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ABSTRACT 

 
 
This dissertation proposes a design for linear address space management in MINIX 

operating system on Intel 80x86 architecture based systems. Standard MINIX distribution 

does not support virtual addressing i.e. linear address space. 

 

In Intel based advanced microprocessors systems paging circuitry takes 32 bit linear 

address as input and map it into a specific physical address with the help of page tables. 

When paging circuitry is enabled, all user processes work on linear addresses instead of 

the actual physical addresses of memory. These linear addresses are mapped to physical 

addresses by paging circuitry with the help of page tables. To guarantee the protection of 

kernel address space from access by other user processes and between the user processes 

within themselves an operating system needs to have a mechanism for linear address space 

allocation. 

 

Linear address space management is needed to tap the extents of benefits extended by the 

paging circuitry of modern Intel 80x86 architecture based systems. This dissertation 

provides a platform for a memory management scheme based on linear addresses in an 

operating system, which could support processes in a paged memory. 
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CHAPTER 1                       INTRODUCTION 
 

Before having problem introduction, first we summarize a few basic terms and ideas 

related to operating systems in this section. 

 

1.1 Virtual memory 

 

Virtual memory is memory that appears to be allocated to application programs. The 

operating system uses a portion of the hard disk as virtual memory, and swaps data 

between the hard disk and physical memory. Virtual memory enables multitasking. If your 

computer needs to run several programs simultaneously, and the memory that all these 

programs require exceeds the amount of physical memory available, the operating system 

allocates virtual memory [1] to meet the total memory requirements of each program, and 

then manages the available physical memory to meet the actual memory requirements at 

each point in time. Therefore, the amount of virtual memory that is allocated can be much 

greater than the amount of physical memory that is installed in the computer. 

 

In virtual memory, process is either divided into pages or segments. Virtual memory 

works in the following way. All addresses generated by a user process are virtual 

addresses. Address translation hardware checks every such address generated by a user 

process (read/write, instruction/data) as it tries to map it to the corresponding physical 

address. If the page/segment that contains the virtual address referenced by the user 

process is currently resident in physical memory, the translation proceeds as it used to 

without virtual memory. If, on the other hand, the page/segment is not in physical 

memory, a Page/segment Fault Exception is generated. This causes the processor to leave 

the user mode and switch to kernel mode. The kernel responds a Page/Segment Fault 

Exception by running a routine whose purpose is to bring the referenced page/segment 

into physical memory (for this, it may have to move some other page to the disk-based 

backing store).  

 

First, we must introduce a new concept: virtual address space. Virtual address space is the 

maximum amount of address space available to an application. The virtual address space 

varies according to the system's architecture and operating system. Virtual address space 



depends on the architecture because it is the architecture that defines how many bits are 

available for addressing purposes. Virtual address space also depends on the operating 

system because the manner in which the operating system was implemented may 

introduce additional limits over and above those imposed by the architecture. 

 

The word "virtual" in virtual address space means this is the total number of uniquely-

addressable memory locations available to an application, but not the amount of physical 

memory either installed in the system, or dedicated to the application at any given time.  

 

To implement virtual memory, it is necessary for the computer system to have special 

memory management hardware. This hardware is often known as an MMU (Memory 

Management Unit).  

 

 

 

Figure 1.1 shows translation of translation of virtual address space into physical address 

space through MMU. In case of virtual memory this MMU can be a paging hardware, 

segmentation hardware or combination of these two. We will describe paging and 

segmentation in section 1.2 and 1.3. Combination of these two, i.e. segmentation with 

paging will be described in chapter 2.  

 

1.2 Paging 

 

Before introducing the concept of paging we will describe some basic terms.  

 

1.2.1 Some terms related to paging 

 

Virtual 
addresses 

MMU Physical 
addresses 

Data read or write 
(untranslated) 

Figure 1.1: Address translation through memory management unit 



Dirty Bit: Data structure (single-bit suffices) that tells whether the associated page was 

written after its last swap-in (or creation). 

 

Global Page: A page that is used in more than one program; typically found in multi-

programming environment with shared pages. 

 

Logical Address: Address as defined by the architecture. Synonym on Intel architecture: 

Linear address. 

 

Page: A portion of logical memory that is fixed in size. The start address of a page is an 

integer multiple of the page size. Antonym: Segment. A logical page is placed into a 

physical page frame. 

 

Page Frame: A portion of physical memory that is fixed in size to one page. It starts at a 

boundary that is evenly divisible by the page size. Total physical memory should be an 

integral multiple of the page size. 

 

Physical Memory: Main memory actually available physically on a processor.  

 

Present Bit: Single-bit data structure that tells, whether the associated page is resident or 

swapped out onto disk. 

 

1.2.2 Paging: Basic method 

 

In paging whole memory is divided into page frames, and the program is also divided into  

pages. When the program wants to execute, its pages are loaded in the available free page 

frames. A data structure called page table is used to provide mapping between the pages 

and the page frame that stores that page.  

 

All modern computer systems consist of hardware for paging support. The basic 

mechanism of paging [2] is shown in the Figure 1.2. Every address generated by the CPU 

is divided into two parts: a virtual page number and a page offset. The page number is 

used as an index into page table. As already explained page table is used for mapping 

between the pages and page frames that hold that page frame. It contains one entry per 



page for a process. The entry x consists of the frame number of the page frame that holds 

this page x. Through page number we get the frame number from the page table. Now as a 

final step, page offset is added to the frame number to get the actual data. The page table is 

also stored in a page frame. 

 

 

 

 

Figure 1.3(a) shows an example of paging. In this example a process is divided into 4 

pages. Figure 1.3 (b) shows main memory holding these pages. Note that pages are 

scattered randomly in the page frames of main memory. Corresponding page table is 

shown in the Figure 1.4. In this figure present bit shows whether the page is present in 

memory or not. Present=1 indicates that page is present in the main memory.    
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Virtual address 

Virtual page number Offset 

Physical page number

Physical page number

Physical page number

Error 

Physical address

Physical page number Offset 

Page table size 

Figure 1.2: Paging mechanism 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Virtual page number Physical page number Present bit 

0 4 1 

1 0 1 

2 Garbage 0 

3 2 1 

 

Paging method described above is single level paging. Consider an example in which 

process size (logical address space) is 1 GB. Main memory is divided into page frames of 

size 4 KB. Then total number of pages present in the logical address of the process is 

equal to 230/212 or 218 (see Figure 1.5). Therefore, the total number entries in the page table 

are equal to 218. If an entry in the page table occupies 4 bytes then the page table size is 1 

MB and it will occupy 256 page frames. This is an unrealistic approach.   

Figure 1.4: Page table for example of figure 1.3 

Virtual 
addresses 

Physical 
addresses 

0x2000 

0x1000 

0x0 

0x3000 

0x3fff 

  
0x0 

0x1000

0x2000

0x3000

0x4000

0x5000

Figure 1.3: (a) A process divided into pages. (b) Main memory holding 
pages 

(a) 

(b)



 

 

1.2.3 Multilevel paging 

 

To solve the problem of large page tables, page tables are also divided into pages and only 

some pages of this page table are kept into main memory. This is known as two level 

paging (see Figure 1.6). To keep track of pages of page table (which pages are present in 

memory), one more page table is used. This page table is called top-level page table.  

 

 

Logical address 
space 

Page table 

Physical 
memory 

256  
Frames 1MB1 GB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: An example of large page table 



 

In case of two-level paging, address generated by the CPU is divided into three parts as 

shown in Figure 1.7. First part specifies the displacement in top-level page table, second 

part specifies the displacement in second level page table and the last part specifies the 

displacement in page frame. 

Second level 
page table 

Top level 
page table 

1024 
entries 

Page 
table for 
top 4 
MB of 
memory

Page 
table for 
bottom 
4 MB of 
memory

1024 
entries 

Figure 1.6: An example of two level paging 



 

If the size of the top level page table is also very large, further it is divided into pages and 

logical address is divided into four parts. In this way we can increase the levels of paging. 

But as the levels of paging increases, the memory access speed decreases. This is due to 

the fact that accessing each level of page table entry requires some CPU clocks. 

 

1.2.4 Demand Paging 

 

Demand paging is a policy that allocates a page in physical memory only if an address on 

that page is actually referenced (demanded) in the executing program. Initially, when 

process wants to execute, required numbers of page frames for this process are reserved 

for it. But pages of the process are not copied to these page frames. When the process 

starts execution, CPU tries to fetch the very first instruction of the process. But it is not 

present in the memory and causes page fault. The page fault handler brings this page into a 

page frame allocated to process.    

 

Thus initially each page in the processes virtual address space causes a page fault. The 

memory manager should have an efficient page fault handler to handle these page faults. 

 

1.2.4.1 Page fault 

 

A page fault is the sequence of events occurring when a program attempts to access data 

(or code) that is in its address space, but is not currently located in the system's RAM. The 

operating system [3] must handle page faults by somehow making the accessed data 

memory resident, allowing the program to continue operation as if the page fault had never 

occurred. 

In the case of our hypothetical application, the CPU first presents the desired address to 

the MMU. However, the MMU has no translation for this address. So, it interrupts the 

Logical address 

Displacement in top 
level page table 

Displacement in second 
level page table 

Displacement in page 
frame 

Figure 1.7: Logical address divided into three parts two level paging 



CPU and causes software, known as a page fault handler, to be executed. The page fault 

handler then determines what must be done to resolve this page fault. It can: 

Find where the desired page resides on disk and read it in (this is normally the case if the 

page fault is for a page of code) 

Determine that the desired page is already in RAM (but not allocated to the current 

process) and reconfigure the MMU to point to it 

Point to a special page containing only zeros, and allocate a new page for the process only 

if the process ever attempts to write to the special page (this is called a copy on write page, 

and is often used for pages containing zero-initialized data) 

Get the desired page from somewhere else (which is discussed in more detail later)  

While the first three actions are relatively straightforward, the last one is not. For that, we 

need to cover some additional topics. 

 

1.2.4.2 Page replacement strategy  

 

What we do require for paged systems is a replacement strategy, and there are a number of 

these also: 

 

least recently used – replace the page which was used least recently. The assumption is 

that future behaviour will closely follow recent behaviour. The overhead is that of 

recording the sequence of access to all pages. 

 

least frequently used – replace the page which has been used least frequently during some 

immediately preceding time interval. The justification is similar to (i), and the overhead is 

that of maintaining a usage count for each page. One drawback is that a recently loaded 

page will generally possess a low usage count and may be replaced inadvisably. A way to 

avoid this is to inhibit the replacement of pages loaded within the last time interval. 

 

first-in first-out – replace the page that has been resident longest. This is a simpler 

algorithm (therefore lower overhead). Of course, it completely ignores the possibility that 

the oldest resident page may be the most heavily referenced. 

 

It is worth noting here that pages which have not been modified to do not need to be 

written back to secondary storage, and can be replaced very cheaply. Additionally, a 



record of whether or not the page has been written to can be recorded by the use of a 

single bit in the corresponding page table entry. 

 

1.2.5 Page size 

 

How big should a page be? This is really a hardware design question, but since it depends 

on operating system considerations, we will discuss it here. If pages [4] are too large, lots 

of space will be wasted by internal fragmentation: A process only needs a few bytes, but 

must take a full page. As a rough estimate, about half of the last page of a process will be 

wasted on the average. Actually, the average waste will be somewhat larger, if the typical 

process is small compared to the size of a page. For example, if a page is 8K bytes and the 

typical process is only 1K, 7/8 of the space will be wasted. Also, the relative amount of 

waste as a percentage of the space used depends on the size of a typical process. All these 

considerations imply that as typical processes get bigger and bigger, internal 

fragmentation becomes less and less of a problem.  

 

On the other hand, with smaller pages it takes more page table entries to describe a given 

process, leading to space overhead for the page tables, but more importantly time overhead 

for any operation that manipulates them. In particular, it adds to the time needed to switch 

form one process to another. The details depend on how page tables are organized. For 

example, if the page tables are in registers, those registers have to be reloaded. A TLB will 

need more entries to cover the same size ``working set,'' making it more expensive and 

require more time to re-load the TLB when changing processes. In short, all current trends 

point to larger and larger pages in the future.  

 

If space overhead is the only consideration, it can be shown that the optimal size of a page 

is sqrt(2se), where s is the size of an average process and e is the size of a page-table entry. 

This calculation is based on balancing the space wasted by internal fragmentation against 

the space used for page tables. This formula should be taken with a big grain of salt 

however, because it overlooks the time overhead incurred by smaller pages.  

 

 

 

 



1.3 Segmentation 

 

A process generally consists of various data structures like tables, arrays, stacks, variables 

and so on. These data may grow dynamically during the execution of the process. If the 

program process is allocated a single address space the dynamic nature of these data may 

cause some problems like memory overflow, memory overwrite etc. A process consists of 

various functions, which need not be present in the memory simultaneously. Similarly 

various files used by a process need not be present in the memory simultaneously. 

Segmentation is a memory management scheme, designed to handle the situations 

described above. 

 

In this memory management scheme we divide the whole logical address space into 

different segments. Each segment [5] consists of a linear sequence of addresses, from 0 to 

some maximum. The length of each segment' may be anything from 0 to the maximum 

allowed. Different segments may, and usually do, have different lengths. Moreover, 

segment lengths may change during execution. The length of a stack segment may be 

increased whenever something is pushed onto the stack and decreased whenever 

something is popped off the stack. These segments can be loaded in different memory 

areas and all the segments need not be present in the memory at the same time. 

 

Because each segment constitutes a separate address space, different segments can grow or 

shrink independently, without affecting each other. If a stack in a certain segment needs 

more address space to grow, it can have it, because there is nothing else in its address 

space to bump into. Of course, a segment can fill up but segments are usually very large, 

so this occurrence is rare. A process with five different segments is shown in the Figure 

1.8. 



 

 

Figure 1.9 shows an example of segmentation. In this example virtual address space is 

divided into 4 segments. Out of these 4 segments, only three are present in main memory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ Physical address

> Error 
Virtual address 

Virtual segment bits Offset 

Physical segment base Segment bound 

Physical segment base Segment bound 

Physical segment base Segment bound 

Figure 1.8: Segmentation mechanism 

  

Figure 1.9: An example of segmentation 

Virtual 
addresses 

Physical 
addresses 

0x6ff 

0x14ff 
0x1000 

0x0 

0x3000 

0x3fff 

0x0 

0x4ff 

0x2000 

0x2fff 

0x4000 

0x46ff 



Virtual segment number Physical segment base Segment bound 

Code 0x4000 0x700 

Data 0 0x500 

- 0 0 

Stack 0x2000 0x1000 

 

Each segment gets mapped to a contiguous location in physical memory, but there may be 

gaps between segments.  These gaps allow heap and stack segments of a process to grow 

by changing the segment bound in the table entry.  Also, by adding a protection mode to 

each segment, we can have a finer control of segment accesses.  For example, the code 

segment should be set to read-only (only execution and loads are allowed).  Data and stack 

segments are set to read-write (stores allowed).   

 

1.3.1 Segment fault handling 

 

In order to achieve replacement for segmented systems, the main objective is the same for 

paging. That is, to attempt to replace the segment this is least likely to be referenced in the 

immediate future. One might therefore expect the same policies to be applicable, and this 

is indeed the case, but with one major qualification. This qualification naturally arises 

from the fact that the segments to be placed are – unlike their paged counterparts – of 

varying size. Therefore, the segments that are to be candidates for relegation to secondary 

memory are influenced by the size of the incoming segment. If a small segment is to be 

brought in, then only a small segment need be replaced. However, if the incoming segment 

is large then a large segment must be replaced or alternatively, several smaller ones. 

 

Possibly the simplest technique is to replace a single segment (if one exists) which, 

together with adjacent gaps, will free enough space for the incoming segment. If there are 

several such segments, then a policy such as least recently used – described above for 

paged systems – may be employed to discriminate between the candidates. If no single 

segment is large enough to create sufficient space, then several segments have to be 

Figure 1.10: Segment table for example of figure 1.9 



replaced. A possible choice is the smallest set of contiguous segments will free the space 

required. 

 

The danger with this type of approach is that the segment (or segments) being replaced on 

the basis of size only, may be referenced again very shortly after their replacement. 

Selecting segments purely on a least recently used basis (for example) can reduce this 

danger, but since the selected segments are not likely to be contiguous some compaction 

of memory will be required. This technique involves an algorithm, which regularly trawls 

through the entire memory and “pushes” all the segments up to become contiguous blocks 

at the head of memory. This is very similar to the idea of defragmentation on the disk 

system, but in main memory is often referred to a garbage collection. 

 

1.4 Problem description 

 

This dissertation aims to propose a design for linear address space allocation for an 

operating system. For this purpose, ideally we have to choose an operating system which 

doesn’t already have any support for virtual addressing, i.e., which works on physical 

address space, instead on linear address space. 

 

Andrew S. Tanenbaum’s Minix is used for this purpose in this project. Minix is a very 

popular operating system among students, as it is a open source operating system without 

much licensing restrictions. It is a Unix look-alike operating system, and its source code is 

universally available for study and modification. Many successful projects including 

Linux have there origin in Minix, due to these reasons only. 

 

Standard Minix does not have any native virtual memory. It allocates physical address 

space to the user processes directly. This physical space allocation is handled by a memory 

manager server in Minix. To support virtual memory in Minix we have to design and 

develop a suitable mechanism for handling the linear address space allocation to the user 

processes.  

 

The hardware platform used in this project is Intel 80x86 architecture. It is the most 

widely used and most easily available computer architecture present today. This 



architecture includes 80386, 80486 and Pentium family of processors which are in wide 

spread use throughout the world.  

 

The details of this architecture are widely published and could easily be referenced for the 

purpose of this project. This makes Intel 80x86 a suitable architecture for proposing and 

testing this design. 

 

Intel 80x86 architecture supports two level paging. The linear address space is needed to 

be assigned to the processes for using virtual memory which is mapped to the physical 

address space by paging unit using page global directory and page tables. 

 

To allocate the linear address space instead of physical address space to processes, we 

need to make some changes to the memory manager of Minix. This modification includes 

the changes in the system calls of memory manager used to allocate the memory to the 

user processes. 

 

To implement these changes some new functions at kernel level are also required. These 

functions are used to manage the page tables to provide the mapping of linear address 

space on the physical memory at kernel level. For this purpose, kernel of standard Minix 

should be modified and recompiled. 

 

Selecting modular kernel based Minix; instead of monolithic kernel based operating 

system like Linux will make it easier to perform these changes. To make any change to a 

monolithic kernel would have needed to recompile the whole operating system each time -

which is a much massive process in comparison to working with a micro kernel based 

operating system. 

 

Selecting a widely used operating system like Linux would have been relatively tougher as 

it contains a lot of modules which are not exactly needed for a project designed for 

research or study purpouses. This all contributes to a massive code size, managing and 

modifying which is a much more time taking and error prone process with no real 

advantage, if aims of this project is considered. 

 

 



 

The primary aim of the project described in this dissertation is to make the modifications 

described above in the memory manager and to add the necessary functions at the kernel 

level to support the linear address space in Minix. 

 

1.5 Dissertation organization 

 

The organization of the rest of this dissertation is as follows. 

 

Chapter 2: Provides Intel 80x86 architecture details of its memory management unit 

related to segmentation, paging and protection. 

 

Chapter 3: Explains the Minix architecture. Minix memory management is also discussed 

in details. 

 

Chapter 4: Provides the basic mechanism to support the linear address space management 

in Minix. The design issues and the modification in memory manager are discussed in 

detail. It includes the various routines to update the page tables.  

 

Chapter 5: All the routines involved in the mechanism discussed in chapter 4 are provided 

in detail from the implementation point of view. Also, a mechanism is provided to 

increase the RAM size supported. 

 

Chapter 6: Presents the conclusion over the various aspects of the proposed design and 

discusses the further enhancements as future work. 

 

References 

 

Source code of selected files 



CHAPTER 2        MEMORY MANAGEMENT IN INTEL 
 

2.1 Address translation in Intel 

 

The 80x86 transforms [6] logical addresses (i.e., addresses as viewed by programmers) 

into physical address (i.e., actual addresses in physical memory) in two steps: 

 

• Segment translation, in which a logical address (consisting of a segment selector 

and segment offset) are converted to a linear address. 

• Page translation, in which a linear address is converted to a physical address. This 

step is optional, at the discretion of systems-software designers. 

 

These translations are performed in a way that is not visible to applications programmers. 

Figure 2.1 illustrates the two translations at a high level of abstraction. 

Segment base (16 bit)    Segment offset  (32 bit) 

Segment 
Translation

Linear address (32 bit) 

Page  
Translation

PG=0

Physical address 

Figure 2.1: Address translation in Intel 



2.2 Segmentation with Paging  

  

2.2.1 Segment translation 

 

Pentium has 16K independent segments, each holding up to 1 billion 32-bit words. 

Although there are fewer segments, the larger segment size is far more important, as few 

programs need more than 1000 segments, but many programs need segments holding 

megabytes. 

 

The heart of the Pentium [7] virtual memory consists of two tables, the LDT (Local 

Descriptor Table) and the GDT (Global Descriptor Table). Each program has its own 

LDT, but there is a single GDT, shared by all the programs on the computer. The LDT 

describes segments local to each program, including its code, data, stack, and so on, 

whereas the GDT describes system segments, including the operating system itself. 

 

To access a segment, a Pentium program first loads a selector for that segment into one of 

the machine's six segment registers. During execution, the CS register holds the selector 

for the code segment and the DS register holds the selector for the data segment. The other 

segment registers are less important. Each selector is a 16-bit number, as shown in Figure 

2.2. 

 

One of the selector bits tells whether the segment is local or global (i.e., whether it is in the 

LDT or GDT). Thirteen other bits specify the LDT or GDT entry number, so these tables 

are each restricted to holding 8K segment descriptors. The other 2 bits relate to protection, 

and will be described later. Descriptor 0 is forbidden. It may be safely loaded into a 

13 1 2

Index 

Privilege level (0-3) 0=GDT/1=LDT

Figure 2.2: A Pentium selector 



segment register to indicate that the segment register is not currently available. It causes a 

trap if used. 

 

At the time a selector is loaded into a segment register, the corresponding descriptor is 

fetched from the LDT or GDT and stored in microprogram registers, so it can be accessed 

quickly. A descriptor [8] consists of 8 bytes, including the segment's base address, size, 

and other information, as depicted in Figure 2.3.  

 

 

The format of the selector has been cleverly chosen to make locating the descriptor easy. 

First either the LDT or GDT is selected, based on selector bit 2. Then the selector is 

copied to an internal scratch register, and the 3 low-order bits set to 0. Finally, the address 

of either the LDT or GDT table is added to it, to give a direct pointer to the descriptor. For 

example, selector 72 refers to entry 9 in the GDT, which is located at address GDT + 72. 

 

Let us trace the steps by which a (selector, offset) pair is converted to a physical address. 

As soon as the microprogram knows which segment register is being used, it can find the 
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complete descriptor corresponding to that selector in its internal registers. If the segment 

does not exist (selector 0), or is currently paged out, a trap occurs. 

 

It then checks to see if the offset is beyond the end of the segment, in which case a trap 

also occurs. Logically, there should simply be a 32-bit field in the descriptor giving the 

size of the segment, but there are only 20 bits available, so a different scheme is used. If 

the G bit (Granularity) field is 0, the Limit field is the exact segment size, up to 1 MB. If it 

is 1, the Limit field gives the segment size in pages instead of bytes. The Pentium page 

size is fixed at 4K bytes, so 20 bits are enough for segments up to 232 bytes. 

 

Assuming that the segment is in memory and the offset is in range, the Pentium then adds 

the 32-bit Base field in the descriptor to the offset to form what is called a linear address, 

as shown in Figure 2.4. The Base field is broken up into three pieces and spread all over 

the descriptor for compatibility with the 286, in which the Base is only 24 bits. In effect, 

the Base field allows each segment to start at an arbitrary place within the 32-bit linear 

address space. 

 

 

 

If paging is disabled (by a bit in a global control register), the linear address is interpreted 

as the physical address and sent to the memory for the read or write. Thus with paging 

disabled, we have a pure segmentation scheme, with each segment's base address given in 

Descriptor 

Limit  

Other fields 

Base address 

32 bit linear address 

Offset 

+

Selector 

Figure 2.4: Conversion of a (selector, offset) pair to a linear address 



its descriptor. Segments are permitted to overlap, incidentally, probably because it would 

be too much trouble and take too much time to verify that they were all disjoint. 

 

On the other hand, if paging is enabled, the linear address is interpreted as a virtual 

address and mapped onto the physical address using page tables, pretty much as in our 

earlier examples. The only real complication is that with a 32-bit virtual address and a 4 K 

page, a segment might contain I million pages, so a two-level mapping is used to reduce 

the page table size for small segments. 

 

2.2.2 Two level paging  

 

Intel uses two level paging scheme. Each running program has a page directory consisting 

of 1024 32-bit entries. It is located at an address pointed to by a global register. Each entry 

in this directory points to a page table also containing 1024 32-bit entries. The page table 

entries point to page frames. The scheme is shown in Figure 2.5. 

 

In Figure 2.5(a) we see a linear address divided into three fields, Dir, Page, and Off. The 

Dir field is used to index into the page directory to locate a pointer to the proper page 

table. Then the Page [9] field is used as an index into the page table to find the physical 

address of the page frame. Finally, Off is added to the address of the page frame to get the 

physical address of the byte or word needed. 

 

The page table entries are 32 bits each, 20 of which contain a page frame number. The 

remaining bits contain access and dirty bits, set by the hardware for the benefit of the 

operating system, protection bits, and other utility bits. Each page table has entries for 

1024 4K page frames, so a single page table handles 4 megabytes of memory. A segment 

shorter than 4M will have a page directory with a single entry, a pointer to its one and only 

page table. In this way, the overhead for short segments is only two pages, instead of the 

million pages that would be needed in a one-level page table. 

