DATA CLASSIFICATION USING MULTI-LAYERED
FEED-FORWARD NEURAL NETWORK

A Dissertation Submitted in partial fulfilment of thequirements
for the award of the degree of

MASTER OF ENGINEERING
(Computer Technology & Applications)

By
PIYUSH KUMAR SRIVASTAVA

College Roll No. 17/CTA/04
University Roll No. 8510

Under the guidance of

Dr. SK.Saxena

Department Of Computer Engineering
Delhi College of Engineering
Bawana Road, Delhi-110042

(University of Delhi)

June-2006

CERTIFICATE

This is to certify that dissertation entitleddta Classification Using Multi-layered
Feed-forward Neural Network” which is submitted byPiyush Kumar Srivastava in
partial fulfilment of the requirement for the award degreeM.E. in Computer
Technology & Applications to Delhi College of Engineering, Delhi is a record of the

candidate own work carried out by him under my supervision.

Dr. S.K.Saxena

Department of Computer Engineering
Delhi College of Engineering

Bawana Road, Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extgntheartiest felt gratitude to

everybody who helped me throughout the course of thisqtroje

| would like to express my heartiest felt regardsDio S.K.Saxena, Department of
Computer Engineering for the constant motivation and stigluwing the duration of this
project. It is my privilege and owner to have worked under supervision. His
invaluable guidance and helpful discussions in every stagj@isoproject really helped
me in materializing this project. It is indeed diffictdt put his contribution in few words.

| would also like to take this opportunity to present my smceegards to my teachers
viz. Professor D. Roy Choudhary, Dr Goldie Gabrani, Rjeev Kumar and Mrs. Rajni

Jindal for their support and encouragement.

| am thankful to my friends and classmates for thaconditional support and motivation

during this project.

Piyush Kumar Srivastava

M.E. (Computer Technology & Applications)
College Roll No. 17/CTA/04
Delhi University Roll No. 8510

ABSTRACT

Artificial neural networks can be most adequately charaed as 'computational
models’ with particular properties such as the abilitgdapt or learn, to generalize, or to

cluster or organize data, and which operation is basedralgb@rocessing.

Numerous advances have been made in developing int¢ligstems, some inspired by
biological neural networks. Researchers from many stiedisciplines are designing
artificial neural networks (ANNS) to solve a varietymbblems in pattern recognition,
prediction, optimization, associative memory, andticin

Conventional approaches have been proposed for solving greblems. Although
successful applications can be found in certain welsttained environments, none is
flexible enough to perform well outside its domain. ANNeyle exciting alternatives,

and many applications could benefit from using them.

Classification is one of the data mining problems rengigreat attention recently in the
database community. This project will implement an apgro® discover symbolic
classification rules using neural networks. Neural netwbeke not been thought suited
for data mining because how the classifications were nmad®t explicitly stated as
symbolic rules that are suitable for verification ioterpretation by humans. With the
proposed approach, concise symbolic rules with high acgwan be extracted from a
neural network.

The network is first trained to achieve the required acgurate. Redundant connections
of the network are then removed by a network pruning alguarifThe activation values
of the hidden units in the network are analyzed, and @tzgsin rules are generated
using the result of this analysis. The effectivenesthefproposed approach is clearly

demonstrated by the experimental results on a setrafasté data mining test problems.

TABLE OF CONTENTS

1. INTRODUCTION 1
2. DATA CLASSIFICATION 3
2.1. Data, Information, and Knowledge 3
2.2. What can data mining do? 4
2.3. How does data mining work? 5
2.4. What technological infrastructure is required? 7
2.5. Data Preparation (in Data Mining) 10
3. NEURAL NETWORKS 11
3.1. Introduction 11
3.2. Historical background 12
3.3. Neural networks versus conventional computers 12
3.4. Human and Artificial Neurons - investigating the similas 13
3.4.1. How the Human Brain Learns? 13
3.4.2.Human Neurons to Artificial Neurons 14
3.4.3.Firing rules 15
3.4.4.Pattern Recognition - an example 17
3.4.5.A more complicated neuron 19
4. DATA PREPARATION 21
4.1. Data Cleansing 21
4.2. Data Selection 21
4.3. Data Preprocessing 22
4.4. Computed attributes 22
4.5. Scaling 23
5. NEURAL NETWORK TOPOLOGIES 24
5.1. Feed-Forward Networks 24
5.2. Limited Recurrent Networks 25
5.3. Fully Recurrent Networks 26
6. NEURAL NETWORK MODELS 29
6.1. Back Propagation Networks 29
6.2. Kohonen Feature Maps 31
6.3. Recurrent Back Propagation 34
6.4. Radial Basis Function 34
6.5. Adaptive Resonance Theory 35
6.6. Probabilistic Neural Networks 36

6.7. Key Issues in Selecting Models and Architecture 37

7. TRAINING AND TESTING NEURAL NETWORK
7.1. Back-propagation Algorithm
7.2. Defining Success: When Is the Neural Network Trained?
7.3. Classification

8. ANALYZING NEURAL NETWORKS
8.1. Discovering What the Network learned

9. IMPLEMENTATION OF THE PROJECT
9.1. Data Format
9.2. Attribute-Relation File Format
9.3. Installation
9.4. Configuration
9.5. Output
9.6. Architecture
9.7. Evaluation

10. CLASSDESCRIPTION
11. FUTURE WORK
12. CONCLUSION

13. REFERENCES

39
39
42
43

45

a7
47
47
52
52
54
58
59

62

98

99

100

1. Introduction

Data Classification is one of the applications otaDilining, “Data Mining is
the efficient discovery of valuable information frdange collection of data.” In
Data classification, stored data is used to locate idapaedetermined groups.
There are various conventional methods exist to imphrdata classification,
but no one is as fast as human brain. | am implengata classification
using Neural Network which is different from conventional computer
approach.

Neural networks take a different approach to problem solviag that of
conventional computers. Neural networks process informati@similar way
the human brain does. Neural networks learn by exanipley cannot be
programmed to perform a specific task.

The main aim of my project is to implement a basiarak network which
simulates the behavior of neural network that is howntheal networks learn,
how they process their nodes and how they classifgabe given as input.

Approach: | have usedava 1.5 as programming language to implement this
project. The project has been developed on java TexdrEdibeinput format is
a subset of the arff(Attribute Relationship file forjnfatrmat used by Weka2, a
popular open source data mining tool. Specifically, the ampypasrted attribute
types are numerical (numeric, integer, real), and ndmina

After learning and validation has been performed, the modelthe trained
neural network, and some validation metrics@rgput as plain text. The model
is output layer by layer, from the input layer over tigkden layers to the output
layer, and each layer node by node in order For each mogesition in the
network and its links to the nodes of the previous layeng with the learned
weights are shown.

The system can be divided into the components configaratmmmand line
evaluation, parsing, data representation, data normalgdtie neural network,

validation, and output.

The purpose of this project is to implement the basicaleetwork and to classify

the data using implemented neural network.
Why Use Neural Network:

Neural network is advantageous than conventional compataube it can be as
fast as human brain. Neural networks, with their réwalale ability to derive
meaning from complicated or imprecise data, can be usedttact patterns and
detect trends that are too complex to be noticed by ditheans or other computer
techniques. A trained neural network can be thought ofnasempert” in the
category of information it has been given to analyizes expert can then be used to
provide projections given new situations of interest arsvan "what if" questions.
Other advantages include: Adaptive learning, Self-Organizati®@al Time
Operation, Fault Tolerance via Redundant Informatiodi@y etc.

2. Data Classification

Data Classification is one of the applications ofdsining, ‘Data Mining is the
efficient discovery of valuable information from largallection of data.”

Generally, data mining is the process of analyzing data tlifferent perspectives
and summarizing it into useful information - informatiomatt can be used to
increase revenue, cuts costs, or both. Data mining seftiweone of a number of
analytical tools for analyzing data. It allows uséssanalyze data from many
different dimensions or angles, categorize it, and samnze the relationships
identified. Technically, data mining is the process of figdtorrelations or patterns
among dozens of fields in large relational databases.

Although data mining is a relatively new term, the tedbgyp is not. Companies
have used powerful computers to sift through volumesipéisnarket scanner data
and analyze market research reports for years. Howewetinuous innovations in
computer processing power, disk storage, and statisticalageftare dramatically
increasing the accuracy of analysis while driving dowrctiss.

2.1 Data, Information, and K nowledge

Data

Data are any facts, numbers, or text that can be ggedeby a computer. Today,
organizations are accumulating vast and growing amouitaia in different
formats and different databases. This includes:

« operational or transactional data such as, sales, ingsttory, payroll, and

accounting

« nonoperational data, such as industry sales, forecdst dad macro

economic data

+ meta data - data about the data itself, such as lodatabase design or data

dictionary definitions

Information

The patterns, associations, or relationships amongthal data can provide
information. For example, analysis of retail point of sale $eagtion data can yield

information on which products are selling and when.

