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      ABSTRACT 
 

 

Most of the signals in practice are time-domain signals in their raw format. Time-

amplitude representation is not always the best representation of the signal for most 

signal processing related applications. In many cases, the most distinguished 

information is hidden in the frequency content of the signal. To measure frequency, or 

to find the frequency content of a signal Fourier Transform (FT) is used. Fourier 

analysis has a serious drawback that in transforming to the frequency domain, time 

information is lost. This drawback isn’t very important if signal is a stationary signal. 

However, most interesting signals are non-stationary (ECG, EMG. EEG etc) and thus 

Fourier analysis is not suited to detecting transitory characteristics. The traditional 

Fourier transform only provides the spectral information of a signal and thus it is not 

suitable for the analysis of non-stationary signals and hence a more suitable technique 

i.e. the Wavelet Technique has been applied for the study. 

 

The main goal of the thesis is to develop the de-noising algorithms based upon the 

discrete wavelet transform (DWT) and Stationary wavelet transform (SWT) that can 

be applied successfully to enhance noisy MRI and ECG signal.  

 

The thesis present 2-D image decomposition, thresholding and reconstruction using 

the DWT and SWT as a new approach which can be used in the processing of 

biomedical images.  The thesis also presents the theory of the fundamental 

mathematical tools (Fourier transform  and Wavelet Transform) that are used for the 

analysis of a signal. Wavelet Transform plays an increasingly important role in the de-

noising of MR images. The performance of the de-noising algorithms are 

quantitatively assessed using different criteria viz. peak signal to-noise ratio (PSNR) 

(for MR Image), signal to-noise ratio (SNR)(for ECG signal) and the visual 

appearance. All the work has been done in MATLAB and the results are discussed in 

accordance to the noise variance and wavelets implemented. The properties of 

wavelets make them special in that they have a good time and frequency localization 

which make them ideal for the processing of non-stationary signals like the 

biomedical signals ( ECG,..) and images (MR).  
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CHAPTER  I 
 

                                                INTRODUCTION 
 
 
 
1.1   Introduction 
 
 
Digital signal processing (DSP) describes the science that tries to analyze, generate 

and manipulate measured real world signals with the help of a digital computer. These 

signals can be a collection of numbers, or measurements and the most commonly used 

signals include images, audio (such as digitally recorded speech and music) and 

medical and seismic data. In most digital signal processing applications, the frequency 

content of the signal is very important. The Fourier transform (FT) is probably the 

most popular transform used to obtain the frequency spectrum of a signal. Noise 

removal or de-noising is an important task in image processing. In general, the results 

of the noise removal have a strong influence on the quality of the image processing 

techniques. 

 

Magnetic resonance imaging (MRI) shows the abnormalities of the brain such as: 

stroke, hemorrhage, tumor, multiple sclerosis or lesions. Noise in MR images consists 

of random signals that do not come from the tissues but from other sources in the 

machine and environment that do not contribute to the tissue differentiation. The 

noise of an image gives it a grainy appearance and mainly the noise is evenly spread 

and more uniform. Image processing can be defined as the manipulation of an image 

for the purpose of either extracting information from the image or producing an 

alternative representation of the image.  

 

Electrocardiograms is a biomedical signals that originate from the action of the human 

heart. The ECG is the graphical representation of the potential difference between two 

points on body surface, versus time. ECG signals are largely employed as a diagnostic 

tool in clinical practice in order to assess the cardiac status of the object. They are 

used to examine ambulatory patients who are at rest during a recording or performing 

an exercise program and also patients in intensive care.  ECG recording are examined 

by a physician who visually checks features of the signal and estimates the most 



 

 

important parameters of the signal to judge the status of a patient. The recognition and 

analyzing of ECG signal is difficult, since their size and form may change eventually 

and there can be a considerably amount of noise in the signal.  Since the processing of 

ECG signal is very important step in the process of ECG examination  by physicians, 

many tools, method and algorithm proceeding from signal processing theory have 

been proposed, described and implemented. Wavelet Transform (WT) is a new and 

promising set of tools and techniques for doing this. 

 

Presently ECG signal is processed using a Fast Fourier Transform (FFT) and the most 

of the commercial requirements are met by this procedure during normal heart health 

monitoring. However the information provided by the FFT, corresponds to all time instances, 

since the integration is from minus infinity to plus infinity over time. This is why Fourier 

transform is not suitable if signal has time varying frequency, i.e., the signal is non-stationary. 

This means FFT tells whether a certain frequency components exists or not. This information 

is independent of where in time this components appears. 

 

Thus in this project work selection of Wavelet Transform method for filtering the noise from 

ECG and MR image is adopted since this method takes into account different resolution at 

different frequencies and space-time solution simultaneously. 

  

1.2  Objective  
  

The goal of the present work is to de-noise the bio-signal using wavelet transform, i.e. 

ECG signal and MRI, that improve the quality of the bio-signal so that the details are 

available clearly for diagnosis purpose. Noise removal or de-noising is an important 

task in image processing used to recover a signal that has been corrupted by noise. 

Wavelet transform basically  process the signal by carrying out four operations    viz: 

(i) Decomposition, (ii) Threshold, (iii)  Reconstruction,  and (iv) De-noising.  

Noise reduction using the wavelet transform has the potential to outperform existing 

methods  for medical images, as it exploits the wavelet’s natural ability to separate 

signal from noise at multiple image scales.  

 

 

 



 

 

1.3   Problem Identification 
 

A major class of problems in medical science involves the diagnosis of disease, based 

upon various tests performed upon the patient. When several tests are conducted, the 

ultimate diagnosis may be difficult to conclude, even for a medical expert. The 

primary diagnosis start with merely seeing and analysing the electrical activity of 

heart or analysing MR images.  

 

Noise present in the ECG signal might effect in the detection of various 

characteristics of the signal such as the R-peak, QRS complexes, T-waves etc. The 

various noise that are considered are electromyography interference, 50Hz power line 

interference, base line drift due to respiration, abrupt base line shifts, and a composite 

noise constructed from all of the other noise types.  

 

Image de-noising is removing noise without sacrificing important structures. Since 

this is not possible with linear techniques many nonlinear strategies have been 

proposed in the last two decades. One of these classes is wavelet methods  [1,2,3]. 

The wavelet transform itself offers great design flexibility. Instead of trying to replace 

standard image processing techniques, wavelet transforms offer an efficient 

representation of the signal, finely tuned to its intrinsic properties.  

 

Wavelet transforms are presented to eliminate the noise from MR image and ECG 

signal their performance is discussed with reference to PSNR and SNR respectively.  

 

1.4   Features of  Fourier Analysis  

 

Fourier analysis   

 
Fourier analysis is a mathematical technique for transforming the signal from time 

based to frequency-based or in other words which breaks down a signal into 

constituent sinusoids of different frequencies. For many signals, Fourier analysis is 

extremely useful because the signal’s frequency content is of great importance. But  

Fourier analysis has a serious drawback that on transforming the signal into frequency 

domain, time information is lost.  



 

 

 

Historically, the Fourier transform has dominated linear time-invariant signal 

processing. The associated basis functions are complex sinusoidal waves exp(iωt) that 

correspond to the eigenvectors of a linear time-invariant operator. A signal ( )f t  

defined in the temporal domain and its Fourier transform ˆ ( )f ω  , defined in the 

frequency domain, have the following relationships. 

 

ˆ ( ) ( ) i tf f t e d tωω
∞

−

−∞

= ∫        (1.1) 

  
1 ˆ( ) ( )

2
i tf t f e dωω ω

π

∞

− ∞

= ∫        (1.2) 

 

Fourier transform characterizes a signal ( )f t  via its frequency components. Since the 

support of the bases function  i te ω covers the whole temporal domain (i.e infinite 

support), ˆ ( )f ω  depends on the values of  ( )f t  for all times. This makes the Fourier 

transform a global transform that cannot analyze local or transient properties of the 

original signal ( )f t .  

 

 
   

 

 

Figure 1.1   Fourier Transform 

 

FT (as well as WT) is a reversible transform, that is, it allows to go back and forward 

between the raw and processed (transformed) signals. However, only either of them is 

available at any given time i.e. no frequency information is available in the time-

domain signal, and no time information is available in the Fourier transformed signal.  

 

 

 

 



 

 

Short-Time Fourier Analysis 

 
Fourier transform of a signal, does not tell when a particular event took place. If the 

signal is  stationary signal i.e. signal properties do not change much over time this 

drawback isn’t very important. However, most interesting signals contain numerous 

non-stationary or transitory characteristics like drift, trends, abrupt changes, and 

beginnings and ends of events. These characteristics are often the most important part 

of the signal, and Fourier analysis is not suited to detecting them.  

 

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform to 

analyze only a small section of the signal at a time — a technique called windowing the signal 

called the Short-Time Fourier Transform (STFT), maps a signal into a two-dimensional 

function of time and frequency. 

 

 
Figure 1.2   Short-Time Fourier Transform 

 

The STFT represents a sort of compromise between the time- and frequency-based 

views of a signal. It provides some information about both when and at what 

frequencies a signal event occurs. However, we can only obtain this information with 

limited precision, and that precision is determined by the size of the window. Another 

drawback of STFT is that once we choose a particular size for the time window, that 

window is the same for all frequencies. 

 

There is only a minor difference between STFT and FT. In STFT, the signal is 

divided into small enough segments, where these segments (portions) of the signal 

can be assumed to be stationary. For this purpose, a window function "w" is chosen. 

The width of this window must be equal to the segment of the signal where its 

stationarity is valid. This window function is first located to the very beginning of the 

signal. The window function and the signal are then multiplied. Then this product is 

assumed to be just another signal, whose FT is to be taken. The next step, would be  

 



 

 

shifting this window (for some t1 seconds) to a new location, multiplying with the 

signal, and taking the FT of the product. This procedure is followed, until the end of 

the signal is reached by shifting the window with "t1" seconds intervals.  

 

If signal obtained under particular size of window is stationary then only the result 

obtained will be true frequency representation. The following definition of the STFT 

summarizes all the above explanations in one line: 

 
( ) ' 2( , ) [ ( ) ( )] j ft

X
t

STFT t f x t t t e dtω πω∗ −= • − •∫     (1.3) 

 

where x(t) is the signal itself, w(t) is the window function, and * is the complex 

conjugate. We can see from the equation, the STFT of the signal is nothing but the FT 

of the signal multiplied by a window function. 

 

1.5 Features of  Wavelet Analysis  

 

The WT was developed as an alternative to the STFT  to overcome some resolution 

related problems of the STFT. We basically need Wavelet Transform (WT) to analyze 

non-stationary signals, i.e., whose frequency response varies in time. Wavelet 

transforms produce a time–frequency decomposition of the signal which separates 

individual signal components more effectively than the traditional short time Fourier 

transform (STFT). This flexible temporal–spectral aspect of the transform allows a 

local scale-dependent spectral analysis of individual signal features. In this way both 

short duration, high frequency and longer duration, lower frequency information can 

be captured simultaneously. Hence the method is particularly useful for the analysis 

of transients, aperiodicity and other non-stationary signal. Another key advantage of 

wavelet techniques is the variety of wavelet functions available, thus allowing the 

most appropriate to be chosen for the signal under investigation. This is in contrast to 

Fourier analysis which is restricted to one feature morphology: the sinusoid. In its 

discrete form using orthogonal wavelet bases, the wavelet transform is particularly 

useful in signal coding, allowing information within the signal to be localized within a 

number of pertinent coefficients for compression purposes.  



 

 

Wavelet analysis represents the next logical step: a windowing technique with 

variable-sized regions. Wavelet analysis allows the use of long time intervals where 

we want more precise low-frequency information, and shorter regions where we want 

high-frequency information. 

 

 
Figure 1.3   Wavelet Transform 

 
 
 
 
Fig: 1.4 

a b 
c d 

 

                                            
 
Figure 1.4: Example of spatial-frequency tiling of various transformations. x-axis: 
spatial resolution. Y-axis: frequency resolution.  (a) discrete sampling (no frequency 
localization) (b) Fourier transform (no temporal localization). (c) windowed Fourier 
transform (constant Heisenberg boxes). (d) wavelet transform (variable Heisenberg 
boxes). 
 

To analyze transient signal structures of various supports and amplitudes in time, it is 

necessary to use time-frequency atoms with different support sizes for different 

temporal locations ( figure 1.4(d) ). For example, in the case of high frequency 

structures, which vary rapidly in time, we need higher temporal resolution to 

accurately trace the trajectory of the changes; on the other hand, for lower frequency, 



 

 

we will need a relatively higher absolute frequency resolution to give a better 

measurement on the value of frequency. 
 

The illustration in Figure 1.5 is commonly used to explain how time and frequency 

resolutions should be interpreted. Every box in Figure 1.5 corresponds to a value of 

the wavelet transform in the time-frequency plane. All the points in the time-

frequency plane that falls into a box is represented by one value of the WT.  

 

 
 
Figure 1.5   Time-Frequency plane of Wavelet transform  

 
 

In Figure 1.5 although the widths and heights of the boxes change, the area is 

constant. That is each box represents an equal portion of the time-frequency plane, but 

giving different proportions to time and frequency. At low frequencies, the height of 

the boxes are shorter (which corresponds to better frequency resolutions, since there is 

less ambiguity regarding the value of the exact frequency), but their widths are longer 

(which correspond to poor time resolution, since there is more ambiguity regarding 

the value of the exact time) and at higher frequencies the width of the boxes 

decreases, i.e., the time resolution gets better, and the heights of the boxes increase, 

i.e., the frequency resolution gets poorer.  

 

Thus it is worthwhile to mention that in STFT the time and frequency resolutions are 

determined by the width of the analysis window, which is selected once for the entire 

analysis, i.e., both time and frequency resolutions are constant. Therefore the time-

frequency plane consists of squares in the STFT case. 

 



 

 

1.6      Dissection of Thesis  
 

The material of this dissertation has been arranged in six chapters, references. The 

contents of the chapter are briefly outlined as indicated below: 

 

Chapter 1 discusses objectives, identify the problem and introduces the features of 

fourier transform and wavelet transform and their advantages and disadvantages. 

 

Chapter 2 presents the history review from fourier transform to wavelet theory and 

brief survey of the wavelet applications in biomedical field.  

 

Chapter 3 describes the mathematical model developed for different types of Wavelet 

transform  techniques.  

 

Chapter 4 presents the brief anatomy of brain and electrical activity associated with 

the heart (ECG) and the cause of noise in the MRI image and ECG signal. It also 

covers the need of thresholding operator for  noise reduction. 

 

Chapter 5 explains the algorithm so as to de-noise the signal and image with 

MATLAB 7.0 and also explain the ease with which we can use the GUI of Wavelet 

transform for de-nosing. 

 

Chapter 6 discusses the results obtained on running the MATLAB code. 

 

Chapter 7 concludes the thesis and provides suggestions for future work.  
 

  

 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER  II 
  

           LITERATURE REVIEW 
 
 
 
 
2.1   Introduction 
 

The concept of wavelet has been discussed in the literature for a very long time however, it is 

only recently that significant progress has been made in the application of wavelets to 

practical problems in signal processing. The wavelet transform has been proposed as a 

flexible tool for the multiresolution decomposition of continuous time signals. The pioneering 

work of Daubechies in the early 1980s has shown the linkage between the wavelet and 

subbands transform theories. Since then, there has been an explosion of interest and a flurry 

of interdisciplinary research and development activities on wavelet and subbands transforms, 

and their applications [4][Dau90]. 