 

To avoid making repeated references to memory, the Pentium, has a small TLB that 

directly maps the most recently used Dir-Page combinations onto the physical address of 

the page frame. Only when the current combination is not present in the TLB is the 

mechanism of Figure 2.5 actually carried out and the TLB updated. 



 

 

 

A little thought will reveal the fact that when paging is used, there is really no point in 

having the Base field in the descriptor be nonzero. All that Base does is cause a small 

offset to use an entry in the middle of the page directory, instead of at the beginning. The 

real reason for including Base at all is to allow pure (now paged) segmentation, and for 

compatibility with the 286, which always has paging disabled (i-e., the 286 has only pure 

segmentation, but not paging). 

 

It is also worth noting that if some application does not need segmentation but is content 

with a single, paged, 32-bit address space, that model is possible. All the segment registers 
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Figure 2.5: Mapping of a linear address onto a physical address. 



can be set up with the same selector, whose descriptor has Base = 0 and Limit set to the 

maximum. The instruction offset will then be the linear address, with only a single address 

space used-in effect, normal paging. 

 

2.2.2.1 Page Table entries 

 

Entries in either level of page tables [9] have the same format. Figure 2.6 illustrates this 

format.  

 

 

 

 

 

 
                                                                 32 BIT 

                P      - PRESENT 

                R/W    - READ/WRITE 

                U/S    - USER/SUPERVISOR 

                D      - DIRTY 

                AVAIL  - AVAILABLE FOR SYSTEMS PROGRAMMER USE 

 

Figure 2.6: Page table entry format 

 

Page frame address: The page frame address specifies the physical starting address of a 

page. Because pages are located on 4K boundaries, the low-order 12 bits are always zero. 

In a page directory, the page frame address is the address of a page table. In a second-level 

page table, the page frame address is the address of the page frame that contains the 

desired memory operand. 

 

Present bit: The present bit indicates whether a page table entry can be used in address 

translation. P=1 indicates that the entry can be used. When P=0 in either level of page 

tables, the entry is not valid for address translation, and the rest of the entry is available for 

software use; none of the other bits in the entry is tested by the hardware. If P=0 in either 

level of page tables when an attempt is made to use a page-table entry for address 

translation, the processor signals a page exception. In software systems that support paged 
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virtual memory, the page-not-present exception handler can bring the required page into 

physical memory. The instruction that caused the exception can then be re-executed. 

 

Note that there is no present bit for the page directory itself. The page directory may be 

not-present while the associated task is suspended, but the operating system must ensure 

that the page directory indicated by the CR3 image in the TSS is present in physical 

memory before the task is dispatched.  

 

Accessed and dirty bits: These bits provide data about page usage in both levels of the 

page tables. With the exception of the dirty bit in a page directory entry, these bits are set 

by the hardware; however, the processor does not clear any of these bits. The processor 

sets the corresponding accessed bits in both levels of page tables to one before a read or 

write operation to a page.  

 

The processor sets the dirty bit in the second-level page table to one before a write to an 

address covered by that page table entry. The dirty bit in directory entries is undefined. 

An operating system that supports paged virtual memory can use these bits to determine 

what pages to eliminate from physical memory when the demand for memory exceeds the 

physical memory available. The operating system is responsible for testing and clearing 

these bits.  

 

Read/Write and User/Supervisor bits: These bits are not used for address translation, but 

are used for page-level protection, which the processor performs at the same time as 

address translation.  

 

Page translation cache: For greatest efficiency in address translation, the processor stores 

the most recently used page-table data in an on-chip cache. Only if the necessary paging 

information is not in the cache must both levels of page tables be referenced. The 

existence of the page-translation cache is invisible to applications programmers but not to 

systems programmers; operating-system programmers must flush the cache whenever the 

page tables are changed. The page-translation cache can be flushed by either of two 

methods: 

 

 



  1.  By reloading CR3 with a MOV instruction; for example: 

       MOV CR3, EAX 

  2.  By performing a task switch to a TSS that has a different CR3 image than the current  

       TSS.  

 

2.3 Protection 

 

Although the complete architecture of the Pentium virtual memory has been covered 

briefly, it is worth saying a few words about protection, since this subject is intimately 

related to the virtual memory.  

 

The purpose of the protection features of the 80x86 is to help detect and identify bugs. The 

80x86 supports sophisticated applications, that may consist of hundreds or even thousands 

of program modules. In such applications, the question is how bugs can be found and 

eliminated as quickly as possible and how their damage can be tightly confined. To help 

debug applications faster and make them more robust in production, the 80x86 contains 

mechanisms to verify memory accesses and instruction execution for conformance to 

protection criteria. These mechanisms may be used or ignored, according to system design 

objectives.  

 

2.3.1 Privilege levels  

 

The Pentium supports four protection levels with level 0 being the most privileged and 

level 3 the least. These are shown in Figure 2.7. At each instant, a running program is at a 

certain level, indicated by a Z bit field in its PSW. Each segment in the system also has a 

level.  



 

 

As long as a program restricts itself to using segments at its own level, everything works 

fine. Attempts to access data at a higher level are permitted. Attempts to access data at a 

lower level are illegal and cause traps. Attempts to call procedures [10] at a different level 

(higher or lower) are allowed, but in a carefully controlled way. To make an inter-level 

call, the CALL instruction must contain a selector instead of an address. This selector 

designates a descriptor called a call gate, which gives the address of the procedure to be 

called. Thus it is not possible to jump into the middle of an arbitrary code segment at a 

different level. Only official entry points may be used. The concepts of protection levels 

and call gates were pioneered in MULTICS, where they were viewed as protection rings.  

 

A typical use for this mechanism is suggested in Figure 2.7. At level O, we find the kernel 

of the operating system, which handles UO, memory management, and other critical 

matters. At level I , the system call handler is present. User programs may call procedures 

here to have system calls carried out, but only a specific, and protected list of procedures 

may be called. Level 2 contains library procedures, possibly shared among many running 

programs. User programs may call these procedures and read their data, but they may not 

modify them. Finally, user programs run at level 3, which has the least protection. 
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Figure 2.7: Protection on the Pentium 



Traps and interrupts use a mechanism similar to the call gates. They, too, reference 

descriptors, rather than absolute addresses, and these descriptors point to specific 

procedures to be executed. The Type field in Figure 2.3 distinguishes between code 

segments, data segments, and the various kinds of gates. 

 

2.3.2 Limit checking 

 

The limit field of a segment descriptor is used by the processor to prevent programs from 

addressing outside the segment. The processor's interpretation of the limit depends on the 

setting of the G (granularity) bit. For data segments, the processor's interpretation of the 

limit depends also on the E-bit (expansion-direction bit) and the B-bit (big bit). When 

G=0, the actual limit is the value of the 20-bit limit field as it appears in the descriptor. 

When G=1, the processor appends 12 low-order one-bits to the value in the limit field.  

 

The limit field of descriptors for descriptor tables is used by the processor to prevent 

programs from selecting a table entry outside the descriptor table. The limit of a descriptor 

table identifies the last valid byte of the last descriptor in the table. Since each descriptor is 

eight bytes long, the limit value is N * 8 - 1 for a table that can contain up to N descriptors. 

 

 



CHAPTER 3                    THE MINIX OPERATING SYSTEM  
 

3.1 Minix Architecture 

 

Let us begin our study of Minix by taking a bird's-eye view of the system. Minix is 

structured in four layers [11], with each layer performing a well-defined function. The four 

layers are illustrated in Figure 3.1. 

 

The bottom layer catches all interrupts and traps, does scheduling, and provides higher 

layers with a model of independent sequential processes that communicate using 

messages. The code in this layer has two major functions. The first is catching the traps 

and interrupts, saving and restoring registers, scheduling, and the general nuts and bolts of 

actually making the process abstraction provided to the higher layers work. The second is 

handling the mechanics of messages; checking for legal destinations, locating send and 

receive buffers in physical memory, and copying bytes from sender to receiver. That part 

of the layer dealing with the lowest level of interrupts handling is written in assembly 

language. The rest of the layer and all of the higher layers are written in C. 

 

Layer 2 contains the I/O processes, one per device type. To distinguish them from 

ordinary user processes, we will call them tasks, but the differences between tasks and 
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processes are minimal. In many systems the 110 tasks are called device drivers; we will 

use the terms "task" and "device driver" interchangeably. A task is needed for each device 

type, including disks, printers, terminals, network interfaces, and clocks. If other I/O 

devices are present, a task is needed for each one of those, too. One task, the system task, 

is a little different, since it does not correspond to any I/O device.  

 

All of the tasks in layer 2 and all the code in layer 1 are linked together into a single binary 

program called the kernel. Some of the tasks share common subroutines, but otherwise 

they are independent from one another, are scheduled independently, and communicate 

using messages. Intel processors starting with the 286 assign one of four levels of privilege 

to each process. Although the tasks and the kernel are compiled together, when the kernel 

and the, interrupt handlers are executing, they are accorded more privileges than the tasks. 

Thus the true kernel code can access any part of memory and any processor register--

essentially, the kernel can execute any instruction using data from anywhere in the system. 

Tasks cannot execute all machine level instructions, nor can they access all CPU registers 

or all parts of memory. They can, however access memory regions belonging to less-

privileged processes, in order to perform l/O for them. One task, the system task does not 

do I/O in the normal sense but exists in order to provide services, such as copying between 

different memory regions, for processes, which are not allowed to do such things for 

themselves. On machines, which do not provide different privilege levels, such as older 

Intel processors, these restrictions cannot be enforced, of course. 

 

Layer 3 contains processes that provide useful services to the user processes. These server 

processes run at a less privileged level than the kernel and tasks and cannot access VO 

ports directly. They also cannot access memory outside the segments allotted to them, the 

memory manager (MM) carries out all the Minix system calls that involve memory 

management, such as FORK, EXEC, and BRK. The file system (FS) carries out all the file 

system calls, such as READ, MOUNT, and CHDZR.  

 



3.2 Minix memory management 

 

Memory management in Minix is simple: neither paging nor swapping is used. The 

memory manager maintains a list of holes sorted in memory address order. When memory 

is needed, either due to a FORK or an EXEC system call, the hole list is searched using 

first fit for a hole that is big enough. Once a process has been placed in memory, it 

remains in exactly the same place until it terminates. It is never swapped out and also 

never moved to another place in memory. Nor does the allocated area ever grow or shrink. 

 

3.2.1 Memory management using linked lists 

 

This section describes the concept of memory management used by Minix. This memory 

management scheme maintains a linked list of allocated and free memory segments, where 

a segment is either a process or a hole between two processes. The memory of Figure 3.2 

(a) is represented in Figure 3.2 (b) as a linked list of segments. Each entry in the list 

specifies a hole (H) or process (P), the address at which it starts, the length, and a pointer 

to the next entry. 

 

Hole Process

H 7 2P 0 7 P 9 5 P 14 514 5

H 32 3 P 35 7 XH 19 6 P 25 7

(a)

(b)Starting Address
Length

A B C ED

Figure 3.2: Linked list representation of memory  
 

3.2.1.1 Memory allocation algorithms 

 



When the processes and holes are kept on a list sorted by address, several algorithms can 

be used to allocate memory for a newly created process. These algorithms are described 

below. 

First fit: The memory manager scans along the list of segments until it finds a hole that is 

big enough. The hole is then broken up into two pieces, one for the process and one for the 

unused memory, except in the unlikely case of an exact fit. First fit is a fast algorithm 

because it searches as little as possible. 

 

Next fit: A minor variation of first fit is next fit. It works the same way as first fit, except 

that it keeps track of where it is whenever it finds a suitable hole. The next time it is called 

to find a hole, it starts searching the list from the place where it left off last time instead of 

always at the beginning, as first fit does.  

 

Best fit: It searches the entire list and takes the smallest hole that is adequate. Rather than 

breaking up a big hole that might be needed later, best fit tries to find a hole that is close to 

the actual size needed.  

 
Worst fit: It always takes the largest available hole, so that the hole broken off will be big 

enough to be useful. Simulation has shown that worst fit is not a very good idea either. 

 

Among these algorithms, Minix uses first fit algorithm to allocate memory to processes. 

 

3.2.1.2 Memory freeing algorithm 

 

When a process terminates and is cleaned up, its data and stack memory are returned to the 

free list. If it uses common I and D, this releases all its memory, since such programs 

never have a separate allocation of memory for text. If the program uses separate I and D 

and a search of the process table reveals no other process is sharing the text, the text 

allocation will also be returned. Since with shared text the text and data regions are not 

necessarily contiguous, two regions of memory may be returned. For each region returned, 

if either or both of the region's neighbors are holes, they are merged, so adjacent holes 

never occur. In this way, the number, location, and sizes of the holes vary continuously 

during system operation, whenever all user processes have terminated, all of available 



memory is once again ready for allocation. This isn't necessarily a single hole, however, 

since physical memory may be interrupted by regions unusable by the operating system, as 

in IBM compatible systems where read-only memory (ROM) and memory reserved for I/0 

transfers separate usable memory below address 640K from memory above 1 M. 
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Figure 3.3: Four neighbor combination for terminating process X  
 

A terminating process normally has two neighbors (except when it is at the very top or 

bottom of memory). These may be either processes or holes leading to the four 

combinations of Figure 3.3. In Figure 3.3 (a) updating the list requires replacing a process 

by a hole. In Figure 3.3 (b) and Figure 3.3 (c), two entries are coalesced into one, and the 

list becomes one entry shorter. In Figure 3.3 (d), three entries are merged and two items 

are removed from the list. Since the process table slot for the terminating process will 

normally point to the list entry for the process itself, it may be more convenient to have the 

list as a double-linked list, rather than the single-linked list of Figure 3.3 (c). This structure 

makes it easier to entry and to see if a merge is possible. Find the previous entry and to see 

if a merge is possible.  

 
3.2.2 Memory layout of process 

 



Simple Minix processes use combined I and D space, in which all parts of the process 

(text, data, and stack) share a block of memory which is allocated and released as one 

block. Processes can also be compiled to use separate I and D space. For clarity, allocation 

of memory for the simpler model will be discussed first. Processes using separate I and D 

space can use memory more efficiently, but taking advantage of this feature complicates 

things. We will discuss the complications after the simple case has been outlined. 

 

Memory is allocated in Minix on two occasions. First, when a process forks, the amount of 

memory needed by the child is allocated. Second, when a process changes its memory 

image via the EXEC system call, the old image is returned to the free list as a hole, and 

memory is allocated for the new image. The new image may be in a part of memory 

different from the released memory. Its location will depend upon where an adequate hole 

is found. Memory is also released whenever a process terminates, either by exiting or by 

being killed by a signal. 
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Figure 3.4 shows both ways of allocating memory. In Figure 3.4 (a) we see two processes, 

A and B, in memory. If A forks, we get the situation of Figure 3.4 (b). The child is an 

exact copy of A. If the child now executes the file C, the memory looks like Figure 3.4 (c). 

The child's image is replaced by C. 

 

Note that the old memory for the child is released before the new memory for C is 

allocated, so that C can use the child's memory. In this way, a series of FORK and EXEC 

pairs (such as the shell setting up a pipeline) results in all the processes being adjacent, 

with no holes between them, as would have been the case had the new memory been 

allocated before the old memory had been released. 

 

When memory is allocated, either by the FORK or EXEC system calls, a certain amount 

of it is taken for the new process. In the former case, the amount taken is identical to what 

the parent process has. In the latter case, the memory manager takes the amount specified 

in the header of the file executed. Once this allocation has been made, under no conditions 

is the process ever allocated any more total memory. 

 

What has been said so far applies to programs that have been compiled with combined I 

and D space. Programs with separate 1 and D space take advantage of an enhanced mode 

of memory management called shared text. When such a process does a FORK, only the 

amount of memory needed for a copy of the new process' data and stack is allocated. Both 

the parent and the child share the executable code already in use by the parent. When such 

a process does an EXEC, a search is made of the process table to see if another process 

already is using the executable code needed. If one is found, new memory is allocated only 

for the data and stack, and the text already in memory is shared. Shared text complicates 

termination of a process. When a process terminates it always releases the memory 

occupied by its data and stack. But it only releases the memory occupied by its text 

segment after a search of the process table reveals that no other current process is sharing 

that memory. Thus a process may be allocated more memory when it starts than it releases 

when it terminates, if it loaded its own text when it started but that text is being shared by 

one or more other processes when the first process terminates. 

 

Figure 3.5 shows how a program is stored as a disk file and how this is transferred to the 

internal memory layout of a Minix process. The header on the disk file contains 



information about the sizes of the different parts of the image, as well as the total size. In 

the header of a program with common I and D space, a field specifies the total size of the 

text and data parts; these parts are copied directly to the memory image. The data part in 

the image is enlarged by the amount specified in the bss field in the header. This area is 

cleared to contain all zeroes and is used for uninitialized static data. The total amount of 

memory to be allocated is specified by the total field in the header. If, for example, a 

program has 4K of text, 2K of data plus bss, and 1K of stack, and the header says to 

allocate 40K total, the gap of unused memory between the data segment and the stack 

segment will be 33K. A program file on the disk may also contain a symbol table. 
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This is for use in debugging and is not copied into memory. If the programmer knows that 

the total memory needed for the combined growth of the data and stack segments for the 

file a.out is at most 10K, he can give the command   

 

chmem =10240 a.out 

 



which changes the header field so that upon EXEC the memory manager allocates a space 

10240 bytes more than the sum of the initial text and data segments. For the above 

example, a total of 16K will be allocated on all subsequent EXECS of the file. Of this 

amount, the topmost 1K will be used for the stack, and 9K will be in the gap, where it can 

be used by growth of the stack, the data area, or both. 

 

For a program using separate I and D space (indicated by a bit in the header that is set by 

the linker), the total field in the header applies to the combined data and stack space only. 

A program with 4K of text, 2K of data, 1 K of stack, and a total size of 44K will be 

allocated 68K (4K instruction space, 64K data space), leaving 61K for the data segment 

and stack to consume during execution. The boundary of the data segment can be moved 

only by the BRK system call. All BRK does is check to see if the new data segment bumps 

into the current stack pointer, and if not, notes the change in some internal tables. This is 

entirely internal to the memory originally allocated to the process; no additional memory 

is allocated by the operating system. If the new data segment bumps into the stack, the call 

fails. 

 

This strategy was chosen to make it possible to run Minix on an TBM PC with an 8088 

processor, which does not check for stack overflow in hardware. A user program can push 

as many words as it wants onto the stack without the operating system being aware of it. 

On computers with more sophisticated memory management hardware, the stack is 

allocated a certain amount of memory initially. If it attempts to grow beyond this amount, 

a trap to the operating system occurs, and the system allocates another piece of memory to 

the stack, if possible. This trap does not exist on the 8088, making it dangerous to have the 

stack adjacent to anything except a large chunk of unused memory, since the stack can 

grow quickly and without warning. Minix has been designed so that when it is 

implemented on a computer with better memory management, it is straightforward to 

change the Minix memory manager. 

 

3.3 Memory management data structures 

 

The memory manager has two key data structures: the process table and the hole table. 

We will now look at each of these in turn.  

 



3.3.1 The mproc table 

 

Different parts of Minix (file system, memory manager and kernel) needs to keep 

information about all the process present in the memory. These informations are kept in a 

data structure called process table. In Minix, each of these three pieces of the operating 

system has its own process table, containing just those fields that it needs. The entries 

correspond exactly, to keep things simple. Thus, slot k of the memory manager's table 

refers to the same process as slot k of the file system's table. When a process is created or 

destroyed, all three parts update their tables to reflect the new situation, in order to keep 

them synchronized. 

 

The memory manager's process table is called mproc; its definition is given below: 

 
EXTERN struct mproc { 
  struct mem_map mp_seg[NR_SEGS]; /* points to text, data, stack */ 
  char mp_exitstatus;   /* storage for status when process exits */ 
  char mp_sigstatus;   /* storage for signal # for killed procs */ 
  pid_t mp_pid;    /* process id */ 
  pid_t mp_procgrp;   /* pid of process group (used for signals) */ 
  pid_t mp_wpid;    /* pid this process is waiting for */ 
  int mp_parent;    /* index of parent process */ 
 
  /* Real and effective uids and gids. */ 
  uid_t mp_realuid;   /* process' real uid */ 
  uid_t mp_effuid;   /* process' effective uid */ 
  gid_t mp_realgid;   /* process' real gid */ 
  gid_t mp_effgid;   /* process' effective gid */ 
 
  /* File identification for sharing. */ 
  ino_t mp_ino;    /* inode number of file */ 
  dev_t mp_dev;    /* device number of file system */ 
  time_t mp_ctime;   /* inode changed time */ 
 
  /* Signal handling information. */ 
  sigset_t mp_ignore;   /* 1 means ignore the signal, 0 means don't */ 
  sigset_t mp_catch;   /* 1 means catch the signal, 0 means don't */ 
  sigset_t mp_sigmask;   /* signals to be blocked */ 
  sigset_t mp_sigmask2;   /* saved copy of mp_sigmask */ 
  sigset_t mp_sigpending;   /* signals being blocked */ 
  struct sigaction mp_sigact[_NSIG + 1]; /* as in sigaction(2) */ 
  vir_bytes mp_sigreturn;    /* address of C library __sigreturn function */ 
 
  unsigned mp_flags;   /* flag bits */ 
  vir_bytes mp_procargs;          /* ptr to proc's initial stack arguments */ 
} mproc[NR_PROCS]; 
 

It contains all the fields related to a process' memory allocation, as well as some additional 

items. The most important field is the array mp_seg. Its difinition is given below: 



 
typedef unsigned int vir_clicks;   /* virtual  addresses and lengths in clicks */ 
typedef unsigned int phys_clicks;  /* physical addresses and lengths in clicks */ 
 
struct mem_map { 
  vir_clicks mem_vir;   /* virtual address */ 
  phys_clicks mem_phys;   /* physical address */ 
  vir_clicks mem_len;   /* length */ 
}; 
 

Structure mp_seg has three entries, for the text, data, and stack segments, respectively. 

Each entry is a structure containing the virtual address, physical address, and length of the 

segment, all measured in clicks rather than in bytes. The size of a click is implementation 

dependent; for standard Minix it is 256 bytes. All segments must start on a click boundary 

and occupy an integral number of clicks. 
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Figure 3.6: (a) A process in memory. (b) Its memory representation for Non-
separate I and D space. (c) Its memory representation for separate I and D space  

 

The method used for recording memory allocation is shown in Figure 3.6. In this figure we 

have a process with 3K of text, 4K of data, a gap of 1K, and then a 2K stack, for a total 

memory allocation of IOK. In Figure 3.6(b) we see what the virtual, physical, and length 



fields for each of the three segments are, assuming that the process does not have separate 

I and D space. In this model, the text segment is always empty, and the data segment 

contains both text and data. When a process references virtual address 0, either to jump to 

it or to read it (i.e., as instruction space or as data space), physical address 0x32000 (in 

decimal, 200K) will be used. This address is at click 0x320. Note that the virtual address at 

which the stack begins depends initially on the total amount of memory allocated to the 

process. If the chmem command were used to modify the file header to provide a larger 

dynamic allocation area (bigger gap between data and stack segments), the next time the 

file was executed, the stack would start at a higher virtual address. If the stack grows 

longer by one click, the stack entry should change from the triple (0x20,0x340,0x8) to the 

triple (0xlF, 0x33F, 0x9). 
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Figure 3.7(c) shows the segment entries for the memory layout of Figure 3.7 (a) for 

separate I and D space. Here both the text and data segments are nonzero in length. The 

mp_seg array shown in Figure 3.7 (b) or (c) is primarily used to map virtual addresses onto 

physical memory addresses. Given a virtual address and the space to which it belongs, it is 



a simple matter to see whether the virtual address is legal or not (i.e., falls inside a 

segment), and if legal, what the corresponding physical address is. The kernel procedure 

umap performs this mapping for the I/O tasks and for copying to and from user space, for 

example. 

 

The contents of the data and stack areas belonging to a process may change as the process 

executes, but the text does not change. It is common for several processes to be executing 

copies of the same program, for instance several users may be executing the same shell. 

Memory efficiency is improved by using shared text. When EXEC is about to load a 

process, it opens the file. When EXEC is about to load a process, it opens the file holding 

the disk image of the program to be loaded and reads the file header. If the process uses 

separate I and D space, a search of the mp_dev, mp_no, and mp_ctime fields in each slot of 

When EXEC is about to load a process, it opens the file holding the disk image of the 

program to be loaded and reads the file header. mproc is made. These hold the device and 

i-node numbers and changed-status times of the images being executed by other processes. 

If a process already loaded is found to be executing the same program that is about to be 

loaded, there is no need to allocate memory for another copy of the text. Instead the 

mp_seg[q] portion of the new process' memory map is initialized to point to the same 

place where the text segment is already loaded, and only the data and stack portions are set 

up in a new memory allocation. This is shown in Figure 3.7. If the program uses combined 

I and D space or no match is found, memory is allocated as shown in Figure 3.6 and the 

text and data for the new process are copied in from the disk. 

 

In addition to the segment information, mproc also holds the process ID (pid) of the 

process itself and of its parent, the uids and gids (both real and effective), information 

about signals, and the exit status, if the process has already terminated but its parent has 

not yet done a WAIT for it. 

 

3.3.2 The hole table 

 

The other major memory manager table is the hole table, hole, defined below:  
 
#define NR_HOLES         128 /* max # entries in hole table */ 
 
PRIVATE struct hole { 



  phys_clicks h_base;  /* where does the hole begin? */ 
  phys_clicks h_len;  /* how big is the hole? */ 
  struct hole *h_next;  /* pointer to next entry on the list */ 
} hole[NR_HOLES]; 
 

The hole lists every hole in memory in order of increasing memory address. The gaps 

between the data and stack segments are not considered holes; they have already been 

allocated to processes. Consequently, they are not contained in the free hole list. Each hole 

list entry has three fields: the base address of the hole, in clicks; the length of the hole, in 

clicks; and a pointer to the next entry on the list. The list is singly linked, so it is easy to 

find the next hole starting from any given hole, but to find the previous hole, you have to 

search the entire list from the beginning until you come to the given hole. 