Knowledge

Information can be converted intmowedge about historical patterns and future
trends. For example, summary information on retail Supeket sales can be
analyzed in light of promotional efforts to provide kreglge of consumer buying
behavior. Thus, a manufacturer or retailer could deternvimeh items are most

susceptible to promotional efforts.

Data Warehouses

Dramatic advances in data capture, processing powés, tdansmission, and
storage capabilities are enabling organizations to integnate various databases
into data warehouses. Data warehousing is defined as a process of centralizad da
management and retrieval. Data warehousing, like datagniis a relatively new
term although the concept itself has been around forsyd2ata warehousing
represents an ideal vision of maintaining a central repgsdf all organizational
data. Centralization of data is needed to maximize useesa and analysis.
Dramatic technological advances are making this visiomeality for many
companies. And, equally dramatic advances in data analyliisare are allowing
users to access this data freely. The data analyftisase is what supports data

mining.

2.2 What can data mining do?

Data mining is primarily used today by companies with angtfrconsumer focus -
retail, financial, communication, and marketing orgamzet It enables these

4

companies to determine relationships among "internaltofacsuch as price,
product positioning, or staff skills, and "external" fast such as economic
indicators, competition, and customer demographics. Ancenébles them to
determine the impact on sales, customer satisfaaimhgcorporate profits. Finally,
it enables them to "dril down" into summary informatido view detail

transactional data.

2.3 How does data mining work?

While large-scale information technology has been\awglseparate transaction
and analytical systems, data mining provides the link eFiwiee two. Data mining
software analyzes relationships and patterns in stoesddction data based on
open-ended user queries. Several types of analytical aseftwre available:
statistical, machine learning, and neural networks. Gegggally of four types of
relationships are sought:

+ Classes: Stored data is used to locate data in predetermined grBaops.
example, a restaurant chain could mine customer purdaase¢o determine
when customers visit and what they typically ordersTihformation could
be used to increase traffic by having daily specials.

+ Clusters. Data items are grouped according to logical relationships
consumer preferences. For example, data can be minieérofy market

segments or consumer affinities.

« Associations. Data can be mined to identify associations. The-tOegrer

example is an example of associative mining.

« Sequential patterns. Data is mined to anticipate behavior patterns and
trends. For example, an outdoor equipment retailer couddlict the
likelihood of a backpack being purchased based on a consumetageiof

sleeping bags and hiking shoes.

Data mining consists of five major elements:

« Extract, transform, and load transaction data onto dagm warehouse

system.

« Store and manage the data in a multidimensional datapstem.

+ Provide data access to business analysts and inform&tcmology
professionals.

« Analyze the data by application software.

+ Present the data in a useful format, such as a grapbler t

Different levels of analysis are available:

« Artificial neural networks: Non-linear predictive models that learn through

training and resemble biological neural networks in strectur

+ Genetic algorithms:. Optimization techniques that use processes such as
genetic combination, mutation, and natural selectiondesign based on the

concepts of natural evolution.

« Decison trees. Tree-shaped structures that represent sets of decisions
These decisions generate rules for the classificaifoa dataset. Specific
decision tree methods include Classification and RegmeSgiees (CART)
and Chi Square Automatic Interaction Detection (CHAIDEART and
CHAID are decision tree techniques used for classifinatb a dataset.
They provide a set of rules that you can apply to a(uewlassified) dataset
to predict which records will have a given outcome. CA&Oments a
dataset by creating 2-way splits while CHAID segmentagushi square
tests to create multi-way splits. CART typicallyqueres less data

preparation than CHAID.

+ Nearest neighbor method: A technique that classifies each record in a
dataset based on a combination of the classes &frgword(s) most similar
to it in a historical dataset (whekel). Sometimes called thienearest

neighbor technique.

+ Ruleinduction: The extraction of useful if-then rules from data ldasa

statistical significance.

- Data visualization: The visual interpretation of complex relationships in
multidimensional data. Graphics tools are used to illtestraata

relationships.
2.4 What technological infrastructureisrequired?

Today, data mining applications are available on all sygtems for mainframe,
client/server, and PC platforms. System prices rar@e Several thousand dollars
for the smallest applications up to $1 million a terabgtetlie largest. Enterprise-
wide applications generally range in size from 10 gigabidesver 11 terabytes.
NCR has the capacity to deliver applications exceedinger@®ytes. There are two

critical technological drivers:

« Size of the database: the more data being processed and maintained, the

more powerful the system required.

+ Quey complexity: the more complex the queries and the greater the

number of queries being processed, the more powerful shensyequired.

Relational database storage and management technolodggmiate for many data
mining applications less than 50 gigabytes. However, tifigsgtructure needs to be
significantly enhanced to support larger applications. Seerelors have added
extensive indexing capabilities to improve query performadithers use new
hardware architectures such as Massively Parallel Froieg¢MPP) to achieve

order-of-magnitude improvements in query time. For exanilP systems from
NCR link hundreds of high-speed Pentium processors to apeormance levels
exceeding those of the largest supercomputers.

Data Mining is an analytic process designed to explore data (udaedly amounts
of data - typically business or market related) in&ealf consistent patterns and/or
systematic relationships between variables, and then lidate the findings by
applying the detected patterns to new subsets of datauffimate goal of data
mining is prediction. The process of data mining consiteree stages:

Stage 1: Exploration. This stage usually starts with data preparation which may
involve cleaning data, data transformations, selecting sulodetecords and - in
case of data sets with large numbers of variablesldsfie - performing some

preliminary feature selectioroperations to bring the number of variables to a

manageable range (depending on the statistical methods wdriehbeing
considered). Then, depending on the nature of the anplytidem, this first stage
of the process of data mining may involve anywhere betveesimple choice of
straightforward predictors for a regression model, aba@late exploratory analyses

using a wide variety of graphical and statistical meth(sds Exploratory Data

Analysis (EDA)) in order to identify the most relevant variables determine the
complexity and/or the general nature of models that eaahen into account in the
next stage.

Stage 2: Model building and validation. This stage involves considering various
models and choosing the best one based on their predpérformance (i.e.,
explaining the variability in question and producing stableltescross samples).
This may sound like a simple operation, but in factpihstimes involves a very
elaborate process. There are a variety of techniquedoged to achieve that goal -
many of which are based on so-called "competitive etialuaf models," that is,
applying different models to the same data set and thempaming their

performance to choose the best. These techniques - af@abiften considered the

8

core ofpredictive data mining include:Bagging (Voting, Averaging),Boosting

Stacking (Stacked GeneralizationshpdMeta-Learning

Stage 3: Deployment. That final stage involves using the model selected asrbes
the previous stage and applying it to new data in order tergenpredictions or
estimates of the expected outcome.

The concept ofData Mining is becoming increasingly popular as a business
information management tool where it is expected t@akinowledge structures
that can guide decisions in conditions of limited cerjaiRecently, there has been
increased interest in developing new analytic techniquesfispltg designed to
address the issues relevant to busiiigta Mining (e.g.,Classification Trees), but

Data Mining is still based on the conceptual principlestatistics including the
traditional Exploratory Data Analysis (EDA) and modeling and it shares with them

both some components of its general approaches and speckfniques.

However, an important general difference in the foau$ purpose betweeData
Mining and the traditionaExploratory Data Analysis (EDA) is thatData Mining is

more oriented towards applications than the basic nabtdiréhe underlying
phenomena. In other word®ata Mining is relatively less concerned with
identifying the specific relations between the involvedialdes. For example,
uncovering the nature of the underlying functions or the iBpetypes of
interactive, multivariate dependencies between varigdnesnot the main goal of
Data Mining. Instead, the focus is on producing a solution that caargte useful
predictions. TherefordData Mining accepts among others a "black box" approach
to data exploration or knowledge discovery and uses not thaytraditional

Exploratory Data Analysis (EDA) techniques, but also such techniquedNagal

Networks which can generate valid predictions but are not capalitkeofifying the
specific nature of the interrelations between the tégg|on which the predictions
are based.

Data Mining is often considered to bea"blend of statistics, Al [artificial
intelligence], and data base research” (Pregibon, 1997, p. 8), which until very
recently was not commonly recognized as a field of eéstefor statisticians, and
was even considered by soneedirty word in Satistics' (Pregibon, 1997, p. 8).
Due to its applied importance, however, the field emeages rapidly growing and
major area (also in statistics) where important teecal advances are being made
(see, for example, the recent annuialernational Conferences on Knowledge

Discovery and Data Mining, co-hosted by thA&merican Statistical Association).

2.5 Data Preparation (in Data Mining)

Data preparation and cleaning is an often neglected lnatngedy important step in
the data mining process. The old saying "garbage-in-garbages @atrticularly
applicable to the typical data mining projects where laiaga sets collected via
some automatic methods (e.g., via the Web) serve asgheinto the analyses.
Often, the method by which the data where gathered waghdy controlled, and
so the data may contain out-of-range values (e.g.macel00), impossible data
combinations (e.g., Gender: Male, Pregnant: Yes), antiktheAnalyzing data that
has not been carefully screened for such problems calug@e highly misleading

results, in particular in predictive data mining.