               

Significant practical application of wavelet have been found in signal and image 

processing, speed-spectrum and wireless communication, and control analysis, which 

are in the electrical engineering domain [5][6][Wor96], [Sch96a]. 

 

2.2  History Review  

 

The history of wavelet begins with the development of the traditional Fourier series in 

1807, as shown in Figure 2.1. The techniques of the Fourier series and Fourier 

transform were pioneered by the French Physicist Jean Baptiste Joseph, Baron de 

Fourier (1768-1830). The Fourier transform is very useful in many application , but it 

had to be modified to deal with the case of singularities or sharp transient signals. 

This shortcoming of the Fourier Transform was originally identified by Paul DuBois-

Reymond in 1873. He also proposed a solution to the singularity problem that 

eventually was fully developed by Henri Lebsegue. A different solution was designed 

by Haar in 1909; he replaced the sine and cosine function of the Fourier Transform 

with another orthonormal basis, now commonly known as the Haar basis. The original 

idea of the Haar has opened the door to the construction of an infinite number of other 

bases. Using a very simple function, Haar created a basis using dyadic scaling. The 



 

 

function of the Haar basis suffers from a major disadvantage for many application; as 

they are discontinuous, they are not optimal for approximation a continuous function 

f(t), especially if the function has a continuous derivative. Nevertheless, the 

importance of the Haar decomposition lays in the development of an orthonormal 

basis based on dyadic sampling which opened one of the routes leading to the concept 

of wavelet and, in particular to what it is now called Multiresolution analysis. The 

Haar basis is the simplest example to date of a wavelet basis which satisfies the 

multiresolution properties [7][Mey93]. 
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  Figure 2.1  History Tree of  Wavelet theory 

 

The short comings of the Haar decomposition led to the development of other bases 

such as Schaunder basis and the Riemann basis in the 1910-1920 decades. In 1930s, a 

lot of interest was given to the study of Brownian motion. The Fourier analysis was 

adequate for representing the spectral properties of the Brownian motion, especially to 



 

 

extract any particular resonance frequency. Unfortunately, the randomness of the 

motion itself was not well defined by the Fourier decomposition. It was then Paul levy 

decided to apply the Schunder basis to describe the local regularity properties of the 

Brownian motion. This work has been recently (1991) extended by Patrick Flandrin 

for the analysis of fractal Brownian motion, following the Noise models of 

Mandelbrot and Van Ness. 

 

Also in the 1930s, Littlewood and Paley established a new approach to group the 

Fourier Transform coefficient of a signal in order to extract rapidly and more 

efficiently any information about singularities in the signal itself. The regrouping 

proposed by Littlewood and Paley is based on the concept dyadic blocks, which can 

be used to create an orthogonal basis similar to what was later defined as a wavelet 

basis. The major difference between the Haar basis and the Littlewood – Paley basis 

is that whereas in former, the scaling is performed in the time basis, in the later the 

scaling is set on the Fourier transform coefficients. For this reason, Littlewood – 

Paley basis is considered the dual basis of the Haar function 

 

While all this development were taking place in the field of Mathematics, Lusin, a 

physicist was involved in the analysis and synthesis of the function using “atom” or 

“basis element.” Any signal in a given space can be constructed by the combination of 

these “atom.” Lusin effectively initiated the field of “ Harmonic Analysis,” even 

thought this term was coined much later by G. Weiss and R. R. Coifmann in the 

1980s. in 1938, Marcinkiewicz showed that the Haar function are undoubtedly the 

simplest atomic decomposition. The theory of the harmonic analysis was extended by 

Calderon in 1964, in what is known as the Calderon’s Identity. Grossman and Morlet 

(a quantum physicist and an engineer) rediscovered this identity in 1980, 20 years 

after the original work of Calderon. However, they gave it a different interpretation,  

by relating it to the “coherent states” of the quantum mechanics. 

 

Morlet, a geophysical engineer come up with the idea of wavelet as an alternative to 

Short-Time Fourier Transform.  Morlet is the  geophysicist who coined the French 

word “ ondelettes,” later translated into English word “wavelet”. Morlet’s work was 

put on a through mathematical foundation by Grossman and Mayer who also 

recognized the connection between wavelet and approximation theory [6][Gro84]. At 



 

 

this point, many people contributed significantly. Lemerie, Stromberg, Battle and 

many other created new basis function for their application. But the major impetus to 

the development and popularity of the wavelet theory to the scientific community, in 

general, came from the works of Daubechies [4][Dau90] and Mallat [8][Mal89]. 

 

Daubechies introduced the concept of compactly supported wavelet and theory of 

frames. She also saw the connection between the wavelet theory and the theory of 

subband decomposition which are independently being pursued by the digital signal 

processing community of Electrical engineers. Mallat introduced the concept of 

multiresolution, which is intimately related to multirate digital filters used for subband 

decompostion.  

 

2.3 Wavelets  in the area of medical diagnosis 
 

A number of alternative time–frequency methods are now available for signal 

analysis. Of these, the wavelet transform has emerged over recent years as the most 

favored tool by researchers for analyzing problematic signals across a wide variety of 

areas in science, engineering and medicine [9](Addison 2002). It is especially 

valuable because of its ability to elucidate simultaneously local spectral and temporal 

information from a signal in a more flexible way than the STFT by employing a 

window of variable width.  

 

Wavelet transform analysis has now been applied to a wide variety of biomedical 

signals including: the EMG, EEG, clinical sounds, respiratory patterns, blood pressure 

trends and DNA sequences (e.g. [10] Dupuis and Eugene (2000), [11] Hadjileontiadis 

and Panas (1997), [12] Marrone et al (1999), [13] Khalil and Duchene (2000), [14] 

Petrosian et al (2000), [15] Arneodo et al (1998)) and the subject of this review, the 

ECG. 

 

Many of the ideas behind wavelet transforms have been in existence for a long time. 

However, wavelet transform analysis as we now know it really began in the mid 

1980s where it was developed to interrogate seismic signals [16] (Goupillaud et al 

1984). The application of wavelet transform analysis in science and engineering really 



 

 

began to take off at the beginning of the 1990s, with a rapid growth in the numbers of 

researchers turning their attention to wavelet analysis during that decade.  

 

2.4 Conclusion 

 

A brief history and development stages of wavelet theory is covered in this chapter. 

Also a brief survey has been studied regarding the application of wavelets in the area 

of medical diagnosis.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER III 
 
     MATHEMATICAL MODEL OF WAVELET TRANSFORM 
 

 
 

3.1  Introduction 
 

Wavelets are functions that satisfy certain mathematical requirements and are used in 

representing data or other functions. This idea is not new. Approximation using 

superposition of functions has existed since the early 1800s, when Joseph Fourier 

discovered that he could superpose sines and cosines to represent other functions. 

However, in wavelet analysis, the scale that we use to look at data plays a special role. 

Wavelet algorithms process data at different scales or resolutions. If we look at a 

signal (or a function) through a large “window” we would notice gross features. 

Similarly, if we look at a signal through a small “window” we would notice small 

features. 

 

For many decades scientists have wanted more appropriate functions than the sines 

and cosines, which are the basis of Fourier analysis, to approximate choppy signals. 

By their definition, these functions are non-local (and stretch out to infinity). They 

therefore do a very poor job in approximating sharp spikes. Wavelets are well-suited 

for approximating data with sharp discontinuities. The wavelet analysis procedure is 

to adopt a wavelet prototype function, called an analyzing wavelet or mother wavelet. 

Temporal analysis is performed with a contracted, high-frequency version of the 

prototype wavelet, while frequency analysis is performed with a dilated, low-

frequency version of the same wavelet. Because the original signal or function can be 

represented in terms of a wavelet expansion (using coefficients in a linear 

combination of the wavelet functions), data operations can be performed using just 

the corresponding wavelet coefficients. And if we further choose the wavelets best 

adapted to our data, or truncate the coefficients below a threshold, our data are 

sparsely represented. This sparse coding makes wavelets an excellent tool in the field 

of data compression. 

 

 

 



 

 

3.2  The Continuous Wavelet Transform (CWT) 

 

The continuous wavelet transform (CWT) is a time–frequency analysis method which 

differs from the more traditional short time Fourier transform (STFT) by allowing 

arbitrarily high localization in time of high frequency signal features.  

 

Mathematically, the process of Fourier analysis is represented by the Fourier 

transform:  

 

( )( ) ( ) jwtF w f t e dt
∞

−

−∞

= ∫          (3.1) 

 

which is the sum over all time of the signal f(t) multiplied by a complex exponential. 

(where complex exponential can be broken down into real and imaginary sinusoidal 

components.) 

 

The results of the transform are the Fourier coefficients F (w), which when multiplied 

by a sinusoid of frequency w yield the constituent sinusoidal components of the 

original signal. Graphically, the process looks like:  
 

  
 

Figure 3.1 Fourier Transform of a signal 
 

Similarly, the continuous wavelet transform (CWT) is defined as the sum over all 

time of the signal multiplied by scaled, shifted versions of the wavelet function  Ψ: 

( , ) ( ) ( , , )C sca le position f t sca le position t d tψ
∞

−∞

= ∫    (3.2) 



 

 

The results of the CWT are many wavelet coefficients C, which are a function of scale 

and position.  Multiplying each coefficient by the appropriately scaled and shifted 

wavelet yields the constituent wavelets of the original signal: 

 

 
Figure 3.2 Wavelet Transform of a signal 

 

Scaling 

 

Wavelet analysis produces a time-scale view of a signal. Scaling, as a mathematical 

operation, either dilates or compresses a signal. Scaling a wavelet simply means 

stretching (or compressing) it. Let us denote the scale factor, by the letter a. Let us 

see the effect of the scale factor on sinusoids: 

 

 
Figure 3.3 Scaling of a signal 

 

Figure 3.3 shows that the scale factor=1/4 gives the compressed wave as compared to 

the scale factor=1. It is clear that, for a sinusoid, the scale factor a is related 

(inversely) to the radian frequency w. Similarly, with wavelet analysis, the scale is 

related to the frequency of the signal. 



 

 

The scale factor works exactly the same with wavelets. The smaller the scale factor, 

the more “compressed” the wavelet. 

 

Scale and Frequency 

 

As already discussed that the higher scales correspond to the most “stretched” 

wavelets. The more stretched the wavelet, the longer the portion of the signal with 

which it is being compared, and thus the coarser the signal features being measured 

by the wavelet coefficients. 

 

 
Figure 3.4 Correspondence between scale and frequency 

 

Thus, there is a correspondence between wavelet scales and frequency as revealed by 

wavelet analysis: 

 Low scale Compressed wavelet Rapidly changing details High frequency a ω⇒ ⇒ ⇒  

 High scale Stretched wavelet Slowly changing, coarse features Low frequency a ω⇒ ⇒ ⇒  

 

Shifting 

 

Shifting a wavelet simply means delaying (or hastening) its onset. Mathematically, 

delaying a function f (t) by k is represented by f (t-k): 

 
Figure 3.5 Shifting of a signal 

 
 
 
 



 

 

Steps to create a Continuous Wavelet Transform 
 
The continuous wavelet transform is the sum over all time of the signal multiplied by 

scaled, shifted versions of the wavelet. This process produces wavelet coefficients 

that are a function of scale and position.  

 

The five steps for creating a CWT: 

 

1  Take a wavelet and compare it to a section at the start of the original signal. 

 

2  Calculate a number, C, that represents how closely correlated the wavelet is 

with this section of the signal. The higher C is, the more the similarity. More 

precisely, if the signal energy and the wavelet energy are equal to one, C may 

be interpreted as a correlation coefficient. Note that the results will depend on 

the shape of the wavelet we choose. 

 

 
Figure 3.6 (a) Calculating wavelet coefficients using CWT 

 

3  Shift the wavelet to the right and repeat steps 1 and 2 until we’ve covered the 

whole signal. 

 

 
Figure 3.6 (b) Calculating wavelet coefficients with shifted version of 

wavelet using CWT 

 

 

 

 



 

 

4  Scale (stretch) the wavelet and repeat steps 1 through 3. 

 

 
Figure 3.6 (c) Calculating wavelet coefficients with higher scale of  

wavelet using CWT 

 

5  Repeat steps 1 through 4 for all scales. When we’re done, we’ll have the 

coefficients produced at different scales by different sections of the signal. The 

coefficients constitute the results of a regression of the original signal 

performed on the wavelets. Now we could make a plot on which the x-axis 

represents position along the signal (time), the y-axis represents scale, and the 

color at each x-y point represents the magnitude of the wavelet coefficient C. 

These are the coefficient plots generated by the graphical tools. 

 

 
Figure 3.7 Coefficient plot generated using CWT 

 

These coefficient plots resemble a bumpy surface viewed from above. If we 

could look at the same surface from the side, we might see something like 

figure 3.8: 

 



 

 

 
  Figure 3.8 Front view of Coefficient plot generated using CWT  

 

The continuous wavelet transform coefficient plots are precisely the time-scale view 

of the signal.  

The CWT uses a variable window width, which is related to the scale of 

observation—a flexibility that allows for the isolation of the high frequency features. 

Rather, a large selection of localized waveforms can be employed as long as they 

satisfy predefined mathematical criteria (described below). The wavelet transform of 

a continuous time signal, x (t), is defined as: 

 

)1( , ) ( ) *(t bT a b x t dtaa
ψ

∞ −= ∫−∞
       (3.3)  

 

where Ψ*( t) is the complex conjugate of the analyzing wavelet function Ψ(t), a is the 

dilation parameter of the wavelet and b is the location parameter of the wavelet. In 

order to be classified as a wavelet, a function must satisfy certain mathematical 

criteria. These are: 

(1) It must have finite energy: 

 2( )E t dtψ
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= < ∞∫                                                                             (3.4) 

(2) If   ˆ(f) ψ  is the Fourier transform of Ψ ( t ), i.e. 
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then the following condition must hold: 
2

0

ˆ ( )f
C g d f

f
ψ∞

= < ∞∫          (3.6) 

 

This implies that the wavelet has no zero-frequency component, i.e. ˆ (f) =0ψ , or to put 

it another way, it must have a zero mean. Equation (3.6) is known as the admissibility 

condition and Cg is called the admissibility constant. The value of Cg depends on the 

chosen wavelet. 

