequence>
<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>
</workflow-definition>

Listing 4.3 XML Code Listing for regflow__5.3.xml

Figure No.4.3 Droflo Equivalent Activity Diagram for regflow__5.3.xml

 48

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.4">
<description>This flow Requests HOD to arbitrate the allotment of Guide</description>

<sequence>
 <set field="HOD's Attention" value="Both guides have approved subject please allocate one"/>
 <set field="Allocated Guide" value="Fill in the Name of approved Guide"/>
 <set field="Approval of HOD" value="false" type="boolean" />
 <participant ref="HOD" filter="closed2"/>
 <set field="Administrator's Attention" value="Both guides had approved HOD arbitrated and selected one"/>
 <participant ref="Administrator" filter="readall"/>
 <set field-value="Email Id" field="__emailTarget__" />
 <set value="Approval of Thesis Topic" field="__emailSubject__" />
<set value="Your Thesis Topic: ${field:Thesis Topic} has been approved. Your Allocated Guide is
${field:Allocated Guide}" field="Students Email Text" />
 <set field-value="Students Email Text" field="__emailText__" />
 <participant ref="email-notif-agent" />
 <set value="${field:Allocated Guide}@ganit.home.net" field="__emailTarget__" />
 <set value="Guide duties for Thesis" field="__emailSubject__" />
<set value="You have been assigned as guide for Thesis Titled: ${field:Thesis Topic} for ${field:Thesis for BE /
ME} as earlier approved by you. The Student details are as follows: Student's Name: ${field:Students Name} ,
Student's Enrolment No: ${field:Students Enrolment No} , Student's Email Id: ${field:Email Id}" field="Guides
Email Text" />
 <set field-value="Guides Email Text" field="__emailText__" />
 <participant ref="email-notif-agent" />
 <set value="${field:Students Name} ${field:Students Enrolment No}" field="__subject__" />
 <participant ref="Archiver" filter="readall" />
</sequence>

<filter-definition
 name="closed2"
 type="closed"
 add="false"
 >
 <field regex="Proposed_Guide1" permissions="r" />
 <field regex="Proposed_Guide2" permissions="r" />
 <field regex="Students Name" permissions="r" />
 <field regex="Students Enrolment No" permissions="r" />
 <field regex="Thesis Topic" permissions="r" />
 <field regex="HOD's Attention" permissions="r" />
 <field regex="Subject" permissions="r" />
 <field regex="Approval of HOD" permissions="rw" />
 <field regex="Allocated Guide" permissions="rw" />
</filter-definition>
<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>
</workflow-definition>

Listing 4.4 XML Code Listing for regflow__5.4.xml

 49

 Figure No.4.4 Droflo Equivalent Activity Diagram for regflow__5.4.xml

 50

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.5">
<description>This flow informs student that his thesis topic has not been accepted by guides</description>

<sequence>
 <set field-value="Email Id" field="__emailTarget__" />
 <set value="Both guides proposed by you in your initial request Prof ${field:Proposed_Guide1} and Prof
${field:Proposed_Guide1} have denied guiding your thesis. Please resubmit request." field="__emailText__" />
 <set field-value="Subject" field="__emailSubject__" />
 <participant ref="email-notif-agent" description="Thesis topic not accepted" />
 <set value="${field:Students Name} ${field:Students Enrolment No}" field="__subject__" />
 <participant ref="Thesis" filter="readall" />
</sequence>
<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>
</workflow-definition>

Listing 4.5 XML Code Listing for regflow__5.5.xml

 Figure No.4.5 Droflo Equivalent Activity Diagram for regflow__5.5.xml

 51

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.6">
<description>This flow informs student about the allotment of Guide</description>