10

3. Neural Networks

3.1 Introduction

A Neural Network or more appropriately Artificial Neurdetwork (ANN) is an
information processing paradigm that is inspired by tla Wwiological nervous
systems, such as the brain, process informagiaificial Neural Network is basically a
mathematical model of what goes in our mind (or brain). The key element of this
paradigm is the novel structure of the information psesing system. It is composed
of a large number of highly interconnected processing eten{eeurons) working
in unison to solve specific problems. The brain oftal &dvanced living creatures
consists of neurons, a basic cell, which when intareoted produces what we call
Neural Network. The sole purpose of a Neuron is to receiectrical signals,
accumulate them and see further if they are strongginto pass forward.

So simple in its basic functionality but the intercedations of these produces
beings (me, u and others) capable of writing about theewPhhe real thing lies
not in neurons but the complex pattern in which they aeraonnected. NNs are
just like a game of chess, easy to learn but hard ttemas the moves of chess are
simple, yet the succession of moves is what makegdme complex and fun to
play. Imagine a chess game in which you are allowed @mmysingle move. Would
that game be fun to play?
In the same way, a single neuron is useless. Welltipaflg useless. It is the
complex connection between them and values attachedeibh (explained later)
which makes brains capable of thinking and having a sensmstiousness (much
debated). ANNSs, like people, learn by example. An ANNcasfigured for a
specific application, such as pattern recognition or dhssification, through a
learning process. Learning in biological systems involvesisatents to the
synaptic connections that exist between the neuronsisttnise of ANNs as well

11

3.2 Historical background

Neural network simulations appear to be a recent developrilowever, this field
was established before the advent of computers, and hagesuatileast one major
setback and several eras. Many important advances haneébbested by the use of
inexpensive computer emulations. Following an initial pelddenthusiasm, the
field survived a period of frustration and disrepute. Duringpkisod when funding
and professional support was minimal, important advances made by relatively
few researchers. These pioneers were able to devetmincong technology which
surpassed the limitations identified by Minsky and Papeihsk§y and Papert,
published a book (in 1969) in which they summed up a generaidexl|frustration
(against neural networks) among researchers, and wasatugpted by most
without further analysis. Currently, the neural netwheld enjoys a resurgence of

interest and a corresponding increase in funding.

The first artificial neuron was produced in 1943 by the neuroploggst Warren
McCulloch and the logician Walter Pits. But the tembgy available at that time
did not allow them to do too much.

3.3 Neural networ ks ver sus conventional computers

Neural networks take a different approach to problem soltiran that of
conventional computers. Conventional computers use amitalgec approach i.e.
the computer follows a set of instructions in orderdlves a problem. Unless the
specific steps that the computer needs to follow are knih@ computer cannot
solve the problem. That restricts the problem solving cépabif conventional
computers to problems that we already understand and knewtdh@olve. But
computers would be so much more useful if they could dgshihat we don't

exactly know how to do.

Neural networks process information in a similar way thendm brain does. The

network is composed of a large number of highly intercamaegrocessing

12

elements (neurons) working in parallel to solve a spepifbblem. Neural networks
learn by example. They cannot be programmed to perforpeaifis task. The
examples must be selected carefully otherwise usiefel is wasted or even worse
the network might be functioning incorrectly. The disadage is that because the
network finds out how to solve the problem by itsel§ @peration can be
unpredictable.

On the other hand, conventional computers use a cogmaipgeoach to problem
solving; the way the problem is to solved must be knowt stated in small
unambiguous instructions. These instructions are then dedvés a high level
language program and then into machine code that the congautarnderstand.
These machines are totally predictable; if anything goeagvi®due to a software

or hardware fault.

Neural networks and conventional algorithmic computers arera@mpetition but

complement each other. There are tasks are moegidoitan algorithmic approach
like arithmetic operations and tasks that are moredstu@eneural networks. Even
more, a large number of tasks, require systems thaa esanbination of the two
approaches (normally a conventional computer is usedupergse the neural

network) in order to perform at maximum efficiency.

3.4 Human and Artificial Neurons - investigating the similarities
3.4.1 How the Human Brain L earns?

Much is still unknown about how the brain trains itdelfprocess information, so
theories abound. In the human brain, a typical neaodiects signals from others
through a host of fine structures calldehdrites. The neuron sends out spikes of
electrical activity through a long, thin stand known asason, which splits into
thousands of branches. At the end of each branch, austucalled asynapse
converts the activity from the axon into electriedfects that inhibit or excite
activity from the axon into electrical effects thahibit or excite activity in the

connected neurons. When a neuron receives excitatory ihautist sufficiently
13

large compared with its inhibitory input, it sends a smikelectrical activity down
its axon. Learning occurs by changing the effectivenesseo$ynapses so that the

influence of one neuron on another changes.

———

Cell body

Fig 3.2 the synapse

3.4.2 Human Neuronsto Artificial Neurons

We conduct these neural networks by first trying to deducegbential features of
neurons and their interconnections. We then typicpliggram a computer to

14

simulate these features. However because our knowledgeuodns is incomplete
and our computing power is limited, our models are necéssgpaoss idealizations

of real networks of neurons.

Cell body
Dandritas
—

et l Thrashold
.

— J/ '“--_‘_‘

- > - | [p———p
—n__—'—'-.“-’f

+ Axan

Fig 3.3 the neuron model

An artificial neuron is a device with many inputs and ongpuatu The neuron has
two modes of operation; the training mode and the using madthe training
mode, the neuron can be trained to fire (or not), fotiqudar input patterns. In the
using mode, when a taught input pattern is detected at phe, iihs associated
output becomes the current output. If the input patteas chot belong in the taught
list of input patterns, the firing rule is used to determuether to fire or not.

1 TEACH fTUSE

Z2

INFUTS OUTPUT

TEACHING INPUOT

Fig 3.4 A simple neuron

3.4.3 Firing rules

15

The firing rule is an important concept in neural netwaakd accounts for their
high flexibility. A firing rule determines how one calat#s whether a neuron
should fire for any input pattern. It relates to all thfgut patterns, not only the ones
on which the node was trained.

A simple firing rule can be implemented by using Hammimjatice technique.
The rule goes as follows:

Take a collection of training patterns for a node, sofmeghich cause it to fire (the
1-taught set of patterns) and others which prevent it fdoing so (the O-taught
set). Then the patterns not in the collection cdbbsenode to fire if, on comparison,
they have more input elements in common with the 'neg@sérn in the 1-taught
set than with the 'nearest' pattern in the O-taught sékeré tis a tie, then the pattern

remains in the undefined state.

For example, a 3-input neuron is taught to output 1 whembut (X1,X2 and X3)
is 111 or 101 and to output O when the input is 000 or 001. Tledéebapplying
the firing rule, the truth table is;

X1: 0 0 0 0 1 1 1 1
X2: 0 0 1 1 0 0

X3: 0 1 0 1 0 1 0 1
OUT: 0 0 01 01 01 1 o1 1

As an example of the way the firing rule is applietietthe pattern 010. It differs
from 000 in 1 element, from 001 in 2 elements, from 101 in 3eksnand from
111 in 2 elements. Therefore, the 'nearest' pattern is G@hwelongs in the 0-
taught set. Thus the firing rule requires that the nestaruld not fire when the
input is 001. On the other hand, 011 is equally distant frontawght patterns that
have different outputs and thus the output stays undefii&y (

By applying the firing in every column the following trutible is obtained;
16

X1: 0 0 0 0 1 1 1 1

X2: 0 0 1 1 0 0
X3: 0 1 0 1 0 1 0 1
OUT: 0 0 0 o1 01 1 1 1

The difference between the two truth tables is callesl generalization of the
neuron. Therefore the firing rule gives the neuron a sensenafesity and enables

it to respond 'sensibly’ to patterns not seen during training.

3.4.4 Pattern Recognition - an example

An important application of neural networks is patternogedtion. Pattern

recognition can be implemented by using a feed-forward (figumeural network

that has been trained accordingly. During training, teéwaork is trained to

associate outputs with input patterns. When the netwouseas, it identifies the

input pattern and tries to output the associated outpwrpaithe power of neural
networks comes to life when a pattern that has npub@ssociated with it, is given
as an input. In this case, the network gives the outpuctieésponds to a taught
input pattern that is least different from the givengratt

11

-~
7 \},
. K12 w_.. =
- At :
r L
s XZa =
: T
®) o .-._T._
= B I i
¥

Fig 3.5 a feed-forward neural network

17

The network of figure 1 is trained to recognize the patterasdlH. The associated
patterns are all black and all white respectively as shoelow.