 

The reason for recording everything about segments and holes in clicks rather than bytes is 

simple: it is much more efficient, In 16-bit mode, 16-bit integers are used for recording 

memory addresses, so with 256-bit clicks, up to 16 MB of memory can be supported. In 

32-bit mode, address fields can refer to up to 2w bytes, which is 1024 gigabytes. 

 

The principal operations on the hole list are allocating a piece of memory of a given size 

and returning an existing allocation. To allocate memory, the hole list is searched, starting 

at the hole with the lowest address, until a hole that is large enough is found (first fit). The 

segment is then allocated by reducing the hole by the amount needed for the segment, or in 

the rare case of an exact fit, removing the hole from the list. This scheme is fast and 

simple but suffers from both a small amount of internal fragmentation (up to 255 bytes 

may be wasted in the final click, since an integral number of clicks is always taken) and 

external fragmentation. 

 

When a process terminates and is cleaned up, its data and stack memory are returned to the 

free list. If it uses common I and D, this releases all its memory, since such programs 

never have a separate allocation of memory for text. If the program uses separate I and D 

and a search of the process table reveals no other process is sharing the text, the text 

allocation will also be returned. Since with shared text the text and data regions are not 

necessarily contiguous, two regions of memory may be returned. For each region returned, 

if either or both of the region's neighbors are holes, they are merged, so adjacent holes 

never occur. In this way, the number, location, and sizes of the holes vary continuously 



during system operation, whenever all user processes have terminated, all of available 

memory is once again ready for allocation. This isn't necessarily a single hole, however, 

since physical memory may be interrupted by regions unusable by the operating system, as 

in IBM compatible systems where read-only memory (ROM) and memory reserved for 

I/O transfers separate usable memory below address 640K from memory above 1 M. 

 
3.4 System calls related to memory management 

 

In this section we will describe the system calls related to memory management. 

 

3.4.1 The FORK system call 

 

When processes are created or destroyed, memory must be allocated or deallocated. Also, 

the process table must be updated, including the parts held by the kernel and FS. The 

memory manager coordinates all this activity. Process creation is done by FORK, and 

carried out in the series of steps shown below. 

 

1. Check to see if process table b full. 

2. Try to allocate memory for the child's data and stack. 

3. Copy the parent's data and stack to the child's memory.  

4. Find a free process slot and copy parent's slot to it. 

5. Enter child's memory map in process table. 

6. Choose a pid for the child. 

7. Tell kernel and file system about child. 

8. Report child's memory map to kernel. 

9. Send reply messages to parent and child. 

 

It is difficult and inconvenient to stop a FORK call part way through, so the memory 

manager maintains a count at all times of the number of processes currently in existence in 

order to see easily if a process table slot is available. If the table is not full, an attempt is 

made to allocate memory for the child. If the program is one with separate I and D space, 

only enough memory for new data and stack allocations is requested. If this step also 

succeeds, the FORK is guaranteed to work. The newly allocated memory is then filled in, 



a process slot is located and filled in, a pid is chosen, and the other parts of the system are 

informed that a new process has been created. 

 

A process fully terminates when two events have both happened: (1) the process itself has 

exited (or has been killed by a signal), and (2) its parent has executed a WAIT system call 

to find out what happened. A process that has exited or has been killed, but whose parent 

has not (yet) done a WAIT for it, enters a kind of suspended animation, sometimes known 

as zombie state. It is prevented from being scheduled and has its alarm timer turned off (if 

it was on), but it is not removed from the process table. Its memory is freed. Zombie state 

is temporary and rarely lasts long. When the parent finally does the WAIT, the process 

table slot is freed, and the file system and kernel are informed. 

 

A problem arises if the parent of an exiting process is itself already dead. If no special 

action were taken, the exiting process would remain a zombie forever. Instead, the tables 

are changed to make it a child of the init process. When the system comes up, init reads 

the /etc/ttytab file to get a list of all terminals, and then forks off a login process to handle 

each one. It then blocks, waiting for processes to terminate. In this way, orphan zombies 

are cleaned up quickly. 

 

3.4.2 The EXEC system call 

 

When a command is typed at the terminal, the shell forks off a new process, which then 

executes the command requested. It would have been possible to have a single system call 

to do both FORK and EXEC at once, but they were provided as two distinct calls for a 

very good reason: to make it easy to implement I/0 redirection, When the shell forks, if 

standard input is redirected, the child closes standard input and then opens .the new 

standard input before executing the command. In this way the newly started process 

inherits the redirected standard input. Standard output is handled the same way. 

 

EXEC is the most complex system call in Minix. It must replace the current memory 

image with a new one, including 'setting up a new stack. It carries out its job in a series of 

steps, as shown below. 
 



1. Check permissions-is the file executable? 

2. Read the header to get the segment and total sizes. 

3. Fetch the arguments and environment from the caller. 

4. Allocate new memory end release unneeded old memory.  

5. Copy stack to new memory image. 

6. Copy data (and possibly text) segment to new memory image. 

7. Check for and handle setuid, setgid bits. 

8. Fix up process table entry. 

9. Tell kernel that process is now runnable. 

 

Each step consists, in turn, of yet smaller steps, some of which can fail. For example, there 

might be insufficient memory available. The order in which the tests are made has been 

carefully chosen to make sure the old memory image is not released until it is certain that 

the EXEC will succeed, to avoid the embarrassing situation of not being able to set up a 

new memory image, but not having the old one to go back to, either. Normally EXEC does 

not return, but if it fails, the calling process must get control again, with an error 

indication.  

 

There are a few steps in described above that deserve some more comment. First is the 

question of whether or not there is enough room or not. After determining how much 

memory is needed, which requires determining if the text memory of another process can 

be shared, the hole list is searched to check whether there is sufficient physical memory 

before freeing the old memory-if the old memory were freed first and there were 

insufficient memory, it would be hard to get the old image back again.  

 

However, this test is overly strict. It sometimes rejects EXEC calls that, in fact, could 

succeed. Suppose, for example, the process doing the EXEC call occupies 20K and any 

other process does not share its text. Further suppose that there is a 30K hole available and 

that the new image requires 50K. By testing before releasing, we will discover that only 

30K are available and reject the call. If we had released first, we might have succeeded, 

depending on whether or not the new 20K hole were adjacent to, and thus now merged 

with, the 30K hole. A more sophisticated implementation could handle this situation a 

little better. 

 



 

Another possible improvement would be to search for two holes, one for the text segment 

and one for the data segment, if the process to be EXECed uses separate I and D space. 

There is no need for the segments to be contiguous. 

 

A more subtle issue is whether the executable file fits in the virtual address space. The 

problem is that memory is allocated not in bytes, but in 256-byte clicks. Each click must 

belong to a single segment, and may not be, for example, half data, half stack, because the 

entire memory administration is in clicks. To see how this restriction can give trouble, 

note that the address space on 16-bit systems (8088 and 80286) is limited to 64K, which 

can be divided into 256 clicks. Suppose that a separate I and D space program has 40,000 

bytes of text, 32,770 bytes of data, and 32,760 bytes of stack. The data segment occupies 

129 clicks, of which the last one is only partially used; still, the whole click is part of the 

data segment. The stack segment is 128 clicks. Together they exceed 256 clicks, and thus 

cannot co-exist, even though the number of bytes needed fits in the virtual address space 

(barely). In theory this problem exists on all machines whose click size is larger than 1 

byte, but in practice it rarely occurs on Pentium class processors, since they permit large 

(4-GB) segments.  

 

Another important issue is how the initial stack is set up. The library call normally used to 

invoke EXEC with arguments and an environment is 

 

execve(name, argv, envp); 

 

where name is a pointer to the name of the file to be executed, argv is a pointer to an array 

of pointers, each one pointing to an argument, and envp is a pointer to an array of pointers, 

each one pointing to an environment string. 

 

It would be easy enough to implement EXEC by just putting the three pointers in the 

message to the memory manager and letting it fetch the file name and two arrays by itself. 

Then it would have to fetch each argument and each string one at a time. Doing it this way 

requires at least one message to the system task per argument or string and probably more, 

since the memory manager has no way of knowing how big each one is in advance. 

 



To avoid the overhead of multiple messages to read all these pieces, a completely different 

strategy has been chosen. The execve library procedure builds the entire initial stack inside 

itself and passes its base address and size to the memory manager. Building the new stack 

within the user space is highly efficient, because references to the arguments and strings 

are just local memory references, not references to a different address space. 

 

3.4.3 The BRK system call 

 

The library procedures brk and sbrk are used to adjust the upper bound of the data 

segment. The former takes an absolute size (in bytes) and calls BRK. The latter takes a 

positive or negative increment to the current size, computes the new data segment size, 

and then calls BRK. There is no actual SBRK system call. 

 

An interesting question is: "How does sbrk keep track of the current size, so it can 

compute the new size?" The answer is that a variable, brksite, always holds the current 

size so sbrk can find it. This variable is initialized to a compiler generated symbol giving 

the initial size of text plus data (non-separate 1 and D) or just data (separate I and D). The 

name, and, in fact, very existence of such a symbol is compiler dependent, and thus it will 

not be found defined in any header file in the source file directories. It is defined in the 

library, in the file brksi2e.s. Exactly where it will be found depends on the system, but it 

will be in the same directory as crts0.s. 

 

Carrying out BRK is easy for the memory manager. All that must be done is to check to 

see that everything still fits in the address space, adjust the tables, and tell the kernel. 



CHAPTER 4              DESIGN 

 
Standard Minix uses physical address space for processes and this address space is 

managed by memory manage (MM) server. To introduce linear address space in Minix its 

memory manager has to be modified. The major issue here is that modifications should not 

affect the basic framework of Minix.  

 

4.1 The basic mechanism: design issues and concepts 

 

Memory manager in Minix gets the physical address space from Kernel during system 

initialization phase. To support linear address space, changes could be made in the kernel 

so that instead of passing physical address space it passes the linear address space during 

system initialization. 

 

Minix uses click size of 256 and is used to represent memory segments. Since we are 

going to enable paging unit memory will be used in terms of page frames. As we know 

that page frame size for Intel 80x86 based architecture is 4096 bytes, so we have to 

increase the click size to 4096 [12].   

 

Once all this is done, memory manager is using linear address space for memory 

allocation and de-allocation to processes. The size of this address space is also worth 

considering. In this design its size is managed through a constant named 

VM_SIZE_CLICKS with a default size of 0x80000 (2G in clicks). The size is restricted to 

2G only, because this design doesn’t support any paging, which practically means that 

numbers of user processes are still very much dependent on the size of actual physical 

memory. 2G being much more then the physical memory present in target machines is 

more then appropriate for all practical design purposes. This linear address space starts 

from paging_base and has a range of VM_SIZE_CLICKS (2 GB), as shown in Figure 4.1.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Now memory manager will fulfill the requests of user processes for memory from this 

linear address space. A hole list is used in the same way as standard Minix uses for 

physical address space. This linear address space will be mapped on the page frames by 

the Kernel. 

 

In standard Minix memory manager allocates physical address space to the processes as 

the paging unit is disabled. Memory manager stores the memory map of each process in its 

process table. This memory map contains the information about the physical address space 

of text, data, and stack segment of the process. The kernel in its own process table also 

copies this memory map. But once paging unit is enabled, memory manager will allocate 

linear addresses to the processes.  

 

Now it is up to kernel to map this linear address space onto physical address space and fill 

up the page table entries accordingly. With Kernel in complete control of memory 

mapping it would be much more appropriate to relinquish duplication of memory maps 

from memory manager and letting it consult kernel each time a memory map for a process 

is needed by it. It results in memory manager process table not holding the memory map 

of processes. 

 

When allocating memory in terms of pages, it is possible to allocate memory to the user 

processes either in chunks of 4K or 4M sizes. Both have there own pros and cons. 4K 

chunk size being smaller in size results in much better allocation of physical memory with 

lesser internal fragmentation [13] if memory losses due to unused spaces are considered. 

Figure 4.1 : Virtual Addressing 
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The use of 4K chunk size is very good for practical purposes but is also much harder to 

manage. This may result in multiple user processes sharing a single page table for 

mapping. This has a greater chance to cause overlap of page entries during design and 

testing phases. This is why for purpose of this project; we have chosen 4M chunk sizes for 

allocation.  

 

When using a 4M page size, each user process will have individual page tables allocated 

without any fear of unintentional overlap during design phases. Also, with the increasing 

requirements of modern world programs and availability of larger and cheaper physical 

memories it is much more convenient to allocate and manage a single 4M chunk instead of 

4K chunks. Also, a Gap of 4M [14] is taken between contiguous processes in the linear 

address space. This gap is needed to avoid the overlap between processes’ address space 

as shown in figure 4.2 and hence provide protection. 
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Figure 4.2:  Linear address space allocation 

 

The memory to user processes is allocated by system calls Fork and Exec.  These system 

calls are implemented in the memory manager.  Now these system calls need to be slightly 

modified for handling linear address space. These system calls also uses kernel functions 

at the lowest level defined in system.c file for their implementation. We also have to 

change and add some functions for the linear address space management in system.c. 

These system calls are discussed below. Before explaining the modifications in the system 



calls of memory manager, a few ideas and routines related to the Page Global Directory 

and Page Tables are described.  

 

4.2 Handling page global directory and page tables  

 

To use linear address space in any operating system it is must to enable the paging unit of 

the underlying architecture. As we know that Intel architecture supports a two level paging 

model. At the fist level, a page global directory is used to point to the page tables of 

second level. A page table at second level actually contains the physical addresses of page 

frames.   

 

In this design, Minix kernel creates a page global directory and page tables to map linear 

address space from 0 to hi_mem (size of RAM) on the identical physical address space 

during system initialization phase. This identical mapping helps the kernel to access RAM 

directly. After setting the tables for two-level paging to map RAM, it enables the paging 

unit through an assembly routine vm_enable().  

 

Then it calculates the base of linear address space to be used by servers (MM and FS) and 

processes as follows.  

 
virt_base= (hi_mem + 0x1000000) & ~0x3fffff; 
paging_base= virt_base; 
 
 
This base will be on 4 MB boundary and approximately 16*1024*1024 clicks above 

hi_mem. This base will be stored in a variable paging_base. 

 

Now this linear address space starting from paging_base and having range of 

VM_SIZE_CLICKS (2 GB) is passed to memory manager for usage. 

 

For adding an entry in the Page global Directory, a routine named map_dir() is defined 

and similarly, for making entries in page tables another routine named map_page() is 

defined.  These two routines are explained below. 

 

 



4.2.1 map_dir( ) routine 

 

This routine puts an entry in the page directory. Prototype of the routine is given below. 

 
void map_dir(phys_bytes vm_addr, phys_bytes real_addr); 

 

The first parameter vm_addr is the 32 bit linear address and the second parameter 

real_addr denotes the physical address of the page frame containing a page table. The 

routine enters the information about this page table in the corresponding entry of the page 

directory. The information includes the physical address of the page frame containing page 

table, whether this page is present in main memory or not, the read/write bit indicating 

whether the page is write protected or not. Format of a page directory entry is given in 

Figure 4.3.     

 

map_dir( ) routine first prepares this page directory entry in a variable dir_ent with the 

help of  following statement. 

 
dir_ent= real_addr | VM_INMEM_N_PRESENT | VM_WRITE | VM_USER; 

 

The constants used in this statement are declared as follows: 

 
#define VM_PRESENT   1 
#define VM_WRITE   2 
#define VM_USER   4 
#define VM_INMEM   0x200 
#define VM_INMEM_N_PRESENT (VM_INMEM | VM_PRESENT) 
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Figure 4.3: Format of page table/ page directory entry 



Now the next step is to find the address of page directory entry and then put dir_ent at this 

place. Statement given below copies the address of the directory entry in a variable 

ent_addr. 

 
ent_addr= page_base+ vm_addr_to_dir(vm_addr)*4; 

 

Here vm_addr_to_dir( ) is a macro and its definition along with the definition a constant 

used by it is given below. 

 
#define VM_DIRSHIFT 22 /* 2log VM_DIRSIZE */ 
#define vm_addr_to_dir(a) ((a >> VM_DIRSHIFT) & 0x3ff) 
 

Finally map_dir( ) copies this entry in the page directory with the help of  an assembly 

language routine put_phys_dword( ). Prototype of this routine is given below.  

 
void put_phys_dword (phys_bytes phys_addr, u32_t dword);  

 

This routine writes a double word in the specified location in main memory. The first 

argument phys_addr is the physical address of the double word where data is to be written 

and dword is a double word to be written.  

 

4.2.2 map_page( ) routine 

 

The job of this routine puts an entry in a page table. Working of this routine is almost 

similar to map_dir( ) routine. Prototype of the routine is given below. 

 
void map_page(phys_bytes vm_addr, phys_bytes real_addr); 

 

The first parameter vm_addr is the 32 bit linear address and the second parameter 

real_addr denotes the physical address of the page frame. The routine enters the 

information about this page frame in the corresponding entry of the page table. The format 

of the page table entry is similar to page directory entry and is shown in the Figure 4.3. 

 

map_page( ) routine first prepares this page table entry a variable page_ent with the help 

of  following statement. 



 

page_ent= real_addr | VM_INMEM_N_PRESENT | VM_WRITE | VM_USER; 

 

The constants used in this statement are already defined in the previous section.  

 

Now the next step is to find the address of page table entry and then put page_ent at this 

place. The following statement does this. 
 

ent_addr= (dir_ent & VM_ADDRMASK) + vm_addr_to_page(vm_addr)*4; 

 

Here vm_addr_to_page( ) is a macro and its definition along with the definition a constant 

used by it is given below. 

 
#define VM_PAGESHIFT 12 /* 2log VM_PAGESIZE */ 
#define vm_addr_to_page(a) ((a >> VM_PAGESHIFT) & 0x3ff) 
 

Finally map_page( ) routine copies this entry in the page table with the help of  the 

assembly language routine put_phys_dword( ).  

 

4.3 Modifications in system calls of memory manager 

 

In this section we will discuss the required modifications in the system calls of the 

memory manager to support linear address space in Minix.  

 

4.3.1 The FORK System Call 

 

In standard Minix, FORK routine takes a suitable sized hole, if available, from hole list 

and then copy the image of parent process in this area. But now memory manager is using 

linear address space so FORK is getting linear address space for the process from memory 

manager and not the physical memory. So, it is not feasible to copy the image of parent 

process here.  

 

First this linear address space has to be mapped on physical address space (page frames) 

and then the image is copied in this address space. The physical address space is not 

exclusively allocated for mapping instead parent process’ page table is copied in the 



child’s page table and flags in the child’s page table are used to denote page sharing or 

copy on access. A page fault handler is also needed to finally load the pages in the 

physical memory when page fault occurs.  

 

This copying of tables is done by kernel through a routine vm_fork() defined in vm386.c. 

Actually, FORK routine in memory manager send a SYS_FORK message to kernel which 

is received by kernel through a routine sys_task() which then invoke do_fork() routine to 

process this message. Both these routines are defined in system.c file in kernel. The 

do_fork() routine then invokes vm_fork() routine.  

 

4.3.2 The EXIT system call 

 

This system call now has to unmapped the linear address space of the process also. This 

requires the clearing of corresponding entries from the page global directory and the page 

tables. This is done by the kernel through the modified routine do_xit()  defined in 

System.c.  The do_xit() does this by invoking a new routine vm_unmap() defined in 

vm386.c. 

 

4.3.3 The EXEC System Call 

 

EXEC system call is the most complex system call in Minix so it needs a careful handling. 

This system call now gets a linear address space from memory manager for the new 

process to be loaded. It needs the help of the kernel for mapping this linear address space 

on the physical memory.  

 

For this purpose it sends a message SYS_EXECMAP to the kernel. This message is 

received by the sys_task() routine defined in system.c file in kernel.  The sys_task() routine 

invokes a routine do_execmap() to process this message. The do_exexmap() routine check 

for the physical memory availability and if possible allocates the physical memory for the 

process.  After this, control returns back to EXEC routine in memory manager which then 

works as in Standard minix. 

 

 

 



4.3.4 The BRK system call 

 

This system call has to ask the kernel for adjusting the size of stack and data segment 

because now only kernel has the actual physical memory map of processes and not the 

memory manager. So, kernel adjust the size of stack and text segments through a new 

routine  do_adjmap(). Previously in standard Minix, memory manager itself used to adjust 

the segments’ sizes as it was having the physical map of processes and then it informed 

the kernel to update its copy of memory map. 



 

CHAPTER 5          IMPLEMENTATION DETAILS 

 
In the previous chapter we discussed the basic design and modifications in system calls to 

support linear address space in Minix. Now we will discuss in detail the major routines 

involved in that design and also the modified system calls of memory manager.  

 

5.1 Routines related to linear address space allocation in memory manager 

 

This section is concerned with allocating and freeing arbitrary-size blocks of physical 

memory on behalf of the FORK and EXEC system calls.  The key data structure used is 

the hole table, which maintains a list of holes in memory. It is kept sorted in order of 

increasing memory address. The addresses it contains refer to linear address space starting 

at absolute address paging_base (i.e., they are not relative to the start of memory 

manager).  During system initialization, that part of memory containing the interrupt 

vectors, kernel, and memory manager are "allocated" to mark them as not available and to 

remove them from the hole list. 

  

The data structure hole table is defined as follows. 
  

PRIVATE struct hole { 
  phys_clicks h_base;  /* where does the hole begin? */ 
  phys_clicks h_len;  /* how big is the hole? */ 
  struct hole *h_next;  /* pointer to next entry on the list */ 
} hole[NR_HOLES]; 
 

Where NR_HOLES is defined as: 
 

#define NR_HOLES         128 /* max # entries in hole table */ 

 

The routines involved to manage this linear address space are given below. 

 

5.1.1 The alloc_mem( ) routine 

 

This routine allocates a block of memory from the free list using first fit. Its prototype is 

given below. 



 
phys_clicks alloc_mem(clicks) 
phys_clicks clicks;   
 

The block consists of a sequence of contiguous bytes, whose length in clicks is given by 

'clicks'.  A pointer to the block is returned.  The block is always on a click boundary.  This 

procedure is called when memory is needed for FORK or EXEC. 

 

On Intel architecture with virtual memory enabled, memory is allocated in chunks of 4M 

as already explained in the previous chapter. So, click is padded with extra bytes to make 

it a multiple of 4M as follows. 

 
clicks= (clicks + MEM_PAD_CLICKS - 1) & ~(MEM_PAD_CLICKS - 1); 

 

MEM_PAD_CLICKS is defined as follows. 

 
#define MEM_PAD_CLICKS  (0x400000 >> CLICK_SHIFT) 

 

5.1.2 The free_mem( ) routine 

 

This routine returns a block of free memory to the hole list.  The prototype is as follows. 

 
void free_mem(base, clicks) 
phys_clicks base;   /* base address of block to free */ 
phys_clicks clicks;  /* number of clicks to free */ 
 

The parameters tell where the block starts in physical memory and how big it is.  The 

block is added to the hole list.  If it is contiguous with an existing hole on either end, it is 

merged with the hole or holes. 

 

On Intel architecture with virtual memory enabled, memory should be allocated and freed 

at directory boundaries and this has been considered here through the following code.  

 
clicks= (clicks + MEM_PAD_CLICKS - 1) & ~(MEM_PAD_CLICKS - 1); 
  if (base & (MEM_PAD_CLICKS-1)) 
  { 
 panic("Got non aligned free: ", base); 
  } 



 

5.1.3 The max_hole( ) routine 

 

This routine scans the hole list and return the largest hole. The prototype is given below. 

 
phys_clicks max_hole(); 

 

5.1.4 The mem_init( ) routine 

 

This routine initializes hole lists. The prototype is given below. 

  
void mem_init(); 
 

There are two lists: 'hole_head' points to a linked list of all the holes (unused memory) in 

the system; 'free_slots' points to a linked list of table entries that are not in use.  Initially, 

the former list has one entry for each chunk of physical memory, and the second list links 

together the remaining table slots.  As memory becomes more fragmented in the course of 

time (i.e., the initial big holes break up into smaller holes), new table slots are needed to 

represent them.  These slots are taken from the list headed by 'free_slots'. 

 

5.1.5 The mem_left( ) routine 

 

This routine determines how much memory is left.  This is called just after initialization to 

find the original amount. The prototype is given below. 

 
phys_clicks mem_left(); 
 

 

5.2 Kernel routines to support linear address space in system calls of memory 

manager 

 

To support linear address space in system calls of memory manage some new kernel 

routines are required as explained in the previous chapter. In this section those routines are 

elaborated. 

 



5.2.1 The do_adjmap( ) routine 

 

This routine changes the memory map for memory manage. This procedure is called when 

memory map is needed to be adjusted for BRK. The Prototype of this routine is as follows. 

 
int do_adjmap(m_ptr) 
message *m_ptr;   

 

The parameter m_ptr is a pointer to request message. Message parameters are given below. 

 

1. Where the map has to be stored. 

2. Process whose map is to be loaded.  

3. New size of the data segment.  

4. Location of the stack pointer.  

5. Virtual address of map inside caller (memory manage).  

 

These message parameters are extracted using the following code. 

  
caller = m_ptr->m_source; 
k = m_ptr->PROC1; 
data_size= m_ptr->m1_i2; 
new_sp= m_ptr->m1_i3; 
map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
 

Then the change in data segment is calculated as follows. 

 
rp = proc_addr(k);  /* ptr to entry of the map */ 
if (data_size>rp->p_map[D].mem_len) 
   data_change= data_size - rp->p_map[D].mem_len; 
  else 
   data_change= 0; 
  

Now the change in stack segment is calculated as follows. 

 
if (stack_click<rp->p_map[S].mem_vir) 
   stack_change= rp->p_map[S].mem_vir - stack_click; 
  else 
 stack_change= 0; 
 



After that availability of physical memory is checked as segments are defined in terms of 

linear address space and that space has to be mapped on physical memory.  
 
  if (vm_not_alloc < data_change + stack_change) 
   return ENOMEM; 
 

In the above lines, vm_mot_alloc represents the size of physical memory available at that 

particular instant. This variable is constantly updated by the kernel to reflect the changes 

in the size of available physical memory. This variable stores the size in terms of clicks. 