<sequence>
 <set field="HOD's Attention" value="One Guide has consented to Guide the thesis. Please Approve the name in
allocated coulmn"/>
 <if>
 <equals field-value="Approved Guide1" other-value="true" />
 <set field-value="Proposed_Guide1" field="Allocated Guide" />
 <set field-value="Proposed_Guide2" field="Allocated Guide" />
 </if>
 <set field="Approval of HOD" value="false" type="boolean" />
 <participant ref="HOD" filter="closed5"/>
 <if>
 <equals field-value="Approval of HOD" other-value="true" />
 <subprocess ref="mainEngine::http://localhost:7079/regflow__5.7.xml" forget="true" />
 <subprocess ref="mainEngine::http://localhost:7079/regflow__5.8.xml" forget="true" />
 </if>
</sequence>

<filter-definition
 name="closed5"
 type="closed"
 add="false"
 >
 <field regex="Students Name" permissions="r" />
 <field regex="Students Enrolment No" permissions="r" />
 <field regex="Thesis Topic" permissions="r" />
 <field regex="HOD's Attention" permissions="r" />
 <field regex="Subject" permissions="r" />
 <field regex="Approval of HOD" permissions="rw" />
 <field regex="Allocated Guide" permissions="r" />
</filter-definition>

<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>

</workflow-definition>

Listing 4.6 XML Code Listing for regflow__5.6.xml

 52

 Figure No.4.6 Droflo Equivalent Activity Diagram for regflow__5.6.xml

 53

<?xml version="1.0" encoding="ISO-8859-1"?>

<workflow-definition name="regflow" revision="5.7">
<description>This flow informs student about the allotment of Guide</description>

<sequence>
 <set field="Administrator's Attention" value="Guide has been approved by HOD proceed flow to inform student
and guide" />
 <participant ref="Administrator" filter="readall"/>
 <set field-value="Email Id" field="__emailTarget__" />
 <set value="Approval of Thesis Topic" field="__emailSubject__" />
 <set value="Your Thesis Topic: ${field:Thesis Topic} has been approved. Your Allocated Guide is
${field:Allocated Guide}" field="Students Email Text" />
 <set field-value="Students Email Text" field="__emailText__" />
 <participant ref="email-notif-agent" />
 <set value="${field:Allocated Guide}@ganit.home.net" field="__emailTarget__" />
 <set value="Guide duties for Thesis" field="__emailSubject__" />
 <set value="You have been assigned as guide for Thesis Titled: ${field:Thesis Topic} for ${field:Thesis for
BE / ME} as earlier approved by you. The Student details are as follows: Student's Name: ${field:Students Name} ,
Student's Enrolment No: ${field:Students Enrolment No} , Student's Email Id: ${field:Email Id}" field="Guides
Email Text" />
 <set field-value="Guides Email Text" field="__emailText__" />
 <participant ref="email-notif-agent" />
 <set value="${field:Students Name} ${field:Students Enrolment No}" field="__subject__" />
 <participant ref="Archiver" filter="readall" />
</sequence>

<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>

</workflow-definition>

Listing 4.7 XML Code Listing for regflow__5.7.xml

 54

 Figure No.4.7 Droflo Equivalent Activity Diagram for regflow__5.7.xml

 55

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow-definition name="regflow" revision="5.8">
<description>This flow sends email to student informing him of non approval</description>
<sequence>
 <set field-value="Email Id" field="__emailTarget__" />
 <set value="Thesis Topic is Not Approved " field="__emailSubject__" />
 <set value="Your Thesis topic has been rejected by the HOD, Please resubmit the topic." field="__emailText__"
/>
 <participant ref="email-notif-agent" description="Thesis topic not accepted" />
 <set value="${field:Students Name} ${field:Students Enrolment No}" field="__subject__" />
 <participant ref="Thesis" filter="readall"/>
</sequence>
<filter-definition
 name="readall"
 type="closed"
 add="false"
 >
 <field regex=".*" permissions="r" />
</filter-definition>
</workflow-definition>

Listing 4.8 XML Code Listing for regflow__5.8.xml

 Figure No.4.8 Droflo Equivalent Activity Diagram for regflow__5.8.xml

 56

4.5 Process Implementation Overview

The process implementation overview involves a look at all the components of the workflow

system that make the system work as a unit. This involves the flow definition tools, user

interfaces, workitem stores, administration and monitoring tools and automated services.