* -1 H -

INPUOT OUTPUT INFUOT OuUTEOT

If we represent black squares with 0 and white squareslvtiien the truth tables

for the 3 neurons after generalization are;

X11: 0 0 0 0 1 1 1 1

X12: 0 0 1 1 0 0

X13: 0 1 0 1 0 1 0 1

OUT: 0 0 1 1 0 0 1 1
Top neuron

X21: 0 0 0 0 1 1

X22: 0 0 1 1 0 0 1 1

X23: 0 1 0 1 0 1 0

OUT: 1 o1 1 o1 01 O 01 O

Middle neuron

X21: 0 0 0 0 1 1 1 1
X22: 0 0 1 1 0 0 1 1
X23: 0 1 0 1 0 1 0 1
OUT: 1 0 1 1 0 0 1 0

Bottom neuron

18

From the tables it can be seen the following assonmtan be extracted:
INFUT OUTPUT

In this case, it is obvious that the output should bblatlks since the input pattern

is almost the same as the 'T' pattern.

— H

IMPUT OUTPOT

Here also, it is obvious that the output should be hiles since the input pattern is

almost the same as the 'H' pattern.

IMPUT OUTFUT

Here, the top row is 2 errors away from the T and Bfam H. So the top output is
black. The middle row is 1 error away from both T andoHle output is random.
The bottom row is 1 error away from T and 2 away fienTherefore the output is
black. The total output of the network is still in favdtiee T shape.

3.4.5 A more complicated neuron

19

The previous neuron doesn't do anything that conventional cerspdbn't do
already. A more sophisticated neuron (figure 2) is the Mo€u and Pitts model
(MCP). The difference from the previous model is tt& inputs are ‘weighted’;
the effect that each input has at decision making is diemeron the weight of the
particular input. The weight of an input is a number whitiemvmultiplied with the
input gives the weighted input. These weighted inputs aredtiéed together and if
they exceed a pre-set threshold value, the neuron liiregy other case the neuron

does not fire.

TEACH fTUSE

2l Wl

X9 7 ,],Tm
INFUTS OUTPUT

n ’T Wn//"

TEACHING INPUOT

Fig 3.6 An MCP neuron
In mathematical terms, the neuron fires if and only if;
X1IW1 + X2W2 + XaW3 +...>T

The addition of input weights and of the threshold makessrteuron a very flexible
and powerful one. The MCP neuron has the ability to aagtparticular situation
by changing its weights and/or threshold. Various algostxist that cause the
neuron to 'adapt’; the most used ones are the Deltaandethe back error
propagation. The former is used in feed-forward networkgtanthtter in feedback

networks.

20

4. Data Preparation

Before giving the data to neural network for training we havprépare the data,
because the data can be in any format we have to mabeeptable.

4.1 Data Cleansing

When operational data gets loaded into a centralizedrgathouse, the data often
must go through a process known as "data cleansing.” A sadibdact is that not
all operational transactions are correct. They migtiitain inaccurate values,
missing data, or other inconsistencies in the data. rahsdction might be checked
by an application program, which detects the bad data arfeesdhie originator of
this, but the bad data often remains in the database wHsisiot such a problem
when the database was viewed primarily as an archivathanesn. However, if
the data warehouse is to be turned into a fount of raveriahfor corporate
business intelligence gathering, then the data must bdeas and correct as

possible.

Several techniques are being used to clean data either befafter it gets into the
data warehouse. These include rule-based techniques, whiklatevaach data
item against metaknowledge (knowledge about the data) aheutihge of data
expected in that field and constraints or relationstopsther fields in the record
(Simoudis, livezey, and Kerber 1995). Visualization can deoused to easily
identify outliers, or out of range data, ill large da¢ts. Another approach is to use

statistical information to set missing or incorrecldfiealues to neutral, valid values

4.2 Data Selection

Once we have the database to train the neural netwarkgext step is to decide
what data is important for the task we are trying tomate. Maybe our database
has 100 fields, but only 10 are used in making a decisionpiididem is that, in
many cases, we don't know exactly which parameters grertamt in a decision
process. Fortunately, neural networks can be used to hedpnule¢ which

21

parameters are important and to build a model relatirgetharameters.

The data selection process really takes place acnasslimensions. First is the
column or parameters, which will be part of the datamgimgrocess. Second is the
selection of rows or records, based on the valuesndividual fields. The
underlying mechanism used to access all relational dataisaS€H._, as discussed
earlier. However, most database front-end tools allsers to specify which data to
access using fill-in-the-blank forms.

The data selection step requires some detailed knowlddidpe @roblem domain
and the underlying data. Often the data that is storeckinlatabase needs to be
massaged or enhanced before data mining can begin. This qasfny step is

described in the next section.

4.3 Data Preprocessing

Data preprocessing is the step when the clean data weeskéected is enhanced.
Sometimes this enhancement involves generating newtdats from one or more
fields, and sometimes it means replacing several fieltls a single field that
contains more information. Remember, the number of infeltls IS not
necessarily a measure of the information content h@imgded to the Data mining
algorithm. Sometimes the data needs to be transformedifdarm that is accept-

able as input to a specific data mining algorithm, such asieahnetwork.

4.4 Computed attributes

\A common requirement in data mining is to take two orenf@lds in combination
to yield a new field or attribute. This is usually in foem of a ratio of two values,
but could also be the sum, product, or difference of theuegal Other
transformations could be turning a date into a day of tlekwe day of the year.
Computed attributes are often necessary because the ctr@ms@rocessing
application was designed to handle the minimum amofuidta required to log the

transaction. In the past, the focus has been on nzimignstorage requirements and
22

processing time, and not on maximizing the amount of irdbion gathered by

transactions.
4.5 Scaling

Another transformation involves the more general issdiescaling data for
presentation to the neural network. Most neural netwookiels accept numeric
data only in the range of 0.0 to 1.0 or -1.0 to +1.0, dependinth® activation
functions used in the neural processing elements. Conmgdqueata usually must
be scaled down to that range.

Scalar values that are more or less uniformly distriboteer a range can be scaled
directly to the 0 to 1.0 range. If the data values are/siea piece-wise linear or a
logarithmic function can be used to transform the datach can then be scaled
into the desired range. Discrete variables can be maexs by coded types with O

and 1 values, or they can be assigned values in theadlesiménuous range.

23

5. Neural Network Topologies

The arrangement of neural processing units and their amteections can have a
profound impact on the processing capabilities of the newtaVorks. In general,
all neural networks have some set of processing units ébaive inputs from the
outside world, which we refer to appropriately as ihput units Many neural
networks also have one or more layershadden processing units that receive
inputs only from other processing units. A layeidab of processing units receives
a vector of data or the outputs of a previous layer okuwamid processes them in
parallel. The set of processing units that represemtditial result of the neural
network computation is designated as the#put units. There are three major
connection topologies that define how data flows betwtbe input, hidden, and
output processing units. These main categories feed fonwaited recurrent, and
fully recurrent networks are described in detail in tegt sections.

5.1 Feed-Forward Networ ks

Feed-forward networks are used in situations when we ceg all of the
information to bear on a problem at once, and we casept it to the neural
network. It is like a pop quiz, where the teacher walksvrites a set of facts on the
board, and says,OK, tell me the answer. You must take the data, process it, and
“jump to a conclusion! In this type of neural network, the data flows through th

network in one direction, and the answer is basedysofethe current set of inputs.

In Figure 5.1, we see a typical feed-forward neural netwapklogy. Data enters
the neural network through the input units on the left. ifpat values are assigned
to the input units as the unit activation values. The owtplites of the units are
modulated by the connection weights, either being magnifigtlei connection
weight is positive and greater than 1.0, or being diminighdg connection weight
is between 0.0 and 1.0. If the connection weight is megahe signal is magnified

or diminished in the opposite direction.

24

an

h i
= = T B =
h 4
2 oo Ou Q. =

o 2T o £ ()

Fig5.1: Feed-forward neural networks.

Each processing unit combines all of the input signals coilintogthe unit along
with a threshold value. This total input signal is then @ddhrough an activation
function to determine the actual output of the processint, which in turn
becomes the input to another layer of units in a mayted network. The most
typical activation function used in neural networkshis S-shaped or sigmoid (also
called the logistic) function. This function convedn input value to an output
ranging from O to 1. The effect of the threshold wesghtto shift the curve right or
left, thereby making the output value higher or lowepesheling on the sign of the
threshold weight. As shown in Figure 5.1, the data flomsnfthe input layer
through zero, one, or more succeeding hidden layers andahke output layer. In
most networks, the units from one layer are fully cabted to the units in the next
layer. However, this is not a requirement of feed-foduvgeural networks. In some
cases, especially when the neural network connectiahsvaights are constructed
from a rule or predicate form, there could be less ottioreweights than in a fully
connected network. There are also techniques for pruning unagcessghts from
a neural network after it is trained. In general, #ss lweights there are, the faster
the network will be able to process data and the bietteill generalize to unseen
inputs. It is important to rememb#rat feed-forward is a definition of connection
topology and data flow. It does not imply any specifjeet of activation function or
training paradigm.