 

After that it checks the gaps as shown below. 

 
  if (rp->p_map[D].mem_vir + rp->p_map[D].mem_len + data_change + 
   STACK_SAFETY_CLICKS + stack_change > rp->p_map[S].mem_vir) 
   return ENOMEM; 
 

After checking the gaps, memory map is changed and available physical memory is 

updated accordingly as shown below. 

 
rp->p_map[D].mem_len += data_change; 
rp->p_map[S].mem_vir -= stack_change; 
rp->p_map[S].mem_len += stack_change; 
   
vm_not_alloc -= data_change + stack_change; 
 

Finally updated memory map is reported back to memory manage by invoking a standard 

minix routine do_getmap() and OK is returned. 

 

5.2.2 The do_execmap( ) routine 

 

This routine removes old map and fetch new memory map from memory manage. This 

procedure is called when physical address space is needed for loading new process by 

EXEC. The Prototype of this routine is as follows. 

 
int do_execmap(m_ptr) 
message *m_ptr; 

 

The parameter m_ptr is a pointer to request message. Message parameters are given below. 

 



1. Whose space has the new map (usually memory manage). 

2. Process whose map is to be loaded. 

3. Value of flags before modification. 

4. Virtual address of map inside caller (memory manage).  

 

These message parameters are extracted using the following code. 

  
  caller = m_ptr->m_source; 
  k = m_ptr->PROC1; 
  data_size= m_ptr->m1_i2; 
  new_sp= m_ptr->m1_i3; 
  map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
 

Then it copies new memory map from memory manage using the following code. 

 
  rp = proc_addr(k);  /* ptr to entry of user getting new map */ 
  rsrc = proc_addr(caller);  /* ptr to MM's proc entry */ 
   
  vn = NR_SEGS * sizeof(struct mem_map); 
  pn = vn; 
  vmm = (vir_bytes) map_ptr; /* careful about sign extension */ 
  vsys = (vir_bytes) new_map; /* again, careful about sign extension */ 
  if ( (src_phys = umap(rsrc, D, vmm, vn)) == 0) 
 panic("bad call to sys_newmap (src)", NO_NUM); 
  if ( (dst_phys = umap(proc_ptr, D, vsys, vn)) == 0) 
 panic("bad call to sys_newmap (dst)", NO_NUM); 
  phys_copy(src_phys, dst_phys, pn); 
 

In the above lines of code, proc_ptr points to kernel’s proc entry in the process table of 

kernel. After execution of the phys_copy(), new_map contains the memory map from 

memory manage. 

 

After that availability of physical memory is checked as segments are defined in terms of 

linear address space and that space has to be mapped on physical memory.  

 
  if (vm_not_alloc < new_map[T].mem_len + new_map[D].mem_len + 
   new_map[S].mem_len) 
   return ENOMEM; 
 

Then old memory is released by invoking a routine do_unmap(). This routine is explained 

in the next section. 

 



The new map is copied in the entry of user getting the map in kernel’s process table as 

follows. 

 
for (i= 0; i<NR_SEGS; i++) 
   rp->p_map[i]= new_map[i]; 
 
 

After that base address and the top address of map is calculated as follow. 

 
  base_addr= rp->p_map[T].mem_phys << CLICK_SHIFT; 
  top_addr= (rp->p_map[S].mem_phys+rp->p_map[S].mem_vir+ 
     rp->p_map[S].mem_len) << CLICK_SHIFT; 
 

This linear address space starting from base_address upto top_addr is checked for un-

mapping by invoking a routine vm_check_umapped( ). The vm_check_unmapped routine 

is explained in the coming sections. If this address space is un-mapped then it can be 

safely used for the user process invoking the EXEC system call. 

 

Available Physical Memory size is decremented to allocate the physical address space to 

the user process. 

  
 vm_not_alloc -= rp->p_map[T].mem_len + rp->p_map[D].mem_len + 
   rp->p_map[S].mem_len + ((top_addr-base_addr + VM_DIRSIZE-1) >> 
   VM_DIRSHIFT); 
 

Finally ldt entries of the user process’ slot in the kernel’s process table are updated for the 

new linear address space by invoking the alloc_segments() routine defined in standard 

Minix, process is marked ready and OK is returned as shown below. 

 
  alloc_segments(rp); 
  old_flags = rp->p_flags; /* save the previous value of the flags */ 
  rp->p_flags &= ~NO_MAP; 
  if (old_flags != 0 && rp->p_flags == 0) lock_ready(rp); 
 
  return(OK); 
 

5.2.3 The do_unmap( ) routine 

 

This routine removes memory map of a process. This is invoked by do_execmap() as 

explained above. The Prototype of this routine is as follows. 



 
PRIVATE int do_unmap(m_ptr) 
message *m_ptr; 

 

The message parameter is extracted as shown below. k is the process whose map is to be 

freed i.e. the linear address space corresponding to the memory map of this process is to 

be unmapped.  

 
  k = m_ptr->PROC1; 
  if (!isokprocn(k)) return(E_BAD_PROC); 
  rp = proc_addr(k);  /* ptr to entry of user getting new map */ 
 

After that base address and the size of memory map i.e. linear address space is calculated 

as follow. 

 
  base= rp->p_map[T].mem_phys << CLICK_SHIFT; 
  top= (rp->p_map[S].mem_phys + rp->p_map[T].mem_vir + 
     rp->p_map[S].mem_len) << CLICK_SHIFT; 
  if (top < base) 
   panic("Stack not above text", NO_NUM); 
  size= top-base; 
 

To un-map this linear address space a routine named vm_unmap() is invoked as shown 

below. This routine is explained in the next section.  

 
  vm_unmap(base, size, rp->p_map[T].mem_len + rp->p_map[D].mem_len + 
   rp->p_map[S].mem_len); 
 

Finally OK is returned. 

 

5.2.4 The vm_unmap( ) routine 

 

This routine removes physical address map of a process corresponding to linear address 

map passed to it as parameter. To do this it clears the entries from the page global 

directory and page tables corresponding to the linear address space passed to it. This is 

invoked by do_unmap() as explained above. The Prototype of this routine is as follows. 

 
void vm_unmap(addr, vm_size, alloc_size) 
phys_bytes addr; 
phys_bytes vm_size; 
phys_clicks alloc_size; 



 

addr is the base address of the linear address space and vm_size is the size of linear 

address space. alloc_size is the size of linear address space actually mapped on physical 

address space. 

 

Each time an entry from page global directory is taken starting from addr up to top = addr 

+ vm_size. If it is unmapped next entry is taken as shown below. 

 
top= addr+vm_size; 
 while(addr<top) 
 { 
  dir_ent_addr= page_base+vm_addr_to_dir(addr)*4; 
  dir_ent= get_phys_dword(dir_ent_addr); 
  if (!dir_ent) /* not mapped */ 
  { 
   addr += VM_DIRSIZE; 
   continue; 
  } 
  

The entry in the page global directory is cleared using the following code. 

put_phys_dword( ) is an assembly routine which put the double word (second parameter) 

on the given physical address (first parameter). 

 
put_phys_dword(dir_ent_addr, (u32_t)0); 
 

After that,  page table address is extracted from the directory entry as shown below.  

 
page_ent_addr= dir_ent & VM_ADDRMASK; 
 

Then each entry of this page table is read and the page frame on which it is mapped is 

freed by a routine rlmem_free(). This is shown below. 

 
for (i= 0; i<1024; i++, page_ent_addr += 4) 
  { 
   page_ent= get_phys_dword(page_ent_addr); 
   if (!page_ent) 
    continue; 
   if (!(page_ent & VM_INMEM)) 
    panic("Page not in memory", NO_NUM); 
   link_count= rlmem_free(page_ent & VM_ADDRMASK); 
   if (link_count && !(page_ent & VM_WRITE)) 
   /* Compansating for read only pages */ 
    vm_not_alloc--; 
  } 



 

After clearing the page table, the page frame containing the above page table is also freed 

using rlmem_free( ) and addr is changed to point to the next entry in the page global 

directory as given below. 

 
rlmem_free(dir_ent & VM_ADDRMASK); 
  addr += VM_DIRSIZE; 
 }    /* end of while loop */ 
 

 

Finally after un-mapping the linear address space, size of available physical memory is 

updated as shown below.  

vm_not_alloc += alloc_size + ((vm_size+VM_DIRSIZE-1) >> VM_DIRSHIFT); 

 

5.2.5 The vm_check_unmapped( ) routine 

 

This routine verifies whether the linear address space deduced by the provided arguments 

is unmapped or not. If not, the system gets terminated. The Prototype of this routine is as 

follows. 

 
void vm_check_unmapped(base, top) 
phys_bytes base; 
phys_bytes top; 
 

The parameter base is the base address of the linear address space and the parameter top is 

last address in the linear address space. 

 

First of all it is checked that base is aligned on 4M boundary if not system terminates. 

 
assert(!(base & VM_DIRMASK)); /* aligned on a 4M boundary */ 
 

Then all entries corresponding to the linear address space in the page global directory is 

checked for un-mapping as shown below. 

 
for (ptr= base; ptr<top; ptr += VM_DIRSIZE) 
 { 
  dir_ent_addr= page_base+vm_addr_to_dir(ptr)*4; 
  dir_ent= get_phys_dword(dir_ent_addr); 
if (dir_ent) 



 { 
  printW(); printf("check_unmapped failed, base= 0x%x, top= 0x%x, ptr= 0x%x, dir_ent_addr= 
0x%x, dir_ent= 0x%x\n", 
   base, top, ptr, dir_ent_addr, dir_ent); 
 } 
assert (!dir_ent); /* not mapped */ 
 } 
 

5.2.6 The vm_fork() routine 

 

This routine actually forks off a process at kernel level by mapping the linear address 

space of child process on the physical address space of parent. To do this, it copies the 

page global directory entries and page table entries of parent process in the respective slots 

of page global directory and page tables corresponding to the linear address space of the 

child process. The Prototype of this routine is as follows. 

 
void vm_fork(parent, c_base_clicks) 
struct proc *parent; 
phys_clicks c_base_clicks; 
 

The parameter parent is a pointer to the entry of parent process in the kernel’s process 

table and the parameter c_base_clicks is the base address of linear address space in terms 

of clicks. 

 

The linear address space of parent process is deduced from the process table entry as 

shown below. 

 
p_base_clicks= parent->p_map[T].mem_phys; 
 p_base= p_base_clicks << CLICK_SHIFT; 
 p_data_base= (parent->p_map[D].mem_phys) << CLICK_SHIFT; 
 p_top_clicks= parent->p_map[S].mem_phys + parent->p_map[S].mem_vir + 
      parent->p_map[S].mem_len; 
 

Parent’s base is checked for alignment on 4M boundary. Then it is verified that parent’s 

address space lies in the linear address space for processes.  

  
assert (!(p_base & VM_DIRMASK)); 
assert (p_base >= paging_base); 
 

Then the number of page global directory entries for parent is calculated as shown below. 

 



dirs= ((p_top_clicks-p_base_clicks-1) >> (VM_DIRSHIFT-CLICK_SHIFT))+1; 
 

Child’s base is checked for alignment on 4M boundary. Then it is verified that child’s 

address space lies in the linear address space for processes.  

 
c_base= c_base_clicks << CLICK_SHIFT; 
assert (!(c_base & VM_DIRMASK)); 
assert (c_base >= paging_base); 
 

After that, the address of the first entry in the page global directory for the parent and 

chilld is calculated as follows. 

 
dir_ent_addr= page_base + vm_addr_to_dir(p_base)*4; 
c_dir_ent_addr= page_base + vm_addr_to_dir(c_base)*4; 
 

Entries from page global directory for parent are taken starting from p_dir_ent_addr one 

by one in a loop.  Then the entry is checked whether it is blank. If it blank the next entry is 

taken. If an entry exists its flags are checked for validity. Then the   Page table address for 

this entry is calculated and stored in p_page_ent_addr. 

  
for (i= 0; i<dirs; i++, p_dir_ent_addr += 4, c_dir_ent_addr += 4)        /* start of page global directory loop */ 
 { 
   
  p_dir_ent= get_phys_dword(p_dir_ent_addr); 
  if (!p_dir_ent) 
   { 
    continue; 
   } 
  assert ((p_dir_ent & VM_INMEM_N_PRESENT) == VM_INMEM_N_PRESENT); 
  p_page_ent_addr= p_dir_ent & VM_ADDRMASK; 
 

Now entries from this page table for parent are read starting from p_page_ent_addr one by 

one in a loop.  Then the entry is checked whether it is blank. If it blank the next entry is 

taken. If an entry exists its flags are checked for validity.  

 
for (j= 0; j<1024; j++, p_page_ent_addr += 4) /* Start of page table loop */ 
  { 
   p_page_ent= get_phys_dword(p_page_ent_addr); 
   if (!p_page_ent) 
   { 
    continue; 
   } 
   assert(p_page_ent & VM_INMEM); 
 



Now the flags of the page table entry are checked and changed based on the type of page 

i.e. whether it is a text or data page. 

 
if ((p_page_ent & VM_IM_RW_PRES) == VM_IM_RW_PRES) 

       /* ordinary page */ 
   { 
    vir_addr= p_base + (i << VM_DIRSHIFT) + 
     (j<<VM_PAGESHIFT); 
    if (!traced && vir_addr<p_data_base) 
     /* Text page */ 
    { 
     p_page_ent &= ~VM_WRITE; 
     vm_not_alloc++; 
    } 
    else /* Data page */ 
    { 
     p_page_ent &= ~VM_PRESENT; 
    } 
    page_no= p_page_ent >> VM_PAGESHIFT; 
    assert(get_phys_byte(rlmem_table_base+page_no) == 1); 
    put_phys_byte(rlmem_table_base+page_no, 2); 
    put_phys_dword(p_page_ent_addr, p_page_ent); 
    continue; 
   } 
 

In the above lines, page frames status is also updated by using a pointer rlmem_table_base 

to the page frame status table.  

 

Then it is checked if page is copy on access or read only.  It can't be both and INMEM has 

already been checked. 

 
assert(p_page_ent & (VM_WRITE | VM_PRESENT)); 
 
   if (p_page_ent & VM_PRESENT) /* Read only page */ 
   { 
    vm_not_alloc++; 
   } 
 

As we are sharing the page frames of parent with child, so link count of page frames is 

increased as shown below. 

 
   page_no= p_page_ent >> VM_PAGESHIFT; 
   linkC= get_phys_byte(rlmem_table_base+page_no); 
   put_phys_byte(rlmem_table_base+page_no, linkC+1); 
  } /* End of page table loop */ 
 



After that a page frame is allocated to store the page table of the child and thenthe page 

table of the parent is copied in the newly created page table for child as shown below. 

 
c_page_ent_addr= rlmem_getpage(); 
phys_copy(p_dir_ent & VM_ADDRMASK, c_page_ent_addr, 
   VM_PAGESIZE); 
 

 

 

Finally, the entry in the page global directory is done to map the page table created above. 

This entry is for the child as shown below. 

 
map_dir(c_base+ (i<<VM_DIRSHIFT), c_page_ent_addr); 
 } /* End of page global directory loop */ 



CHAPTER 6               CONCLUSIONS AND FUTURE WORK 

 
6.1 Conclusions 
 

In this dissertation a design is proposed for linear address space allocation for Minix 

operating system. During the course of this project, emphasis is given on the memory 

manager for achieving this enhancement in the Minix operating system. Memory manager 

of standard Minix has been studied thoroughly and this design is proposed to support 

virtual addressing without affecting the primary design of standard Minix.  

 

This proposed design aims to present a Minix operating system in which servers and user 

processes use the linear address space instead of physical address space as before. The 

physical memory allocated to these processes in this implementation of the proposed 

design will always be in multiples of click (page) size as already explained. 

 

This dissertation presents a design using Intel based 80x86 family of processors in mind. 

This includes earlier 80386 (popularly known as 386), 80486 (popularly known as 486) 

and Pentium TM series of processors, which are almost omnipresent in today’s computing 

world. The target machines chosen for this project are Pentium II and Pentium III based 

machines with 64 or 128 MB of physical memory (RAM) available. 

 

This design is also tested for multi boot operation with Microsoft Windows 98TM and Red 

Hat Linux 9.0TM distributions on a target machine with hardware configuration as 

described above. 

 

Due to intertwined nature of operating system, a few changes which are not directly 

related with linear space management are also needed in this project. For the purpose of 

not obfuscating the primary design proposed in this dissertation, these changes are not 

included here. The focus of this dissertation is kept on presenting the proposed design for 

linear address space management for Minix only. The design proposed in this dissertation 

is also successfully implemented on the target machines described above. 

 

 



6.2 Future work 

 

As already elaborated earlier the design presented in this dissertation focuses on Intel 

80x86 architecture only. With a few minor changes, this design could be further extended 

or implemented as standalone on other architectures too. Some of the key changes should 

be kept in mind. 

 

Contrary to Intel 80x86, some other architectures like Motorola 68000TM have instructions 

with varying numbers of arguments. For example, the move instruction in this architecture 

has two arguments, source and target of the move. So, it can cause faults for three different 

reasons, i.e., the instruction itself and for either of the two operands (source or target). 

 

The fault handler has to determine which reference faulted. On some computers, the 

operating system has to figure that out by interpreting the instruction and in effect 

simulating the hardware. Motorola 68000 made it easier for the operating system by 

updating the program counter as it goes. So, the program counter will be pointing at the 

word immediate following the part of the instruction that caused the fault. On the other 

hand, this makes it harder to restart the instruction. 

 

Another important thing to remember is that some computers have addressing modes that 

automatically increment or decrement index registers as a side effect, making it easy to 

simulate the effect of C statement *p++ = *q++; in a single step. 

 

Unfortunately, if an instruction faults part-way through, it may be difficult to figure out 

which registers have been modified so that they can be restored to their original state. 

Some computers also have instructions such as move characters,' which work on variable-

length data fields, updating a pointer or count register. If an operand crosses a page 

boundary, the instruction may fault part-way through, leaving a pointer or counter register 

modified.  

 

Another possible extension of this design is to propose a design to support virtual 

addressing with paging. This design has already created the framework necessary for this. 



To implement paging, the design for a pager should be proposed. This pager could swap 

pages between physical memory and swap area. 

 

Also, the design issues like working set model, thrashing and global versus local allocation 

policies are needed to be considered for a paging system. To support swap partition, some 

changes in the Minix file system would also be required. A page replacement policy will 

need to be required for the implementation of pager. These changes will extend Minix to 

support complete virtual memory management scheme like virtual addressing with paging.    
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SOURCE CODE OF SELECTED FILES 
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vm386.h 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
#ifndef VM386_H 
#define VM386_H 
 
#define VM_PRESENT 1 
#define VM_WRITE 2 
#define VM_USER  4 
#define VM_INMEM 0x200 
#define VM_INMEM_N_PRESENT (VM_INMEM | VM_PRESENT) 
#define VM_IM_RW_PRES (VM_INMEM | VM_WRITE | VM_PRESENT) 
 
#define VM_ADDRMASK 0xfffff000 
#define VM_DIRMASK 0x003fffff 
#define VM_PAGEMASK 0x00000fff 
 
#define VM_PAGESIZE 0x1000 
#define VM_DIRSIZE 0x400000 
#define VM_PAGESHIFT 12 /* 2log VM_PAGESIZE */ 
#define VM_DIRSHIFT 22 /* 2log VM_DIRSIZE */ 
 
#define vm_addr_to_page(a) ((a >> VM_PAGESHIFT) & 0x3ff) 
#define vm_addr_to_dir(a) ((a >> VM_DIRSHIFT) & 0x3ff) 
 
#endif /* VM386_H */ 
 



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

alloc.c 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
/* This file is concerned with allocating and freeing arbitrary-size blocks of 
 * physical memory on behalf of the FORK and EXEC system calls.  The key data 
 * structure used is the hole table, which maintains a list of holes in memory. 
 * It is kept sorted in order of increasing memory address. The addresses 
 * it contains refer to physical memory, starting at absolute address 0 
 * (i.e., they are not relative to the start of MM).  During system 
 * initialization, that part of memory containing the interrupt vectors, 
 * kernel, and MM are "allocated" to mark them as not available and to 
 * remove them from the hole list. 
 * 
 * The entry points into this file are: 
 *   alloc_mem: allocate a given sized chunk of memory 
 *   free_mem: release a previously allocated chunk of memory 
 *   mem_init: initialize the tables when MM start up 
 *   max_hole: returns the largest hole currently available 
 *   mem_left: returns the sum of the sizes of all current holes 
 */ 
 
#if _VMD_EXT 
/* Enable misc. extensions to alloc.c */ 
#ifndef VMDEXT_MM_ALLOC 
#define VMDEXT_MM_ALLOC 1 
#endif 
#endif /* _VMD_EXT */ 
 
#include "mm.h" 
#include "assert.h" 
INIT_ASSERT 
 
#define NR_HOLES         128 /* max # entries in hole table */ 
#define NIL_HOLE (struct hole *) 0 
 
PRIVATE struct hole { 
  phys_clicks h_base;  /* where does the hole begin? */ 
  phys_clicks h_len;  /* how big is the hole? */ 
  struct hole *h_next;  /* pointer to next entry on the list */ 
} hole[NR_HOLES]; 
 
 
PRIVATE struct hole *hole_head; /* pointer to first hole */ 
PRIVATE struct hole *free_slots; /* ptr to list of unused table slots */ 
 
FORWARD _PROTOTYPE( void del_slot, (struct hole *prev_ptr, struct hole *hp) ); 
FORWARD _PROTOTYPE( void merge, (struct hole *hp)       ); 
 
/*===========================================================================* 
 *    alloc_mem                   * 
 *===========================================================================*/ 
PUBLIC phys_clicks alloc_mem(clicks) 
phys_clicks clicks;  /* amount of memory requested */ 
{ 
/* Allocate a block of memory from the free list using first fit. The block 
 * consists of a sequence of contiguous bytes, whose length in clicks is 
 * given by 'clicks'.  A pointer to the block is returned.  The block is 
 * always on a click boundary.  This procedure is called when memory is 
 * needed for FORK or EXEC. 
 */ 
 
  register struct hole *hp, *prev_ptr; 
  phys_clicks old_base; 
 
#if (CHIP == INTEL) && VIRT_MEM 
  /* On a 386 with virtual memory enabled, memory is allocated in chunks of 
   * 4M. 