OpenWFE uses a flow definition in XML format which have been designed and coded in the

work till now. This process definition activity is aided by developing the isssues based on UML

tools such as Use Case Diagrams and Activity diagrams. The Activity diagram is then

decomposed and coded into XML which the OpenWFE engine understands. Further the

OpenWFE requires to know the participants roles that take part in the flow through another XML

definition file. It also defines the stores for the work items, users and their access rights using

XML definition files. In the subsequent paragraphs each of these implementation aspects will be

discussed with the specific problem of thesis registeration as an example.

4.5.1 The Participant Map

OpenWFE separates flow definitions from those who take part in them through the participant

map. The engine is interested in participants, it requires a participant map for a dispatcher for the

particular participant. The participants are defined in a file called “participantmap.xml” where the

participants are linked to a despatcher for that component. The participants can be mapped to a

“Role” or a specific “User”. A specific role may have multiple users. In our specific problem the

participants are student, professor, administrator, HOD and an email notification agent. The

participantmap.xml file is modified with the additional code appended to the file as shown in the

code Listing 4.9 below:

 <participant name="mainEngine">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>

 57

 <param>
 <param-name>port</param-name>
 <param-value>7007</param-value>
 </param>
 </participant>
<participant name="Student">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>
 <participant name="Administrator">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>
 <participant name="Guide1">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>

 <participant name="Guide2">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>

<param>

 58

 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>

 <participant name="HOD">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>

 <participant name="Archiver">
 <param>
 <param-name>dispatcherClass</param-name>
 <param-value>openwfe.org.engine.impl.dispatch.SocketDispatcher</param-value>
 </param>
 <param>
 <param-name>host</param-name>
 <param-value>127.0.0.1</param-value>
 </param>
 <param>
 <param-name>port</param-name>
 <param-value>7008</param-value>
 </param>
 </participant>

Listing 4.9 XML Code Listing for participantmap.xml

he participant role “student” will normally have many users with the user rights for login and T

launch of registration flow regflow__5.0.xml. Participant role of administrator will have

complete rights over the engine, stores and flow launch. Participant roles Guide1 and Guide2 will

normally be mapped to individual professor and may be annotated by professor’s name as the

participant name. In context of problem under design we have used generic nomenclature. HOD

participant role can be attributed to any specific professor by granting rights to the HOD store.

 59

4.5.2 The Stores

The stores are defined places where workitems are placed. Each store is a service and has

attributes like lockout time and unlock frequency associated with it. In the problem under

consideration the stores as given in Listing 4.10 are defined and appended to a file called

worklist-configuration.xml.

<service name="Store.Thesis"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore">
 <!--
 workitems if they are not approved are put in this worklist administrator will have access to this
 -->
 <param>
 <param-name>participants</param-name>
 <param-value>Thesis</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>

 <service name="Store.Administrator"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore">
 <!--
 workitems for participant 'administrator' are put in this worklist
 -->
 <param>
 <param-name>participants</param-name>
 <param-value>Administrator</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>
 <service
 name="Store.Guide1"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore"
 >
 <!--
 workitems for participant 'professor' are put in this worklist

 60

 -->
 <param>
 <param-name>participants</param-name>
 <param-value>Guide1</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>

 <service
 name="Store.Guide2"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore"
 >
 <!--
 workitems for participant 'Guide2' are put in this worklist
 -->
 <param>
 <param-name>participants</param-name>
 <param-value>Guide2</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>
<service
 name="Store.HOD"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore"
 >
 <!--
 workitems for participant 'hod' are put in this worklist
 -->
 <param>
 <param-name>participants</param-name>
 <param-value>HOD</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>