5.2 Limited Recurrent Networ ks

25

Recurrent networks are used in situations when we haventunformation to give
the network, but the sequence of inputs is important, and eed the neural
network to somehow store a record of the prior inpats factor them in with the
current data to produce an answer. In recurrent netwarksmation about past
inputs is fed back into and mixed with the inputs through reatiror feedback
connections for hidden or output units. In this way, teeral network contains a
memory of the past inputs via the activations (see Fige

(o

Z C
0‘\ 0‘\
il n
t H O t H O
0 i u e i u
X d t X d t
t d—» p —» t d Mol
e 1 1- E 1
fl t n t
n
P
u
t

= = T2

Figure 5.2: Partial recurrent neural networks

Two major architectures for limited recurrent networke andely used. Elman
(1990) suggested allowing feedback from the hidden units to af setditional
inputs called context units. Earlier, Jordan (1986) describeaketavork with
feedback from the output units back to a set of contexts.uiihis form of
recurrence is a compromise between the simplicityt &ded-forward network and
the complexity of a fully recurrent neural network hesmit still allows the popular
back propagation training algorithm (described in the followind)e used.

5.3 Fully Recurrent Networ ks

26

Fully recurrent networks, as their name suggests, provideway connections
between all processors in the neural network. A substteadinits is designated as
the input processors, and they are assigned or clampled $pécified input values.
The data then flows to all adjacent connected unitscawdlates back and forth
until the activation of the units stabilizes. Figure é8ves the input units feeding
into both the hidden units (if any) and the output units. ddievations of the hidden
and output units then are recomputed until the neural netwabiizes. At this
point, the output values can be read from the outpat lafyprocessing units.

= 2 T B =

rrs'v-rsoi (= 2 Y =T = Vi«

Figure 5.3: Fully recurrent neural networks
Fully recurrent networks are complex, dynamical systemmd they exhibit all of

the power and instability associated with limit cycles andotic behavior of such
systems. Unlike feed-forward network variants, which haketerministic time to
produce an output value (based on the time for the aatiow through the
network), fully recurrent networks can take an in-dateate amount of time.

In the best case, the neural network will reverbeaafiewv times and quickly settle
into a stable, minimal energy state. At this time, dlutput values can be read from
the output units. In less optimal circumstances, tiork might cycle quite a few

27

times before it settles into an answer. In worsesashe network will fall into a
limit cycle, visiting the same set of answer states awel over without ever settling
down. Another possibility is that the network will entechaotic pattern and never
visit the same output state.

By placing some constraints on the connection wejghts can ensure that the
network will enter a stable state. The connections é@etwunits must be
symmetrical. Fully recurrent networks are used primdoityoptimization problems
and as associative memories. A nice attribute witlmopation problems is that
depending on the time available, you can choose to getetturrent networks
current answer or wait a longer time for it to setite a better one. This behavior is

similar to the performance of people in certain tasks.

28

6. Neutral Network Models

The combination of topology, learning paradigm (supervisedar-supervised
learning), and learning algorithm define a neural network mddedre is a wide
selection of popular neural network models. For datangjnperhaps the back
propagation network and the Kohonen feature map are teepopular. However,
there are many different types of neural networks in 8sene are optimized for
fast training, others for fast recall of stored memorigisers for computing the best
possible answer regardless of training or recall time tiBabest model for a given
application or data mining function depends on the datahenfiinction required.
The discussion that follows is intended to provide antigeuunderstanding of the
differences between the major types of neural netwoNs details of the
mathematics behind these models are provided.

6.1 Back Propagation Networks

A back propagation neural network uses a feed-forward toypolsgpervised
learning, and the (what else) back propagation learning dlguorithis algorithm
was responsible in large part for the reemergence eofah networks in the
mid1980s.

Back propagation is a general purpose learning algorithm.poweerful but also
expensive in terms of computational requirements fonitrgi A back propagation
network with a single hidden layer of processing elememsts model any
continuous function to any degree of accuracy (given enougiegsimg elements
in the hidden layer). There are literally hundreds arfations of back propagation
in the neural network literature, and all claim to be sopeto basic back
propagation in one way or the other. Indeed, since back gatpa is based on a
relatively simple form of optimization known as gradielescent, mathematically
astute observers soon proposed modifications using paaverful techniques such
as conjugate gradient and Newtmethods. However, basic back propagation is

29

still the most widely used variant. Its two primarytues are that it is simple and
easy to understand, and it works for a wide range of problems

Learn Eate ‘/‘_47‘ e
Iomenturm Ervor Tolerance

. Adpst Weights using Error
(Desired-Actual) e

specific
> Actual p Desired
Output Cutput

Fig 6.1: Back propagation networks

The basic back propagation algorithm consists of thegesgtsee Figure 6.1). The
input pattern is presented to the input layer of the netwbhlese inputs are
propagated through the network until they reach the output Tihits forward pass
produces the actual or predicted output pattern. Becaude grapagation is a
supervised learning algorithm, the desired outputs are givenrasfghe training
vector. The actual network outputs are subtracted ftendesired outputs and an
error signal is produced. This error signal is then #msbfor the back propagation
step, whereby the errors are passed back through the netwark by computing
the contribution of each hidden processing unit and deriviegctrresponding
adjustment needed to produce the correct output. Theecbom weights are then
adjusted and the neural network has just learned froexperience.
As mentioned earlier, back propagation is a powerful aexibfle tool for data
modeling and analysis. Suppose you want to do linear regresA8ioback
propagation network with no hidden units can be easily usdulitd a regression
model relating multiple input parameters to multiple owgpartdependent variables.
This type of back propagation network actually uses an #igorcalled thedelta
rule, first proposed by Widrow and Hoff (1960).

30

Adding a single layer of hidden units turns the linear neuedaWaork into a
nonlinear one, capable of performing multivariate logistgression, but with some
distinct advantages over the traditional statistita¢chnique. Using a back
propagation network to do logistic regression allows yomodel multiple outputs
at the same time. Confounding effects from multiple inpatameters can be
captured in a single back propagation network model. Back progagzeural
networks can be used for classification, modeling, and-teries forecasting. For
classification problems, the input attributes are mappehetalesired classification
categories. The training of the neural network amounggtiing up the correct set
of discriminate functions to correctly classify the irgptor building models or
function approximation, the input attributes are mappeddduhction output. This
could be a single output such as a pricing model, or it coalldomplex models
with multiple outputs such as trying to predict twamre functions at once.

Two major learning parameters are used to control theirigaprocess of a back
propagation network. Thiearn rate is used to specify whether the neural network
is going to make major adjustments after each learniabatriif it is only going to
make minor adjustment®omentum is used to control possible oscillations in the
weights, which could be caused by alternately sigmedr esignals. While most
commercial back propagation tools provide anywhere from 1LGoor more
parameters for you to set, these two will usually prodheemost impact on the

neural network training time and performance.

6.2 Kohonen Feature M aps

Kohonen feature maps are feed-forward networks thatrus@supervised training

algorithm, and through a process called self-organizatanfjgure the output units

into a topological or spatial map. Kohonen (1988) was dribeofew researchers

who continued working on neural networks and associativeaneeven after they

lost their cachet as a research topic in the 1960swblik was reevaluated during

the late 1980s, and the utility of the self-organizing featuna@ was recognized.
31

Kohonen has presented several enhancements to this nmotieding a supervised
learning variant known dsearning Vector Quantisation (LVQ).

A feature map neural network consists of two layerprotessing units an input
layer fully connected to a competitive output layer. €hae no hidden units. When
an input pattern is presented to the feature map, the umitkei output layer
compete with each other for the right to be declanedatinner. The winning output
unit is typically the unit whose incoming connection wesgare the closest to the
input pattern (in terms of Euclidean distance). Thus the isputesented and each
output unit computes its closeness or match score tanplg pattern. The output
that is deemed closest to the input pattern is declae@itimer and so earns the
right to have its connection weights adjusted. The ection weights are moved in
the direction of the input pattern by a factor determinedabjearning rate
parameter. This is the basic nature of competitiveateatworks.

The Kohonen feature map creates a topological mappingljbgtag not only the
winners weights, but also adjusting the weights of the adygoatput units in close
proximity or in the neighborhood of the winner. So not aihdes the winner get
adjusted, but the whole neighborhood of output units metged closer to the input
pattern. Starting from randomized weight values, thgpuuunits slowly align
themselves such that when an input pattern is presentesiglaborhood of units
responds to the input pattern. As training progressesizbeof the neighborhood
radiating out from the winning unit is decreased. Initi¥disge numbers of output
units will be updated, and later on smaller and smallereusnare updated until at
the end of training only the winning unit is adjusted. SiryiJahe learning rate will
decrease as training progresses, and in some implement#tiensarn rate decays

with the distance from the winning output unit.