   */ 
  clicks= (clicks + MEM_PAD_CLICKS - 1) & ~(MEM_PAD_CLICKS - 1); 
#endif /* CHIP == INTEL && VIRT_MEM */ 
 
  hp = hole_head; 
#if VMDEXT_MM_ALLOC 
  /* Passing uninitialized variables to a function (del_slot) is bad style. */ 
  prev_ptr= NULL; 
#endif /* VMDEXT_MM_ALLOC */ 
  while (hp != NIL_HOLE) { 
 if (hp->h_len >= clicks) { 
  /* We found a hole that is big enough.  Use it. */ 
  old_base = hp->h_base; /* remember where it started */ 
  hp->h_base += clicks; /* bite a piece off */ 
  hp->h_len -= clicks; /* ditto */ 
 
  /* If hole is only partly used, reduce size and return. */ 
#if VMDEXT_MM_ALLOC 
  if (hp->h_len == 0) 
  { 
   /* The entire hole has been used up.  Manipulate free  
    * list. */ 
   del_slot(prev_ptr, hp); 
  } 
#if (CHIP == INTEL) && VIRT_MEM 
  if (old_base & (MEM_PAD_CLICKS-1)) 
  { 
   panic("Got non aligned memory: ", old_base); 
  /* on a 386 vm system memeory should be allocated at directory 
   * bounderies */ 
   } 
#endif /* CHIP == INTEL && VIRT_MEM */ 
#else /* !VMDEXT_MM_ALLOC */ 
  if (hp->h_len != 0) return(old_base); 
 
  /* The entire hole has been used up.  Manipulate free list. */ 
  del_slot(prev_ptr, hp); 
#endif /* VMDEXT_MM_ALLOC */ 
  return(old_base); 
 } 
 
 prev_ptr = hp; 
 hp = hp->h_next; 
  } 
  return(NO_MEM); 
} 
 
 
/*===========================================================================* 
 *    free_mem                   * 
 *===========================================================================*/ 
PUBLIC void free_mem(base, clicks) 
phys_clicks base;  /* base address of block to free */ 
phys_clicks clicks;  /* number of clicks to free */ 
{ 
/* Return a block of free memory to the hole list.  The parameters tell where 
 * the block starts in physical memory and how big it is.  The block is added 
 * to the hole list.  If it is contiguous with an existing hole on either end, 
 * it is merged with the hole or holes. 
 */ 
 
  register struct hole *hp, *new_ptr, *prev_ptr; 
 
#if DEBUG & 256 
 { where(); printf("free_mem(0x%x, 0x%x)\n", base, clicks); } 
#endif 
 
  assert(base != 0); 
 
#if VMDEXT_MM_ALLOC 
#if (CHIP == INTEL) && VIRT_MEM 
  /* on a 386 vm system memeory should be allocated and freed at directory 
   * bounderies */ 
  clicks= (clicks + MEM_PAD_CLICKS - 1) & ~(MEM_PAD_CLICKS - 1); 
  if (base & (MEM_PAD_CLICKS-1)) 



  { 
 panic("Got non aligned free: ", base); 
  } 
#endif /* CHIP == INTEL && VIRT_MEM */ 
 
  if ( (new_ptr = free_slots) == NIL_HOLE) 
  { 
   printf("dumping hole list:\n"); 
   for(hp= hole_head; hp; hp= hp->h_next) 
   { 
    printf("base= %d, len= %d\n", hp->h_base, hp->h_len); 
 } 
   panic("Hole table full", NO_NUM); 
  } 
#else /* !VMDEXT_MM_ALLOC */ 
  if ( (new_ptr = free_slots) == NIL_HOLE) panic("Hole table full", NO_NUM); 
#endif /* VMDEXT_MM_ALLOC */ 
  new_ptr->h_base = base; 
  new_ptr->h_len = clicks; 
  free_slots = new_ptr->h_next; 
  hp = hole_head; 
 
  /* If this block's address is numerically less than the lowest hole currently 
   * available, or if no holes are currently available, put this hole on the 
   * front of the hole list. 
   */ 
  if (hp == NIL_HOLE || base <= hp->h_base) { 
 /* Block to be freed goes on front of the hole list. */ 
 new_ptr->h_next = hp; 
 hole_head = new_ptr; 
 merge(new_ptr); 
 return; 
  } 
 
  /* Block to be returned does not go on front of hole list. */ 
  while (hp != NIL_HOLE && base > hp->h_base) { 
 prev_ptr = hp; 
 hp = hp->h_next; 
  } 
 
  /* We found where it goes.  Insert block after 'prev_ptr'. */ 
  new_ptr->h_next = prev_ptr->h_next; 
  prev_ptr->h_next = new_ptr; 
  merge(prev_ptr);  /* sequence is 'prev_ptr', 'new_ptr', 'hp' */ 
} 
 
 
/*===========================================================================* 
 *    del_slot                   * 
 *===========================================================================*/ 
PRIVATE void del_slot(prev_ptr, hp) 
register struct hole *prev_ptr; /* pointer to hole entry just ahead of 'hp' */ 
register struct hole *hp; /* pointer to hole entry to be removed */ 
{ 
/* Remove an entry from the hole list.  This procedure is called when a 
 * request to allocate memory removes a hole in its entirety, thus reducing 
 * the numbers of holes in memory, and requiring the elimination of one 
 * entry in the hole list. 
 */ 
 
  if (hp == hole_head) 
 hole_head = hp->h_next; 
  else 
 prev_ptr->h_next = hp->h_next; 
 
  hp->h_next = free_slots; 
  free_slots = hp; 
} 
 
 
/*===========================================================================* 
 *    merge               * 
 *===========================================================================*/ 
PRIVATE void merge(hp) 
register struct hole *hp; /* ptr to hole to merge with its successors */ 



{ 
/* Check for contiguous holes and merge any found.  Contiguous holes can occur 
 * when a block of memory is freed, and it happens to abut another hole on 
 * either or both ends.  The pointer 'hp' points to the first of a series of 
 * three holes that can potentially all be merged together. 
 */ 
 
  register struct hole *next_ptr; 
 
  /* If 'hp' points to the last hole, no merging is possible.  If it does not, 
   * try to absorb its successor into it and free the successor's table entry. 
   */ 
  if ( (next_ptr = hp->h_next) == NIL_HOLE) return; 
#if PCH_DEBUG 
 if (hp->h_base + hp->h_len > next_ptr->h_base) 
 { 
  printf("hp->h_base= 0x%x, hp->h_len= 0x%x, next_ptr->h_base= 0x%x\n", 
  hp->h_base, hp->h_len, next_ptr->h_base); 
 panic("merge: overlapping holes", NO_NUM); 
 } 
#endif 
  if (hp->h_base + hp->h_len == next_ptr->h_base) { 
 hp->h_len += next_ptr->h_len; /* first one gets second one's mem */ 
 del_slot(hp, next_ptr); 
  } else { 
 hp = next_ptr; 
  } 
 
  /* If 'hp' now points to the last hole, return; otherwise, try to absorb its 
   * successor into it. 
   */ 
  if ( (next_ptr = hp->h_next) == NIL_HOLE) return; 
#if PCH_DEBUG 
 if (hp->h_base + hp->h_len > next_ptr->h_base) 
 { 
  printf("hp->h_base= 0x%x, hp->h_len= 0x%x, next_ptr->h_base= 0x%x\n", 
  hp->h_base, hp->h_len, next_ptr->h_base); 
 panic("merge: overlapping holes", NO_NUM); 
 } 
#endif 
  if (hp->h_base + hp->h_len == next_ptr->h_base) { 
 hp->h_len += next_ptr->h_len; 
 del_slot(hp, next_ptr); 
  } 
} 
 
 
/*===========================================================================* 
 *    max_hole                   * 
 *===========================================================================*/ 
PUBLIC phys_clicks max_hole() 
{ 
/* Scan the hole list and return the largest hole. */ 
 
  register struct hole *hp; 
  register phys_clicks max; 
 
  hp = hole_head; 
  max = 0; 
  while (hp != NIL_HOLE) { 
 if (hp->h_len > max) max = hp->h_len; 
 hp = hp->h_next; 
  } 
  return(max); 
} 
 
 
/*===========================================================================* 
 *    mem_init                   * 
 *===========================================================================*/ 
PUBLIC void mem_init() 
{ 
/* Initialize hole lists.  There are two lists: 'hole_head' points to a linked 
 * list of all the holes (unused memory) in the system; 'free_slots' points to 
 * a linked list of table entries that are not in use.  Initially, the former 



 * list has one entry for each chunk of physical memory, and the second 
 * list links together the remaining table slots.  As memory becomes more 
 * fragmented in the course of time (i.e., the initial big holes break up into 
 * smaller holes), new table slots are needed to represent them.  These slots 
 * are taken from the list headed by 'free_slots'. 
 */ 
 
  register struct hole *hp; 
  phys_clicks base;  /* base address of chunk */ 
  phys_clicks size;  /* size of chunk */ 
 
  /* Put all holes on the free list. */ 
  for (hp = &hole[0]; hp < &hole[NR_HOLES]; hp++) hp->h_next = hp + 1; 
  hole[NR_HOLES-1].h_next = NIL_HOLE; 
  hole_head = NIL_HOLE; 
  free_slots = &hole[0]; 
 
  /* Allocate a hole for each chunk of physical memory. */ 
  while (get_mem(&base, &size)) 
 free_mem(base, size); 
} 
 
 
/*===========================================================================* 
 *    mem_left                    * 
 *===========================================================================*/ 
PUBLIC phys_clicks mem_left() 
{ 
/* Determine how much memory is left.  This procedure is called just after 
 * initialization to find the original amount. 
 */ 
 
  register struct hole *hp; 
  phys_clicks tot; 
 
  for (hp = hole_head, tot = 0; hp != NIL_HOLE; hp = hp->h_next) 
 tot += hp->h_len; 
  return(tot); 
} 
 
#if PCH_DEBUG 
/*===========================================================================* 
 *    print_mem                   * 
 *===========================================================================*/ 
PUBLIC void print_mem() 
{ 
/* Print the current hole map. 
 */ 
 
  struct hole *hp; 
  for (hp= hole_head; hp; hp= hp->h_next) 
  { 
 printf("0x%xK - 0x%xK (%ldK)\n", hp->h_base*CLICK_SIZE/1024, 
  (hp->h_base + hp->h_len-1)*CLICK_SIZE/1024, 
  hp->h_len*CLICK_SIZE/1024); 
  } 
} 
#endif /* PCH_DEBUG */ 
 
/* 
 * $PchId: alloc.c,v 1.3 1995/11/28 07:21:13 philip Exp $ 
 */



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

system.c 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
/* This task handles the interface between file system and kernel as well as 
 * between memory manager and kernel.  System services are obtained by sending 
 * sys_task() a message specifying what is needed.  To make life easier for 
 * MM and FS, a library is provided with routines whose names are of the 
 * form sys_xxx, e.g. sys_xit sends the SYS_XIT message to sys_task.  The 
 * message types and parameters are: 
 * 
 *   SYS_FORK  informs kernel that a process has forked 
 *   SYS_GETMAP  allows MM to get a process' memory map 
 *   SYS_EXEC  sets program counter and stack pointer after EXEC 
 *   SYS_XIT  informs kernel that a process has exited 
 *   SYS_GETSP  caller wants to read out some process' stack pointer 
 *   SYS_TIMES  caller wants to get accounting times for a process 
 *   SYS_ABORT  MM or FS cannot go on; abort MINIX 
 *   SYS_FRESH  start with a fresh process image during EXEC (68000 only) 
 *   SYS_SENDSIG send a signal to a process (POSIX style) 
 *   SYS_SIGRETURN complete POSIX-style signalling 
 *   SYS_KILL  cause a signal to be sent via MM 
 *   SYS_ENDSIG  finish up after SYS_KILL-type signal 
 *   SYS_COPY  request a block of data to be copied between processes 
 *   SYS_VCOPY   request a series of data blocks to be copied between procs 
 *   SYS_GBOOT  copies the boot parameters to a process 
 *   SYS_MEM  returns the next free chunk of physical memory 
 *   SYS_UMAP  compute the physical address for a given virtual address 
 *   SYS_TRACE  request a trace operation 
 #if (CHIP == INTEL) && VIRT_MEM 
 *   SYS_ADJMAP  allows MM to changed a map for a brk or a signal 
 *   SYS_EXECMAP allows MM to install a new map during to exec system call 
 *   SYS_UNMAP  release allocated pages for a process, obsolete 
 #else 
 *   SYS_NEWMAP  allows MM to set up a process memory map, obsolete 
 #endif 
 
 * Message types and parameters: 
* 
*    m_type       PROC1     PROC2      PID     MEM_PTR 
* ------------------------------------------------------ 
* | SYS_FORK   | parent  |  child  |   pid   |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_EXEC   | proc nr | traced  | new sp  |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_XIT    | parent  | exitee  |         |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_GETSP  | proc nr |         |         |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_TIMES  | proc nr |         | buf ptr |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_ABORT  |         |         |         |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_FRESH  | proc nr | data_cl |         |         | 
* |------------+---------+---------+---------+---------| 
* | SYS_GBOOT  | proc nr |         |         | bootptr | 
* |------------+---------+---------+---------+---------| 
* 
*    m_type       PROC      m1_i2     m1_i3    MEM_PTR    
* ------------------------------------------------------ 
* | SYS_GETMAP | proc nr |         |         | map ptr | 
* |------------+---------+---------+---------+---------| 
* | SYS_ADJMAP | proc nr |dt_clcks |  sp     | map_ptr | 
* -------------+---------+---------+---------+---------- 
* | SYS_EXECMAP| proc nr |         |         | map_ptr | 



* -------------+---------+---------+---------+---------- 
#else 
* | SYS_NEWMAP | proc nr |         |         | map ptr | 
* |------------+---------+---------+---------+---------| 
#endif 
 
* ------------------------------------------------------ 
* 
*    m_type          m1_i1     m1_i2     m1_i3       m1_p1 
* ----------------+---------+---------+---------+-------------- 
* | SYS_VCOPY     |  src p  |  dst p  | vec siz | vc addr     | 
* |---------------+---------+---------+---------+-------------| 
* | SYS_SENDSIG   | proc nr |         |         | smp         | 
* |---------------+---------+---------+---------+-------------| 
* | SYS_SIGRETURN | proc nr |         |         | scp         | 
* |---------------+---------+---------+---------+-------------| 
* | SYS_ENDSIG    | proc nr |         |         |             | 
* ------------------------------------------------------------- 
* 
*    m_type       m2_i1     m2_i2     m2_l1     m2_l2 
* ------------------------------------------------------ 
* | SYS_TRACE  | proc_nr | request |  addr   |  data   | 
* ------------------------------------------------------ 
* 
* 
*    m_type       m6_i1     m6_i2     m6_i3     m6_f1 
* ------------------------------------------------------ 
* | SYS_KILL   | proc_nr  |  sig    |         |         | 
* ------------------------------------------------------ 
* 
* 
*    m_type    m5_c1   m5_i1    m5_l1   m5_c2   m5_i2    m5_l2   m5_l3 
* ---------------------------------------------------------------------- 
* | SYS_COPY |src seg|src proc|src vir|dst seg|dst proc|dst vir|byte ct| 
* ---------------------------------------------------------------------- 
* | SYS_UMAP |  seg  |proc nr |vir adr|       |        |       |byte ct| 
* ---------------------------------------------------------------------- 
* 
* 
*    m_type      m1_i1      m1_i2      m1_i3 
* |------------+----------+----------+---------- 
* | SYS_MEM    | mem base | mem size | tot mem | 
* ---------------------------------------------- 
* 
* In addition to the main sys_task() entry point, there are 5 other minor 
* entry points: 
*   cause_sig: take action to cause a signal to occur, sooner or later 
*   inform: tell MM about pending signals 
*   numap: umap D segment starting from process number instead of pointer 
*   umap: compute the physical address for a given virtual address 
*   alloc_segments: allocate segments for 8088 or higher processor 
*/ 
 
#include "kernel.h" 
#include <signal.h> 
#include <unistd.h> 
#include <sys/sigcontext.h> 
#include <sys/ptrace.h> 
#include <minix/boot.h> 
#include <minix/callnr.h> 
#include <minix/com.h> 
#include "proc.h" 
#if (CHIP == INTEL) 
#include "protect.h" 
#if VIRT_MEM 



#include "vm386.h" 
#endif 
#endif 
 
/* PSW masks. */ 
#define IF_MASK 0x00000200 
#define IOPL_MASK 0x003000 
 
PRIVATE message m; 
 
FORWARD _PROTOTYPE( int do_abort, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_copy, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_exec, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_fork, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_gboot, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_getmap, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_getsp, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_kill, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_mem, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_sendsig, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_sigreturn, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_endsig, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_times, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_trace, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_umap, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_xit, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_vcopy, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_getmap, (message *m_ptr) ); 
#if (CHIP == INTEL) && VIRT_MEM 
FORWARD _PROTOTYPE( int do_adjmap, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_execmap, (message *m_ptr) ); 
FORWARD _PROTOTYPE( int do_unmap, (message *m_ptr) ); 
#else 
FORWARD _PROTOTYPE( int do_newmap, (message *m_ptr) ); 
#endif 
 
#if (SHADOWING == 1) 
FORWARD _PROTOTYPE( int do_fresh, (message *m_ptr) ); 
#endif 
 
/*===========================================================================* 
 *    sys_task                  * 
 *===========================================================================*/ 
PUBLIC void sys_task() 
{ 
/* Main entry point of sys_task.  Get the message and dispatch on type. */ 
 
  register int r; 
 
  while (TRUE) { 
 receive(ANY, &m); 
 
 switch (m.m_type) { /* which system call */ 
     case SYS_FORK: r = do_fork(&m); break; 
#if CHIP == INTEL && VIRT_MEM 
     case SYS_ADJMAP: r = do_adjmap(&m); break; 
     case SYS_EXECMAP: r = do_execmap(&m); break; 
#else 
      case SYS_NEWMAP: r = do_newmap(&m); break; 
#endif 
 
     case SYS_GETMAP: r = do_getmap(&m); break; 
     case SYS_EXEC: r = do_exec(&m); break; 
     case SYS_XIT: r = do_xit(&m);  break; 
     case SYS_GETSP: r = do_getsp(&m); break; 
     case SYS_TIMES: r = do_times(&m); break; 
     case SYS_ABORT: r = do_abort(&m); break; 
#if (SHADOWING == 1) 
     case SYS_FRESH: r = do_fresh(&m); break; 
#endif 
     case SYS_SENDSIG: r = do_sendsig(&m); break; 
     case SYS_SIGRETURN: r = do_sigreturn(&m); break; 
     case SYS_KILL: r = do_kill(&m); break; 
     case SYS_ENDSIG: r = do_endsig(&m); break; 
     case SYS_COPY: r = do_copy(&m); break; 



          case SYS_VCOPY: r = do_vcopy(&m); break; 
     case SYS_GBOOT: r = do_gboot(&m); break; 
     case SYS_MEM: r = do_mem(&m);  break; 
     case SYS_UMAP: r = do_umap(&m); break; 
     case SYS_TRACE: r = do_trace(&m); break; 
     default:  r = E_BAD_FCN; 
     panic("SYSTASK got invalid request: ", m.m_type); 
 } 
 
 m.m_type = r;  /* 'r' reports status of call */ 
 send(m.m_source, &m); /* send reply to caller */ 
  } 
} 
 
 
/*===========================================================================* 
 *    do_fork               * 
 *===========================================================================*/ 
PRIVATE int do_fork(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_fork().  m_ptr->PROC1 has forked.  The child is m_ptr->PROC2. */ 
 
#if (CHIP == INTEL) 
  reg_t old_ldt_sel; 
  int old_flags; 
#endif 
  register struct proc *rpc; 
  struct proc *rpp; 
  phys_clicks child_base; 
 
  if (!isoksusern(m_ptr->PROC1) || !isoksusern(m_ptr->PROC2)) 
 return(E_BAD_PROC); 
  rpp = proc_addr(m_ptr->PROC1); 
  rpc = proc_addr(m_ptr->PROC2); 
child_base= (phys_clicks)m_ptr->m1_p1; 
 
#if CHIP == INTEL && VIRT_MEM 
  /* On a vm system we have to check available memory first. */ 
  if (vm_not_alloc < rpp->p_map[T].mem_len + rpp->p_map[D].mem_len + 
   rpp->p_map[S].mem_len) 
  { 
   return ENOMEM; /* Bad luck */ 
  } 
#endif 
 
  /* Copy parent 'proc' struct to child. */ 
#if (CHIP == INTEL) 
  old_ldt_sel = rpc->p_ldt_sel; /* stop this being obliterated by copy */ 
  *rpc = *rpp;   /* copy 'proc' struct */ 
  rpc->p_ldt_sel = old_ldt_sel; 
  rpc->p_map[T].mem_phys = child_base; 
  if (rpc->p_map[T].mem_len) /* Separate I&D */ 
 rpc->p_map[D].mem_phys = rpc->p_map[T].mem_phys +  
  rpc->p_map[T].mem_vir + rpc->p_map[T].mem_len; 
  else 
 rpc->p_map[D].mem_phys = child_base; 
  rpc->p_map[S].mem_phys = rpc->p_map[D].mem_phys; 
  alloc_segments(rpc); 
  #if CHIP == INTEL && VIRT_MEM /* Make pages shared or copy on access */ 
    vm_fork(rpp, child_base); 
    vm_not_alloc -= rpc->p_map[T].mem_len + rpc->p_map[D].mem_len + rpc-> 
   p_map[S].mem_len; 
    old_flags = rpc->p_flags; /* save the previous value of the flags */ 
  rpc->p_flags &= ~NO_MAP; 
  if (old_flags != 0 && rpc->p_flags == 0) lock_ready(rpc); 
#else 
   /* HACK because structure copy is or was slow. */ 
   phys_copy( (phys_bytes)rpp, (phys_bytes)proc_addr(m_ptr->PROC2), 
      (phys_bytes)sizeof(struct proc)); 
#endif 
 
  rpc->p_nr = m_ptr->PROC2; /* this was obliterated by copy */ 
 
#if (SHADOWING == 0) 



  rpc->p_flags |= NO_MAP; /* inhibit the process from running */ 
#endif 
 
  rpc->p_flags &= ~(PENDING | SIG_PENDING | P_STOP); 
 
  /* Only 1 in group should have PENDING, child does not inherit trace status*/ 
  sigemptyset(&rpc->p_pending); 
  rpc->p_pendcount = 0; 
  rpc->p_pid = m_ptr->PID; /* install child's pid */ 
  rpc->p_reg.retreg = 0; /* child sees pid = 0 to know it is child */ 
 
  rpc->user_time = 0;  /* set all the accounting times to 0 */ 
  rpc->sys_time = 0; 
  rpc->child_utime = 0; 
  rpc->child_stime = 0; 
 
#if (SHADOWING == 1) 
  rpc->p_nflips = 0; 
  mkshadow(rpp, (phys_clicks)m_ptr->m1_p1); /* run child first */ 
#endif 
 
  return(OK); 
} 
 
/*===========================================================================* 
 *    do_getmap                                *  
 *===========================================================================*/ 
PRIVATE int do_getmap(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_getmap().  Report the memory map to MM. */ 
 
  register struct proc *rp, *rdst; 
  phys_bytes src_phys, dst_phys, pn; 
  vir_bytes vmm, vsys, vn; 
  int caller;   /* where the map has to be stored */ 
  int k;   /* process whose map is to be loaded */ 
  struct mem_map *map_ptr; /* virtual address of map inside caller (MM) */ 
 
#if DEBUG & 256 
 { printW(); printf("doing do_getmap\n"); } 
#endif 
  /* Extract message parameters and copy new memory map to MM. */ 
  caller = m_ptr->m_source; 
  k = m_ptr->PROC1; 
  map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
   
  if (!isokprocn(k)) 
   panic("do_getmap got bad proc: ", m_ptr->PROC1); 
    
  rp = proc_addr(k);  /* ptr to entry of the map */ 
  rdst = proc_addr(caller); /* ptr to MM's proc entry */ 
   
  vn = NR_SEGS * sizeof(struct mem_map); 
  pn = vn; 
  vmm = (vir_bytes) map_ptr; /* careful about sign extension */ 
  vsys = (vir_bytes) rp->p_map; /* again, careful about sign extension */ 
  if ( (src_phys = umap(proc_ptr, D, vsys, vn)) == 0) 
 panic("bad call to sys_getmap (src)", NO_NUM); 
  if ( (dst_phys = umap(rdst, D, vmm, vn)) == 0) 
 panic("bad call to sys_getmap (dst)", NO_NUM); 
  phys_copy(src_phys, dst_phys, pn); 
 
  return(OK); 
} 
 
#if (CHIP == INTEL) && VIRT_MEM 
/* This function is replaced by do_adjmap and do_execmap */ 
#else 
 
/*===========================================================================* 
 *    do_newmap              * 
 *===========================================================================*/ 
PRIVATE int do_newmap(m_ptr) 
message *m_ptr;   /* pointer to request message */ 



{ 
/* Handle sys_newmap().  Fetch the memory map from MM. */ 
 
  register struct proc *rp; 
  phys_bytes src_phys; 
  int caller;   /* whose space has the new map (usually MM) */ 
  int k;   /* process whose map is to be loaded */ 
  int old_flags;  /* value of flags before modification */ 
  struct mem_map *map_ptr; /* virtual address of map inside caller (MM) */ 
  #if CHIP == INTEL && VIRT_MEM 
   panic("do_newmap should not been called", NO_NUM); 
  #endif 
  /* Extract message parameters and copy new memory map from MM. */ 
  caller = m_ptr->m_source; 
  k = m_ptr->PROC1; 
  map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
  if (!isokprocn(k)) return(E_BAD_PROC); 
  rp = proc_addr(k);  /* ptr to entry of user getting new map */ 
 
  /* Copy the map from MM. */ 
  src_phys = umap(proc_addr(caller), D, (vir_bytes) map_ptr, sizeof(rp->p_map)); 
  if (src_phys == 0) panic("bad call to sys_newmap", NO_NUM); 
  phys_copy(src_phys, vir2phys(rp->p_map), (phys_bytes) sizeof(rp->p_map)); 
 
#if (SHADOWING == 0) 
#if (CHIP != M68000) 
  alloc_segments(rp); 
#else 
  pmmu_init_proc(rp); 
#endif 
  old_flags = rp->p_flags; /* save the previous value of the flags */ 
  rp->p_flags &= ~NO_MAP; 
  if (old_flags != 0 && rp->p_flags == 0) lock_ready(rp); 
#endif 
#if (CHIP == INTEL) 
  if (rp->p_map[D].mem_phys != rp->p_map[S].mem_phys || 
 rp->p_map[D].mem_vir + rp->p_map[D].mem_len > rp->p_map[S].mem_vir) 
 panic("newmap: invalid map for process ", proc_number(rp)); 
#endif 
 
 
  return(OK); 
} 
#endif /* (CHIP == INTEL) && VIRT_MEM */ 
 
/*===========================================================================* 
 *    do_exec               * 
 *===========================================================================*/ 
PRIVATE int do_exec(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_exec().  A process has done a successful EXEC. Patch it up. */ 
 
  register struct proc *rp; 
  reg_t sp;   /* new sp */ 
  phys_bytes phys_name; 
  char *np; 
#define NLEN (sizeof(rp->p_name)-1) 
 
  if (!isoksusern(m_ptr->PROC1)) return E_BAD_PROC; 
  /* PROC2 field is used as flag to indicate process is being traced */ 
  if (m_ptr->PROC2) cause_sig(m_ptr->PROC1, SIGTRAP); 
  sp = (reg_t) m_ptr->STACK_PTR; 
  rp = proc_addr(m_ptr->PROC1); 
  rp->p_reg.sp = sp;  /* set the stack pointer */ 
#if (CHIP == M68000) 
  rp->p_splow = sp;  /* set the stack pointer low water */ 
#ifdef FPP 
  /* Initialize fpp for this process */ 
  fpp_new_state(rp); 
#endif 
#endif 
  rp->p_reg.pc = (reg_t) m_ptr->IP_PTR; /* set pc */ 
  rp->p_alarm = 0;  /* reset alarm timer */ 
  rp->p_flags &= ~RECEIVING; /* MM does not reply to EXEC call */ 



  if (rp->p_flags == 0) lock_ready(rp); 
 