 61

 <service
 name="Store.Archiver"
 class="openwfe.org.worklist.impl.store.SimpleWorkItemStore"
 >
 <!--
 workitems that are approved are put in this worklist
 -->
 <param>
 <param-name>participants</param-name>
 <param-value>Archiver</param-value>
 </param>
 <param>
 <param-name>lockTimeout</param-name>
 <param-value>15m</param-value>
 </param>
 <param>
 <param-name>unlockFrequency</param-name>
 <param-value>3m</param-value>
 </param>
 </service>

Listing 4.10 XML Code Listing for worklist-configuration.xml

4.5.3 The Users and Rights

The stores and flow definitions are the two critical aspects of the workflow engine that need users

to inteact to execute useful work. First of all the users need to be defined for the system and then

each user is to be given access to view a workitem store that contains work for him/her. Further a

few users will need the rights to launch a flow as in our case the student launches the flow for

registration of thesis topic. The users and rights are defined in a file called passwd.xml and in our

case the code for file is given in Listing 4.11 below:

<?xml version="1.0" encoding="UTF-8"?>

<!--
 $Id: passwd.xml,v 1.5 2005/07/03 12:31:03 Simmi Dutta Exp $

 You can generate the password hashes with ./genpass.sh or genpass.bat
-->

<passwd>

 <principal
 name="simmi"
 class="openwfe.org.auth.BasicPrincipal"

 62

 password="-87-118+17+81-89+0-74-2-85-91-49-1-12-107+1-50"

 >
 <grant name="launch.regflow" />

 </principal>

 <principal
 name="rajeev"
 class="openwfe.org.auth.BasicPrincipal"
 password="-90+117-1-78-20+36-109+111-70+110+22-43-13-124+87-113"

 >
 <grant name="launch.regflow" />

 </principal>

 <principal
 name="goldie"
 class="openwfe.org.auth.BasicPrincipal"
 password="-58-46+82+117-77+123+33+91+0+93+126-8+39+61+111-96"

 >

 <grant name="store.Guide1" />
 </principal>

 <principal
 name="sks"
 class="openwfe.org.auth.BasicPrincipal"
 password="-51+87+6-83+21-71+95-105-11-108+52-1-114-45-55+118"

 >

 <grant name="store.Guide2" />
 </principal>

 <principal
 name="drc"
 class="openwfe.org.auth.BasicPrincipal"
 password="-88-13+61-21+108+65-54+39-66+118-7-62+100-107+21-106"

 >
 <grant name="store.HOD" />
 </principal>

 <principal
 name="admin1"
 class="openwfe.org.auth.BasicPrincipal"
 password="-32+12-14+90-44+38-125-77-33+103-116+97-12+44+107-38"

 >
 <grant name="store.Guide1" />
 <grant name="store.Administrator" />
 <grant name="store.Guide2" />

 63

 <grant name="store.HOD" />
 <grant name="store.Archiver" />
 <grant name="store.Thesis" />
 <grant name="launch.regflow" />
 </principal>

 <!-- grants -->

 <!--
 Grants are sets of permissions.
 They apply to a codebase (a jar file) a set of permissions.

 (Worklist-wide permissions are granted in
 etc/worklist/worklist-policy.conf or
 etc/worklist/win-worklist-policy.conf (for windows)

 The 'name' of a permission is usually the name of the object
 to which it grants some kind of access right.
 For a StorePermission, the name is the name of the store concerned.
 -->

 <grant name="store.Administrator"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="Store.Administrator"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="store.Guide1"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="Store.Guide1"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="store.Guide2"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="Store.Guide2"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="store.HOD"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission

 64

 name="Store.HOD"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="store.Archiver"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="Store.Archiver"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="store.Thesis"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="Store.Thesis"
 class="openwfe.org.worklist.auth.StorePermission"
 rights="read, write, delegate"
 />
 </grant>
 <grant name="launch.regflow"
 codebase="file:./jars/openwfe-worklist-actions.jar"
 >
 <permission
 name="mainEngine::http://localhost:7079/regflow__5.1.xml"
 class="openwfe.org.worklist.auth.LaunchPermission"
 />
 <permission
 name="mainEngine::http://localhost:7079/regflow__5.0.xml"
 class="openwfe.org.worklist.auth.LaunchPermission"
 />
 </grant>
</passwd>

 Listing 4.11 XML Code Listing for passwd.xml

It can be clearly seen in the listing above that the launch and store permissions are given to each

user defined. This is generally done at the worklist level and a facility exists to control this

process graphically using a web interface.