32

e Adjust Weights of Winner

Learn M toward Input Pattern

RN] B

Outprt compete
to be Winner

Input

Winner Meighbor

Figure 6.2: Kohonen self-organizing feature maps

Looking at the feature map from the perspective of the exdiion weights, the
Kohonen map has performed a process called vector quamtiza code book
generation in the engineering literature. The conneeteights represent a typical
or prototype input pattern for the subset of inputs thatifiédl that cluster. The
process of taking a set of high dimensional data and redii¢c;ng set of clusters is
called segmentation. The high-dimensional input spaceedsiced to a two-
dimensional map. If the index of the winning output unit isduse essentially
partitions the input patterns into a set of categorietusters.

From a data mining perspective, two sets of useful infoomare available from a
trained feature map. Similar customers, products, or belsagi@ automatically
clustered together or segmented so that marketing messagebe targeted at
homogeneous groups. The information in the connection ¥geigfheach cluster
defines the typical attributes of an item that fall®ithat segment. This information
lends itself to immediate use for evaluating what theters mean. When combined
with appropriate visualization tools and/or analysis ofhbthe population and
segment statistics, the makeup of the segments igehtifi the feature map can be

analyzed and turned into valuable business intelligence.

33

6.3 Recurrent Back Propagation

Recurrent back propagation is, as the name suggests, a baelgation network
with feedback or recurrent connections. Typically, fdedback is limited to either
the hidden layer units or the output units. In either cordigom, adding feedback
from the activation of outputs from the prior pattertnaduces a kind of memory to
the process. Thus adding recurrent connections to a baglagation network
enhances its ability to learn temporal sequences withadamentally changing the
training process. Recurrent back propagation networks wilgeneral, perform
better than regular back propagation networks on timessprediction problems.

6.4 Radial Basis Function

Radial basis function (RBF) networks are feed-forwaetihvorks trained using a
supervised training algorithm. They are typically configured \aitbingle hidden
layer of units whose activation function is selediean a class of functions called
basis functions. While similar to back propagation in many respects,ataofsis
function networks have several advantages. They ustrally much faster than
back propagation networks. They are less susceptible toepmsbivith non-
stationary inputs because of the behavior of the rédisis function hidden units.
Radial basis function networks are similar to the podiséic neural networks in
many respects (Wasserrnan 1993). Popularized by Moody and nD&IR&9),
radial basis function networks have proven to be aulseéural network
architecture. The major difference between radiaisbasction networks and back
propagation networks is the behavior of the single hiddesr.l&ather than using
the sigmoidal or S-shaped activation function as ickk@aopagation, the hidden
units in RBF networks use a Gaussian or some other basisl Kenction. Each
hidden unit acts as a locally tuned processor that compusesre for the match
between the input vector and its connection weightseaters. In effect, the basis
units are highly specialized pattern detectors. The weggitsecting the basis units

34

to the outputs are used to take linear combinations dfitlien units to product the
final classification or output.

Remember that in a back propagation network, all weightdl of the layers are

adjusted at the same time. In radial basis funatetmvorks, however, the weights
into the hidden layer basis units are usually set befwr second layer of weights is
adjusted. As the input moves away from the conneatieights, the activation

value falls off. This behavior leads to the use of theteenter for the first-layer

weights. These center weights can be computed using Koh&eature maps,

statistical methods such as K-Means clustering, or suiimer means. In any case,
they are then used to set the areas of sensitivityhf® RBF hidden units, which

then remain fixed. Once the hidden layer weights areasgtcond phase of training
is used to adjust the output weights. This processdljpiases the standard back
propagation training rule.

In its simplest form, all hidden units in the RBF netkbave the same width or
degree of sensitivity to inputs. However, in portionshaf input space where there
are few patterns, it is sometime desirable to have hiddéa with a wide area of
reception. Likewise, in portions of the input space, wiaich crowded, it might be
desirable to have very highly tuned processors with nameeeption fields.
Computing these individual widths increases the performahtiee RBF network
at the expense of a more complicated training process.

6.5 Adaptive Resonance Theory

Adaptive resonance theory (ART) networks are a faofilsecurrent networks that
can be used for clustering. Based on the work of reseaBtiephen Grossberg
(1987), the ART models are designed to be biologicallysidel Input patterns are
presented to the network, and an output unit is declareth@emwin a process
similar to the Kohonen feature maps. However, thelfeekl connections from the
winner output encode the expected input pattern tempfatee actual input pattern

does not match the expected connection weights to &isoff degree, then the

35

winner output is shut off, and the next closest outputisrdeclared as the winner.
This process continues until one of the outputsuepectation is satisfied to within
the required tolerance. If none of the out put units wimsn a new output unit is
committed with the initial expected pattern set to thesxurinput pattern.

The ART family of networks has been expanded through tloti@n of fuzzy
logic, which allows real-valued inputs, and through theTMRP architecture,
which allows supervised training. The ARTMAP architecture usssk-to-back
ART networks, one to classify the input patterns and tonencode the matching
output patterns. The MAP part of ARTMAP is a field ofits (or indexes,
depending on the implementation) that serves as an imeleveen the input ART
network and the output ART network.While the detailsheftraining algorithm are
quite complex, the basic operation for recall is ssmpgly simple. The input
pattern is presented to the input ART network, which e with a winner
output. This winner output is mapped to a corresponding outpuin the output
ART network. The expected pattern is read out of theu@UART network, which

provides the overall output or prediction pattern.

6.6 Probabilistic Neural Networ ks
Probabilistic neural networks (PNN) feature feed-forwaacthitecture and

supervised training algorithm similar to back propagation (Sp&&®0). Instead of
adjusting the input layer weights using the generalizea dele, each training input
pattern is used as the connection weights to a new hidderrueffect, each input
pattern is incorporated into the PNN architecture. Thubrigjue is extremely fast,
since only one pass through the network is required tdahsetnput connection
weights. Additional passes might be used to adjusbtiput weights to fine-tune
the network outputs.

Several researchers have recognized that adding a hidddarwach input pattern
might be overkill. Various clustering schemes havenberoposed to cut down on
the number of hidden units when input patterns are closgut space and can be
represented by a single hidden unit. Probabilistic neural ank$woffer several
advantages over back propagation networks (Wasserman, 1998)ndia much

36

faster, usually a single pass. Given enough input datd&Nihe will converge to a
Bayesian (optimum) classifier. Probabilistic neurdinweks allow true incremental
learning where new training data can be added at any timeuwvitlequiring
retraining of the entire network. And because of the statidbasis for the PNN, it
can give an indication of the amount of evidence itfbabasing its decision.

M odel Training paradigm Topology Primary functions
Adaptive ResonanceUnsupervised Recurrent Clustering

Theory

ARTMAP Supervised Recurrent Classification

Back propagation Supervised Feed-forward Classification,

Radial basis function modeling,time-series
networks Supervised Feed-forward Classification,
Probabilistic neural Modeling,time-series
networks Supervised Feed-forward Classification
Kohonen feature map Unsupervised Feed-forward Clustering

Learning vector Supervised Feed-forward Classification
guantisation Supervised Limited Modeling, time-
Recurrent back Reinforcement recurrent series

propagation Feed- Time-series
Temporal difference forward

learning

Table 6.1: Neural Network Models and Their Functions

6.7 Key Issuesin Selecting M odels and Architecture

Selecting which neural network model to use for a pdaticapplication is

straightforward if you use the following process. Fisgllect the function you want
to perform. This can include clustering, classificatiogdeling, or time-series
approximation. Then look at the input data you have ta the network. If the data
is all binary, or if it contains real-valued inputs, thagim disqualify some of the
network architectures. Next you should determine how muth yizu have and
how fast you need to train the network. This might suggesigusiobabilistic

neural networks or radial basis function networks rathen a back propagation
network. Table 6.1 can be used to aid in this selectionepsodviost commercial

neural network tools should support at least one variahiest algorithms.

37

Our definition of architecture is the number of inputs, hidéew output units. So
in my view, you might select a back propagation model, poee several
different architectures having different numbers of hiddemria and/or hidden

units.

Data type and quantity: In some cases, whether the data is all binary oragont
some real numbers might help determine which neural mktmodel to use. The
standard ART network (called ART [) works only with binaryadand is probably
preferable to Kohonen maps for clustering if the dsl binary. If the input data
has real values, then fuzzy ART or Kohonen maps shmildsed.

Training requirements:. Online or batch learning In general, whenever we want
online learning, then training speed becomes the overridiigrfan determining
which neural network model to use. Back propagation and resturback
propagation train quite slowly and so are almost neved us real-time or online
learning situations. ART and radial basis function nekwohowever, train quite
fast, usually in a few passes over the data.