 

(3) For complex (or analytic) wavelets, the Fourier transform must both be real 

and vanish for negative frequencies. The contribution to the signal energy at 

the specific a scale and b location is given by the two-dimensional wavelet 

energy density function known as the scalogram (analogous to the 

spectrogram—the energy density surface of the STFT): 
2( , ) ( , )E a b T a b=                                 (3.7) 

 

In practice, all functions which differ from 2( , )T a b  by only a constant multiplicative  

factor are also called scalograms, e.g. 
2( , )T a b

C g
, 

2( , )

c

T a b
C g f

, etc (where cf  is a 

characteristic frequency of the wavelet function). The scalogram can be integrated 

across a and b to recover the total energy in the signal using the admissibility 

constant, Cg, as follows: 
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The relative contribution to the total energy contained within the signal at a specific a 

scale is given by the scale-dependent energy distribution: 
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Peaks in E(a) highlight the dominant energetic scales within the signal. We may 

convert the scale-dependent wavelet energy spectrum of the signal, E(a), to a 

frequency dependent wavelet energy spectrum EW(f ) in order to compare directly 

with the Fourier energy spectrum of the signal EF(f ). To do this, we must convert 

from the wavelet a scale (which can be interpreted as a representative temporal, or 

spatial, period for physical data) to a characteristic frequency of the wavelet such as 

the spectral peak frequency, passband centre, central frequency. The spectral 

components are inversely proportional to the dilation, i.e. f α 1/a, The frequency 

associated with a wavelet of arbitrary a scale is given by 

 

cff
a

=          (3.10) 

 

where the characteristic frequency of the mother wavelet (the archetypal wavelet at 

scale  a = 1 and location b = 0),  fc, becomes a scaling constant and f is the 

representative or frequency for the wavelet at arbitrary scale a. Finally, as with the 

Fourier transform, the original signal may be reconstructed using an inverse 

transform: 
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In practice a fine discretization of the CWT is computed where usually the b location 

is discretized at the sampling interval and the scale is discretized logarithmically. As 

the wavelet transform given by equation (3.3) is a convolution of the signal with a 

wavelet function we can use the convolution theorem to express the integral as a 

product in Fourier space, i.e., 
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where 
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is the Fourier spectrum of the analysing wavelet at scale a and location b. In this way, 

a fast Fourier transform (FFT) algorithm can be employed in practice to speed up the 

computation of the wavelet transform. 

 

For its practical implementation the continuous wavelet transform is computed over a 

finely discretized time–frequency grid. This discretization involves an approximation 

of the transform integral (i.e. a summation) computed on a discrete grid of a scales 

and b locations. In general, the wavelet transform is approximated in this way over 

each time step for a range of wavelet scales; there is therefore a heavy computational 

burden involved in the generation of the CWT and in general an order two in 

magnitude more wavelet values generated than original signal components.  

 

 

 

 

3.3  The Discrete Wavelet Transform (DWT) 
 

Calculating wavelet coefficients at every possible scale is a fair amount of work, and 

it generates an awful lot of data.  If we choose only a subset of scales and positions at 

which we make our calculations it turns out, rather remarkably, if we choose scales 

and positions based on powers of two — so-called dyadic scales and positions — then 

our analysis will be much more efficient and just as accurate. We obtain such an 

analysis from the discrete wavelet transform (DWT).  

 

The DWT of a signal x is calculated by passing it through a series of filters. First the 

samples are passed through a low pass filter with impulse response g resulting in a 

convolution of the two: 
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The signal is also decomposed simultaneously using a high-pass filter h. The outputs  

giving the detail coefficients (from the high-pass filter) and approximation 

coefficients (from the low-pass). It is important that the two filters are related to each 

other and they are known as a quadrature mirror filter. 

 

However, since half the frequencies of the signal have now been removed, half the 

samples can be discarding according to Nyquist’s rule. The filter outputs are then 

downsampled by 2: 
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This decomposition has halved the time resolution since only half of each filter output 

characterises the signal. However, each output has half the frequency band of the 

input so the frequency resolution has been doubled. This is in keeping with the 

Heisenberg Uncertainty Principle. 

 

 
Figure 3.9 Single level  filter analysis 

 

 

With the downsampling operator  

 

( )[ ] [ ]y k n y k n↓ = ⋅         (3.15) 

the summation expressed in equation 3.15 can be written more concisely as:- 

 



 

 

( ) 2lowy x g= ∗ ↓         (3.16a) 

( ) 2highy x h= ∗ ↓         (3.16b)  

 

Cascading and Filter Banks 

 

The decomposition is repeated to further increase the frequency resolution and the 

approximation coefficients decomposed with high and low pass filters and then down-

sampled. This is represented as a binary tree with nodes representing a sub-space with 

a different time-frequency localisation. The tree is known as a filter bank. 

 

A filter bank is an array of band-pass filters that separates the input signal into 

several components, each one carrying a single frequency subband of the original 

signal. It also is desirable to design the filter bank in such a way that subbands can be 

recombined to recover original signal. The first process is called analysis, while the 

second is called synthesis. The output of analysis is referred as subband signal with as 

many subbands as there are filters in filter bank. 

 

 
Figure 3.10 3 level filter bank 

 

At each level figure 3.10 the signal is decomposed into low and high frequencies. Due 

to the decomposition process the input signal must be a multiple of 2n where n is the 

number of levels. For example a signal with 16 samples, frequency range 0 to fn and 3 

levels of decomposition, 4 output scales are produced: 

 

 

 



 

 

Level Frequencies Samples 

 0 to fn / 8     4 
  3 

 fn / 8 to fn / 4     4 

  2  fn / 4 to fn / 2     8 

  1  fn / 2 to fn    16 

 

 
Figure 3.11 4 output scales produced from signal of 16 samples, in 

frequency range of  0 to fn 

 

3.3.1 One-Stage Filtering: Approximations and Details 

 
For many signals, the low-frequency content is the most important part. It is what 

gives the signal its identity. The high-frequency content, on the other hand, imparts 

flavor or nuance. Consider the human voice, if we remove the high-frequency 

components, the voice sounds different, but we can still tell what’s being said.  

However, if you remove enough of the low-frequency components, we hear gibberish. 

 

In wavelet analysis, we often speak of approximations and details. The 

approximations are the high-scale, low-frequency components of the signal. The 

details are the low-scale, high-frequency components. 

 

The filtering process, at its most basic level, looks like figure 3.12: 
 



 

 

   
 
Figure 3.12   Filtering process 

 

The original signal, S, passes through two complementary filters and emerges as two 

signals. Unfortunately, if we actually perform this operation on a real digital signal, 

we wind up with twice as much data as we started with. Suppose, for instance, that the 

original signal S consists of 1000 samples of data. Then the resulting signals will each 

have 1000 samples, for a total of 2000. These signals A and D are interesting, but we 

get 2000 values instead of the 1000 we had. There exists a more subtle way to 

perform the decomposition using wavelets. By looking carefully at the computation, 

we may keep only one point out of two in each of the two 2000-length samples to get 

the complete information. This is the notion of downsampling (Figure 3.13). We 

produce two sequences called cA and cD. 

 
 

 
(a)      (b) 

Figure 3.13  Notion of Downsampling (a) without downsampling (b) with 

downsampling 

Figure 3.13(b), which includes downsampling, produces DWT coefficients. To gain a 

better appreciation of this process, let’s perform a one-stage discrete wavelet 

transform of a signal. Our signal will be a pure sinusoid with high-frequency noise 

added to it. Here is our schematic diagram with real signals inserted into it: 

 



 

 

  
Figure 3.13(c)  Notion of Downsampling of sinusoid with high-frequency 

noise 
 

We can see that high frequency component is filtered out from signal s and 

approximation coefficient is free from high frequency (noise). 
 

3.3.2 High & Low Pass Wavelet Filters  

 

The first step of de-noising is the application of filters.  H denotes the low pass filter, 

while G denotes the high pass filter.  For a signal si where i = 1,…, 2n , H and G are 

defined by: 

   (3.17a) 

and  

.       (3.17b) 

 

The  hj and gj are called filter coefficients.  For the Haar wavelets, the above 

equations simplify to the following:  

 

                       (3.18a) 

         and  

                                                          (3.18b) 



 

 

since h0, h1, g0, and g1 are the only non-zero filter coefficients.  Note that for the 

Haar wavelets  

                 (3.19a) 

                 (3.19b) 

     and  

.                 (3.19c) 

The radicals come from normalizing the father and mother wavelets.  In the case of 

the Haar wavelets, filtering simply averages and differences.  The low pass filter does 

the following to a signal s = [a, b, c, d, e, f]  

          .                      (3.20a)                      

The high pass filter applied to s yields  

               .                           (3.20b) 

Thus, the low pass filter computes averages while the high pass filter accomplishes 

differencing.  The process of differencing detects the noise in the signal.  If some 

detail coefficients are small compared to the others, making them zero will not alter 

the signal too much.  If the noise is located in these areas of the signal, de-noising will 

have a positive effect on the signal.  The art is to choose a threshold level that will 

eliminate most of the noise, but preserve the other qualities of the signal. 

 
3.3.3 Multiresolution 

 

Multiresolution refers to the simultaneous presence of different resolutions in a signal. 

For example, a signal can be broken down into a smooth background with fluctuations  

 

 



 

 

on top of it. 

 

 
 
Figure 3.14  Multiresolution of a Signal. An arbitrary signal can be decomposed into  

approximation and detail components. 
 
 
Figure 3.14 shows an arbitrary signal. The smooth background (low frequency) is 

known as the approximation, and the fluctuations (high frequency) are known as the 

details. Resolution increases as finer and finer details are added to a signal. At a lower 

resolution, a signal is approximated by the smooth signal, ignoring the detail 

fluctuations. The smooth, low frequency signal in Figure 3.14 is at a lower resolution 

than the original signal in Figure 3.14, because the original signal includes the high 

frequency detail fluctuations. 

 

In a multiresolution analysis, a dataset is broken down into a hierarchy of several 

levels of approximation and detail maps. The approximation maps contain the image’s 

low frequency information and the detail maps contain the high frequency 

information. At each hierarchical level, the approximation map is decomposed into 

descendent detail and approximation maps. In the hierarchical model, the resolution is 

the highest at the lowest level. As the levels increase, details are removed, and the 

approximation maps are at increasingly lower resolutions. 

 

3.3.4  Multiple-Level Decomposition 

 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution  

 

 



 

 

components. This is called the wavelet decomposition tree (figure 3.15). 

 

                                 
 

Figure 3.15  Wavelet Decomposition Tree 
 
 
Looking at a signal’s wavelet decomposition tree can yield valuable information. 
 
 

 
 
Figure 3.16 Wavelet Decomposition Tree of a signal showing valuable 

information 
 
 
 
 
From figure 3.16 we can see that more and more detail component is filtered out at 

each stage. Consider a multiresolution hierarchy with j levels. Each level contains an 

approximation, Aj, and details Dj. The original data can be thought of as A0. 

Approximation A1 is the low frequency components of A0, and D1 is the high 

frequency components of A0. The detail can be thought of as the difference between 

A1 and A0 so that A0=A1+D1=A2+D2+D1 etc… Figure 3.17 illustrates the 

hierarchical model. 

 

 

 

 



 

 

 
 

Figure 3.17  Hierarchical model of wavelet Decomposition 
 
 
Mathematically: - 
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1 1( ) ( ) ( )j j ja t a t d t+ += +        (3.22) 
 

where 0( )a t  is the original signal, a(t) is the approximation, d(t) is the detail, and j is 

the level. Equation 3.21 says that the original signal can be retrieved from the 

approximation map at a given level, j, by adding the detail maps from all previous 

levels to the approximation map ( )ja t . Equation 3.22 says that the difference 

between the approximation map at a given level, j, and the approximation map at the 

next level, j+1, is the detail map at the next level, j+1.  An original dataset is 

decomposed into a multiresolution hierarchy by exposing the dataset to a filter bank 

made up of a high pass and low pass filter. The original dataset is at the top of the 

hierarchy. To construct the next level of the hierarchy, the original dataset is exposed 

to a high pass filter, which removes the high frequency or detail information, and a 

low pass filter, which separates the low frequency or approximation information. 

Iteratively exposing the approximation map at each level to the high pass and low 

pass filter bank creates the next level of the hierarchy. Wavelet decomposition is a 

type of multiresolution decomposition. The wavelet decomposition can be thought of 

as a filter bank is made up of a high pass component called the wavelet function, and 

a low pass component called the scaling function. Figure 3.18 shows the frequency 

space during the wavelet decomposition. The scaling function at the first level is the 

original signal. At each subsequent level, the scaling function is split into 

approximation and detail information with wavelet and scaling filters. 



 

 

 
 
Figure 3.18     Wavelet Decomposition Example. HP is the high pass wavelet filter, and 

LP is the low pass  scaling filter. B, 2B, and 4B are the coefficients at 
each level. At each level the low pass approximation information is 
divided into another level of approximation and detail information by 
applying the low pass scaling filter and the high pass wavelet filter. 

 
 
3.3.5   Wavelet Reconstruction 
 

We’ve learned how the discrete wavelet transform can be used to analyze, or 

decompose, signals and images. This process is called decomposition or analysis. 

Now we can se how those components can be assembled back into the original signal 

without loss of information. This process is called reconstruction, or synthesis. The 

mathematical manipulation that effects synthesis is called the inverse discrete wavelet 

transform (IDWT). To synthesize a signal, we reconstruct it from the wavelet 

coefficients: 

 

             
 
Figure 3.19   Reconstruction Process 

 
 
Where wavelet analysis involves filtering and downsampling, the wavelet 

reconstruction process consists of upsampling and filtering. Upsampling is the process 

of lengthening a signal component by inserting zeros between samples (figure 3.20): 

 



 

 

 
 

Figure 3.20   Upsampling 
 

Reconstruction Filters 

 

In the filtering part of the reconstruction process, it is the choice of filters that is 

crucial in achieving perfect reconstruction of the original signal. The downsampling 

of the signal components performed during the decomposition phase introduces a 

distortion called aliasing. It turns out that by carefully choosing filters for the 

decomposition and reconstruction phases that are closely related (but not identical), 

we can “cancel out” the effects of aliasing. 

 
 

 
  Figure 3.21   Notion of Decomposition and Reconstruction. 

 
Reconstructing Approximations and Details 

 

We have seen that it is possible to reconstruct our original signal from the coefficients 

of the approximations and details. 

 

 
Figure 3.22 (a)  Constructing approximation and detail coefficients 

 



 

 

It is also possible to reconstruct the approximations and details themselves from their 

coefficient vectors. For example, let’s reconstruct the first-level approximation A1 

from the coefficient vector cA1. We pass the coefficient vector cA1 through the same 

process we used to reconstruct the original signal. However, instead of combining it 

with the level-one detail cD1, we feed in a vector of zeros in place of the detail 

coefficients 
 

 
Figure 3.22 (b)  Reconstruction of approximation A1 

The process yields a reconstructed approximation A1, which has the same length as 

the original signal S and which is a real approximation of it. Similarly, we can 

reconstruct the first-level detail D1, using the analogous process: 

 
 

 
Figure 3.22 (c)  Reconstruction of Detail D1 

 

The reconstructed details and approximations are true constituents of the original 

signal. In fact, we find when we combine them that A1 +D1 = S.  Note that the 

coefficient vectors cA1 and cD1, because they were produced by downsampling and 

are only half the length of the original signal, cannot directly be combined to 

reproduce the signal. It is necessary to reconstruct the approximations and details 

before combining them. 

 

Extending this technique to the components of a multilevel analysis, we find that 

similar relationships hold for all the reconstructed signal constituents.  



 

 

 
Figure 3.23   Reconstructing signal using Multilevel analysis 

 

Multistep Decomposition and Reconstruction 

 

A multistep analysis-synthesis process can be represented as: 

 
Figure 3.24   Multistep Decomposition and Reconstruction. 

 

 

This process involves two aspects: breaking up a signal to obtain the wavelet 

coefficients, and reassembling the signal from the coefficients. Of course, there is no 

point breaking up a signal merely to have the satisfaction of immediately 

reconstructing it. We may modify the wavelet coefficients before performing the 

reconstruction step. We perform wavelet analysis because the coefficients thus 

obtained have many known uses, de-noising and compression being foremost among 

them. 
 