4.5.4 Ancillary Services Implementation

The demonstration prototype required a host of support services for sucessfully implementing a

workflow management system. This involved an operating environment that was multiuser

 65

capable, a webserver, a mailserver and a java virtual machine. Fedora Core 3 operating system

was configured as the basic OS because of its open source availability. Apache webserver was

setup on this linux system with the host name as ganit.home.net and a class C IP address of

192.168.0.1. A mail server using sendmail and SMTP was setup as the core mail processing

utility. The mail was to be available through web iterface, so a webmail utility using Squirell mail

was also setup.

4.6 WFMS Results

The workflow system was implemented and configured based on the discussions in the previous

paragraphs. The flow definitions were implemented in XML as presented after placing them

appropriately in the software file hierarchy. The configuration files were modified as stated

earlier to implement a solution for our problem.

4.6.1 Apache Webserver Homepage

The first login was provided a hook from the local webserver root page as seen in figure 4.9. The

system branched to the worklist handler that was hyperlinked to the workflow management

services caption on the main page and landed at the concerned handler port

http://192.168.0.1:7080 at the weclient service.

4.6.2 WebClient Interface

This service was the frontend for all the users of the WFMS. The interface picture is shown in

Figure No.4.10. Any user requiring a login into the WFMS would require to enter the system

through this interface.

 66

http://192.168.0.1:7080/

Figure No.4.9 Main Webpage providing link to Workflow Management

Figure No.4.10 Webclient Interface for Login into WFMS

 67

The webclient used in the WFMS is a standard webbrowser that can access the site over a lan or

internet at a designated IP addresss . The client browser could be Internet Explorer or Mozilla or

Opera and it uses a HTTP request to interact with the WFMS. The webclient interface is

generated using a JSP script and hyper-links User Management Interface and process design

helper utility.

4.6.3 Stores Information and Flow Launch Page

After an authenticated login, the user would landup at a page where the stores status is depicted.

Only the store to which he has rights is shown with the corresponding workitems in it. The user

has an option to view or edit the workitem. The user can launch the flow definitions by going to a

flow list page by using the hyperlink provided on this page. Figure 4.11 shows the stores page as

will be seen by an administrator. The tables for each store are empty indicating no pending

workitems except store of administrator where one pending workitem is shown with the

controlling flow nomenclature and despatch time.

Figure No.4.11 Store Interface for Administrator

 68

The launch page as seen by a student is shown in Figure No. 4.12. This page will list the flow

definitions and subjects that are permitted to be launched by a student. This page shows the

launch permissions for a user named simmi.

Figure No.4.12 Flow Launch Interface

4.6.4 Workitem Edit Interface

Once the flow has been launched, the primary workitem is generated and it is presented in an edit

mode to the user launching the flow. The user can fill in certain design time parameters and

launch the flow to the next step in the process. A diagram of workitem presented to student user

at launch of flow “regflow__5.0.xml” is shown in Figure No.4.13.

 69

Figure No.4.13 Workitem Launch Time Interface

Once the initial details have been filled up the user will launch the workitem and it will show up

in the store of the next participant in the flow. In this case the next participant is administrator

and the store will be as seen in Figure No. 4.11. The administrators role at this step is to either

approve or disapprove the thesis topic. The flow will take relevant path based on this decision as

per Figure No.4.1. To endorse administrators action the administartor needs to edit the work item.

The administrators edit interface will be as shown in Figure No.4.14 and he would make a

boolean selection on the only editable field presented to him for approval.