Functional requirements. Based on the function required, some models can be
disqualified. For example, ART and Kohonen feature maps clustering
algorithms. They cannot be used for modeling or time-sdoiescasting. If you
need to do clustering, then back propagation could be usedt Wit be much
slower training than using ART of Kohonen maps.

38

7. Training and Testing Neural Network

7.1 Back-propagation Algorithm

Output units

@ Hidden units

\' o
Q Input units

Fig 7.1 A multilayer Network

Fig 7.2 The stepwise Activation function of the Percep{elove), and
the Sigmoid Activation Function of the Backpropagation {oatiow)

39

Given: A set of input-output vector pairs.

Compute: A set of weights for a multi layer network that mapguts onto

corresponding outputs.

1.

Let A be the number of units in the input layer, as datexthby the
length of the training input vectors. Let C be the nundjarnits in
the output layer. Now choose B, the number of unitdhén tiidden
layer. As figure 7.1, the input and hidden layers each haex@a
unit used for shareholding; therefore, the units in thager$ will
sometimes be indexed by the ranges (O,...,A) and (0,....,B). We
denote the activation levels of the units in the inpyét by X in the
hidden layer by hand in the output layer by.dWeights connecting
the input layer to the hidden layer are denoted by, where the
subscript i indexes the input units and | indexes the hidadés. u
Likewise, weights connecting the input layer to the outayer are
denoted by wg with | indexing to hidden units and j indexing
output units.
Initialize the weights in the network. Each weight sdobk set
randomly to a number between -0.1 and 0.1.
W1; =random(-0.1,0.1) forall i=0,....A,j=1,....B
W2; =random(-0.1,0.1) forall i=0,....B,j=1,....C
Initialize the activations of the thresholding units.eThalues of
these thresholding units should never change.

0% 1.0

0h 1.0
Choose an input-output pair. Suppose the input vectarasdthe
target output vector is YAssign activation levels to the input units.

5. Propagate the activation from the units in the irgyerlito the units

in the hidden layer using the activation function of figarz:

40

1

A

1+ e_ZiZOV\nij %

h =

J

for all j=1....B

Note that | ranges from O to A. yls the thresholding weight for
hidden unit j (its propensity to fire irrespective of imputs). % is
always 1.0.

6. Propagate the activations from the units in the hidden lay¢he

units in the output layer.

0= > foralj=1.C

. 1+ e_ziB:oWZii h

Again, the thresholding weight w2Zor output unit j plays a role in
the weighted summation, s always 1.0.

7. Compute the errors of the units in the hidden layer, denged
Errors are based on the network’s actual outpjtajed the target
output (y).

02;=0,(1-0;)y,-0o;) foral j=1.C

g. Compute the errors of the units in the hidden layer, derdied
C
dL=h (-h D o2w2 foral j= 1.B
i=0

9. Adjust the weights between the hidden layer anghuiuayer. The
learning rate is denoteg its function is the same as in perceptron
learning. A reasonable valuewpfs 0.35.

AwZ,=nd2h forali= 0.B j= 1.C
10. Adjust the weights between the input layer andnidden layer.
Awl;=nolx forali= 0.A j= 1.B

41

11.Go to step 4 and repeat. When all the input-output paire bagn
presented to the network, one epoch has been compképeat
steps 4 to 10 for as many epoch is desired.
The algorithm generalizes straightforwardly to netwosksnore than
three layers. For each extra layer, insert a fodwaropagation step
between steps 6 and 7, an error computation step betvege8 and 9,
and a weight adjustment step between step 10 and 11. Bmputation
for hidden units should use the equation in step 8, but lwidmging
over the units in the next layer, not necessarilyotput layer.
The speed of learning can be increased by modifying the teigh
modification steps 9 and 10 to include a momentum terithe weight
update formulas become;
AwZ, t+1)=n0 2 h+ahw 2 (]
AW, (t+1)= 7 5L +adw } (.
Where hy x;, 61; andd2; are measured at time t+Awl, (t) is the change

the weight experienced during the previous forward-backward lass.

is set to 0.9 or so, learning speed is improved.

Recall that the activation function has a sigmdwdpe. Since infinite
weights would be required for the actual outputs of the/ord to reach

0.0 and 1.0, binary target outputs (th&s pf steps 4 and above) are
usually given as 0.1 and 0.9 instead. The sigmoid is required by
backpropagation because the derivation of the weight upddte
requires that the activation function be continuoukdifferentiable.

7.2 Defining Success. When Isthe Neural Network Trained?

Once you have selected a neural network model, chosetataerepresentations,

and are all ready to start training, the next decisptfHow do you know when the

network is trained?" Depending on the type of neurtkokk and on the function

you are performing, the answer to this question will véiryyou are performing

42

classification, then you want to monitor the numbércorrect and incorrect
classifications the network makes when it is initgstnode. When clustering data,
the training process is usually determined by the numbeasses, or epochs, taken
through the training data. If you are trying to build a modeltime-series
forecaster, then you probably want to minimize the jgtexh error. Regardless of
the function required, once the neural network ismé@iand meets the specified
accuracy, then the connection weights are "lockedheg cannot be adjusted. In
the following sections, we explore the acceptancera@itused for training neural
network to perform classification, clustering, modeliaggd time-series forecasting.

7.3 Classification

The measure of success in a classification probleneisadburacy of the classifier,
usually termed as the percentage of correct classifitsatin some applications,
getting an incorrect classiflcation is worse than gettimglassification at all. In
~hese cases, a "don't know" or uncertain answer isedeflly selecting your data
representation for the network outputs, you can olkesrbehavior you require.

For example, let's say we want to classify custonmcsthree types: poor, good,
and excellent. We use a one-of-N code to represenbutput and then train the
network with an error tolerance of 0.1. We created @put fllter that selects the
highest output unit as the winning category. Thditihe outputs are 0.9,0.4, and
0.3, we say that the winner is 0.9, and the correspondingagtes poor. Note also
that if the outputs are 0.9, 0.89, and 0.87, we would still clask#ycustomer as
poor, even though the network has high prediction valuegdod and excellent.
Even if the outputs were 0.2, 0.19, and 0.1, the output cltaswsih would be that
the customer was poor. One way to avoid this problempsit@ threshold limit on
the output units before you perform the one-of-N code@mion. Usually we want
the output value to be at least 0.6 before we saylbainit is ON.

If we put this threshold value in place, then we could ad@burth category,
unknown or undecided, to represent the case where nahe nétwork output units

had a value above 0.6. A confusion matrix is a text or graybBualization that
43

indicates where the classification errors are ocegrriA text version lists the
possible output categories and the corresponding percentagesrrett and

incorrect classifications .

44

8. Analyzing Neural Network

When data mining is used for decision support applicationgticgethe neural
network model is only the first part of the process. Tibat part, and the most
important from a decision maker's perspective, is td fout what the neural
network learned. In this section, | describe activitlest are used to open up the
neural network "black box" and transform the collectiometwork weights into a
set of visualizations, rules, and parameter relahipssthat people can easily

comprehend.

8.1 Discovering What the Networ k lear ned

When using neural networks as models for transaction miogesthe most
important issue is whether the weights in the neuralerét accurately capture the
classification, model, or forecast needed for theieaipdn. If we use credit files to
create a neural network loan officer, then what matigerthat we maximize our
profit and minimize our losses. However, in decision supgpplications, what is
important is not that the neural network was able @aonléo discriminate between
good and bad credit risks, but that the network was abtetdify what factors are
key in making this determination. In short, for decisioaport applications, we

want to know what the neural network learned.

Unfortunately this is one of the most difficult aspeaftsising neural networks. One
approach is to treat the neural network as “black boxhenbwith test input and
record output. This is the input sensitivity approach. Aeo#pproach is to present
the input data to the neural network and then generateo&rsdes that describe the
logical function performed by neural network based on ingpedaf its internal
states and connection weights. A third approach is tesept the neural network
visually using a graphical representation so that thedexdul pattern recognition

machine known as human brain can contribute to theepsoc

45

The technique used to analyze the neural networks dependse dgpe of data
mining function being performed. This is necessary bectdnest/pe of information
neural network has learned is qualitatively differengeldaon the function it was
trained to do. For example if you are clustering custofor a market segmentation
application, the output of the neural network is the tifien of the cluster that the
customer fell into. At this point , statistical anagysf he attributes of the customers
in each segment might be warranted, along with visatadiz techniques described
in the following. Or we might want to view the contien weights following into
each output unit (cluster) and analyze them to see thbateural network learned
were t6he “prototypical’ customer for that segment.

46

9. Implementation of the Project

| have implemented this project using java 1.5 programminguiage; | have used
Text Editor for writing source code in java. This projecinsist various classes

written in java. In this section | will describe abdutut and output of the project.

9.1 Data Format

The input format is a subset of the arff format used Bk&¥, a popular open
source data mining tool.