  /* Save command name for debugging, ps(1) output, etc. */ 
  phys_name = numap(m_ptr->m_source, (vir_bytes) m_ptr->NAME_PTR, 
       (vir_bytes) NLEN); 
  if (phys_name != 0) { 
 phys_copy(phys_name, vir2phys(rp->p_name), (phys_bytes) NLEN); 
 for (np = rp->p_name; (*np & BYTE) >= ' '; np++) {} 
 *np = 0; 
  } 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_xit               * 
 *===========================================================================*/ 
PRIVATE int do_xit(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_xit().  A process has exited. */ 
 
  register struct proc *rp, *rc; 
  struct proc *np, *xp; 
  int parent;   /* number of exiting proc's parent */ 
  int proc_nr;   /* number of process doing the exit */ 
 #if CHIP == INTEL && VIRT_MEM 
  phys_bytes base, size, top; 
 #endif 
 
 
  parent = m_ptr->PROC1; /* slot number of parent process */ 
  proc_nr = m_ptr->PROC2; /* slot number of exiting process */ 
  if (!isoksusern(parent) || !isoksusern(proc_nr)) return(E_BAD_PROC); 
  rp = proc_addr(parent); 
  rc = proc_addr(proc_nr); 
  lock(); 
  rp->child_utime += rc->user_time + rc->child_utime; /* accum child times */ 
  rp->child_stime += rc->sys_time + rc->child_stime; 
  unlock(); 
  rc->p_alarm = 0;  /* turn off alarm timer */ 
  if (rc->p_flags == 0) lock_unready(rc); 
 
#if (SHADOWING == 1) 
  rmshadow(rc, &base, &size); 
  m_ptr->m1_i1 = (int)base; 
  m_ptr->m1_i2 = (int)size; 
#endif 
#if VIRT_MEM 
  base= (rc->p_map[T].mem_phys) << CLICK_SHIFT; 
  top= (rc->p_map[S].mem_phys + rc->p_map[S].mem_vir + 
 rc->p_map[S].mem_len) << CLICK_SHIFT; 
  if (top < base) 
   panic("Stack not above text", NO_NUM); 
  size= top-base; 
  vm_unmap(base, size, rc->p_map[T].mem_len + rc->p_map[D].mem_len + 
   rc->p_map[S].mem_len); 
#if DEBUG || 1 
  vm_check_unmapped(base, top); 
#endif 
#endif 
  strcpy(rc->p_name, "<noname>"); /* process no longer has a name */ 
 
  /* If the process being terminated happens to be queued trying to send a 
   * message (i.e., the process was killed by a signal, rather than it doing an 
   * EXIT), then it must be removed from the message queues. 
   */ 
  if (rc->p_flags & SENDING) { 
 /* Check all proc slots to see if the exiting process is queued. */ 
 for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) { 
  if (rp->p_callerq == NIL_PROC) continue; 
  if (rp->p_callerq == rc) { 
   /* Exiting process is on front of this queue. */ 
   rp->p_callerq = rc->p_sendlink; 
   break; 



  } else { 
   /* See if exiting process is in middle of queue. */ 
   np = rp->p_callerq; 
   while ( ( xp = np->p_sendlink) != NIL_PROC) 
    if (xp == rc) { 
     np->p_sendlink = xp->p_sendlink; 
     break; 
    } else { 
     np = xp; 
    } 
  } 
 } 
  } 
#if (CHIP == M68000) && (SHADOWING == 0) 
  pmmu_delete(rc); /* we're done remove tables */ 
#endif 
 
  if (rc->p_flags & PENDING) --sig_procs; 
  sigemptyset(&rc->p_pending); 
  rc->p_pendcount = 0; 
  rc->p_flags = P_SLOT_FREE; 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_getsp                   * 
 *===========================================================================*/ 
PRIVATE int do_getsp(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_getsp().  MM wants to know what sp is. */ 
 
  register struct proc *rp; 
 
  if (!isoksusern(m_ptr->PROC1)) return(E_BAD_PROC); 
  rp = proc_addr(m_ptr->PROC1); 
  m_ptr->STACK_PTR = (char *) rp->p_reg.sp; /* return sp here (bad type) */ 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_times                   * 
 *===========================================================================*/ 
PRIVATE int do_times(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_times().  Retrieve the accounting information. */ 
 
  register struct proc *rp; 
 
  if (!isoksusern(m_ptr->PROC1)) return E_BAD_PROC; 
  rp = proc_addr(m_ptr->PROC1); 
 
  /* Insert the times needed by the TIMES system call in the message. */ 
  lock();   /* halt the volatile time counters in rp */ 
  m_ptr->USER_TIME   = rp->user_time; 
  m_ptr->SYSTEM_TIME = rp->sys_time; 
  unlock(); 
  m_ptr->CHILD_UTIME = rp->child_utime; 
  m_ptr->CHILD_STIME = rp->child_stime; 
  m_ptr->BOOT_TICKS  = get_uptime(); 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_abort                                * 
 *===========================================================================*/ 
PRIVATE int do_abort(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_abort.  MINIX is unable to continue.  Terminate operation. */ 
  char monitor_code[64]; 



  phys_bytes src_phys; 
 
  if (m_ptr->m1_i1 == RBT_MONITOR) { 
 /* The monitor is to run user specified instructions. */ 
 src_phys = numap(m_ptr->m_source, (vir_bytes) m_ptr->m1_p1, 
     (vir_bytes) sizeof(monitor_code)); 
 if (src_phys == 0) panic("bad monitor code from", m_ptr->m_source); 
 phys_copy(src_phys, vir2phys(monitor_code), 
     (phys_bytes) sizeof(monitor_code)); 
 reboot_code = vir2phys(monitor_code); 
  } 
  wreboot(m_ptr->m1_i1); 
  return(OK);   /* pro-forma (really EDISASTER) */ 
} 
 
 
#if (SHADOWING == 1) 
/*===========================================================================* 
 *    do_fresh                                * 
 *===========================================================================*/ 
PRIVATE int do_fresh(m_ptr)     /* for 68000 only */ 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_fresh.  Start with fresh process image during EXEC. */ 
 
  register struct proc *p; 
  int proc_nr;   /* number of process doing the exec */ 
  phys_clicks base, size; 
  phys_clicks c1, nc; 
 
  proc_nr = m_ptr->PROC1; /* slot number of exec-ing process */ 
  if (!isokprocn(proc_nr)) return(E_BAD_PROC); 
  p = proc_addr(proc_nr); 
  rmshadow(p, &base, &size); 
  do_newmap(m_ptr); 
  c1 = p->p_map[D].mem_phys; 
  nc = p->p_map[S].mem_phys - p->p_map[D].mem_phys + p->p_map[S].mem_len; 
  c1 += m_ptr->m1_i2; 
  nc -= m_ptr->m1_i2; 
  zeroclicks(c1, nc); 
  m_ptr->m1_i1 = (int)base; 
  m_ptr->m1_i2 = (int)size; 
  return(OK); 
} 
#endif /* (SHADOWING == 1) */ 
 
 
/*===========================================================================* 
 *         do_sendsig                                                 * 
 *===========================================================================*/ 
PRIVATE int do_sendsig(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_sendsig, POSIX-style signal */ 
 
  struct sigmsg smsg; 
  register struct proc *rp; 
  phys_bytes src_phys, dst_phys; 
  struct sigcontext sc, *scp; 
  struct sigframe fr, *frp; 
 
  if (!isokusern(m_ptr->PROC1)) return(E_BAD_PROC); 
  rp = proc_addr(m_ptr->PROC1); 
 
  /* Get the sigmsg structure into our address space.  */ 
  src_phys = umap(proc_addr(MM_PROC_NR), D, (vir_bytes) m_ptr->SIG_CTXT_PTR, 
    (vir_bytes) sizeof(struct sigmsg)); 
  if (src_phys == 0) 
 panic("do_sendsig can't signal: bad sigmsg address from MM", NO_NUM); 
  phys_copy(src_phys, vir2phys(&smsg), (phys_bytes) sizeof(struct sigmsg)); 
 
  /* Compute the usr stack pointer value where sigcontext will be stored. */ 
  scp = (struct sigcontext *) smsg.sm_stkptr - 1; 
 
  /* Copy the registers to the sigcontext structure. */ 



  memcpy(&sc.sc_regs, &rp->p_reg, sizeof(struct sigregs)); 
 
  /* Finish the sigcontext initialization. */ 
  sc.sc_flags = SC_SIGCONTEXT; 
 
  sc.sc_mask = smsg.sm_mask; 
 
  /* Copy the sigcontext structure to the user's stack. */ 
  dst_phys = umap(rp, D, (vir_bytes) scp, 
    (vir_bytes) sizeof(struct sigcontext)); 
  if (dst_phys == 0) return(EFAULT); 
  phys_copy(vir2phys(&sc), dst_phys, (phys_bytes) sizeof(struct sigcontext)); 
 
  /* Initialize the sigframe structure. */ 
  frp = (struct sigframe *) scp - 1; 
  fr.sf_scpcopy = scp; 
  fr.sf_retadr2= (void (*)()) rp->p_reg.pc; 
  fr.sf_fp = rp->p_reg.fp; 
  rp->p_reg.fp = (reg_t) &frp->sf_fp; 
  fr.sf_scp = scp; 
  fr.sf_code = 0; /* XXX - should be used for type of FP exception */ 
  fr.sf_signo = smsg.sm_signo; 
  fr.sf_retadr = (void (*)()) smsg.sm_sigreturn; 
 
  /* Copy the sigframe structure to the user's stack. */ 
  dst_phys = umap(rp, D, (vir_bytes) frp, (vir_bytes) sizeof(struct sigframe)); 
  if (dst_phys == 0) return(EFAULT); 
  phys_copy(vir2phys(&fr), dst_phys, (phys_bytes) sizeof(struct sigframe)); 
 
  /* Reset user registers to execute the signal handler. */ 
  rp->p_reg.sp = (reg_t) frp; 
  rp->p_reg.pc = (reg_t) smsg.sm_sighandler; 
 
  return(OK); 
} 
 
/*===========================================================================* 
 *         do_sigreturn                                * 
 *===========================================================================*/ 
PRIVATE int do_sigreturn(m_ptr) 
register message *m_ptr; 
{ 
/* POSIX style signals require sys_sigreturn to put things in order before the 
 * signalled process can resume execution 
 */ 
 
  struct sigcontext sc; 
  register struct proc *rp; 
  phys_bytes src_phys; 
 
  if (!isokusern(m_ptr->PROC1)) return(E_BAD_PROC); 
  rp = proc_addr(m_ptr->PROC1); 
 
  /* Copy in the sigcontext structure. */ 
  src_phys = umap(rp, D, (vir_bytes) m_ptr->SIG_CTXT_PTR, 
    (vir_bytes) sizeof(struct sigcontext)); 
  if (src_phys == 0) return(EFAULT); 
  phys_copy(src_phys, vir2phys(&sc), (phys_bytes) sizeof(struct sigcontext)); 
 
  /* Make sure that this is not just a jmp_buf. */ 
  if ((sc.sc_flags & SC_SIGCONTEXT) == 0) return(EINVAL); 
 
  /* Fix up only certain key registers if the compiler doesn't use 
   * register variables within functions containing setjmp. 
   */ 
  if (sc.sc_flags & SC_NOREGLOCALS) { 
 rp->p_reg.retreg = sc.sc_retreg; 
 rp->p_reg.fp = sc.sc_fp; 
 rp->p_reg.pc = sc.sc_pc; 
 rp->p_reg.sp = sc.sc_sp; 
 return (OK); 
  } 
  sc.sc_psw  = rp->p_reg.psw; 
 
#if (CHIP == INTEL) 



  /* Don't panic kernel if user gave bad selectors. */ 
  sc.sc_cs = rp->p_reg.cs; 
  sc.sc_ds = rp->p_reg.ds; 
  sc.sc_es = rp->p_reg.es; 
#if _WORD_SIZE == 4 
  sc.sc_fs = rp->p_reg.fs; 
  sc.sc_gs = rp->p_reg.gs; 
#endif 
#endif 
 
  /* Restore the registers. */ 
  memcpy(&rp->p_reg, (char *)&sc.sc_regs, sizeof(struct sigregs)); 
 
  return(OK); 
} 
 
/*===========================================================================* 
 *    do_kill               * 
 *===========================================================================*/ 
PRIVATE int do_kill(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_kill(). Cause a signal to be sent to a process via MM. 
 * Note that this has nothing to do with the kill (2) system call, this 
 * is how the FS (and possibly other servers) get access to cause_sig to 
 * send a KSIG message to MM 
 */ 
 
  if (!isokusern(m_ptr->PR)) return(E_BAD_PROC); 
  cause_sig(m_ptr->PR, m_ptr->SIGNUM); 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *         do_endsig               * 
 *===========================================================================*/ 
PRIVATE int do_endsig(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Finish up after a KSIG-type signal, caused by a SYS_KILL message or a call 
 * to cause_sig by a task 
 */ 
 
  register struct proc *rp; 
 
  if (!isokusern(m_ptr->PROC1)) return(E_BAD_PROC); 
  rp = proc_addr(m_ptr->PROC1); 
 
  /* MM has finished one KSIG. */ 
  if (rp->p_pendcount != 0 && --rp->p_pendcount == 0 
      && (rp->p_flags &= ~SIG_PENDING) == 0) 
 lock_ready(rp); 
  return(OK); 
} 
 
/*===========================================================================* 
 *    do_copy                                                 * 
 *===========================================================================*/ 
PRIVATE int do_copy(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_copy().  Copy data for MM or FS. */ 
 
  int src_proc, dst_proc, src_space, dst_space; 
  vir_bytes src_vir, dst_vir; 
  phys_bytes src_phys, dst_phys, bytes; 
 
  /* Dismember the command message. */ 
  src_proc = m_ptr->SRC_PROC_NR; 
  dst_proc = m_ptr->DST_PROC_NR; 
  src_space = m_ptr->SRC_SPACE; 
  dst_space = m_ptr->DST_SPACE; 
  src_vir = (vir_bytes) m_ptr->SRC_BUFFER; 
  dst_vir = (vir_bytes) m_ptr->DST_BUFFER; 



  bytes = (phys_bytes) m_ptr->COPY_BYTES; 
 
  /* Compute the source and destination addresses and do the copy. */ 
#if (SHADOWING == 0) 
  if (src_proc == ABS) 
 src_phys = (phys_bytes) m_ptr->SRC_BUFFER; 
  else { 
 if (bytes != (vir_bytes) bytes) 
  /* This would happen for 64K segments and 16-bit vir_bytes. 
   * It would happen a lot for do_fork except MM uses ABS 
   * copies for that case. 
   */ 
  panic("overflow in count in do_copy", NO_NUM); 
#endif 
 
 src_phys = umap(proc_addr(src_proc), src_space, src_vir, 
   (vir_bytes) bytes); 
#if (SHADOWING == 0) 
 } 
#endif 
 
#if (SHADOWING == 0) 
  if (dst_proc == ABS) 
 dst_phys = (phys_bytes) m_ptr->DST_BUFFER; 
  else 
#endif 
 dst_phys = umap(proc_addr(dst_proc), dst_space, dst_vir, 
   (vir_bytes) bytes); 
 
  if (src_phys == 0 || dst_phys == 0) return(EFAULT); 
  phys_copy(src_phys, dst_phys, bytes); 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_vcopy                                                 * 
 *===========================================================================*/ 
PRIVATE int do_vcopy(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Handle sys_vcopy(). Copy multiple blocks of memory */ 
 
  int src_proc, dst_proc, vect_s, i; 
  vir_bytes src_vir, dst_vir, vect_addr; 
  phys_bytes src_phys, dst_phys, bytes; 
  cpvec_t cpvec_table[CPVEC_NR]; 
 
  /* Dismember the command message. */ 
  src_proc = m_ptr->m1_i1; 
  dst_proc = m_ptr->m1_i2; 
  vect_s = m_ptr->m1_i3; 
  vect_addr = (vir_bytes)m_ptr->m1_p1; 
 
  if (vect_s > CPVEC_NR) return EDOM; 
 
  src_phys= numap (m_ptr->m_source, vect_addr, vect_s * sizeof(cpvec_t)); 
  if (!src_phys) return EFAULT; 
  phys_copy(src_phys, vir2phys(cpvec_table), 
    (phys_bytes) (vect_s * sizeof(cpvec_t))); 
 
  for (i = 0; i < vect_s; i++) { 
 src_vir= cpvec_table[i].cpv_src; 
 dst_vir= cpvec_table[i].cpv_dst; 
 bytes= cpvec_table[i].cpv_size; 
 src_phys = numap(src_proc,src_vir,(vir_bytes)bytes); 
 dst_phys = numap(dst_proc,dst_vir,(vir_bytes)bytes); 
 if (src_phys == 0 || dst_phys == 0) return(EFAULT); 
 phys_copy(src_phys, dst_phys, bytes); 
  } 
  return(OK); 
} 
 
 
 



/*==========================================================================* 
 *    do_gboot                              * 
 *==========================================================================*/ 
PUBLIC struct bparam_s boot_parameters; 
 
PRIVATE int do_gboot(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Copy the boot parameters.  Normally only called during fs init. */ 
 
  phys_bytes dst_phys; 
 
  dst_phys = umap(proc_addr(m_ptr->PROC1), D, (vir_bytes) m_ptr->MEM_PTR, 
    (vir_bytes) sizeof(boot_parameters)); 
  if (dst_phys == 0) panic("bad call to SYS_GBOOT", NO_NUM); 
  phys_copy(vir2phys(&boot_parameters), dst_phys, 
    (phys_bytes) sizeof(boot_parameters)); 
  return(OK); 
} 
 
 
/*===========================================================================* 
 *    do_mem               * 
 *===========================================================================*/ 
PRIVATE int do_mem(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Return the base and size of the next chunk of memory. */ 
 
 phys_clicks mem_base, mem_size; 
 
  mem_base= 0; 
  mem_size= 0; 
  if (chunk_find(&mem_base, &mem_size)) 
  { 
   chunk_del(mem_base, mem_size); 
  } 
  m_ptr->m1_i1= mem_base; 
  m_ptr->m1_i2= mem_size; 
  return OK; 
} 
 
 
 
 
/*==========================================================================* 
 *    do_umap             * 
 *==========================================================================*/ 
PRIVATE int do_umap(m_ptr) 
register message *m_ptr; /* pointer to request message */ 
{ 
/* Same as umap(), for non-kernel processes. */ 
 
  m_ptr->SRC_BUFFER = umap(proc_addr((int) m_ptr->SRC_PROC_NR), 
                           (int) m_ptr->SRC_SPACE, 
                           (vir_bytes) m_ptr->SRC_BUFFER, 
                           (vir_bytes) m_ptr->COPY_BYTES); 
  return(OK); 
} 
 
 
/*==========================================================================* 
 *    do_trace                                               * 
 *==========================================================================*/ 
#define TR_PROCNR (m_ptr->m2_i1) 
#define TR_REQUEST (m_ptr->m2_i2) 
#define TR_ADDR  ((vir_bytes) m_ptr->m2_l1) 
#define TR_DATA  (m_ptr->m2_l2) 
#define TR_VLSIZE ((vir_bytes) sizeof(long)) 
 
PRIVATE int do_trace(m_ptr) 
register message *m_ptr; 
{ 
/* Handle the debugging commands supported by the ptrace system call 
 * The commands are: 



 * T_STOP stop the process 
 * T_OK  enable tracing by parent for this process 
 * T_GETINS return value from instruction space 
 * T_GETDATA return value from data space 
 * T_GETUSER return value from user process table 
 * T_SETINS set value from instruction space 
 * T_SETDATA set value from data space 
 * T_SETUSER set value in user process table 
 * T_RESUME resume execution 
 * T_EXIT exit 
 * T_STEP set trace bit 
 * 
 * The T_OK and T_EXIT commands are handled completely by the memory manager, 
 * all others come here. 
 */ 
 
  register struct proc *rp; 
  phys_bytes src, dst; 
  int i; 
 
  rp = proc_addr(TR_PROCNR); 
  if (rp->p_flags & P_SLOT_FREE) return(EIO); 
  switch (TR_REQUEST) { 
  case T_STOP:   /* stop process */ 
 if (rp->p_flags == 0) lock_unready(rp); 
 rp->p_flags |= P_STOP; 
 rp->p_reg.psw &= ~TRACEBIT; /* clear trace bit */ 
 return(OK); 
 
  case T_GETINS:  /* return value from instruction space */ 
 if (rp->p_map[T].mem_len != 0) { 
  if ((src = umap(rp, T, TR_ADDR, TR_VLSIZE)) == 0) return(EIO); 
  phys_copy(src, vir2phys(&TR_DATA), (phys_bytes) sizeof(long)); 
  break; 
 } 
 /* Text space is actually data space - fall through. */ 
 
  case T_GETDATA:  /* return value from data space */ 
 if ((src = umap(rp, D, TR_ADDR, TR_VLSIZE)) == 0) return(EIO); 
 phys_copy(src, vir2phys(&TR_DATA), (phys_bytes) sizeof(long)); 
 break; 
 
  case T_GETUSER:  /* return value from process table */ 
 if ((TR_ADDR & (sizeof(long) - 1)) != 0 || 
     TR_ADDR > sizeof(struct proc) - sizeof(long)) 
  return(EIO); 
 TR_DATA = *(long *) ((char *) rp + (int) TR_ADDR); 
 break; 
 
  case T_SETINS:  /* set value in instruction space */ 
 if (rp->p_map[T].mem_len != 0) { 
  if ((dst = umap(rp, T, TR_ADDR, TR_VLSIZE)) == 0) return(EIO); 
  phys_copy(vir2phys(&TR_DATA), dst, (phys_bytes) sizeof(long)); 
  TR_DATA = 0; 
  break; 
 } 
 /* Text space is actually data space - fall through. */ 
 
  case T_SETDATA:   /* set value in data space */ 
 if ((dst = umap(rp, D, TR_ADDR, TR_VLSIZE)) == 0) return(EIO); 
 phys_copy(vir2phys(&TR_DATA), dst, (phys_bytes) sizeof(long)); 
 TR_DATA = 0; 
 break; 
 
  case T_SETUSER:   /* set value in process table */ 
 if ((TR_ADDR & (sizeof(reg_t) - 1)) != 0 || 
      TR_ADDR > sizeof(struct stackframe_s) - sizeof(reg_t)) 
  return(EIO); 
 i = (int) TR_ADDR; 
#if (CHIP == INTEL) 
 /* Altering segment registers might crash the kernel when it 
  * tries to load them prior to restarting a process, so do 
  * not allow it. 
  */ 
 if (i == (int) &((struct proc *) 0)->p_reg.cs || 



     i == (int) &((struct proc *) 0)->p_reg.ds || 
     i == (int) &((struct proc *) 0)->p_reg.es || 
#if _WORD_SIZE == 4 
     i == (int) &((struct proc *) 0)->p_reg.gs || 
     i == (int) &((struct proc *) 0)->p_reg.fs || 
#endif 
     i == (int) &((struct proc *) 0)->p_reg.ss) 
  return(EIO); 
#endif 
 if (i == (int) &((struct proc *) 0)->p_reg.psw) 
  /* only selected bits are changeable */ 
  SETPSW(rp, TR_DATA); 
 else 
  *(reg_t *) ((char *) &rp->p_reg + i) = (reg_t) TR_DATA; 
 TR_DATA = 0; 
 break; 
 
  case T_RESUME:  /* resume execution */ 
 rp->p_flags &= ~P_STOP; 
 if (rp->p_flags == 0) lock_ready(rp); 
 TR_DATA = 0; 
 break; 
 
  case T_STEP:   /* set trace bit */ 
 rp->p_reg.psw |= TRACEBIT; 
 rp->p_flags &= ~P_STOP; 
 if (rp->p_flags == 0) lock_ready(rp); 
 TR_DATA = 0; 
 break; 
 
  default: 
 return(EIO); 
  } 
  return(OK); 
} 
 
/*===========================================================================* 
 *    cause_sig                                * 
 *===========================================================================*/ 
PUBLIC void cause_sig(proc_nr, sig_nr) 
int proc_nr;   /* process to be signalled */ 
int sig_nr;   /* signal to be sent, 1 to _NSIG */ 
{ 
/* A task wants to send a signal to a process.   Examples of such tasks are: 
 *   TTY wanting to cause SIGINT upon getting a DEL 
 *   CLOCK wanting to cause SIGALRM when timer expires 
 * FS also uses this to send a signal, via the SYS_KILL message. 
 * Signals are handled by sending a message to MM.  The tasks don't dare do 
 * that directly, for fear of what would happen if MM were busy.  Instead they 
 * call cause_sig, which sets bits in p_pending, and then carefully checks to 
 * see if MM is free.  If so, a message is sent to it.  If not, when it becomes 
 * free, a message is sent.  The process being signaled is blocked while MM 
 * has not seen or finished with all signals for it.  These signals are 
 * counted in p_pendcount, and the SIG_PENDING flag is kept nonzero while 
 * there are some.  It is not sufficient to ready the process when MM is 
 * informed, because MM can block waiting for FS to do a core dump. 
 */ 
 
  register struct proc *rp, *mmp; 
 
  rp = proc_addr(proc_nr); 
  if (sigismember(&rp->p_pending, sig_nr)) 
 return;   /* this signal already pending */ 
  sigaddset(&rp->p_pending, sig_nr); 
  ++rp->p_pendcount;  /* count new signal pending */ 
  if (rp->p_flags & PENDING) 
 return;   /* another signal already pending */ 
  if (rp->p_flags == 0) lock_unready(rp); 
  rp->p_flags |= PENDING | SIG_PENDING; 
  ++sig_procs;   /* count new process pending */ 
 
  mmp = proc_addr(MM_PROC_NR); 
  if ( ((mmp->p_flags & RECEIVING) == 0) || mmp->p_getfrom != ANY) return; 
  inform(); 
} 



 
 
/*===========================================================================* 
 *    inform               * 
 *===========================================================================*/ 
PUBLIC void inform() 
{ 
/* When a signal is detected by the kernel (e.g., DEL), or generated by a task 
 * (e.g. clock task for SIGALRM), cause_sig() is called to set a bit in the 
 * p_pending field of the process to signal.  Then inform() is called to see 
 * if MM is idle and can be told about it.  Whenever MM blocks, a check is 
 * made to see if 'sig_procs' is nonzero; if so, inform() is called. 
 */ 
 
  register struct proc *rp; 
 