4.6.5 The Process Flow

On condition of non approval being met an email is sent through the email-notify-agent and flow

regflow__5.3.xml as shown in Figure No.4.3. The email massage received by the student is

 70

shown in his webmail box as presented in Figure No. 4.15 and subsequently the rejected topic

workitem is deposited in store Thesis for administrators persual. If the approval is granted, flow

goes through to the process regflow__5.2.xml. The workitem is now split into two and routed

parallelly to the two professors and each professor gets a workitem in their respective allocated

Guide store.

 Figure No.4.14 Administrator’s Workitem Edit Interface

The workitem received in each guide store is edited by the professor, by accepting to guide the

work or not. The guide store and edited workitem is shown in figure 4.16 and figure 4.17

respectively.

 71

Figure No.4.15 Students Webmail Inbox

Figure No.4.16 Guide Store

 72

Figure No.4.17 Guide Workitem Edit Menu

Once the flow has gone across both guides, if arbitration is required it goes through the

subprocess regflow__5.4.xml where the HOD allocates a guide, else HOD approves the guide

who has consented. The form presented to HOD for arbitration is shown in Figure No.4.18.

Activity diagrams in Figure Nos. 4.4, 4.5 or 4.6 are followed depending on the approval of

guides. Once the approval of HOD is acquired the workitem is progressed to the administrator

and an email is sent to student and the approved guide accordingly. The webmail inbox of student

and guide are shown in Figure Nos. 4.19 and 4.20 respectively. Finally the workitem is sent to

achiever for storage and further reference by administrator.

 73

Figure No. 4.18 HOD Workitem Edit Form

If for any reason both the professors refuse to guide the thesis work, or the HOD does not

approve the thesis topic or guides, an email is sent to the student about the rejection and the

disapproved thesis workitem is sent to thesis store. At the end of the flow if the thesis topic is

approved and the guide allocated, the workitem will reside in the Archiver store else it would be

sent to the Thesis store. The email is sent to student in case of rejection of thesis topic by both

guides or HOD denying approval.

 74

Figure No. 4.19 Webmail to student on Approval

Figure No. 4.20 Webmail to Allocated Guide on Approval

 75

Chapter 5

Conclusions and Future Scope

5.1 Conclusions

The aim of this work was to design and develop a Workflow Management System for Delhi

College of Engineering using Unified Modeling Language. Within the scope of this work UML

techniques involving Use Case analysis and Activity Diagrams were applied to analyse and

design the Workflow in the College Computer Engineering Department. This preliminary design

formed the basis of deployment of organizational process in workflow centric approach on a

Workflow Management System.

Detailed infrastructure for the WFMS was integrated from a variety of software available in the

open source category so as to minimize cost of ownership of such a WFMS. Guidelines laid

down by WFMC (Workflow Management Coalition) were used as standardization for the work.

The complete infrastructure was implemented on top of a Linux Box running Fedora Core 3

using OpenWFE as open source workflow engine.

 76

The Organizational process of a student registering for thesis was taken as a sample process for

design and implementation. This process was implemented successfully using XML code driven

from the UML activity diagrams for the process. A working prototype system was implemented

and demonstrated.

Within the scope of this work a detailed infrastructure for implementing any workflow process

has been evolved, tested and prototyped. Further organizational processes can be easily added to

the WFMS using the prototyped infrastructure.

5.2 Future Scope

The Workflow management strategy presented here is an open source, low cost, net enabled

implementation. This in comparison to the existing WFMS is flexible and scaleable. The

infrastructure can be used for further future developments and utilisation as follows:

(f) Design and developemnt of additional processes within Delhi College of

Engineering.

(g) Design and Development of additional Python based APRE agents for executing

additional system controlled automated tasks.

(h) Design and development of a relational database link for management of large

volumes of workflow data and users.

(i) Advancing the WFMS for embedding into current groupware applications as well

as relational databases.