In its most common form, the DWT employs a dyadic grid (integer power of two 

scaling in a and b) and orthonormal wavelet basis functions and exhibits zero 

redundancy. (Actually, the transform integral remains continuous for the DWT but is 

determined only on a discretized grid of a scales and b locations. In practice, the input  

 



 

 

signal is treated as an initial wavelet approximation to the underlying continuous 

signal from which, using a multiresolution algorithm, the wavelet transform and 

inverse transform can be computed discretely, quickly and without loss of signal 

information). A natural way to sample the parameters a and b is to use a logarithmic 

discretization of the a scale and link this, in turn, to the size of steps taken between b 

locations. To link b to a we move in discrete steps to each location b, which are 

proportional to the a scale. This kind of discretization of the wavelet has the form 
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where the integers m and n control the wavelet dilation and translation respectively; 

a0 is a specified fixed dilation step parameter set at a value greater than 1, and b0 is 

the location parameter which must be greater than zero. A common choice for discrete 

wavelet parameters a0 and b0 are 2 and 1 respectively. This power-of-two logarithmic 

scaling of both the dilation and translation steps is known as the dyadic grid 

arrangement. The dyadic grid is perhaps the simplest and most efficient discretization 

for practical purposes and lends itself to the construction of an orthonormal wavelet 

basis. Substituting a0 = 2 and b0 = 1 into equation (3.23) we see that the dyadic grid 

wavelet can be written compactly, as: 
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, ( ) 2 (2 )m m
m n t t nψ ψ− −= −       (3.24) 

      
Note that this has the same notation as the general discrete wavelet given by equation 

(3.23). From here on, Ψm,n (t) will be used only to denote dyadic grid scaling with  

a0 = 2 and b0 = 1. Discrete dyadic grid wavelets are usually chosen to be orthonormal, 

i.e. they are both orthogonal to each other and are normalized to have unit energy.  

 

This is expressed as: 
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This means that the information stored in a wavelet coefficient Tm,n obtained from 

the wavelet transform is not repeated elsewhere and allows for the complete 

regeneration of the original signal without redundancy. The corresponding family of 

orthonormal wavelets is an orthonormal basis. (A basis is a set of vectors, a 

combination of which can completely define the signal, x(t). An orthonormal basis has 

component vectors which, in addition to being able to completely define the signal, 

are perpendicular to each other).  
 
Using the dyadic grid wavelet of equation (3.24), the discrete wavelet transform 

(DWT) can be written as: 

 

, ,( ) ( )m n m nT x t t dtψ
∞
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= ∫        (3.26)  

 
where ,m nT is known as the wavelet (or detail) coefficient at scale and location 

indices (m, n). Before continuing it is important to make clear the distinct difference 

between the DWT and the discretized approximations of the CWT used in practice. 

The discretizations of the continuous wavelet transform, required for its practical 

implementation, involve a discrete approximation of the transform integral (i.e. a 

summation) computed on a discrete grid of a scales and b locations. The inverse 

continuous wavelet transform is also computed as a discrete approximation. How 

close an approximation to the original signal is recovered depends mainly on the 

resolution of the discretization used and, with care, usually a very good approximation 

can be recovered. On the other hand, for the DWT, as defined in equation (3.26), the 

transform integral remains continuous but is determined only on a discretized grid of 

a scales and b locations. We can then sum the DWT coefficients to infinity over m 

and n to get the original signal back exactly.  

 

Orthonormal dyadic discrete wavelets are associated with scaling functions and their 

dilation equations. The scaling function is associated with the smoothing of the signal 

and has the same form as the wavelet, given by: 
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They have the property 
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=∫            (3.28) 

 
where 0 , 0 ( ) ( )t tφ φ=  is sometimes referred to as the father scaling function or father 

wavelet (cf mother wavelet). (The integral of a wavelet function is zero.) The scaling 

function is orthogonal to translations of itself, but not to dilations of itself. The scaling 

function can be convolved with the signal to produce approximation coefficients as 

follows: 

 

, ,( ) ( )m n m nS x t t dtφ
∞

−∞

= ∫        (3.29) 

 
From the above, we can see that the approximation coefficients are simply weighted 

averages of the continuous signal factored by / 22 m . The approximation coefficients at 

a specific scale m are collectively known as the discrete approximation of the signal 

at that scale. A continuous approximation of the signal at scale m can be generated by 

summing a sequence of scaling functions at this scale factored by the approximation 

coefficients as follows: 
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where ( )mx t  is a smooth, scaling-function-dependent version of the signal ( )x t  at scale 

index m. This continuous approximation approaches ( )x t  at small scales,  i.e. as  

m→−∞ . A signal ( )x t  can then be represented using a combined series expansion 

using both the approximation coefficients and the wavelet (detail) coefficients as 

follows: 
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We can see from this equation that the original continuous signal is expressed as a 

combination of an approximation of itself, at arbitrary scale index mo, added to a 

succession of signal details from scales m0 down to negative infinity. The signal detail 

at scale m is defined as: 
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hence we can write equation (3.31) as 
 

( ) ( ) ( )
mo

mo m
m

x t x t d t
=−∞

= + ∑        (3.33)  

 
From this equation it is easy to show that  

 

1( ) ( ) ( )m m mx t x t d t− = +        (3.34) 
         
 
which tells us that if we add the signal detail at an arbitrary scale (index m) to the 

approximation at that scale we get the signal approximation at an increased resolution 

(i.e. at a smaller scale, index m - 1). This is called a multiresolution representation 

[20][Mal89]  (Mallat 1989). 

 

3.4 Wavelet packet decomposition 
 
 
Wavelet packet decomposition (WPD) (sometimes known as just wavelet packets) is 

a wavelet transform where the signal is passed though more filters than the DWT. 

 
In the DWT, each level is calculated by passing the previous approximation 

coefficients though a high and low pass filters. However in the WPD, both the detail 

and approximation coefficients are decomposed. 

 

For n levels of decomposition the WPD produces 2n different sets of coefficients (or 

nodes) as opposed to (n + 1) sets for the DWT. However, due to the downsampling 

process the overall number of coefficients is still the same and there is no redundancy. 

 



 

 

The two-dimensional DWT leads to a decomposition of approximation coefficients at 

level j in four components: the approximation at level j+1, and the details in three 

orientations (horizontal, vertical, and diagonal). 

 
Figure 3.25  Wavelet Packet decomposition over 3 levels 

 

The wavelet packet method is a generalization of wavelet decomposition that offers a 

richer range of possibilities for signal analysis. In wavelet analysis, a signal is split 

into an approximation and a detail. The approximation is then itself split into a 

second-level approximation and detail, and the process is repeated.  

 

In wavelet packet analysis, the details as well as the approximations can be split. This 

yields more than  different ways to encode the signal. This is the wavelet packet 

decomposition tree. 

 
Figure 3.26 Wavelet Packet decomposition Tree 

 

The wavelet decomposition tree is a part of this complete binary tree. For instance,  

 

 



 

 

wavelet packet analysis allows the signal S to be represented as A1 + AAD3 + DAD3 

+ DD2. This is an example of a representation that is not possible with ordinary 

wavelet analysis. Choosing one out of all these possible encodings presents an 

interesting problem. We use an entropy-based criterion to select the most suitable 

decomposition of a given signal.  

 
Unlike dyadic wavelet transform, wavelet packets decompose the low frequency 

component as well as the high frequency component in every sub-bands [17] 

{jin_Coifman_1992}. Such adaptive expansion can be represented with binary trees 

where each sub-band high or low frequency component is a node with two children 

corresponding to the pair of high and low frequency expansion at the next scale. An 

admissible tree for an adaptive expansion is therefore defined as a binary tree where 

each node has either 0 or 2 children, as illustrated in Figure 3.27 (c). The number of 

all different wavelet packet orthogonal basis (also called a wavelet packets dictionary) 

equal to the number of different admissible binary trees, which is of the order of 22
J

, 

where J is the depth of decomposition [18] {jin_Mallat_1998}. 

 
 
Figure 3.27  (a) Dyadic wavelet decomposition tree. (b) Wavelet packets 

decomposition tree. (c) An example of an orthogonal basis tree with 
wavelet packets decomposition. 

 
 
Obviously, wavelet packets provide more flexibility on partitioning the spatial-

frequency domain, and therefore improve the separation of noise and signal into 

different sub-bands in an approximated sense (this is referred to the near-

diagonalization of signal and noise). This property can greatly facilitate the  

 



 

 

enhancement and de-noising task of a noisy signal if the wavelet packets basis are 

selected properly [19] {jin_Coifman_1995b}. In practical applications for various 

medical imaging modalities and applications, features of interest and noise properties 

have significantly different characteristics that can be efficiently characterized 

separately with this framework. A fast algorithm for wavelet-packets best basis 

selection was introduced by Coifman and Wickerhauser in [19] 

{jin_Coifman_1995b}. This algorithm identifies the “best” basis for a specific 

problem inside the wavelet packets dictionary according to a criterion (referred to as a 

cost function) that is minimized. This cost function typically reflects the entropy of 

the coefficients or the energy of the coefficients inside each sub-band and the optimal 

choice minimizes the cost function comparing values at a node and its children. 

 

3.5 Discrete Stationary Wavelet Transform (SWT) 

 

The Stationary Wavelet Transform (SWT) is similar to the DWT except the signal is 

never subsampled and the filters are different for each level of decomposition. 

 
Figure 3.28  3 level SWT filter bank 

 
Each level's filters are up-sampled versions of the previous. 

 
Figure 3.29      SWT filters 

 

 

 



 

 

The SWT is an inherently redundant scheme as each set of coefficients contains the 

same number of samples as the input – so for a decomposition of N levels there is a 

redundancy of 2N. 

 

Synonyms 

 

The idea of omitting the downsampling in the discrete wavelet transform is so 

obvious, that this variant was invented several times with different names. 

• Stationary Wavelet Transform  

• Redundant Wavelet Transform  

• Algorithmé à trous  

• Quasi-continuous wavelet transform  

• Translation invariant wavelet transform  

• Shift invariant wavelet transform  

• Cycle spinning  

• Maximal overlap wavelet transform  

• Redundant wavelet transform  

Undecimated wavelet transform 

 

DWT suffers a drawback that the DWT is not a time-invariant transform. This means 

that, even with periodic signal extension, the DWT of a translated version of a signal 

X is not, in general, the translated version of the DWT of X.  

 

The idea is to average some slightly different DWT, called e-decimated DWT, to 

define the stationary wavelet transform (SWT). This property is useful for several 

applications such as breakdown points detection. The main application of the SWT is 

de-noising. 

 

The principle is to average several de-noised signals. Each of them is obtained using 

the usual de-noising scheme, but applied to the coefficients of an e-decimated DWT.  

 



 

 

There is a restriction: we define the SWT only for signals of length divisible by 2^J, 

where J is the maximum decomposition level, and we use the DWT with periodic 

extension. 

 

3.5.1  e-Decimated DWT 

 

There exist a lot of slightly different ways to handle the discrete wavelet transform. 

As we know  that the DWT basic computational step is a convolution followed by a 

decimation. The decimation retains even indexed elements.But the decimation could 

be carried out by choosing odd indexed elements instead of even indexed elements. 

This choice concerns every step of the decomposition process, so at every level we 

chose odd or even. If we perform all the different possible decompositions of the 

original signal, we have 2^J different decompositions, for a given maximum level J. 

 

Let us denote by ej = 1 or 0 the choice of odd or even indexed elements at step j.  

 

Every decomposition is labeled by a sequence of 0’s and 1’s: e = e1,…,eJ. This 

transform is called the e-decimated DWT. 

 

We can obtain the basis vectors of the e-decimated DWT from those of the standard 

DWT by applying a shift and corresponds to a special choice of the origin of the basis 

functions. 

 

It is possible to calculate all the e-decimated DWT for a given signal of length N, by 

computing the approximation and detail coefficients for every possible sequence e. Of 

course to calculate all the e-decimated DWT many computations are performed many 

times. We shall now describe another way, which is the stationary wavelet transform 

(SWT).  

 

The SWT algorithm is very simple and is close to the DWT one. More precisely, for 

level 1, all the e-decimated DWT (only two at this level) for a given signal can be  

 

 

 



 

 

obtained by convolving the signal with the appropriate filters as in the DWT case but 

without downsampling. Then the approximation and detail coefficients at level 1 are 

both of size N, which is the signal length. This can be visualized in the following 

figure. 

 

 
Figure 3.30 Convolving the signal with the appropriate filters without   

downsampling (SWT) 

 

The general step j convolves the approximation coefficients at level j-1, with 

upsampled versions of the appropriate original filters, to produce the approximation 

and detail coefficients at level j. This can be visualized in the following figure. 

 

 

 
 
Figure 3.31      1D SWT 

 
 
 

 

 



 

 

The standard Discrete wavelet transform is based on filter H and G and on a binary 

decimation operator oD . The binary decimation operator simply  chooses every even 

member of a sequence, so that : 

 
   2( )o j jD x x=            for all interger j.             (3.35) 

 
If x is a finite sequence of length 2m  with periodic boundary conditions applied, then 

each of 0D Gx  and 0D Hx  will be sequences of periodic length 12m− . 

 

Basic DWT  algorithm can be modified to give stationary wavelet transform. We 

simply apply appropriate high and low pass filters to the data at each level to produce 

two sequences at the next level. We do not decimate, and the two new sequences each 

have same length as the original sequence. Instead we modify the filters at each level , 

by padding them out with zeros. 

 

Let Z  be the operator that alternates the given sequence with zeroes, so that, for all 

integers j,  2( ) j jZx x=  and 2 1( ) 0jZx − = . Define filters [ ]rH  and [ ]rG  to have 

weights rZ h and rZ g  respectively. Thus the filter [ ]rH  has weights 
[ ]
2r
r

jj
h h=  and 

[ ] 0r
kh =  if k is not a multiple of 2r , the filter [ ]rH  is obtained by inserting a zeros 

between every adjacent pair of elements of the filter [ 1]rH − , and similarly for [ ]rG .  

 

3.6 Conclusion 

 

A brief introduction has been made regarding the mathematical background of 

different types of wavelet transform and the various aspects which differentiate each 

type from one another.  

 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

        CHAPTER IV 
 
        WAVELET IN BIOSIGNAL PROCESSING   
 
 
 
 
4.1 Introduction 

 

ECG signal (Electro Cardio Graphy) is the graphical recording of heart's electrical 

activity. The typical shape of a healthy ECG signal is well known to cardiologists. 

Any significant deviation from that shape is usually considered to be a symptom of a 

pathological condition. Recently, the new computerized ECG recorders/analyzers also 

utilize the frequency information to decide whether a pathological condition exists. A 

pathological condition can sometimes be diagnosed more easily when the frequency 

content of the signal is analyzed.  

 

Magnetic resonance imaging (MRI) scan is an imaging technique used primarily in 

medical field to produce high quality images of the soft tissues of the human body. 

Using brain images acquired by MRI often allows physicians and engineers to analyze 

the brain without the need for invasive surgery. 

 

4.2   Biopotentials in the Heart  
 

Muscular contraction is associated with electrical changes known as depolarization. 