  /* MM is waiting for new input.  Find a process with pending signals. */ 
  for (rp = BEG_SERV_ADDR; rp < END_PROC_ADDR; rp++) 
 if (rp->p_flags & PENDING) { 
  m.m_type = KSIG; 
  m.SIG_PROC = proc_number(rp); 
  m.SIG_MAP = rp->p_pending; 
  sig_procs--; 
  if (lock_mini_send(proc_addr(HARDWARE), MM_PROC_NR, &m) != OK) 
   panic("can't inform MM", NO_NUM); 
  sigemptyset(&rp->p_pending); /* the ball is now in MM's court */ 
  rp->p_flags &= ~PENDING;/* remains inhibited by SIG_PENDING */ 
  lock_pick_proc(); /* avoid delay in scheduling MM */ 
  return; 
 } 
} 
 
 
/*===========================================================================* 
 *    umap               * 
 *===========================================================================*/ 
PUBLIC phys_bytes umap(rp, seg, vir_addr, bytes) 
register struct proc *rp; /* pointer to proc table entry for process */ 
int seg;   /* T, D, or S segment */ 
vir_bytes vir_addr;  /* virtual address in bytes within the seg */ 
vir_bytes bytes;  /* # of bytes to be copied */ 
{ 
/* Calculate the physical memory address for a given virtual address. */ 
 
  vir_clicks vc;  /* the virtual address in clicks */ 
  phys_bytes pa;  /* intermediate variables as phys_bytes */ 
  vir_clicks sp_click;  /* click where the stack pointer is. */ 
  vir_clicks adjust;  /* amount mem_vir has to be lowered to reach sp.*/ 
 
#if (CHIP == INTEL) 
  phys_bytes seg_base; 
#endif 
 
  /* If 'seg' is D it could really be S and vice versa.  T really means T. 
   * If the virtual address falls in the gap,  it causes a problem. On the 
   * 8088 it is probably a legal stack reference, since "stackfaults" are 
   * not detected by the hardware.  On 8088s, the gap is called S and 
   * accepted, but on other machines it is called D and rejected. 
   * The Atari ST behaves like the 8088 in this respect. 
   */ 
 
  #if (CHIP == INTEL) 
  if (rp->p_map[D].mem_phys != rp->p_map[S].mem_phys || 
 rp->p_map[D].mem_vir + rp->p_map[D].mem_len > rp->p_map[S].mem_vir) 
  { 
#if DEBUG 
 { printW(); } 
#endif 
 panic("umap: invalid map for process ", proc_number(rp)); 
  } 
#endif 
 
  if (bytes <= 0 || (long)vir_addr + bytes < vir_addr) 
  { 
 { printW(); printf("umap(%d, %d, 0x%x, 0x%x) failed\n", proc_number(rp), 



 seg, vir_addr, bytes); } 
   return( (phys_bytes) 0); 
  } 
 
  vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ 
 
#if ((CHIP == INTEL) && !VIRT_MEM) || (CHIP == M68000) 
  if (seg != T) 
 seg = (vc < rp->p_map[D].mem_vir + rp->p_map[D].mem_len ? D : S); 
#else 
  if (seg != T) 
 seg = (vc < rp->p_map[S].mem_vir ? D : S); 
#endif 
  if (seg == S) /* Let's adjust the stack segment to (at most) 
   * the stack pointer. */ 
  { 
 if (vir_addr >= rp->p_reg.sp) 
  sp_click= vir_addr >> CLICK_SHIFT; 
 else /* This causes umap to fail ... */ 
  sp_click= rp->p_reg.sp >> CLICK_SHIFT; 
 if (sp_click < rp->p_map[S].mem_vir) 
 { 
  adjust= rp->p_map[S].mem_vir-sp_click; 
  rp->p_map[S].mem_vir -= adjust; 
  rp->p_map[S].mem_len += adjust; 
#if !SEGMENTED_MEMORY 
  rp->p_map[S].mem_phys -= adjust; 
#endif 
#if (CHIP == INTEL) 
  if (rp->p_map[D].mem_phys != rp->p_map[S].mem_phys || 
 rp->p_map[D].mem_vir + rp->p_map[D].mem_len > rp->p_map[S].mem_vir) 
  { 
#if DEBUG 
 { printW(); } 
#endif 
 panic("umap: invalid map for process ", proc_number(rp)); 
  } 
#endif 
 } 
  } 
 
  if((vir_addr>>CLICK_SHIFT) < rp->p_map[seg].mem_vir) 
  { 
 { printW(); printf("umap(%d, %d, 0x%x, 0x%x) failed\n", proc_number(rp), 
 seg, vir_addr, bytes); } 
 return( (phys_bytes) 0 ); 
  } 
 
   
if((vir_addr>>CLICK_SHIFT) >= rp->p_map[seg].mem_vir+ rp->p_map[seg].mem_len) 
   { 
  {printW(); printf("umap(%d, %d, 0x%x, 0x%x) failed\n", proc_number(rp), 
 seg, vir_addr, bytes); } 
 return( (phys_bytes) 0 ); 
  } 
  if (((vir_addr + bytes + CLICK_SHIFT-1) >> CLICK_SHIFT) > 
    rp->p_map[seg].mem_vir+ rp->p_map[seg].mem_len) 
  { 
 { printW(); printf("umap(%d, %d, 0x%x, 0x%x) failed\n", proc_number(rp), 
 seg, vir_addr, bytes); } 
 return( (phys_bytes) 0 ); 
  } 
 
#if (CHIP == INTEL) 
  seg_base = (phys_bytes) rp->p_map[seg].mem_phys; 
  seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ 
#endif 
  pa = (phys_bytes) vir_addr; 
#if (CHIP == INTEL) 
  return(seg_base + pa); 
#endif 
 
#if (CHIP != M68000) 
  pa -= rp->p_map[seg].mem_vir << CLICK_SHIFT; 
  return(seg_base + pa); 



#endif 
#if (CHIP == M68000) 
#if (SHADOWING == 0) 
  pa -= (phys_bytes)rp->p_map[seg].mem_vir << CLICK_SHIFT; 
  pa += (phys_bytes)rp->p_map[seg].mem_phys << CLICK_SHIFT; 
#else 
  if (rp->p_shadow && seg != T) { 
 pa -= (phys_bytes)rp->p_map[D].mem_phys << CLICK_SHIFT; 
 pa += (phys_bytes)rp->p_shadow << CLICK_SHIFT; 
  } 
#endif 
  return(pa); 
#endif 
} 
 
 
/*==========================================================================* 
 *    numap                              * 
 *==========================================================================*/ 
PUBLIC phys_bytes numap(proc_nr, vir_addr, bytes) 
int proc_nr;   /* process number to be mapped */ 
vir_bytes vir_addr;  /* virtual address in bytes within D seg */ 
vir_bytes bytes;  /* # of bytes required in segment  */ 
{ 
/* Do umap() starting from a process number instead of a pointer.  This 
 * function is used by device drivers, so they need not know about the 
 * process table.  To save time, there is no 'seg' parameter. The segment 
 * is always D. 
 */ 
 
  return(umap(proc_addr(proc_nr), D, vir_addr, bytes)); 
} 
 
 
#if (CHIP == INTEL) 
/*==========================================================================* 
 *    alloc_segments                             * 
 *==========================================================================*/ 
PUBLIC void alloc_segments(rp) 
register struct proc *rp; 
{ 
/* This is called only by do_newmap, but is broken out as a separate function 
 * because so much is hardware-dependent. 
 */ 
 
  phys_bytes code_bytes; 
  phys_bytes data_bytes; 
  int privilege; 
 
  if (protected_mode) { 
 data_bytes = (phys_bytes) (rp->p_map[S].mem_vir + rp->p_map[S].mem_len) 
              << CLICK_SHIFT; 
 if (rp->p_map[T].mem_len == 0) 
  code_bytes = data_bytes; /* common I&D, poor protect */ 
 else 
   code_bytes = ((phys_bytes) rp->p_map[T].mem_len+ 
   rp->p_map[T].mem_vir) << CLICK_SHIFT; 
 
 privilege = istaskp(rp) ? TASK_PRIVILEGE : USER_PRIVILEGE; 
 init_codeseg(&rp->p_ldt[CS_LDT_INDEX], 
       ((phys_bytes) rp->p_map[T].mem_phys) << CLICK_SHIFT,  
   code_bytes, privilege); 
 init_dataseg(&rp->p_ldt[DS_LDT_INDEX], 
       ((phys_bytes) rp->p_map[D].mem_phys) << CLICK_SHIFT,  
   data_bytes, privilege); 
 rp->p_reg.cs = (CS_LDT_INDEX * DESC_SIZE) | TI | privilege; 
#if _WORD_SIZE == 4 
 rp->p_reg.gs = 
 rp->p_reg.fs = 
#endif 
 rp->p_reg.ss = 
 rp->p_reg.es = 
 rp->p_reg.ds = (DS_LDT_INDEX*DESC_SIZE) | TI | privilege; 
  } else { 
 rp->p_reg.cs = click_to_hclick(rp->p_map[T].mem_phys); 



 rp->p_reg.ss = 
 rp->p_reg.es = 
 rp->p_reg.ds = click_to_hclick(rp->p_map[D].mem_phys); 
  } 
} 
#endif /* (CHIP == INTEL) */ 
 
 
 
#if (CHIP == INTEL) && VIRT_MEM 
 
/*===========================================================================* 
 *    do_adjmap                                *  
 *===========================================================================*/ 
PRIVATE int do_adjmap(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_adjmap().  Change the memory map for MM. */ 
 
  int caller;   /* where the map has to be stored */ 
  int k;   /* process whose map is to be loaded */ 
  vir_clicks data_size;  /* New size of the data segment */ 
  vir_bytes new_sp;  /* Location of the stack pointer */ 
  struct mem_map *map_ptr; /* virtual address of map inside caller (MM) */ 
   
  register struct proc *rp; 
  vir_clicks data_change, stack_change; 
  vir_clicks stack_click; 
 
#if DEBUG & 256 
 { printW(); printf("doing do_adjmap\n"); } 
#endif 
  /* Extract message parameters. */ 
  caller = m_ptr->m_source; 
  k = m_ptr->PROC1; 
  data_size= m_ptr->m1_i2; 
  new_sp= m_ptr->m1_i3; 
  map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
   
  if (!isokprocn(k)) 
   panic("bad proc in do_adjmap: ", m_ptr->PROC1); 
    
  rp = proc_addr(k);  /* ptr to entry of the map */ 
  if (data_size>rp->p_map[D].mem_len) 
   data_change= data_size - rp->p_map[D].mem_len; 
  else 
   data_change= 0; 
    
  stack_click= (new_sp >> CLICK_SHIFT); 
  if (stack_click >= rp->p_map[S].mem_vir+rp->p_map[S].mem_len) 
   return EFAULT;    /* Strange stack pointer */ 
 
  /* One click extra to avoid problems on click boundaries */ 
  stack_click--; 
   
  if (stack_click<rp->p_map[S].mem_vir) 
   stack_change= rp->p_map[S].mem_vir - stack_click; 
  else 
 stack_change= 0; 
 
  /* Let's check if the request memory is really there. */ 
  if (vm_not_alloc < data_change + stack_change) 
   return ENOMEM; 
 
  /* Let's check gaps etc */ 
  if (rp->p_map[D].mem_vir + rp->p_map[D].mem_len + data_change + 
   STACK_SAFETY_CLICKS + stack_change > rp->p_map[S].mem_vir) 
   return ENOMEM; 
 
  rp->p_map[D].mem_len += data_change; 
  rp->p_map[S].mem_vir -= stack_change; 
  rp->p_map[S].mem_len += stack_change; 
   
  vm_not_alloc -= data_change + stack_change; 
 



  do_getmap(m_ptr);  /* Use getmap code to report map to MM */ 
   
  return OK; 
} 
 
 
/*===========================================================================* 
 *    do_execmap              *  
 *===========================================================================*/ 
PRIVATE int do_execmap(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_execmap().  Remove old map and fetch new memory map from MM. */ 
 
  register struct proc *rp, *rsrc; 
  phys_bytes src_phys, dst_phys, pn; 
  vir_bytes vmm, vsys, vn; 
  int caller;   /* whose space has the new map (usually MM) */ 
  int k;   /* process whose map is to be loaded */ 
  int old_flags, i;  /* value of flags before modification */ 
  phys_bytes base_addr, top_addr; 
  struct mem_map *map_ptr; /* virtual address of map inside caller (MM) */ 
  int result; 
  struct mem_map new_map[NR_SEGS]; 
 
#if DEBUG & 256 
 { printW(); printf("doing do_execmap\n"); } 
#endif 
  /* Extract message parameters and copy new memory map from MM. */ 
  caller = m_ptr->m_source; 
  k = m_ptr->PROC1; 
  map_ptr = (struct mem_map *) m_ptr->MEM_PTR; 
  if (!isokprocn(k)) return(E_BAD_PROC); 
  rp = proc_addr(k);  /* ptr to entry of user getting new map */ 
  rsrc = proc_addr(caller); /* ptr to MM's proc entry */ 
   
  vn = NR_SEGS * sizeof(struct mem_map); 
  pn = vn; 
  vmm = (vir_bytes) map_ptr; /* careful about sign extension */ 
  vsys = (vir_bytes) new_map; /* again, careful about sign extension */ 
  if ( (src_phys = umap(rsrc, D, vmm, vn)) == 0) 
 panic("bad call to sys_newmap (src)", NO_NUM); 
  if ( (dst_phys = umap(proc_ptr, D, vsys, vn)) == 0) 
 panic("bad call to sys_newmap (dst)", NO_NUM); 
  phys_copy(src_phys, dst_phys, pn); 
   
  /* Is there enough physical memory ? */ 
  if (vm_not_alloc < new_map[T].mem_len + new_map[D].mem_len + 
   new_map[S].mem_len) 
   return ENOMEM; 
 
  /* Release old memory with do_unmap */ 
  result= do_unmap(m_ptr); 
  if (result != OK) 
   return result; 
    
  /* Copy new map */ 
  for (i= 0; i<NR_SEGS; i++) 
   rp->p_map[i]= new_map[i]; 
 
#if (CHIP == INTEL) 
  if (rp->p_map[D].mem_phys != rp->p_map[S].mem_phys) 
 panic("do_execmap: invalid map for process ", proc_number(rp)); 
#endif 
    
  base_addr= rp->p_map[T].mem_phys << CLICK_SHIFT; 
  top_addr= (rp->p_map[S].mem_phys+rp->p_map[S].mem_vir+ 
     rp->p_map[S].mem_len) << CLICK_SHIFT; 
#if DEBUG || 1 
  vm_check_unmapped(base_addr, top_addr); 
#endif 
  /* Allocate physical memory */ 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc -= %d + %d + %d + %d\n", rp->p_map[T].mem_len, 
  rp->p_map[D].mem_len, rp->p_map[S].mem_len, ((top_addr-base_addr + 



   VM_DIRSIZE-1) >> VM_DIRSHIFT)); } 
#endif 
  vm_not_alloc -= rp->p_map[T].mem_len + rp->p_map[D].mem_len + 
   rp->p_map[S].mem_len + ((top_addr-base_addr + VM_DIRSIZE-1) >> 
   VM_DIRSHIFT); 
  alloc_segments(rp); 
  old_flags = rp->p_flags; /* save the previous value of the flags */ 
  rp->p_flags &= ~NO_MAP; 
  if (old_flags != 0 && rp->p_flags == 0) lock_ready(rp); 
 
  return(OK); 
} 
 
/*===========================================================================* 
 *    do_unmap                                                 *  
 *===========================================================================*/ 
PRIVATE int do_unmap(m_ptr) 
message *m_ptr;   /* pointer to request message */ 
{ 
/* Handle sys_unmap(). */ 
 
  register struct proc *rp; 
  phys_bytes base, top, size; 
  int k;   /* process whose map is to be loaded */ 
 
#if DEBUG & 256 
 { printW(); printf("doing do_unmap\n"); } 
#endif 
  k = m_ptr->PROC1; 
  if (!isokprocn(k)) return(E_BAD_PROC); 
  rp = proc_addr(k);  /* ptr to entry of user getting new map */ 
   
  base= rp->p_map[T].mem_phys << CLICK_SHIFT; 
  top= (rp->p_map[S].mem_phys + rp->p_map[T].mem_vir + 
     rp->p_map[S].mem_len) << CLICK_SHIFT; 
  if (top < base) 
   panic("Stack not above text", NO_NUM); 
  size= top-base; 
  vm_unmap(base, size, rp->p_map[T].mem_len + rp->p_map[D].mem_len + 
   rp->p_map[S].mem_len); 
#if DEBUG || 1 
  vm_check_unmapped(base, top); 
#endif 
 
  return(OK); 
} 
#endif /* (CHIP == INTEL) && VIRT_MEM */ 
 
 
 
 



+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vm386.c 
Virtual memory routines for the 386 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
#include "kernel.h" 
#include <signal.h> 
#include <minix/com.h> 
#include "assert.h" 
#include "glo.h" 
#include "proc.h" 
#include "vm386.h" 
 
PRIVATE phys_bytes rlmem_table_base, rlmem_table_size; 
PRIVATE phys_clicks free_mem, hi_mem; 
/* PRIVATE */ phys_bytes page_base; 
PRIVATE phys_bytes virt_base, paging_base; 
 
FORWARD _PROTOTYPE( void rlmem_init, (void)    ); 
FORWARD _PROTOTYPE( int rlmem_free, (phys_bytes page_addr)  ); 
FORWARD _PROTOTYPE( phys_bytes rlmem_getpage, (void)   ); 
FORWARD _PROTOTYPE( void map_dir, (phys_bytes vm_addr, 
   phys_bytes real_addr)    ); 
FORWARD _PROTOTYPE( void map_page, (phys_bytes vm_addr, 
   phys_bytes real_addr)    ); 
#if DEBUG 
FORWARD _PROTOTYPE( void dump_mem, (void)    ); 
#endif 
FORWARD _PROTOTYPE( int check_user_fault, (phys_bytes addr)  ); 
 
#ifdef phys_zero_scan 
FORWARD _PROTOTYPE (phys_bytes my_scan, (phys_bytes addr)); 
#endif 
 
#define VM_SIZE_CLICKS 0x80000  /* 2G in clicks */ 
 
/*============================================================================================= * 
*     vm_init                      * 
*==============================================================================================*/ 
 
PUBLIC void vm_init() 
{ 
 phys_bytes hi_addr, dir_addr, dir_pointer, page_addr; 
  
 rlmem_init(); 
  
 page_base= rlmem_getpage(); 
 phys_clr_page(page_base); /* No page directories */ 
 
 hi_addr= hi_mem << CLICK_SHIFT; 
 for (dir_addr= 0; dir_addr<hi_addr; dir_addr += 4*1024*1024) 
 { 
  dir_pointer= rlmem_getpage(); 
  phys_clr_page(dir_pointer); /* No pages */ 
  map_dir(dir_addr, dir_pointer); 
 } 
 for (page_addr= 0; page_addr<hi_addr; page_addr += CLICK_SIZE) 
  map_page(page_addr, page_addr); 
 
#if DEBUG 
 { printW(); printf("enabling paging\r\n"); } 
#endif 
  
 vm_enable(page_base); /* This is what it's all about */ 
  
#if DEBUG 
 { printW(); printf("paging enabled\r\n"); } 
#endif 
 
 /* calculate virt_mem */ 
 virt_base= (hi_mem + 0x1000000) & ~0x3fffff; 
 paging_base= virt_base; 



 
 chunk_add (virt_base >> CLICK_SHIFT, VM_SIZE_CLICKS, MEM_LOW); 
 /* Normal... memory */ 
 
 vm_not_alloc= free_mem; /* Reset vm_not_alloc to memory now available */ 
} 
 
/*============================================================================================= * 
*     rlmem_init                      * 
*==============================================================================================*/ 
 
 
PRIVATE void rlmem_init() 
{ 
 phys_clicks rlmem_table_clicks, chk_size, chk_base, click_ptr; 
 phys_bytes phys_ptr; 
 int i; 
  
 if (CLICK_SIZE != 4096) 
  panic ("Wrong click size", CLICK_SIZE); 
  /* It is essencial that CLICK_SIZE is equal to the size of 
   * one page */ 
 
 hi_mem= 0; 
 for (i=0; i<CHUNK_NR; i++) 
 { 
  if (!chunk_table[i].chk_size) 
   break; 
  if (chunk_table[i].chk_base + chunk_table[i].chk_size > 
   hi_mem) 
   hi_mem= chunk_table[i].chk_base +  
    chunk_table[i].chk_size; 
 } 
#if DEBUG || 1 
 { printW(); printf("hi_mem= %d clicks\r\n", hi_mem); } 
#endif 
  
 rlmem_table_clicks= (hi_mem >> CLICK_SHIFT)+1;  
#if DEBUG || 1 
 { printW(); printf("rlmem_table_clicks= %d clicks\r\n", rlmem_table_clicks); } 
#endif 
 /* At least one non allocated entry in the table */ 
 
 /* Find a place for the table */ 
 chk_base= 0; 
 for (i=0; i<CHUNK_NR; i++) 
 { 
#if DEBUG || 1 
 { printW(); printf("chunk_table[%d]: size= %d, base= %d, mode= %d\r\n", 
  i, chunk_table[i].chk_size, chunk_table[i].chk_base, 
  chunk_table[i].chk_mode); } 
#endif 
  chk_size= chunk_table[i].chk_size; 
  if (!chk_size) 
   break; 
  if (chk_size < rlmem_table_clicks) 
   continue; 
  if (chunk_table[i].chk_mode != MEM_LOW && 
   chunk_table[i].chk_mode != MEM_EXT) 
   continue; 
  chk_base= chunk_table[i].chk_base; 
  chunk_del(chk_base, rlmem_table_clicks); 
  break; 
 } 
 if (!chk_base) 
  panic("Unable to find a place for the memory allocation table", 
   NO_NUM); 
    
 rlmem_table_base= chk_base << CLICK_SHIFT; 
 rlmem_table_size= rlmem_table_clicks << CLICK_SHIFT; 
 for (phys_ptr= rlmem_table_base; phys_ptr<rlmem_table_base+ 
  rlmem_table_size; phys_ptr++) 
 { 
  put_phys_byte(phys_ptr, 1); /* Click is allocated */ 
 } 



#if DEBUG 
 { printW(); dump_mem(); }  
#endif 
 
 free_mem= 0; 
 /* Free all available mem */ 
 while (chunk_table[0].chk_size) 
 { 
  chk_base= chunk_table[0].chk_base; 
  chk_size= chunk_table[0].chk_size; 
  if (chunk_table[0].chk_mode == MEM_LOW || 
   chunk_table[0].chk_mode == MEM_EXT) 
  { 
   for (click_ptr= chk_base; click_ptr<chk_base+chk_size; 
    click_ptr++) 
    rlmem_free(click_ptr << CLICK_SHIFT); 
  } 
#if DEBUG 
 else { printf("Chunk at %d clicks of size %d clicks and mode %d not used\r\n", 
  chk_base, chk_size, chunk_table[0].chk_mode); } 
#endif 
  chunk_del(chk_base, chk_size); 
 } 
#if DEBUG 
 { printW(); dump_mem(); } 
#endif 
#if DEBUG 
 { printW(); printf("Total free pages: %d\r\n", free_mem); } 
#endif 
 vm_not_alloc= free_mem; 
} 
 
/*============================================================================================= * 
*     rlmem_free                     * 
*==============================================================================================*/ 
 
PRIVATE int rlmem_free(page_addr) 
phys_bytes page_addr; 
{ 
 phys_bytes entry_addr; 
 int link_count; 
  
 if (page_addr & (CLICK_SIZE-1)) 
  panic("rlmem_free on strange address: ", page_addr); 
   
 entry_addr= rlmem_table_base + (page_addr >> CLICK_SHIFT); 
 link_count= get_phys_byte(entry_addr); 
 
 if (!link_count) 
  panic("freeing unuse rlmem page", NO_NUM); 
 
 link_count--; 
 if (!link_count) 
  free_mem++; 
 put_phys_byte(entry_addr, link_count); 
 return link_count; 
} 
 
/*============================================================================================= * 
*                    rlmem_getpage                     * 
*==============================================================================================*/ 
 
PRIVATE phys_bytes rlmem_getpage() 
{ 
 phys_bytes phys_ptr; 
  
#if DEBUG & 256 
 { printW(); printf("in rlmem_getpage()\r\n"); dump_mem(); } 
#endif 
 
 if (!free_mem) 
  panic("Out of pages", NO_NUM); 
 free_mem--; 
 
 phys_ptr= phys_zero_scan(rlmem_table_base, rlmem_table_size); 



 
#if DEBUG & 256 
 { printW(); printf("phys_ptr= 0x%x, rlmem_table_base= 0x%x, phys_zero_scan= 0x%x\r\n", 
  phys_ptr, rlmem_table_base, (phys_zero_scan)(rlmem_table_base, 
   rlmem_table_size)); } 
#endif 
assert (!get_phys_byte(phys_ptr)); 
 
 put_phys_byte(phys_ptr, 1); 
#if DEBUG & 256 
 { printW(); dump_mem(); } 
#endif 
 return (phys_ptr-rlmem_table_base) << CLICK_SHIFT; 
} 
 
/*============================================================================================= * 
*     map_dir                      * 
*==============================================================================================*/ 
  
PRIVATE void map_dir(vm_addr, real_addr) 
phys_bytes vm_addr; 
phys_bytes real_addr; 
{ 
 u32_t dir_ent; 
 phys_bytes ent_addr; 
  
#if DEBUG & 256 
 { printW(); printf("map_dir(0x%x, 0x%x) called\r\n", vm_addr, real_addr); } 
#endif 
 
 if (vm_addr & VM_DIRMASK) 
  panic("Invalid directory base: ", vm_addr); 
 if (real_addr & VM_PAGEMASK) 
  panic("Invalid directory addr: ", real_addr); 
 
 dir_ent= real_addr | VM_INMEM_N_PRESENT | VM_WRITE | VM_USER; 
 ent_addr= page_base+ vm_addr_to_dir(vm_addr)*4; 
 
 put_phys_dword(ent_addr, dir_ent); 
} 
 
/*============================================================================================= * 
*     map_page                      * 
*==============================================================================================*/ 
 