 77

 REFERENCES

[1]. Introduction to Workflow Charles Plesums Computer Sciences Corporation, Financial

Services Group

[2]. Rob Allen, Open Image Systems Inc., United Kingdom Chair, WFMC External Relations

Committee, Workflow: An Introduction.

[3]. Clarence A. Ellis and Gary J. Nutt. Modeling and Enactment of Workflow Systems,

 pages 1–16.Invited paper.

[4]. C. Mohan. Recent trends in workflow management products, standards and research, pages

396–409.Volume 164 of Do¢ gaç et al. [27], August 1998.

 [5]. David Hollingsworth, Technical Committee, WFMC, the Workflow Reference Model 10

Years On.

[6]. David Hollingsworth. The Workflow Reference Model. Workflow Management Coalition,

Avenue Marcel Thiry 204, 1200 Brussels, Belgium, 1995.

[7]. Amit P. Sheth, Wil van der Aalst, and Ismailcem B. Arpinar. Processes driving the

networked economy. IEEE Concurrency, pages 18–31, July–September 1999.

[8]. Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workflow

management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, an International Journal, 3:119–153, 1995.

[9]. Hewlett-Packard. HP Changengine–Business Process Management for the Enterprise.
Available on the Web at http://www.ice.hp.com/cyc/af/00/index.html/

[10]. Meteor (UGA/LSDIS), http://lsdis.cs.uga.edu.proj/meteor/meteor.html/

[11]. Yanbo Han, Amit Sheth, and Christoph Bussler. A taxonomy of adaptive workflow

management.CSCW Towards Adaptive Workflow Systems Workshop, Seattle,WA,
November 1998.

 78

http://www.ice.hp.com/cyc/af/00/index.html/
http://lsdis.cs.uga.edu.proj/meteor/meteor.html/

[12]. WFMC, “Interface1: Process Definition Model and Interchange Language V 1.1 Final
(WfMC-TC-1016-P)," October 1999, http://www.wfmc.org/

[13]. Details at www.omg.org/

[14]. Santanu Paul, Edwin Park, and Jarir Chaar. Essential requirements for a workflow

standard.OOP-SLA’97 Business Object Workshop, 1997.

[15]. e-workflow – the workflow portal. A dedicated workflow website sponsored by the

WFMC. This site has links to many other workflow related sites.
 http://www.e-workflow.org

[16]. Oracle Workflow. Visit the Oracle web site and look for information on Oracle Workflow.

http://www.oracle.com/

[17].http://otn.oracle.com/products/ias/workflow/workflow_fov.html -Workflow Feature

Overview

[18]. BEA WebLogic Integration. Visit the BEA website and look for information on WebLogic

Integration. http://www.bea.com

[19]. JBoss jBPM. A recent addition to the JBoss family of middleware products to Add business

process management. http://www.jbpm.org/

[20]. Enhydra Shark. An open source workflow engine. A Java/XML based workflow engine

based on WfMC standards and XPDL. http://sharkobjectweb.org/

[21]. OpenSymphony OSWorkflow. A low-level, open source, workflow system.

 http://www.opensymphony.com/

[22]. OpenWF. A third party workflow engine and graphical design package based onMicrosoft

.Net technology http://www.openWF.com/

[23]. Jay Lawrence, OpenWFE WorkFlow Developers Guide, v.0.0- Sep, 2004

[24]. Marlon Dumas & Arthur H.M. ter Hofstede: UML Activity Diagrams as a WorkFlow

specification Language.

[25]. W.M.P. Van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Barros: WorkFlow

Patterns.