The electrocardiogram (ECG) is a measure of this electrical activity associated with 

the heart. The ECG is measured at the body surface and results from electrical 

changes associated with activation first of the two small heart chambers, the atria, and 

then of the two larger heart chambers, the ventricles. The contraction of the atria 

manifests itself as the ‘P’ wave in the ECG and contraction of the ventricles produces 

the feature known as the ‘QRS’ complex. The subsequent return of the ventricular 

mass to a rest state—repolarization— produces the ‘T’ wave. Repolarization of the 

atria is, however, hidden within the dominant QRS complex. Analysis of the local 

morphology of the ECG signal and its time varying properties has produced a variety  

 



 

 

of clinical diagnostic tools. In this section we review the application of the wavelet  

transform to the analysis of the ECG signal.  

   

  
 

Figure 4.1   Heart      

 

During diastole, while the heart is at rest, all of the cells are polarized so that the 

potential inside each cell is negative with respect to the outside. Normally, 

depolarization occurs first at the SA node, making the outside of the tissue negative 

with respect to the inside of the cells and making it negative with respect to the tissues 

not yet depolarized. This imbalance results in an ionic current, I, Figure 4.2, causing 

the left arm to measure positive with respect to the right arm. The resulting voltage is 

called the P wave. After about 90 ms, the atrium is completely depolarized, and the 

ionic current measured by lead I reduces to zero. The depolarization then passes 

through the AV node causing a delay of 110ms. The depolarization then passes to the 

right ventricular muscle depolarizing it and making it negative relative to the still 

polarized left ventricular muscle. Again the direction of I causes a + to – voltage from 

LA to RA called the R-wave. The complete wave form is called an electrocardiogram 

with labels P, Q, R, S, and T indicating its distinctive features. The P wave arises 

from the depolarization of the atrium. The QRS complex arises from depolarization of 

the ventricles. The magnitude of the R-wave within this complex is approximately 

1mV. The T- wave arises from re-polarization of the ventricle muscle. The U wave 

that some times follow the T-wave is second order effect of uncertain origin and is of 

little diagnostic significance.  
 

 



 

 

PR interval lies between 0.12 to 0.2s 

QRS interval normally lies between 0.05 to 0.10s 
The intervals, segments, and complexes are shown in the Figure 4.3. 

 

 
          Figure 4.2      ECG Leads 

 

 

                  Figure 4.3      ECG Signal
 

Parts of an ECG 

The hills and valleys on an ECG recording are called waves. Each wave tells a doctor 

a story about how the heart is working. 

• The P-wave shows our heart’s upper chambers (atria) contracting 

• The QRS complex shows our heart’s lower chamber (ventricles) contracting 

• The T-wave shows the heart’s lower chamber (ventricles) relaxing. 

 

By noting the shape, consistency, and the time between these waveforms we can learn 

more about the conduction system, damaged area, and the areas that are not receiving 

enough oxygen to meet their needs. We can measure the distance of various intervals 

in the complex of waveforms to learn about the conduction system.  

 

• The first is the P-R interval. This  is measured from the beginning of the P- 

wave to the beginning of the QRS waves. Normal measurement for this  

 

 

 

 



 

 

interval are 0.12seconds to 0.20 seconds. 

• Next is the QRS interval. This is measured from the beginning of the first 

wave in the QRS to where  the last wave in the QRS return to the baseline. 

Normal measurement for this interval are 0.04 sec to 0.12 sec. 

• Another interval to look at is the Q-T interval. This is measured from the 

beginning of the QRS waves to end of the T-wave. Normal measurements for 

this interval are based on the heart rate. Generally it should be half of the 

distance between two QRS complexes, 0.4 sec or less. 

• The ST interval occur when the heart contracts and when the cell membranes 

are depolarised  but relatively stable, the measurement is 0.05-0.15 sec.  

 

4.3  Brain Structures and their Functions 

 

The nervous system is your body's decision and communication center. The central 

nervous system (CNS) is made of the brain and the spinal cord and the peripheral 

nervous system (PNS) is made of nerves. Together they control every part of our daily 

life, from breathing and blinking to helping us memorize facts for a test. Nerves reach 

from your brain to your face, ears, eyes, nose, and spinal cord and from the spinal 

cord to the rest of your body. Sensory nerves gather information from the 

environment, send that info to the spinal cord, which then speed the message to the 

brain. The brain then makes sense of that message and fires off a response. Motor 

neurons deliver the instructions from the brain to the rest of your body. The spinal 

cord, made of a bundle of nerves running up and down the spine, is similar to a 

superhighway, speeding messages to and from the brain at every second.  

 

The brain is made of three main parts: the forebrain, midbrain, and hindbrain. The 

forebrain consists of the cerebrum, thalamus, and hypothalamus (part of the limbic 

system). The midbrain consists of the tectum and tegmentum. The hindbrain is 

made of the cerebellum, pons and medulla. Often the midbrain, pons, and medulla are 

referred to together as the brainstem.  

 

 

 



 

 

The Cerebrum: The cerebrum or cortex is the largest part of the human brain, 

associated with higher brain function such as thought and action. The cerebral cortex 

is divided into four sections, called "lobes": the frontal lobe, parietal lobe, occipital 

lobe, and temporal lobe. Here is a visual representation of the cortex:  

• Frontal Lobe- associated with reasoning, planning, parts of speech, movement, 

emotions, and problem solving  

• Parietal Lobe- associated with movement, orientation, recognition, perception 

of stimuli 

 
 

Figure 4.4     Lobes of the Cerebral Cortex 

• Occipital Lobe- associated with visual processing  

• Temporal Lobe- associated with perception and recognition of auditory 

stimuli, memory, and speech 

The cerebral cortex is highly wrinkled. Essentially this makes the brain more efficient, 

because it can increase the surface area of the brain and the amount of neurons within 

it. A deep furrow divides the cerebrum into two halves, known as the left and right 

hemispheres. The two hemispheres look mostly symmetrical yet it has been shown 

that each side functions slightly different than the other. Sometimes the right 

hemisphere is associated with creativity and the left hemispheres is associated with 

logic abilities. The corpus callosum is a bundle of axons which connects these two 

hemispheres.  

 



 

 

Nerve cells make up the gray surface of the cerebrum which is a little thicker than our  

thumb. White nerve fibers underneath carry signals between the nerve cells and other 

parts of the brain and body.  

 

The neocortex occupies the bulk of the cerebrum. This is a six-layered structure of the 

cerebral cortex which is only found in mammals. It is thought that the neocortex is a 

recently evolved structure, and is associated with "higher" information processing by 

more fully evolved animals (such as humans, primates, dolphins, etc 

 

The Cerebellum: The cerebellum, or "little brain", is similar to the cerebrum in that it 

has two hemispheres and has a highly folded surface or cortex. This structure is 

associated with regulation and coordination of movement, posture, and balance.  

 

Limbic System: The limbic system, often referred to as the "emotional brain", is 

found buried within the cerebrum. Like the cerebellum, evolutionarily the structure is 

rather old. This system contains the thalamus, hypothalamus, amygdala, and 

hippocampus. Here is a visual representation of this system, from a midsagittal view 

of the human brain:  

 

 

Figure 4.5   Limbic System 

 

 



 

 

Brain Stem: Underneath the limbic system is the brain stem. This structure is 

responsible for basic vital life functions such as breathing, heartbeat, and blood 

pressure. The brain stem is made of the midbrain, pons, and medulla.  

4.4     Peak Signal-to-Noise ratio and Signal-to-Noise ratio 

 
Peak Signal-to-Noise ratio 

 
The phrase peak signal-to-noise ratio, often abbreviated PSNR, is an engineering 

term for the ratio between the maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its representation. Because many signals 

have a very wide dynamic range, PSNR is usually expressed in terms of the 

logarithmic decibel scale. 

The PSNR is most commonly used as a measure of quality of reconstruction in image 

compression etc. It is most easily defined via the mean squared error (MSE) which 

for two m×n monochrome images I and K where one of the images is considered a 

noisy approximation of the other is defined as: 
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The PSNR is defined as: 

 
2

10 1010.log 20.logI IMAX MAXPSNR
MSE MSE
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    (4.2) 

 
Here, MAXI is the maximum pixel value of the image. When the pixels are 

represented using 8 bits per sample, this is 255. 

 

For color images with three RGB values per pixel, the definition of PSNR is the same 

except the MSE is the sum over all squared value differences divided by image size 

and by three. Typical values for the PSNR in image compression are between 20 and 

40 dB. 

 

 



 

 

 

Signal-to-Noise ratio 

 

Basic Definition: Signal to Noise Ratio is the range between the Noise Floor level  

 

and the Nominal Level. 

 

 
               Figure 4.6 Representation to explain Signal to Noise Ratio 

 

Signal-to-noise ratio is an engineering term for the power ratio between a signal 

(meaningful information) and the background noise: 

 
2

signal signal

noise noise

P A
SNR

P A
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       (4.3) 

 
Because many signals have a very wide dynamic range, SNRs are usually expressed 

in terms of the logarithmic decibel scale. In decibels, the SNR is 20 times the base-10 

logarithm of the amplitude ratio, or 10 times the logarithm of the power ratio: 

 

10 10( ) 10log 20logsignal signal

noise noise

P A
SNR dB

P A
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⎝ ⎠ ⎝ ⎠

    (4.4)  

 

where P is average power and A is RMS amplitude. Both signal and noise power are 

measured within the system bandwidth. 

 



 

 

 

In image processing, the SNR of an image is usually defined as the ratio of the mean 

pixel value to the standard deviation of the pixel values. Related measures are the 

"contrast ratio" and the "contrast-to-noise ratio". 

4.5      NOISE ARTIFACTS in ECGs and MRI Scan/Image 
 
 

• Noise artifacts in ECGs 

 

In recent years the trend towards automated analysis of electrocardiograms has gained 

momentum. Many systems have been implemented in order to perform such tasks as 

12- lead offline electrocardiogram analysis, Holter tape analysis in real-time patient 

monitoring. This requires accurate detection of various parameters of interest even in 

the presence of noise. For accurate detection however steps have to be taken to filter 

out or discard the noise. Filtering can alter the signal and may require substantial 

computational overhead. 

 

Electrocardiographic signals (ECG) may be corrupted by various kinds of noise.  

Typical examples are: 

 

1. Power line interference 

2. Electrode contact noise. 

3. Motion artifacts. 

4. Muscle contraction. 

5. Base line drift. 

6. Instrumentation noise generated by electronic devices. 

7. Electrosurgical noise. 

 
 

• Noise artifacts in MRI  Image 

 

Grey values in MRI reflect two components: (a) signal intensity and (b) unavoidable 

noise. Noise is, in principle, unavoidable. It is caused by: (a) electromagnetic noise in  

 



 

 

 

the body due to movement of charged particles and (b) small anomalies in the 

measurement electronics, which depends on (i) the size of the RF coil and (ii) the 

bandwidth of the pulse sequence. (Large coils have a large measurement field, but 

low SNR and vice versa. The closer the coil to the object, the stronger the signal – the 

smaller the volume, the higher the SNR. Wider bandwidths decrease SNR.) 

Artifacts are signal intensities that have no relation to the spatial distribution of the 

tissues being imaged. There are four types of artifacts (based on appearance): (a) edge 

artifacts (ghosting, chemical shifts, and ringing), (b) distortions, (c) aliasing 

(wraparound) artifacts, and (d) flow artifacts. 

 

Motion Artifacts (ghosting and smearing): Artifacts often result from involuntary 

movements (eg. respiration, cardiac motion and blood flow, eye movements and 

swallowing) and minor subject movements.  
 

4.6    Wavelet Shrinkage and Thresholding operators for de-noising 
 
Consider the problem of denoising an unknown time signal s, from a set of samples  

 

xi  =  si + ni,      (4.5)  

 

corrupted by a zero mean white Gaussian noise ni (i = 1,…,N).  Let W denote a N by 

N orthonormal wavelet transformation matrix.  In the wavelet domain, the above 

equation can be expressed as : 

 

Xi = Si + Ni,  or,  X = S + N      (4.6) 

 

with  X = Wx,  S = Ws,  and  N = Wn [23], [21].  

 

Wavelet-domain filtering produces wavelet shrinkage estimates.  That is, certain 

wavelet coefficients are reduced to zero.  For a smooth function with additive 

Gaussian white noise of a specific energy level in a particular space of functions,  

 

 



 

 

 

there exists a theoretical threshold that completely removed the noise and successfully 

reproduced the original smooth function [24].   

 

Wavelet shrinkage is usually performed using one of two predominant thresholding  

schemes.  The hard threshold filter Hh removes coefficients below a threshold value 

t0, determined by the noise variance.  This is sometimes referred to as the “keep or 

kill” method [25].  The soft threshold filter Hs shrinks the wavelet coefficients above 

and below the threshold.  Soft thresholding reduces coefficients toward zero [21].  

The process of denoising is necessarily lossy in that the denoised signal is irreversibly 

different than the noisy signal.  Thresholding is the cause of this loss of information.  

It has been shown that if we desire the resulting signal to be smooth, the soft threshold 

filter should be used.  However, the hard threshold filter performs better. Both 

methods result in error within a logarithmic factor of the ideal risk, a performance 

measure  of the ideal shrinkage scheme [23].  Choosing a threshold value can also be 

difficult.  In practical situations, where the noise-free signal is unknown, we seek an 

approximation of the signal that is smooth and fits the input well.  A small threshold 

value creates a noisy result near the input, while a large threshold value introduces 

bias.  The optimal threshold is somewhere in-between [22].  

 

Experimental studies have shown that for certain applications, the optimal threshold is 

simply computed as a constant c times the noise variance [23].  The Universal method 

assigns a threshold level equal to the variance times (sqrt(2log(n))), where n is the 

sample size [26].  Another approach utilizes Generalized Cross Validation (GCV), a 

function of the threshold value which is minimized to minimize the mean square error 

[22].  

 
As a general rule, wavelet coefficients with larger magnitude are correlated with 

salient features in the image data. In that context, de-noising can be achieved by 

applying a thresholding operator to the wavelet coefficients (in the transform domain) 

followed by reconstruction of the signal to the original image (spatial) domain. 

Typical threshold operators for de-noising include : 

 

 



 

 

 

hard thresholding: 

      (4.7) 
soft thresholding (wavelet shrinkage): 
 

      (4.8) 

and affine(firm) thresholding: 
 

      (4.9) 

 
The shapes of these thresholding operators are illustrated in Figure 4.8. 
 

 
Figure 4.7 Example of thresholding functions, assuming that the input data was  

normalized to the range of [-1,1]. (a) Hard thresholding. (b) Soft 
thresholding. (c) Affine thresholding. The threshold level was set to 
T=0.5 

 

4.7    Selection of Thresholding Method 

 

In the application of De-noising, the threshold level parameter T plays an essential  

role. Values too small cannot effectively get rid of noise component, while values too  

large will eliminate useful signal components. There are a variety of ways to 

determine the threshold  value T as we will discuss in this section. 

 



 

 

 

Depending on whether or not the threshold value T changes across wavelet scales and 

spatial locations, the thresholding can be:  

 

4.7.1 Global Threshold: a single value T is to be applied globally to all 

empirical wavelet coefficients at different scales. . T = const 

 

4.7.2 Level-Dependent Threshold: a different threshold value T is selected 

for each wavelet analysis level (scale).T = T(j) , j=1,2, ….J, J is the 

coarsest level for wavelet expansion to be processed. 

 

4.7.3  Spatial Adaptive Threshold: the threshold value T varies spatially 

depending on local properties of individual wavelet coefficients. 