PRIVATE void map_page(vm_addr, real_addr) 
phys_bytes vm_addr; 
phys_bytes real_addr; 
{ 
 u32_t dir_ent, page_ent; 
 phys_bytes ent_addr; 
  
#if DEBUG & 256 
 { printW(); printf("map_page(0x%x, 0x%x) called\r\n", vm_addr, real_addr); } 
#endif 
 
 if (vm_addr & VM_PAGEMASK) 
  panic("Invalid page base: ", vm_addr); 
 if (real_addr & VM_PAGEMASK) 
  panic("Invalid page addr: ", real_addr); 
 
 ent_addr= page_base+ vm_addr_to_dir(vm_addr)*4; 
 dir_ent= get_phys_dword(ent_addr); 
 
 if ((dir_ent & VM_INMEM_N_PRESENT) != VM_INMEM_N_PRESENT) 
  panic("Page directory not present for page: ", vm_addr); 
 
 ent_addr= (dir_ent & VM_ADDRMASK) + vm_addr_to_page(vm_addr)*4; 
 
 page_ent= real_addr | VM_INMEM_N_PRESENT | VM_WRITE | VM_USER; 
 put_phys_dword(ent_addr, page_ent); 
} 
 
 
 



/*============================================================================================= * 
*     vm_page_fault                     * 
*==============================================================================================*/ 
 
 
PUBLIC void vm_page_fault(err, addr) 
u32_t err; 
phys_bytes addr; 
{ 
 phys_bytes dir_ent_addr, dir_addr, page_ent_addr, page_addr; 
 u32_t dir_ent, page_ent; 
 phys_clicks page_no; 
 int linkC; 
  
#if DEBUG & 256 
 { printW(); printf("process %d got a page fault at 0x%x due to a %s.\n", 
 proc_number(proc_ptr), addr, (err & 1) ? "protection violation" : 
 "not present page"); 
 printf("The process was running in %s mode and issuing a %s.\n", 
 (err & 4) ? "user" : "supervisor", (err & 2) ? "write" : "read"); } 
 printf("pc= 0x%x\n", proc_ptr->p_reg.pc); 
#endif 
assert (addr >= paging_base); 
 
 /* First we gather as much information as possible */ 
 dir_ent_addr= page_base + vm_addr_to_dir(addr)*4; 
 dir_ent= get_phys_dword(dir_ent_addr); 
 if (dir_ent & VM_PRESENT) 
 { 
  page_ent_addr= (dir_ent & VM_ADDRMASK) + 
   vm_addr_to_page(addr)*4; 
  page_ent= get_phys_dword(page_ent_addr); 
 } 
 
 if (proc_number(proc_ptr) < 0) 
 { 
#if DEBUG 
 if (vm_cp_mess) 
 { printW(); printf("Page fault in vm_cp_mess (vm_cp_mess= %d)\n", vm_cp_mess); } 
#endif 
  if (!vm_cp_mess && proc_number(proc_ptr) != SYSTASK && 
   proc_number(proc_ptr) != TTY && 
   proc_number(proc_ptr) != MEM) 
   panic("Kernel task causes page fault", 
    proc_number(proc_ptr)); 
  /* No further checks should be necessary */ 
 } 
 else if(!vm_cp_mess) /* User process causing page fault */ 
 { 
  if (check_user_fault(addr) != OK) 
   return; 
 } 
 
  if (!dir_ent) 
  { 
#if DEBUG & 256 
 { printW(); printf("Page directory not present (allocating one)\n"); } 
#endif 
  dir_addr= rlmem_getpage(); 
  phys_clr_page(dir_addr); /* No pages */ 
  map_dir(addr & ~VM_DIRMASK, dir_addr); 
#if DEBUG & 256 
 { printW(); printf("Allocation of directory done\n"); } 
#endif 
  vm_reload(); 
  return; 
 } 
 if ((dir_ent & VM_INMEM_N_PRESENT) != VM_INMEM_N_PRESENT) 
 { 
  printf("Strange dir ent: 0x%x\n", dir_ent); 
  panic("Inconsistent paging system", NO_NUM); 
 } 
  if (!page_ent) 
  { 
#if DEBUG & 256 



 { printW(); printf("Page not present (allocating one)\n"); } 
#endif 
  page_addr= rlmem_getpage(); 
  phys_clr_page(page_addr); /* Empty page*/ 
  map_page(addr & VM_ADDRMASK, page_addr); 
#if DEBUG & 256 
 { printW(); printf("Allocation of page done\n"); } 
#endif 
  vm_reload(); 
  return; 
 } 
 if (!(page_ent & VM_PRESENT)) /* Copy on access */ 
 { 
assert ((page_ent & (VM_INMEM|VM_WRITE)) == (VM_INMEM|VM_WRITE)); 
  page_no= page_ent >> VM_PAGESHIFT; 
  linkC= get_phys_byte(rlmem_table_base+page_no); 
  if (linkC != 1) 
  { 
   page_addr= rlmem_getpage(); 
   phys_copy(page_ent & VM_ADDRMASK, page_addr, 
    VM_PAGESIZE); 
   page_ent= (page_ent & VM_PAGEMASK) | page_addr; 
   put_phys_byte(rlmem_table_base+page_no, linkC-1); 
  } 
  page_ent |= VM_PRESENT; 
  put_phys_dword(page_ent_addr, page_ent); 
  vm_reload(); 
  return; 
 } 
 printf("Strange page ent: 0x%x\n", page_ent); 
 panic("Inconsistent paging system", NO_NUM); 
} 
 
#if DEBUG 
 
/*============================================================================================= * 
*     dump_mem                     * 
*==============================================================================================*/ 
 
PRIVATE void dump_mem() 
{ 
 int i; 
 phys_bytes phys_ptr; 
 
 printf("\r\nDumping rlmem_table\r\n"); 
 for (i=0, phys_ptr= rlmem_table_base; i<256; i++, phys_ptr++) 
  printf("%d ", get_phys_byte(phys_ptr)); 
 printf("\r\n"); 
} 
#endif 
 
/*============================================================================================= * 
*     vm_unmap                     * 
*==============================================================================================*/ 
 
PUBLIC void vm_unmap(addr, vm_size, alloc_size) 
phys_bytes addr; 
phys_bytes vm_size; 
phys_clicks alloc_size; 
{ 
 phys_bytes top; 
 phys_bytes dir_ent_addr, page_ent_addr; 
 u32_t dir_ent, page_ent; 
 int i, link_count; 
  
#if DEBUG & 256 
 { printW(); printf("freeing 0x%x at 0x%x\r\n", vm_size, addr); } 
#endif 
assert(!(addr & VM_DIRMASK)); /* aligned on a 4M boundary */ 
 
 top= addr+vm_size; 
 while(addr<top) 
 { 
  dir_ent_addr= page_base+vm_addr_to_dir(addr)*4; 
  dir_ent= get_phys_dword(dir_ent_addr); 



  if (!dir_ent) /* not mapped */ 
  { 
   addr += VM_DIRSIZE; 
   continue; 
  } 
  if ((dir_ent & VM_INMEM_N_PRESENT) != (VM_INMEM_N_PRESENT)) 
   panic("Dir not present", NO_NUM); 
 
  put_phys_dword(dir_ent_addr, (u32_t)0); 
  page_ent_addr= dir_ent & VM_ADDRMASK; 
  for (i= 0; i<1024; i++, page_ent_addr += 4) 
  { 
   page_ent= get_phys_dword(page_ent_addr); 
   if (!page_ent) 
    continue; 
   if (!(page_ent & VM_INMEM)) 
    panic("Page not in memory", NO_NUM); 
   link_count= rlmem_free(page_ent & VM_ADDRMASK); 
   if (link_count && !(page_ent & VM_WRITE)) 
   /* Compansating for read only pages */ 
    vm_not_alloc--; 
  } 
  rlmem_free(dir_ent & VM_ADDRMASK); 
  addr += VM_DIRSIZE; 
 } 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc += %d + %d\n", alloc_size, 
  ((vm_size+VM_DIRSIZE-1) >> VM_DIRSHIFT)); } 
#endif 
 vm_not_alloc += alloc_size + ((vm_size+VM_DIRSIZE-1) >> VM_DIRSHIFT); 
 vm_u_reload(); 
} 
 
 
/*============================================================================================= * 
*     vm_fork                      * 
*==============================================================================================*/ 
 
PUBLIC void vm_fork(parent, c_base_clicks) 
struct proc *parent; 
phys_clicks c_base_clicks; 
{ 
 int dirs; /* Number of directories */ 
 phys_bytes p_base, p_data_base, p_dir_ent_addr, p_page_ent_addr; 
 phys_bytes c_base, c_page_ent_addr, c_dir_ent_addr; 
 phys_bytes vir_addr; 
 phys_clicks p_base_clicks, p_top_clicks, page_no; 
 u32_t p_dir_ent, p_page_ent; 
 int i, j, linkC; 
 int traced; 
 
#if DEBUG & 256 
 { printW(); printf("In vm_fork()\n"); } 
#endif 
 p_base_clicks= parent->p_map[T].mem_phys; 
 p_base= p_base_clicks << CLICK_SHIFT; 
 p_data_base= (parent->p_map[D].mem_phys) << CLICK_SHIFT; 
 p_top_clicks= parent->p_map[S].mem_phys + parent->p_map[S].mem_vir + 
      parent->p_map[S].mem_len; 
   
assert (!(p_base & VM_DIRMASK)); 
assert (p_base >= paging_base); 
 dirs= ((p_top_clicks-p_base_clicks-1) >> (VM_DIRSHIFT-CLICK_SHIFT))+1; 
 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc -= %d\n", dirs); } 
#endif 
 vm_not_alloc -= dirs; 
 
 c_base= c_base_clicks << CLICK_SHIFT; 
assert (!(c_base & VM_DIRMASK)); 
assert (c_base >= paging_base); 
  
 p_dir_ent_addr= page_base + vm_addr_to_dir(p_base)*4; 
 c_dir_ent_addr= page_base + vm_addr_to_dir(c_base)*4; 



 
 traced= !!(parent->p_status & P_ST_TRACED); 
  
 for (i= 0; i<dirs; i++, p_dir_ent_addr += 4, c_dir_ent_addr += 4) 
 { 
if (get_phys_dword(c_dir_ent_addr)) 
 { 
 printf("c_dir_ent_addr= 0x%x, get_phys_dword(...)= 0x%x\n", 
  c_dir_ent_addr, get_phys_dword(c_dir_ent_addr)); 
assert (!get_phys_dword(c_dir_ent_addr)); 
 } 
  p_dir_ent= get_phys_dword(p_dir_ent_addr); 
  if (!p_dir_ent) 
  { 
#if DEBUG || 1 
 { printW(); printf("p_dir %d is empty\n", i); } 
#endif 
   continue; 
  } 
assert ((p_dir_ent & VM_INMEM_N_PRESENT) == VM_INMEM_N_PRESENT); 
  p_page_ent_addr= p_dir_ent & VM_ADDRMASK; 
  for (j= 0; j<1024; j++, p_page_ent_addr += 4) 
  { 
   p_page_ent= get_phys_dword(p_page_ent_addr); 
   if (!p_page_ent) 
   { 
#if DEBUG & 256 
 { printW(); printf("p_page %d of dir %d is empty\n", j, i); } 
#endif 
    continue; 
   } 
assert(p_page_ent & VM_INMEM); 
   if ((p_page_ent & VM_IM_RW_PRES) == VM_IM_RW_PRES) 
       /* ordinary page */ 
   { 
    vir_addr= p_base + (i << VM_DIRSHIFT) + 
     (j<<VM_PAGESHIFT); 
    if (!traced && vir_addr<p_data_base) 
     /* Text page */ 
    { 
#if DEBUG & 256 
 { printW(); printf("i= %d, j= %d, page will be read only", i, j); } 
#endif 
     p_page_ent &= ~VM_WRITE; 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc++\n"); } 
#endif 
     vm_not_alloc++; 
    } 
    else /* Data page */ 
    { 
#if DEBUG & 256 
 { printW(); printf("i= %d, j= %d, page will be unmapped\n", i, j); } 
#endif 
     p_page_ent &= ~VM_PRESENT; 
    } 
    page_no= p_page_ent >> VM_PAGESHIFT; 
assert(get_phys_byte(rlmem_table_base+page_no) == 1); 
    put_phys_byte(rlmem_table_base+page_no, 2); 
    put_phys_dword(p_page_ent_addr, p_page_ent); 
    continue; 
   } 
   /* Check if page is copy on access or read only */ 
   /* It can't be both and INMEM has allready been  
    * checked */ 
assert(p_page_ent & (VM_WRITE | VM_PRESENT)); 
 
#if DEBUG & 256 
 { printW(); printf("i= %d, j= %d, page is read only or unmapped\n", i, j); } 
#endif 
   if (p_page_ent & VM_PRESENT) /* Read only page */ 
   { 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc++\n"); } 
#endif 



    vm_not_alloc++; 
   } 
   page_no= p_page_ent >> VM_PAGESHIFT; 
   linkC= get_phys_byte(rlmem_table_base+page_no); 
   put_phys_byte(rlmem_table_base+page_no, linkC+1); 
  } 
  /* Allocate a new page dir, and copy dir */ 
  c_page_ent_addr= rlmem_getpage(); 
  phys_copy(p_dir_ent & VM_ADDRMASK, c_page_ent_addr, 
   VM_PAGESIZE); 
 
  /* Map dir */ 
  map_dir(c_base+ (i<<VM_DIRSHIFT), c_page_ent_addr); 
 } 
#if DEBUG & 256 
 { printW(); printf("vm_fork() done\n"); } 
#endif 
 vm_u_reload(); 
} 
 
/*============================================================================================= * 
*                   vm_map_server                     * 
*==============================================================================================*/ 
 
 
PUBLIC phys_clicks vm_map_server(text_base, text_clicks, data_clicks, 
 bss_clicks, heap_clicks) 
phys_clicks text_base; 
phys_clicks text_clicks; 
phys_clicks data_clicks; 
phys_clicks bss_clicks; 
phys_clicks heap_clicks; 
{ 
 phys_bytes vm_base; 
 phys_bytes bss_base, dir_base; 
 phys_clicks vm_base_clicks, tot_clicks; 
 int i; 
 
 vm_base= virt_base; 
 tot_clicks= text_clicks + data_clicks + bss_clicks + heap_clicks; 
 vm_not_alloc -= bss_clicks; /* text and data segment are part of 
      * the loaded image */ 
 for (i= 0; i<tot_clicks; i+= (VM_DIRSIZE/CLICK_SIZE)) 
 { 
  dir_base= rlmem_getpage(); 
  vm_not_alloc--; 
  phys_clr_page(dir_base); 
  map_dir(vm_base+ (i << CLICK_SHIFT), dir_base); 
 } 
   
 for (i= 0; i<text_clicks+data_clicks; i++) 
 { 
  map_page(virt_base, text_base << CLICK_SHIFT); 
  text_base++; 
  virt_base += VM_PAGESIZE; 
 } 
 for (i= 0; i<bss_clicks; i++) 
 { 
  bss_base= rlmem_getpage(); 
  phys_clr_page(bss_base); 
  map_page(virt_base, bss_base); 
  virt_base += VM_PAGESIZE; 
 } 
 virt_base += heap_clicks << CLICK_SHIFT; 
 
 /* Calculate new virt_base */ 
 virt_base= (virt_base + 0x400000) & ~0x3fffff; 
/* paging_base= virt_base; */ 
 vm_base_clicks= vm_base >> CLICK_SHIFT; 
 chunk_del(vm_base_clicks, (virt_base >> CLICK_SHIFT)-vm_base_clicks); 
 vm_u_reload(); 
 return vm_base_clicks; 
} 
 
 



/*============================================================================================= * 
*                                   vm_check_unmapped                     * 
*==============================================================================================*/ 
 
 
PUBLIC void vm_check_unmapped(base, top) 
phys_bytes base; 
phys_bytes top; 
{ 
 phys_bytes ptr, dir_ent_addr; 
 u32_t dir_ent; 
 
assert(!(base & VM_DIRMASK)); /* aligned on a 4M boundary */ 
  
 for (ptr= base; ptr<top; ptr += VM_DIRSIZE) 
 { 
  dir_ent_addr= page_base+vm_addr_to_dir(ptr)*4; 
  dir_ent= get_phys_dword(dir_ent_addr); 
#if DEBUG || 1 
 if (dir_ent) 
 { 
  printW(); printf("check_unmapped failed, base= 0x%x, top= 0x%x, ptr= 0x%x, dir_ent_addr= 0x%x, dir_ent= 0x%x\n", 
   base, top, ptr, dir_ent_addr, dir_ent); 
 } 
#endif 
assert (!dir_ent); /* not mapped */ 
 } 
} 
 
/*============================================================================================= * 
*     vm_dump                      * 
*==============================================================================================*/ 
 
PUBLIC void vm_dump() 
{ 
 printf("\r\nvm_dump:\r\n\r\n"); 
 printf("free memory pages: %d (= %dK), not reserved mem: %d (= %dK)\r\n", 
  free_mem, ((free_mem << CLICK_SHIFT) + 512) >> 10, 
  vm_not_alloc, ((vm_not_alloc << CLICK_SHIFT) + 512) >> 10); 
} 
 
/*============================================================================================= * 
*     check_user_fault                     * 
*==============================================================================================*/ 
 
PRIVATE int check_user_fault(addr) 
phys_bytes addr; 
{ 
 vir_bytes sp; 
 phys_clicks sp_click, delta_clicks; 
 phys_bytes data_base; 
  
 data_base= (proc_ptr->p_map[D].mem_phys) << CLICK_SHIFT; 
 if (addr<data_base) /* Text segment */ 
 { 
#if DEBUG || 1 
 { printW(); printf("Page fault in Text segment at 0x%x\n", addr); } 
#endif 
  if (addr<(proc_ptr->p_map[T].mem_phys +  
   proc_ptr->p_map[T].mem_vir) << CLICK_SHIFT) 
  { 
   cause_sig(proc_number(proc_ptr), SIGSEGV); 
   return ERROR; 
  } 
assert (addr < ((proc_ptr->p_map[T].mem_phys+proc_ptr->p_map[T].mem_vir + 
    proc_ptr->p_map[T].mem_len) << CLICK_SHIFT)); 
 } 
 else if (addr < ((proc_ptr->p_map[D].mem_phys +  
  proc_ptr->p_map[D].mem_vir + proc_ptr->p_map[D].mem_len)  
     << CLICK_SHIFT)) /* Data segment */ 
 { 
#if DEBUG & 256 
 { printW(); printf("Page fault in Data segment at 0x%x\n", addr); } 
#endif 
  if (addr<proc_ptr->p_map[D].mem_phys +  



    proc_ptr->p_map[D].mem_vir << CLICK_SHIFT) 
  { 
   cause_sig(proc_number(proc_ptr), SIGSEGV); 
   return ERROR; 
  } 
 } 
 else if (addr >= ((proc_ptr->p_map[S].mem_phys +  
    proc_ptr->p_map[S].mem_vir) << CLICK_SHIFT)) 
       /* Stack segment */ 
 { 
#if DEBUG & 256 
 { printW(); printf("Page fault in Stack segment\n"); } 
#endif 
assert (addr < ((proc_ptr->p_map[S].mem_phys+ 
 proc_ptr->p_map[S].mem_vir + proc_ptr->p_map[S].mem_len) << 
        CLICK_SHIFT)); 
 } 
 else      /* Growing stack */ 
 { 
#if DEBUG 
 { printW(); printf("Page fault in Heap segment\n"); } 
#endif 
  sp= proc_ptr->p_reg.sp; 
  sp_click= (sp >> CLICK_SHIFT)-1; 
  /* One click extra to avoid problems with pushad */ 
  if (sp_click < proc_ptr->p_map[S].mem_vir) 
  { /* Growing stack */ 
   if (sp_click < proc_ptr->p_map[D].mem_vir + 
    proc_ptr->p_map[D].mem_len + 
    STACK_SAFETY_CLICKS) 
   { 
#if DEBUG 
 { printW(); printf("calling cause_sig\n"); } 
#endif 
    cause_sig(proc_number(proc_ptr), SIGSTKFLT); 
    return ERROR; 
   } 
   delta_clicks= proc_ptr->p_map[S].mem_vir - sp_click; 
   if (vm_not_alloc < delta_clicks) 
   { 
    if (proc_number(proc_ptr) <= INIT_PROC_NR) 
    { /* Let the OS procede */ 
     printf("Warning: allocating memory for %d but out of memory\n", 
proc_number(proc_ptr)); 
    } 
    else 
    { 
     cause_sig(proc_number(proc_ptr), 
      SIGSTKFLT); 
     return ERROR; 
    } 
   } 
   proc_ptr->p_map[S].mem_len += delta_clicks; 
   proc_ptr->p_map[S].mem_vir -= delta_clicks; 
assert(proc_ptr->p_map[S].mem_vir == sp_click); 
#if DEBUG & 256 
 { printW(); printf("vm_not_alloc -= %d\n", delta_clicks); } 
#endif 
   vm_not_alloc -= delta_clicks; 
  } 
  /* recheck page fault */ 
  if (addr >= ((proc_ptr->p_map[S].mem_phys +  
    proc_ptr->p_map[S].mem_vir) << CLICK_SHIFT)) 
    /* Stack segment */ 
  { 
#if DEBUG & 256 
 { printW(); printf("Page fault in enlarged Stack segment\n"); } 
#endif 
assert (addr < ((proc_ptr->p_map[S].mem_phys+proc_ptr->p_map[S].mem_vir+ 
    proc_ptr->p_map[S].mem_len) << CLICK_SHIFT)); 
  } 
  else /* Signal process */ 
  { 
#if DEBUG 
  { printW(); printf("calling cause_sig for %d, addr= 0x%x pc= 0x%x\n", 



 proc_number(proc_ptr), addr, proc_ptr->p_reg.pc); } 
#endif 
   cause_sig(proc_number(proc_ptr), SIGSEGV); 
   return ERROR; 
  } 
 } 
 return OK; 
} 



 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vm386.s 
This file contains assembler routines for the 386 virtual memory management 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
#include <minix/config.h> 
#include <minix/const.h> 
#include "protect.h" 
#include "const.h" 
 
#define CR0_PG   0x80000000 
 
! Sections 
.sect .text; .sect .rom; .sect .data; .sect .bss 
 
! Exported routines 
.sect .text 
.define _put_phys_byte 
.define _get_phys_byte 
.define _put_phys_dword 
.define _get_phys_dword 
.define _phys_zero_scan 
.define _vm_enable 
.define _vm_reload 
.define _vm_u_reload 
.define _phys_clr_page 
 
.sect .text 
 
! void put_phys_byte (phys_bytes phys_addr, int byte); 
 
_put_phys_byte: 
 push ebx 
 push es 
 mov ax,FLAT_DS_SELECTOR 
 mov es, ax 
 mov eax, 4+12(sp)  ! byte 
 mov ebx, 0+12(sp)  ! phys_addr 
 eseg 
 movb (ebx), al 
 pop es 
 pop ebx 
 ret 
 
! int get_phys_byte (phys_bytes phys_addr); 
 
_get_phys_byte: 
 push ebx 
 push es 
 mov ax, FLAT_DS_SELECTOR 
 mov  es, ax 
 mov ebx, 0+12(sp)  ! phys_addr 
 eseg 
 movzxb eax, (ebx) 
 pop es 
 pop ebx 
 ret 
  
! void put_phys_dword (phys_bytes phys_addr, u32_t dword); 
 
_put_phys_dword: 
 push ebx 
 push es 
 mov ax,FLAT_DS_SELECTOR 
 mov es, ax 
 mov eax, 4+12(sp)  ! dword 
 mov ebx, 0+12(sp)  ! phys_addr 
 eseg 
 mov (ebx), eax 
 pop es 
 pop ebx 



 ret 
 
! u32_t get_phys_dword (phys_bytes phys_addr); 
 
_get_phys_dword: 
 push ebx 
 push es 
 mov ax, FLAT_DS_SELECTOR 
 mov  es, ax 
 mov ebx, 0+12(sp)  ! phys_addr 
 eseg 
 mov eax, (ebx) 
 pop es 
 pop ebx 
 ret 
  
! phys_bytes phys_zero_scan (phys_bytes table_base, phys_bytes table_size); 
 
_phys_zero_scan: 
 push edi 
 push ecx 
 push es 
 mov edi, 0+16(sp)   ! table_base 
 mov ecx, 4+16(sp)   ! table_size 
 mov ax, FLAT_DS_SELECTOR 
 mov es, ax 
 movb al, 0 
 cld   !clear direction flag 
 repne 
 scasb   ! Search 0 byte in [ES:EDI] 
 mov eax, edi 
 dec eax 
 pop es 
 pop ecx 
 pop edi 
 ret 
 
! void vm_enable(phys_bytes page_base) 
 
_vm_enable: 
 mov eax, 0+4(sp) ! page_base 
 mov cr3, eax 
  
 mov eax,cr0 
 or eax,CR0_PG 
 mov cr0,eax 
 ret 
 
! void vm_reload(void) 
 
_vm_reload: 
 mov eax, cr3 
 mov cr3, eax 
 ret 
 
_vm_u_reload: 
 int VMRELOAD_VECTOR 
 ret 
  
! void phys_clr_page (phys_bytes addr); 
 
_phys_clr_page: 
 push edi 
 push ecx 
 push es 
 mov ax, FLAT_DS_SELECTOR 
 mov  es, ax 
 mov edi, 0+16(sp)  ! addr 
 mov eax, 0 
 mov ecx, CLICK_SIZE/4 
 cld 
 rep 
 stos 
 pop es 
 pop ecx 



 pop edi 
 ret 
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