[26]. Workflow Patterns. An academic web site dedicated to the study of workflow modelling

patterns http://tmitwww.tm.tue.nl/research/patterns/index.htm

 79

http://www.wfmc.org/
http://www.omg.org/
http://www.e-workflow.org/
http://www.oracle.com/
http://otn.oracle.com/products/ias/workflow/workflow_fov.html
http://www.bea.com/
http://www.jbpm.org/
http://sharkobjectweb.org/
http://www.opensymphony.com/
http://www.openwf.com/
http://tmitwww.tm.tue.nl/research/patterns/index.htm

BOOKS REFERENCED

1 John Mettraux, OpenWFE, Open Source WorkFlow Engine .
Available on the web at http://www.openwfe-1.5.1/doc/book_openwfe.html/

2 J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

3 Craig Larman, Applying UML and Patterns. Pearson Education

4 Bill Ball and Hoyt duff, Red Hat Linux and Fedora Unleashed. Pearson Education

5 Terry Quatrani, Visual Modeling with Rational Rose 2002 and UML. Pearson Education

 80

http://www.openwfe-1.5.1/doc/book_openwfe.html/

APPENDIX

A. Workflow Engines

Name of the Workflow Engine

Available on the Web at Address

1. BEA WebLogic Integration http://www.bea.com/
2. JBoss jBPM http://www.jbpm.org/
3. Enhydra Shark http://shark.objectweb.org/
4. OpenSymphony OSWorkflow http://www.opensymphony.com/osworkflow/
5. OpenWF http://www.openWF.com/
6.HP Changengine–Business Process
Management for the Enterprise.

http://www.ice.hp.com/cyc/af/00/index.html/

7. Meteor (UGA/LSDIS) http://lsdis.cs.uga.edu.proj/meteor/
8. OpenWFE 1.5.1 http://sourceforge.net/project/

 81

http://www.bea.com/
http://www.jbpm.org/
http://shark.objectweb.org/
http://www.opensymphony.com/osworkflow/
http://www.openwf.com/
http://www.ice.hp.com/cyc/af/00/index.html/
http://lsdis.cs.uga.edu.proj/meteor/
http://sourceforge.net/project/

 B. Pseudo Code in C++

//******The following Pseudo code has been developed to highlight the class structure in c++
based on the Use Case diagram created in chapter 3.The details of the methods are not specified
as up till now the only UML has been used and the choice of the engine for the implementation of
the WorkFlow Management System has not been made and later the open WorkFlow Engine
1.5.1 was selected which is based on Java.***********//

//************class administrator***************
class administrator{
//code
public:

boolean scrutnise _thesis()
{
if(valid_title)
{
 professor p;
 p.select_thesis_to_guide();
//code
}

void maintain_thesis_info()
{
validate_user();

//code to maintain thesis record

}

void maintain_course_info()
{
validate_user();
//code to maintain course data
}

void maintain_student_info()
{
validate_user();
//code to allocate thesis to student and student information

 82

}

void maintain_professor_info()
{
validate_user();
//code to allocate professor as guide and to maintain professor info.
}

void create_course_catalog()
{
//code to create a catalog based on the information maintained
}

void validate_user()
{
//code to validate the user personal information
}

};

//*****************class professor**********
class professor
{
//code
public:

void select_thesis_to_guide()
{
HOD h;
h.allocate_thesis_guide();
//code
}

void select_course_to_teach()
{
//code to select courses to teach based on course information

}

};

//****************class student********
class student

 83

{
//code
public:

register_for_thesis()
{
administrator admin;
admin.scrutnise_thesis();
//code
}

resgiter_for_course()
{
administrator admin;
admin.create_course();
//code
}

};

//****************class HOD***********
class HOD
{
//code
public:

allocate_thesis_guide()
{
administrator admin;
admin.maintain._thesis();
admin.maintain_student();
admin.maintain_professor();
//code

}

};

//************************
void main(void)
{
student s;
int choice
cin>>choice;
if(choice==1)
{
 s.register_for_course();

 84

}
else
{
 s.register_for_thesis();
}
}

 85

	 Figure No. 3.1 Workflow Reference Model –Components and Interfaces
	
	Table No.3.1: Use case1- Register for courses
	Table No.3.3: Use Case3- Select courses to teach
	Name of the Workflow Engine
	Available on the Web at Address
	
	
	 B. Pseudo Code in C++