Usually, T is also level-dependent. T = T j( x y z) 

 

While a simple way of determining T is a percentage of coefficients maxima, there are 

different adaptive ways of assigning the T value according to the noise level 

(estimated via its variance σ ): 

 

1.  Universal Threshold: 2 logT nσ= {jin_Coifman_1995a}[27], with n equal to 

the sample size. This threshold was determined in an optimal context for soft 

thresholding with random Gaussian noise.  

 

2.  Minimax Threshold: nT Tσ=  {jin_Donoho_1994a}[28], where nT  is 

determined by a minimax rule such that the maximum risk of estimation error across 

all locations of the data is minimized. This threshold level depends on the noise and 

signal relationships in the input data. 

 

3.  Stein Unbiased Estimated of Risk (SURE): Similar as minimax threshold 

but nT  is determined by a different risk rule {jin_Donoho_1995a; 

jin_Stein_1981}[29][30]. 

 



 

 

4.  Spatial Adaptive Threshold: 2 / xT σ σ=  {jin_Chang_2000}[31], where xσ  

is the local variance of the observation signal, which can be estimated using a local 

window moving across the image data or, more accurately, by a context-based 

clustering algorithm.  

 

In many automatic de-noising methods to determine the threshold value T, an 

estimation of the noise variance σ  is needed. Donoho and Johnstone 

{jin_Donoho_1995c}[32] proposed a robust estimation of noise level σ  based on the 

median absolute value of the wavelet coefficients as: 

 

1( ( , , ) )
0.6745

median W x y z
σ =  

 

where 1W  is the most detailed level of wavelet coefficients. Such estimator has 

become very popular in practice and is widely used. 

 

4.8 Conclusion 

 
This chapter outlines the brief anatomy of brain and production of electrical signal 

associated with the heart. It also presents various causes of noise in ECG and MR 

images and need of thresholding operator for noise reduction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

 

CHAPTER  V 
 

ALGORITHM TO WORK WITH SIGNALS  
AND IMAGES IN MATLAB 7.0  

 
 
 
Steps taken to de-noise the signal and image with MATLAB 7.0 is now explained in 

this chapter.  We will also see the ease with which we can use the GUI of Wavelet 

transform for de-nosing, compression etc.  

 

5.1       Working with Signals 

 

5.1.1  Working in MATLAB Command line 

 

1. Load a ECG signal 

2. Perform a single-level wavelet decomposition of a signal using the 

(Daubechies 1) db1 wavelet This generates the coefficients of the level 1 

approximation (cA1) and detail (cD1). 

3. Construct approximations and details (A1 and D1) from the coefficients 

cA1 and cD1 

4. Display the approximation and detail 

5. Regenerate a signal by inverse wavelet transform 

If the single decomposition does not gives satisfactory results then 

proceed to next step otherwise jump to step 11  

6. Perform a multilevel wavelet decomposition of a signal 

Perform a level 3 decomposition of the signal (again using the db1 

wavelet).  

The coefficients of all the components of a third-level decomposition 

(that is, the third-level approximation and the first three levels of 

detail) are returned concatenated into one vector, C. Vector L gives the 

lengths of each component. 

 



 

 

           
   Figure 5.1 Level 3 Decomposition of signal 

 

7. Extract approximation and detail coefficients. 

8. Reconstruct the level 3 approximation and the level 1, 2, and 3 details 

9. Display the results of a multilevel decomposition 

10. Reconstruct the original signal from the level 3 decomposition 

11. Successive approximations become less and less noisy as more and more 

high-frequency information is filtered out of the signal. The level 3 

approximation, A3, is quite clean as compare to original signal. 

If result is satisfactory then stop otherwise perform next step 

12. Remove noise by different thresholding methods and Compare the    

results. 

Discarding all the high-frequency information, we’ve also lost many   

of the original signal’s sharpest features. Optimal de-noising requires a 

more   subtle approach called thresholding. 

 

5.1.2 Working in GUI toolbox 

 

1          Start the 1-D Wavelet Analysis Tool. From the MATLAB prompt, type 

 

>> wavemenu 

 
The Wavelet Toolbox Main Menu appears. 

 



 

 

 
        Figure 5.2 Wavelet Toolbox Main Menu 

 

2    Click the Wavelet 1-D menu item. 

The discrete wavelet analysis tool for one-dimensional signal data 

appears (figure 5.3). 

 

 
Figure 5.3 1D Wavelet Analysis Toolbox  

 

3  Load a signal. 

From the File menu, choose the Load>>Signal option to load the ECG 

signal and click OK. 
 
 
 



 

 

 
Figure 5.4 Loading Signal in 1D Wavelet Analysis Toolbox 

 

4  To start the analysis, perform a single-level wavelet decomposition, 

using the db1 wavelet. In the upper right portion of the Wavelet 1-D 

tool, select the db1 wavelet and single-level decomposition as shown 

in figure 5.5. 

 

 
Figure 5.5 Selecting wavelet type and level of Decomposition in 1D 

wavelet Analysis Toolbox 

 

Click the Analyze button and the following window, shown in figure 

5.6, appears. 

 



 

 

 
Figure 5.6 Window showing original signal, approximation (a1) and 

detail (d1) of level 1 Decomposition 

 

Drag a rubber band box (by holding down the left mouse button) over 

the portion of the ECG signal we want to magnify and then from the 

zooming toolbar (Figure 5.7), located at the bottom of the screen, click 

the X+ button  to zoom horizontally. 

 

 
Figure 5.7 Zooming toolbar 

 

The Wavelet 1-D tool zooms all the displayed signals as shown in 

figure 5.8 

   

 

 

 

 

 

 



 

 

 
Figure 5.8 Zoomed version of original signal, approximation (a1)  

and detail (d1) of level 1 

 

To decompose the signal with higher level of decomposition and with 

other wavelets e.g. db3, db4, bior etc repeat the step 4 by changing the 

level and wavelet type. 

Click the De-noise button, located in the middle right of the window, 

underneath the Analyze button. 

 

 
Figure 5.9 Toolbar to select appropriate action 

 

Note :- For Compression click the ‘Compress button’, located in 

the middle right of the window, underneath the Analyze button. 

 

On clicking the de-noise button, window, shown in figure 5.10,  

 

 

 

 



 

 

appears, showing the original signal and the detail component of the 

signal: 

 

 
Figure 5.10 Window showing Original signal and details of level 3 

decomposition  

 

Again click the De-noise button on the window, shown in figure 5.10, 

to de-noise the signal. Zoom in on the plot of the original and  

de-noised signals for a closer look. For this drag a rubber band box  

around the pertinent area, and then click the XY+ button on zoom  

toolbar (figure 5.7). The De-noise window get magnified. By default,  

the original signal is shown in red, and the de-noised signal in yellow.  

The window shown in figure 5.11 appears after magnification: 

 

 
Figure 5.11 Window showing Original signal, De-noise signal and 

details of level 3 

 

 



 

 

Note :-   Click SWT De-noising 1D menu item from wavelet toolbox  

 main menu to de-noise  an signal using discreet SWT and the 

procedure is the same as adopted for de-noising using DWT. 

 

5.2       Working with Images  

 

5. 2.1  Working in MATLAB Command line 

 

1. Load an image. 

2.   Display the image. 

3. Convert an indexed image to a grayscale image. 

If the colormap is smooth, the wavelet transform can be directly 

applied to the indexed image; otherwise the indexed image should be 

converted to grayscale format. 

4. Perform a multilevel wavelet decomposition. Chose db1 wavelet and Level 

2 decomposition. 

This generates the coefficient matrices of the level-two approximation  

and  horizontal, vertical and diagonal details. 

5. Reconstruct Level 2 approximations and level 1 and level 2 details from 

the coefficients.   

6. Display the results of a multilevel decomposition. 

7. Regenerate or reconstruct an image by Inverse Wavelet Transform.  

8.  Remove noise by thresholding  

 

5.2.2    Working in GUI toolbox 

 

     1.   Start the 2-D Wavelet Analysis Tool. 

From the MATLAB prompt, type 

 

>> wavemenu 

 

 

 



 

 

The same Wavelet Tool Main Menu appears as discussed in section 

5.1.2 (figure 5.2) 

 

Click the Wavelet 2-D menu item. The discrete wavelet analysis tool 

for two-dimensional image data appears (figure 5.12). 

 

   
Figure 5.12 2D Wavelet analysis toolbox 

 

       2.  Load an image. 

From the File menu, choose the Load>>Image option to load the MRI 

image of the Brain. Click the OK button. 

 

  . 

  Figure 5.13      Loading Image in 2D Wavelet analysis toolbox 
 
 
 
 
 



 

 

3. Analyze the image. 

 

Using the Wavelet and Level menus located to the upper right,  select 

the wavelet type, and the number of levels to be used for the analysis. 

For this analysis, select the db1 wavelet at level 2 . 

 

   
Figure 5.14      Selecting wavelet type and level of Decomposition in 2D   

Wavelet Analysis Toolbox. 

 

Click the Analyze button. The window shown in figure 5.15 appears: 

 

   
Figure 5.15      Window showing Original Image, Synthesise Image, and  

Decomposition (Approximation and Detail) at level 2 

 
 
 
 
 



 

 

The display in figure 5.15 is default Square Mode Features which 

includes four different displays. In the upper left is the original image. 

Below that is the image reconstructed from the various approximations 

and details. To the lower right is a decomposition showing the coarsest 

approximation coefficients and all the horizontal, diagonal, and vertical 

detail coefficients. Finally, the visualization space at the top right 

displays any component of the analysis that we want to look at more 

closely on clicking on any decomposition component in the lower right 

window. A green border highlights the selected component.  

 

Zooming in on Detail.  Drag a rubber band box (by holding down the 

left mouse button) over the portion of the image we want to magnify 

(as shown in figure 5.16). Then from zooming toolbar, shown in figure 

5.17, Click the XY+ button (located at the bottom of the screen) to 

zoom horizontally and vertically. 

 

   
Figure 5.16     Zooming the region of Interest in Original Image 

 

 
Figure 5.17     Zoom Toolbar 

 
 
The Wavelet 2-D tool enlarges the displayed images (shown in figure 

5.18). 

 



 

 

   
Figure 5.18 Zoomed version of original and synthesized 

image 
   

To zoom back to original magnification, click the History <<- button. 

 

      4.   De-Noise the image 

 

Click the De-noise button located to the upper right of the Wavelet  

2-D window. The Wavelet 2-D De-Noising window appears and again 

click the De-Noising button located on Wavelet 2-D De-Noising 

window. The following window appears. 

 

   
Figure 5.19      Window showing Original and De-noised Image, with 

level 1 and 2 Horizontal, vertical and diagonal detail 

 



 

 

Select different thresholding method from 2D-Denoising window 

(figure 5.19) for better results. 

 

Note:-  Click SWT De-noising 2D menu item from wavelet toolbox  

main menu to de-noise  an image using discreet SWT and the  

procedure is the same as adopted for de-noising using DWT.  

 

 

 

 
5.3 Conclusion 
 
The algorithm to de-noise the signal and image with MATLAB 7.0 and the ease with 

which we can use the GUI of wavelet transform is explained in this chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 



 

 

  CHAPTER  VI 
 

RESULTS AND DISCUSSION 
 

 

The experiments are conducted on MRI image of size 512 X 512 at different noise  

levels σ = 25, 30 and 35 and on ECG signal using different threshold method. To 

evaluate the quality of the results, SNR (Signal to noise Ratio) is considered for ECG 

signal and PSNR (Peak Signal to Noise Ratio) for MRI image. 

 

I  ECG Signal De-noising 
 

The DWT and SWT  transform  employs db1 wavelet with level 3 decomposition. For 

ECG signal de-noising three kinds of threshold method, viz. Sqtwolog, minimaxi, 

heursure, are used with DWT and the results are then compared  

 

(A) DWT - Discrete wavelet transform method  

 

The original ECG signal on which wavelet transform is required to be performed is 

shown below in figure 6.1. 
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   Figure 6.1 Original ECG Signal 



 

 

On loading an ECG signal and performing a single-level wavelet decomposition on a 

signal using the db1 wavelet it generates the coefficients of the level 1 approximation 

(cA1) and detail (cD1).  

 

On constructing approximations and details (A1 and D1) from the coefficients cA1 

and cD1 we get approximation and detail as shown in figure 6.2(a) and figure 6.2(b) 

respectively. 
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  (a)  Approximation   (b) Detail 

Figure  6.2  Approximation and Detail  after single-level decomposition using  

DWT 

 

The signal can be reconstructed by either  

P1=A1+D1;  

or taking idwt i.e.  

A0 = idwt(cA1,cD1,db1,l_s); 

Where P1 and A0 is reconstructed signal 

 

To check the perfect reconstruction by A0 we get error: 

err =2.6645e-015 

 

 

 

 



 

 

and  

To check the perfect reconstruction by P1 we get error: 

err =2.6645e-015 

 

Where the error (err) is the difference between the original and reconstructed signal which 

comes out to be very less and thus reconstruction is perfect. As both P1 and A1 give the same 

result therefore any method can be opted for reconstruction. Approximation A1 after Level 1 

is shown in figure 6.3 which is same as figure 6.2(a). 
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 Figure  6.3  Approximation A1 after level 1 decomposition using DWT 

 

Figure 6.3 shows that from approximation A1 high frequency signal is somewhat 

removed. As we have discussed in previous chapters that the details are the high 

frequency component of the signal therefore these are of less interest. We now note 

that successive approximations become less and less noisy as more and more high-

frequency information is filtered out of the signal.  

 

On  performing a multilevel wavelet decomposition (level 3 decomposition in this 

case) of the signal using the db1 wavelet, figure 6.4 shows the details D1, D2, and D3, 

which is nothing but the high frequency component after each iteration or 

decomposition level. 
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Figure  6.4  Details (D1, D2 & D3) after level 3 decomposition using DWT 

 

The level 3 approximation, A3, is quite clean, as shown in figure 6.5, as compared to 

the original signal but changes the fine details of the signal  
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Figure  6.5  Original and level 3 approximation using DWT 

 

 

 

 



 

 

Of course, in discarding all the high-frequency information, we’ve also lost many of 

the signal’s sharpest features. Optimal de-noising requires a more subtle approach 

called thresholding. This involves discarding only the portion of the details that 

exceeds a certain limit. 

 

Removing noise by thresholding using DWT, the default values of threshold, 

generated by Matlab command, is: 

thr =0.0450 

 

The original and de-noised signals using DWT with thresholding method are shown in 

figure 6.6. The figure 6.7 shows overlap original signal ( in red ) and De-noised signal 

(in  blue ) for comparison purpose. It shows that de-noised signal preserves the sharp 

features.  

 

The result after applying thresholding (figure 6.6) are better as compared to 

decomposition method (approximation of level 3 (figure 6.5)) 
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Figure  6.6     Original and De-noised ECG Signal using DWT 
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         Figure 6.7       Overlap Original and De-noised signal (using DWT) 

 

Signal to noise ratio with DWT is 24.2127 

 
(B) SWT - Stationary Wavelet Transform 
 

Performing single-level decomposition on a signal using the db1 wavelet the same 

way as we did in DWT, SWT also generates the coefficients of the level 1 

approximation (swa) and detail (swd) and on constructing approximations and details 

(A1 and D1) from the coefficients swa and swd we get the following approximation 

and detail as shown in figure 6.8 
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Figure 6.8 Approximation and Detail  after single-level decomposition using  

SWT 

 

 



 

 

In this case also level 1 decomposition is not sufficient for removing the noise, thus 

on  performing a multilevel wavelet decomposition (level 3 decomposition in this case 

also) of the signal using the db1 wavelet, approximations, A1, A2 and A3,  and details 

D1, D2 and D3 are shown below in figure 6.9 
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Figure 6.9 Approximations (A1, A2& A3) and Details (D1,D2& D3) after level 3 

decomposition using SWT 

 

The original signal is reconstructed from approximation and detail and  then de-

noising the signal using the same threshold value as we  used with DWT, figure 6.10 

is generated and shows that SWT not only preserves the fine details but is also gives 

smooth signal as compared to DWT thus SWT is better then DWT . 
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     Figure 6.10      Original and De-noised ECG Signal using SWT 



 

 

Figure 6.11 shows the original signal (in  red ) and De-noised signal using SWT (in   

blue ). It shows that the de-noise signal is smooth and SWT preserves the sharp 

details. 

0 100 200 300 400 500 600 700 800 900 1000
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2
Original-red
De-noised s ignal us ing SW T-blue

 
      Figure 6.11       Overlap Original and De-noised signal (using SWT) 

 

Signal to noise ratio with SWT =27.5799 

 

Comparing the results of DWT and SWT, SNR of SWT is better then DWT and thus 

the SWT remove the noise better then DWT without compromising the details.  

 

De-noising of ECG signal with DWT and SWT with db3 wavelet is also performed 

and resulting SNR with db1 and db3 is summarized in table 6.1. From table 6.1 it is 

concluded that the SWT is better option to de-Noise the signal as compare to DWT. 

 

The DWT is now employed with different thresholding method viz. heursure, 

sqtwolog and minimaxi using db1 wavelet and the results are shown in Figure 6.12, 

6.13 and 6.14 

  

(1)  sqtwolog: It gives S/N ratio  =    22.6100 



 

 

0 100 200 300 400 500 600 700 800
4.5

5

5.5

6

6.5
nois y /original

0 100 200 300 400 500 600 700 800
4.5

5

5.5

6
De-nois ed-- s qtwolog

 
Figure 6.12 Original and De-noised Signal using sqtwolog threshold 

 

(2)  minimaxi : Gives S/N ratio  = 24.4473 
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Figure 6.13 Original and De-noised Signal using minimaxi threshold 

 

(3)  heursure: It gives S/N ratio  = 28.5703 
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Figure 6.14 Original and De-noised Signal using  heursure threshold 

 

From above figures and SNRs, it is concluded that heusure thresholding method gives 

better results. Therefore de-noising the signal using DWT with heursure thresholding 

method is better as it not only produces the smooth de-noised signal but also it does 

not changes the details of the signal 

 

Selecting a particular wavelet for de-noising has also a key role. The above methods 

is performed with db1 wavelet. The same procedure is opted for db3 wavelet for 

performing the de-noising and the result is summarized in Table 6.1 
 

Table 6.1.  SNR for the ECG signal with DWT and SWT and with different thresholding 

method: Sqtwolog, minimaxi, heursure using DWT 
 
Wavelet DWT 

 

Thr.=0.0450 

                    DWT 
                   

                  Thresholding 

Sqtwolog     minimaxi          heursure 

      SWT 

 

Thr.=0.0450 

db1 24.2127 22.6100          24.4473          28.5703 27.5799 

db3 25.6854 24.2531           26.0383         28.6488 27.8702 

 

In ECG signal denoising, in present noise level among all threshold method heursure 

is best and the worst is Sqtwolog, (Table 6.1). The results of experiment shows that 



 

 

db3 gives better result then db1. Table 6.1 also shows that SWT gives better result as 

compared to DWT for same value of threshold. 

 

II Image Denoising 
 

In order to compare the performance of DWT with SWT, the experiments are 

conducted on MRI image of size 512 X 512 at different noise levels σ = 25, 30 and 35 

 

(A) DWT 

The Original RGB MRI image is shown in figure 6.15 :  
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    Figure 6.15    Original RGB MR image 

 

On loading an image, we first convert it into an grayscale image before we perform 

the decomposition. If the colormap is smooth then we don’t need to convert it into 

gray scale. The gray scale MR image is shown in figure 6.16:  

 

 
   Figure 6.16  Gray scale MR image 



 

 

On performing single-level decomposition using db1 the approximation and details 

are shown in figure 6.17: 
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Figure 6.17  Approximation and details after single-level decomposition using DWT 

 

Approximation and details after level 2 decomposition is shown in figure 6.18: 
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Figure 6.18  Approximation and details after level 2 decomposition using DWT 



 

 

Original Image is presently is not corrupted with noise, thus we first introduce the 

noise with noise variance 25 before performing de-noising using DWT and SWT with 

decomposition level 2. 

  

De-noising   the image with DWT with db1 wavelet give PSNR =21.2317 

The  resultant De-noised image is shown in figure 6.19 
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  Figure 6.19  Noisy and De-noised MR image using DWT 

 

The same experiment is also performed with db3 wavelet and also with different noise 

variance and the result is summerised in Table 6.2 

 

Image   Compression  
 
Image data compression technique is concerned with the reduction of the number of 

bits required to store or transmit images without any appreciable loss in information. 

Thus we can send image in short time and store the compressed image with ease. The  

image shown in figure 6.20 is  99.9982 % compressed without loss in information. 
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  Figure 6.20  Original and Compressed MR image 

 



 

 

As explained before Data compression is the process of reducing the amount of data 

by reducing the number of bits required to represent a given quantity of information 

so in this process those bits or pixels which may be corrupted with a noise is also been 

eliminated. When compressed image is used for de-noising the PSNR =  21.2524 with 

db1 and  PSNR = 22.4220 with db3 at noise variance =25. Thus when compressed 

image is used directly for de-Noising then the PSNR ratio become somewhat better. 

 

(B) SWT 
 

On performing single-level decomposition using db1 we get the Approximation and 

details shown in Figure 6.21 
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Figure 6.21  Approximation and details after single-level decomposition using SWT 

 

Approximation and details after level 2 decomposition is shown below: 
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Figure 6.22 Approximation(A1 & A2) and details (D1 & D2) after level 2 

decomposition using SWT 

 

 



 

 

On performing  de-noising using SWT figure 6.23 is generated. 
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Figure 6.23  Noisy and De-noised MR image using SWT 

 

and it gives PSNR =23.4897 at noise variance = 25 

 

The above experiment is also performed with db3 wavelet and also with different 

noise variances and the result (PSNR) is summarized and compared in table 6.2. It 

appears from the table 6.2 that the SWT eliminate the noise better as compared to 

DWT at all noise level. The results of experiment show that db3 gives better results 

than db1 at particular noise variance.  

 

Table 6.2  PSNR for the MR  Image with different noise variance σ  using db1 and db2 

wavelet  

 

            DWT        SWT 

σ =25           21.2317                         23.4897 

σ =30           20.7702        23.0581 

 

db1               

σ =35           20.3759        22.6910 

σ=25           22.3713        23.5017 

σ=30           21.9347        23.1067 

 

db3  

σ =35           21.5487        22.7569 

   

 

 

 

 



 

 

III Region of Interest   

 

In order to select the region of interest in the Original image CROPPING is 

performed. Region of interest in MRI of Brain may be a tumourous growth.  

Two Methods are adopted for selecting Region of Interest: -   

(1) Selecting the region of interest through a Mouse  

(2) By specifying the region in the form of array 

 

(1) Selecting the region of interest through a Mouse: The region of interest 

in the image is selected through mouse and on converting the selected 

image into grey scale the following figure appears: 

 

 
 

Figure 6.24  Selected region of interest using mouse 

 

As image is not noisy so introducing the noise (with noise variance=25) in figure 6.24 

and then de-noising the image using DWT with db1 wavelet we get figure 6.25 
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Figure 6.25  Noisy and De-Noise MR image of selected region shown in figure 6.24 

 

 

 



 

 

(2)        By specifying the region in the form of array 

By specifying the region of interest in the form of array in the MATLAB code 

and converting the image in the grey form we get figure 6.26: 
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Figure 6.26  Selected region of interest by specifying an array 

 

Introducing the noise (with noise variance=25) in figure 6.26 and de-noising the 

image using DWT with db1 wavelet figure 6.27 is generated. 
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Figure 6.27  Noisy and De-Noise MR image of selected region shown in figure 6.26 

 

MRI acquisition of MRI images helps the biomedical engineers to fully analyze 

different aspects of the brain thereby reducing the need for surgery. With appropriate 

image analysis techniques, a biomedical engineer can use one small set of MR images 

and manipulate them to analyze some interesting facets of the brain. 

 



 

 

To load MR images of the brain into MATLAB and perform the necessary image 

analysis specifically the task will require us to carry out the following steps: 

• Loading the MRI data set file. 

• Displaying a cross sectional view of all MR image frames in one figure  

MRI Slices

 
 Figure 6.28  A sequence of MR image slices 

 

• Isolating a frame of interest (e.g. slice no. 6) and display it as an individual 

figure. Figure 6.29 shows the isolated slice No. 06: 

 

 
 
Figure 6.29  Slice No 6 from sequence of MR image slices 

 

Particular frame of interest can be de-noised in the similar way as we discussed in this  

chapter with different wavelets and at any noise variance. 

 



 

 

The images are called slices because they look like we have cut the brain in many 

slices to see what’s inside. Using MATLAB movie function it’s possible to show all 

frames of MRI data as a movie.  

 

There are different development stages in which the tumour grows and to study the 

each stage is essential for diagnosis purpose.  The 19 different slices of Tumour cycle 

is shown below in figure 6.30: 

  

 
Figure 6.30  A sequence of Tumour cycle  

 

Using MATLAB movie function it’s possible to show all frames of tumour cycle as a 

movie. Any Slice no. of interest can be isolated and de-noised using same procedure 

as we have discussed in this chapter. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

       CHAPTER VII 
 

       CONCLUSION AND FUTURE SCOPE 
 
 
 
Conclusion  

 

The work has been devoted to the de-noising algorithms based upon the discrete 

wavelet transform that can be applied to enhance noisy MR data sets and ECG signal. 

The trade-off between noise elimination and detail preservation was analysed using 

the PSNR (for MR Image), SNR (for ECG signal) and visual criteria. Thus a 

comparison between the qualities and performance of various wavelet functions were 

deduced using these criteria. Effectiveness of transform is dependent on the type of 

image, the error criterion used, the nature and amount of contaminating noise. It was 

seen that the third-order Daubechies (db3) wavelet function performed well for the 

de-noising of the random noise both in the cases of ECG signal and MR Image as 

compared to db1 wavelet, this can be clearly seen with its considerable improvement 

in PSNR and producing visually more pleasing images thus we can conclude that the 

higher a vanishing moments is, the better the results are. 

 

The wavelet transform is used to decompose an image and signal into a low-

frequency component and a set of higher-frequency details. By analyzing the wavelet 

transform coefficients, high frequency details which correspond to signal noise, can 

be eliminated by using SWT and DWT. Noise is reduced from an image without 

losing the anatomical information which is of interest to medical doctors. Wavelets 

have demonstrated to be a very powerful tool for analysis, processing and synthesis of 

relevant image features. Different threshold methods is applied with DWT on ECG 

signal and the noise is reduced to a great extent while preserving the sharp features of 

signal which is used by the doctors for diagnosis purposes. SWT shows better result 

as compared to DWT in both ECG signal and MR Image.  Among three thresholding 

method viz. Sqtwolog, heursure and minimaxi, heursure gives better SNR on de-

noising ECG signal using DWT. 

 
 
 



 

 

Future Scope 
 
 
The work presented in this thesis can be extended in several directions. In the analysis 

of the objects in images it is essential that we can distinguish between the objects of 

interest and the rest e.g. the background. The techniques that are used to find the 

objects of interest are usually referred to as segmentation techniques – segmenting the 

foreground from background. Thus the further work can be devoted in the 

segmentation of image which subdivides an image into its constituent regions or 

objects and it is an important step toward the analysis phase. 

 

Over the years computer aided ECG signal analysis is gaining momentum with 

tremendous amount of work being carried out all over the world. The work presented 

in this thesis is a small step in that direction.  The ECG signal used in this study was 

downloaded from the internet and all the work is done in MATLAB®. However a 

separate data acquisition module can also be designed which will capable of picking 

the analog ECG signals from the existing machines, convert them into digital signals 

and then transmit them to the computer via the serial port. This data is then stored as a 

binary file and can be employed for the processing purposes.  

 

Image De-nosing plays a vital role in diagnosis purposes. There is a lot of scope for 

improvements in the proposed image de-noising algorithm. The present work left us 

with some areas of the image de-noising that are yet unexplored. There are other 

threshold techniques that can also be used.  

 

De-noising algorithm used in this work uses single wavelet and can also be performed 

with Multiple Wavelets Transform. Also Wavelet Packet is yet another challenging  

technique to de-noise the signals and images with greater efficiency and with better 

promising results which can be used in future for better results. 
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     APPENDIX 
 
 
 
(A) MATLAB CODE FOR IMAGE AND SIGNAL DE-NOISING 
 
 
clc; 
clear all; 
n=menu('IMAGE','ECG signal',' MRI IMAGE','Exit'); 
 
if n==1 
%%%%%%%%%%%%%%%%% Signal  De-noising%%%%%%%%%%%% 
load('C:\Documents and Settings\Administrator\My Documents\DSP\HRTSIG.MAT') 
END=length(sig); 
x=sig(1:end,1);     %Time    
y=sig(1:end,2);     %ECG data #1 
z=sig(1:end,3);     %ECG data #2 
count=4000; 
y2=y ;%temp variable 
temp=y; 
s=y ;%temp variable:-s contains a signal 
l_s = length(s); 
LEVEL=3; 
%%%%%%%%%%%%%%%%%%% Wavelet Selection %%%%%%%%%%%% 
i=menu('WAVELET for Signal','db1(Haar)','db3','Exit'); 
 
if i==1 
wavelet='db1'; 
elseif i==2 
wavelet='db3'; 
else 
break 
end 
[C,L] = wavedec(s,3,wavelet); 
%Extract approximation and detail coefficients. 
%To extract the level 3 approximation coefficients from wavelet decomposition 
%structure [C,L]  
cA3 = appcoef(C,L,wavelet,3); 
%To extract the levels 3, 2, and 1 detail coefficients from wavelet decomposition 
%structure [C,L]  
[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]); 
A3 = wrcoef('a',C,L,wavelet,3); 
disp(' To display the details D1, D2, and D3 ');  
D1 = wrcoef('d',C,L,wavelet,1); 
D2 = wrcoef('d',C,L,wavelet,2); 
D3 = wrcoef('d',C,L,wavelet,3); 
pause; 
subplot(3,1,1); plot(D1(20:800)); title('Detail Level 1');  
subplot(3,1,2); plot(D2(20:800)); title('Detail Level 2');  
subplot(3,1,3); plot(D3(20:800)); title('Detail Level 3');  
 
 



 

 

pause; 
close; 
A0 = waverec(C,L,wavelet); 
err = max(abs(s-A0)) 
%The level 3 approximation, A3, is quite clean as a compare to original signal. 
pause; 
disp('To compare the approximation to the original signal'); 
pause; 
subplot(2,1,1);plot(s(20:1000));title('Original');  
subplot(2,1,2);plot(A3(20:1000));title('Level 3 Approximation-QUIT CLEAN'); 
pause; 
close; 
pause; 
 
j=menu('DENOISING','DWT','SWT'); 
if j==1 
%%%%%%%%%%%% D W T  %%%%%%%%%%%%%%%%%%% 
t=menu('DWT thresholding method ','fixed thresholding','heursure','sqtwolog','minimaxi'); 
if t==1     
disp(' Remove noise by thresholding using DWT'); 
%Remove noise by thresholding. 
[thr,sorh,keepapp] = ddencmp('den','wv',s) 
clean = wdencmp('gbl',C,L,wavelet,3,thr,sorh,keepapp); 
pause; 
disp('To display both the original and de-noised signals using l thresholding '); 
pause; 
subplot(2,1,1); plot(s(20:1000)); title('Original') 
subplot(2,1,2); plot(clean(20:1000)); title('De-noised using DWT(Thresholding)') 
pause; 
close; 
pause; 
plot(s(20:1000),'red'); hold on 
plot(clean(20:1000),'blue'); 
legend('Original','De-noised using DWT(Thresholding)') 
pause; 
close all; 
disp('SNR with  thresholding(DWT)'); 
correlation_matrix = corrcoef(s, clean); 
C1 = correlation_matrix(1,2); 
signal_to_noise_ratio = 10 * log10( C1 / (1 - C1)) 
pause;break 
 
elseif t==2 
TH_M='heursure'; 
elseif t==3 
TH_M='sqtwolog'; 
elseif t==4 
TH_M='minimaxi'; 
else 
break 
end 
xd2 = wden(y,TH_M,'s','mln',3,wavelet); 
 
 
 



 

 

correlation_matrix = corrcoef(y, xd2); 
C1 = correlation_matrix(1,2); 
signal_to_noise_ratio = 10 * log10( C1 / (1 - C1)) 
pause; 
subplot(2,1,1); plot(y(20:800)); title('noisy/original') 
subplot(2,1,2); plot(xd2(20:800)); title('De-noised') 
pause; 
close; 
pause; 
plot(y(20:1000),'red'); hold on 
plot(xd2(20:1000),'blue'); 
legend('noisy/Original','De-noised -- sqtwolog') 
pause; 
close all; 
 
elseif j==2 
%%%%%%%%%%%%%%%%%% S W T  %%%%%%%%%%%%%%%%     
%LEVEL=3; 
[swa,swd] = swt(s,1,wavelet); 
%To find the inverse transform 
A0 = iswt(swa,swd,wavelet); 
%To construct the level 1 approximation and detail (A1 and D1) from the 
%coefficients swa and swd 
nulcfs = zeros(size(swa)); 
A1 = iswt(swa,nulcfs,wavelet); 
D1 = iswt(nulcfs,swd,wavelet); 
[swa,swd] = swt(s,LEVEL,wavelet);             
%To reconstruct the approximation at level 3, type 
mzero = zeros(size(swd)); 
A = mzero; 
A(3,:) = iswt(swa,mzero,wavelet); 
%To reconstruct the details at levels 1, 2 and 3 
D = mzero; 
for i = 1:3 
swcfs = mzero; 
swcfs(i,:) = swd(i,:); 
D(i,:) = iswt(mzero,swcfs,wavelet); 
end 
pause; 
close all; 
%To reconstruct the approximations at levels 2 and 3 
A(2,:) = A(3,:) + D(3,:); 
A(1,:) = A(2,:) + D(2,:); 
%To display the approximations and details at levels 1, 2 and 3 
kp = 0; 
for i = 1:3 
disp('Display the approximations and details at levels 1, 2 and 3');  
pause; 
subplot(3,2,kp+1), plot(A(i,:));title(['Approx. level',num2str(i)]) 
subplot(3,2,kp+2), plot(D(i,:));title(['Detail level',num2str(i)]) 
kp = kp + 2; 
end 
 
 
 



 

 

pause; 
close all; 
%Remove noise by thresholding. 
[thr,sorh] = ddencmp('den','wv',s); 
dswd = wthresh(swd,sorh,thr); 
xd = iswt(swa,dswd,wavelet); 
subplot(2,1,1), plot(s(20:1000));title('Original signal') 
subplot(2,1,2), plot(xd(20:1000));title('De-noised signal using SWT(Thresholding)') 
pause; 
close all; 
pause; 
plot(s(20:1000),'red'); hold on 
plot(xd(20:1000),'blue'); 
legend('Original','De-noised signal using SWT( Thresholding)') 
pause; 
close all; 
 
disp('SNR with thresholding using SWT'); 
correlation_matrix = corrcoef(s, xd); 
C1 = correlation_matrix(1,2); 
signal_to_noise_ratio = 10 * log10( C1 / (1 - C1)) 
pause; 
close all; 
else 
break 
end 
 
elseif n==2 
%%%%%%%%%%%%%%%% IMAGE De-noising %%%%%%%%%%%%%%      
rgb = imread('C:\Documents and Settings\Administrator\Desktop\brain.jpg'); 
NbColors = 255; 
I = rgb2gray(rgb);                   
Y = imresize(I,[512 512]); 
Y = double(Y); 
map = pink(NbColors); 
newmap = rgb2gray(map); 
imshow(Y, newmap); 
pause; 
[m n]=size(Y); 
%%%%%%%%%% wavelets selection%%%%%%%%%%%%%%%%%%%%% 
s=menu('WAVELET for Image','db1(Haar)','db3','Exit'); 
% Daubechies 
if s==1 
wavelet='db1'; 
elseif s==2 
wavelet='db3'; 
else 
break 
end 
% no. of decomposition levels 
level=2; 
 
 
 
 



 

 

% 2D DWT DECOMPOSITION 
Y0 = DECOMP(Y,level,wavelet);  
%DECOMP is a function created for 2D DWT Decomposition  
r=menu('SELECT','DENOISING','COMPRESSION'); 
if r==1 
    %%%%%%%%%%%%%DENOISING  %%%%%%%%%%%%%%% 
    init=2055615866; randn('seed',init);  
    l=menu('Noice level','25','30','35'); 
    if l==1 
    NV=25; 
    elseif l==2 
    NV=30; 
    elseif l==3 
    NV=35; 
    else       
break 
end 
 
x = Y + NV*randn(size(Y)); 
% Array dimensions of the original image 
[m n]=size(Y);           
%%%%%%%%%%% TYPE OF DENOISING%%%%%%%%%%%%%%%%%%%% 
k=menu('TYPE','DWT','SWT') 
if k==1 
    %%%%%%%%%%%%%%%%%%% D W T  %%%%%%%%%%%%%%%%% 
    [thr,sorh,keepapp] = ddencmp('den','wv',x); 
    xd = wdencmp('gbl',x,wavelet,2,thr,sorh,keepapp); 
    x = imresize(x,[512 512]);xd = imresize(xd,[512 512]); 
    colormap(newmap), sm = size(map,1); 
    subplot(121), image(wcodemat(x,sm)), title('Noisy Image');axis square;axis off; 
    subplot(122), image(wcodemat(xd,sm)), title('De-Noised Image');axis square;axis off; 
    Y = imresize(Y,[512 512]); 
    Y=double(Y); 
    xd = imresize(xd,[512 512]); 
    xd=double(xd); 
    err = Y - xd; 
    PSNR = 20*log10(255/std(err(:))) 
    pause; 
     
elseif k==2 
    %%%%%%%%%%%%% S W T  %%%%%%%%%%%%%%%%%%% 
    [swa,swh,swv,swd] = swt2(x,2,wavelet); 
    mzero = zeros(size(swd)); 
    A = mzero; 
    A(:,:,2) = iswt2(swa,mzero,mzero,mzero,wavelet); 
    H = mzero; V = mzero; 
    D = mzero; 
    for i = 1:2 
    swcfs = mzero; swcfs(:,:,i) = swh(:,:,i); 
    H(:,:,i) = iswt2(mzero,swcfs,mzero,mzero,wavelet); 
    swcfs = mzero; swcfs(:,:,i) = swv(:,:,i); 
    V(:,:,i) = iswt2(mzero,mzero,swcfs,mzero,wavelet); 
    
 
 



 

 

    swcfs = mzero; swcfs(:,:,i) = swd(:,:,i); 
    D(:,:,i) = iswt2(mzero,mzero,mzero,swcfs,wavelet); 
end 
%To reconstruct the approximations at levels 1 and 2, type 
A(:,:,1) = A(:,:,2) + H(:,:,2) + V(:,:,2) + D(:,:,2); 
%To display the approximations and details at levels 1, 2, and 3, type 
[thr,sorh,keepapp] = ddencmp('den','wv',x); 
dswh = wthresh(swh,sorh,thr); 
dswv = wthresh(swv,sorh,thr); 
dswd = wthresh(swd,sorh,thr); 
xds = iswt2(swa,dswh,dswv,dswd,wavelet); 
%To display both the original and de-noised images, type 
%colormap(map) 
colormap(newmap) 
subplot(1,2,1), image(wcodemat(x,192));title('Noisy image');axis square;axis off; 
subplot(1,2,2), image(wcodemat(xds,192));title('De-noised image');axis square;axis off; 
pause; 
close all; 
pause; 
Y = imresize(Y,[512 512]); 
Y=double(Y); 
xds = imresize(xds,[512 512]); 
xds=double(xds); 
err = Y - xds; 
PSNR = 20*log10(255/std(err(:))) 
pause; 
end 
 
elseif r==2 
    %%%%%%%%%%%%%Compression  %%%%%%%%%%%%%%%%%% 
    [C,S] = wavedec2(Y,2,wavelet); 
    [thr,sorh,keepapp] = ddencmp('cmp','wv',Y); 
    [Ycomp,CYC,LYC,PERF0,PERFL2] =wdencmp('gbl',C,S,wavelet,2,thr,sorh,keepapp); 
    figure(3); 
    colormap(newmap); 
    subplot(121); image(Y); title('Original Image');axis square;axis off; 
    subplot(122); image(Ycomp); title('Compressed Image');axis square;axis off; 
    pause; 
    ci = norm(Ycomp); %taking vector-norm of the compressed image 
    oi = norm(Y); %taking vector-norm of the original image 
    CMR=(100*(ci)^2)/((oi)^2) 
end 
end 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
(B) MATLAB CODE TO SHOW ALL FRAMES OF TUMOUR  CYCLE AS A 

MOVIE AND DE-NOISING THE ISOLATED FRAME OF INTEREST  

 
 
clc ; 
clear all; 
pause; 
%There are different development stages in which the tumor grows and to study the each 
%stage is essential for diagonesis purpose  
 
 
X1 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC1.jpg'); 
X2 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC2.jpg'); 
X3 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC3.jpg'); 
X4 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC4.jpg'); 
X5 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC5.jpg'); 
X6 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC6.jpg'); 
X7= imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC7.jpg'); 
X8 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC8.jpg'); 
X9 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC9.jpg'); 
X10 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC10.jpg'); 
X11 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC11.jpg'); 
X12 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC12.jpg'); 
X13 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC13.jpg'); 
X14 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC14.jpg'); 
X15 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC15.jpg'); 
X16 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC16.jpg'); 
X17 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC17.jpg'); 
X18 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC18.jpg'); 
X19 = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC19.jpg'); 
 
X1 = imresize(X1,[256 256]); 
X2 = imresize(X2,[256 256]); 
X3 = imresize(X3,[256 256]); 
X4 = imresize(X4,[256 256]); 
X5 = imresize(X5,[256 256]); 
X6 = imresize(X6,[256 256]); 
X7 = imresize(X7,[256 256]); 
X8 = imresize(X8,[256 256]); 
X9 = imresize(X9,[256 256]); 
X10 = imresize(X10,[256 256]); 
X11 = imresize(X11,[256 256]); 
X12 = imresize(X12,[256 256]); 
X13 = imresize(X13,[256 256]); 
X14 = imresize(X14,[256 256]); 
X15 = imresize(X15,[256 256]); 
X16 = imresize(X16,[256 256]); 
X17 = imresize(X17,[256 256]); 
X18 = imresize(X18,[256 256]); 
X19 = imresize(X19,[256 256]); 
NbColors = 155; 
 
 



 

 

map = pink(NbColors); 
map = double(map); 
 
M(1) = im2frame(X1,map); 
M(2) = im2frame(X2,map); 
M(3) = im2frame(X3,map); 
M(4) = im2frame(X4,map); 
M(5) = im2frame(X5,map); 
M(6) = im2frame(X6,map); 
M(7) = im2frame(X7,map); 
M(8) = im2frame(X8,map); 
M(9) = im2frame(X9,map); 
M(10) = im2frame(X10,map); 
M(11) = im2frame(X11,map); 
M(12) = im2frame(X12,map); 
M(13) = im2frame(X13,map); 
M(14) = im2frame(X14,map); 
M(15) = im2frame(X15,map); 
M(16) = im2frame(X16,map); 
M(17) = im2frame(X17,map); 
M(18) = im2frame(X18,map); 
M(19) = im2frame(X19,map); 
axis off; 
movie(M) 
pause; 
close all; 
 
A =cat(19,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19); 
figure 
montage(A, map) 
title('Tumour cycle') 
pause; 
close all 
 
p= input('Input the slice(from 1 to 19) No to be denoised: ') 
 
switch p; 
 
    case 1 
 
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC1.jpg'); 
    
    case 2 
      
       X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC2.jpg'); 
    
    case 3 
         
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC3.jpg'); 
     
 
 
 
 
 



 

 

    case 4 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC4.jpg'); 
       
    case 5 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC5.jpg'); 
         
    case 6 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC6.jpg'); 
         
    case 7 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC7.jpg'); 
         
    case 8 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC8.jpg'); 
         
    case 9 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC9.jpg'); 
         
    case 10 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC10.jpg'); 
         
    case 11 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC11.jpg'); 
         
    case 12 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC12.jpg'); 
         
    case 13 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC13.jpg'); 
  
    case 14 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC14.jpg'); 
         
    case 15 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC15.jpg'); 
              
    case 16 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC16.jpg'); 
         
 
 
 



 

 

    case 17 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC17.jpg'); 
         
    case 18 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC18.jpg'); 
         
    case 19 
        
        X = imread('C:\Documents and Settings\Administrator\Desktop\TumorCycle\TC19.jpg'); 
    
otherwise 
     disp('MRI Slice Does not exit') 
     break;      
end 
pause; 
X = X(:,:,3); 
X = imresize(X,[512 512]); 
X = double(X); 
map = pink(NbColors); 
newmap = rgb2gray(map) 
init=2055615866; randn('seed',init);  
x1 = X + 15*randn(size(X)); 
[thr,sorh,keepapp] = ddencmp('den','wv',x1); 
xd1 = wdencmp('gbl',x1,'db1',2,thr,sorh,keepapp); 
colormap(newmap), sm = size(newmap,1); 
subplot(221), image(wcodemat(X,sm)), title('Original Image');axis off; 
subplot(222), image(wcodemat(x1,sm)), title('Noisy Image');axis off; 
subplot(223), image(wcodemat(xd1,sm)), title('De-Noised Image');axis off; 
err = X - xd1; 
PSNR = 20*log10(255/std(err(:))) 
pause; 
close all; 
pause; 
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