Specifically, the only supported attribute types are nurakrinumeric, integer,
real), and nominal. The unsupported types are of no use setting of providing a
simple neural network. Furthermore, missing and sparseislatat supported as
well, as these would require some data preprocessing vehigdt the focus of this
project. Weka comes with some sample data fileshasxample here an excerpt
from the iris sample

@RELATION iris

@ATTRIBUTE sepallength REAL REAL REAL REAL

@ATTRIBUTE sepalwidth {Iris-setosa, Iris-versicolor,Iris-virginica}

@ATTRIBUTE petallength

@ATTRIBUTE petalwidth

@ATTRIBUTE class

@DATA 5.1,3.5,1.4,0.2,Iris-setosa

In addition to the definition of the sample name anuksta, that is four numeric

attributes and the nominal attribute class, the first decord is shown.

9.2 Attribute-relation file for mat

An ARFF (Attribute-Relation File Format) file is a&8CIllI text file that describes a
list of instances sharing a set of attributes. ARFEsfilvere developed by the
Machine Learning Project at the Department of Computer nBeieof The
University of Waikato for use with the Weka machine learsiofjware.

a7

Overview

ARFF files have two distinct sections. The first smttis theHeader information,
which is followed theData information. TheHeader of the ARFF file contains the
name of the relation, a list of the attributes @bkimns in the data), and their types.

An example header on the standard IRIS dataset lookihlgke

% 1. Title: Iris Plants Database
@RELATION iris

@ATTRIBUTE sepallength NUMERIC

@ATTRIBUTE sepalwidth NUMERIC

@ATTRIBUTE petallength NUMERIC

@ATTRIBUTE petalwidth NUMERIC

@ATTRIBUTE class {Iris-setosa,Iris-versic olor,lris-
virginica}

The Dat a of the ARFF file looks like the following:
@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments. TIRELATION, @ATTRIBUTE and
@DATA declarations are case insensitive.

Examples

Several well-known machine learning datasets are distdbwith Weka in the
SWEKAHOME/data directory as ARFF files.

The ARFF Header Section

The ARFF Header section of the file contains thatiah declaration and attribute
declarations.

The @relation Declaration

The relation name is defined as the first line in thé=RRile. The format is:
48

@relation <relation-name>
where <relation-name> is a string. The string mugjumed if the name includes
spaces.

The @attribute Declar ations

Attribute declarations take the form of an orderd sequemice@attribute
statements. Each attribute in the data set has is@aitribute statement which
uniquely defines the name of that attribute and it's dae& fyhe order the attributes
are declared indicates the column position in the datdoseof the file. For
example, if an attribute is the third one declared t&zka expects that all that
attributes values will be found in the third comma dekchicolumn.

The format for the@attribute statement is:
@attribute <attribute-name> <datatype>

where the<attribute-name> must start with an alphabetic character. If spacego
be included in the name then the entire name must bedquote

The<datatype> can be any of the four types currently (version 3.2.1) atieg by
Weka:

« numeric
« <nominal-specification>
+ string

« date [<date-format>]

where <nominal-specification> and <date-format> arenddfbelow. The
keywordsnumeric, string anddate are case insensitive.

Numeric attributes
Numeric attributes can be real or integer numbers.
Nominal attributes

Nominal values are defined by providing an <nominal-speci@inatiisting the
possible values: {<nominal-namel>, <nominal-name2>, <ndmiaiae3>, ...}

For example, the class value of the Iris datasebeatefined as follows:

49

@ATTRIBUTE class {Iris-setosa, Iris-versi color,lIris-
virginica}

Values that contain spaces must be quoted.
String attributes

String attributes allow us to create attributes dcoitg arbitrary textual values.
This is very useful in text-mining applications, as we caate datasets with string
attributes, then write Weka Filters to manipulate g#in (like
StringToWordVectorFilter). String attributes are deethas follows:

@ATTRIBUTE LCC string

Date attributes

Date attribute declarations take the form:
@attribute <name> date [<date-format>]

where <name> is the name for the attribute and <dateatoris an optional string
specifying how date values should be parsed and printed gthie isame format
used by SimpleDateFormat). The default format stringepisc the 1SO-8601
combined date and time format: "yyyy-MM-dd'T'HH:mm:ss". Bateust be

specified in the data section as the correspondinggstapresentations of the
date/time (see example below).

ARFF Data Section

The ARFF Data section of the file contains the diselaration line and the actual
instance lines.

The @data Declar ation

The @data declaration is a single line denoting the start ofdd&a segment in the
file. The format is:

@data

50

Theinstance data

Each instance is represented on a single line, withagarreturns denoting the end
of the instance. Attribute values for each instancedafenited by commas. They
must appear in the order that they were declared in th#eheection (i.e. the data
corresponding to the nttwattribute declaration is always the nth field of the
attribute).

Missing values are represented by a single question mark, as

@data
4.4,?,1.5,? Iris-setosa

Values of string and nominal attributes are case seaséand any that contain
space must be quoted, as follows:

@relation LCCvsLCSH

@attribute LCC string
@attribute LCSH string

@data

AG5, 'Encyclopedias and dictionaries.;Twentie th century.’
AS262, 'Science -- Soviet Union -- History.'

AES5, 'Encyclopedias and dictionaries.’

AS281, 'Astronomy, Assyro-Babylonian.;Moon -- P hases.'
AS281, 'Astronomy, Assyro-Babylonian.;Moon -- T ables.’

Dates must be specified in the data section using ting sapresentation specified
in the attribute declaration. For example:

@RELATION Timestamps
@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"

@DATA
"2001-04-03 12:12:12"
"2001-05-03 12:59:55"

Sparse ARFF files

Sparse ARFF files are very similar to ARFF files, butdaith value 0 are not be
explicitly represented.

51

Sparse ARFF files have the same heade@r.eation and@attribute tags) but
the data section is different. Instead of representct galue in order, like this:

@data
0, X,0,Y, "class A"
0,0, W, 0, "class B"

the non-zero attributes are explicitly identified biriatite number and their value

stated, like this:
@data
{1X,3Y,4"class A"}
{2 W, 4 "class B"}

Each instance is surrounded by curly braces, and the fdomaach entry is:
<index> <space> <value> where index is the attribute ist@xting from 0).

9.3 Installation

The software is implemented as a number of plain Jées The development
version is Java 1.5, thus to compile or run it the saengion or a more recent one
is recommended, .

The compiled program, that is the NeuralNetwork. jler is run by the command

java -jar NeuralNetwork.jar [options] file_name

The options and file_name parameters are described.belo
The source code version NeuralNetwork. needs to be itmngirst. The
compilation instructions below assume that the sourcsebean unpacked in the

current workingdirectory.

9.4 Configuration
The only way to configure the program is by command lingsfl@he option-
help lists all available flags, along with their defaultlues and a concise

explanation:

java -jar NeuralNetwork.jar --help

52

This is the only flag which takes no argument and doeseqgoire a file name to be
specified. All other flags, as listed below, take exaache argument. For an
explanation of unknown terminology or concepts, rédesection 4.
. --target-attribute
Takes the name of an attribute as specified in the infautThis attribute
becomes the target attribute for the classificatibmot given, the attribute
specified last in the input is used as the target attribute

. --hidden-layers

Specifies the number of hidden layers and the numbeoadswithin each
hidden layer (see Sec. 4). These are to be given asraasaparated list of
non-negative integers, e.g. 4,6,2 for three hidden laygnsfour, six, and two
nodes. If zero nodes are specified for a layer, thisrlégs omitted. Thus 0
amounts to no hidden layer at all.

. --learning rate

The learning rate of the back-propagation algorithm (see4¥e€his must be
a real number greater than zero and less than one.

. --momentum

The momentum of the back-propagation algorithm (see Seth#&) must be
a real number greater or equal than zero and less than one

. --epochs

The number of times the sample data is fed into theah@etwork to train it .
This must be an integer greater than zero. This isotilg termination
criterion for the learning process.

. --n-fold-validation

Cross-validation is performed over the given numberfodds of the data
sample. This must be an integer greater or equal to Eerozero no cross

validation is performed.

53

Note that validation is performed over the whole sarpény case.

9.5 Output
After learning and validation has been performed, the madekhe trained neural

network, and some validation metrics are output aa feat.

= C:\WINDOWS\system32\cmd. exe - HEE
C:vood j2sdkl.4.8_63

C:\j2sdkl.4.8_83cd hin
C:nj2sdkl.4.8_835hincd nn
C:nj2sdkl.4.8_A3shinsnn>java —jar HeuralNetwork.jar testl.arff

Conf iguration:
——target—attribute : play
——hidden-layer A
i 1 A3
: B2
: 5B@
——n—fold-validation = 18

Training the network...
Network:

Input Layep:
18: outlook - sunny

! outlook - overcast
: outlook - rainy

: temperature

! humidity

: windy - TRUE

: windy - FALSE

11

Node -4.495134984711338

18: B.1267876837235666

I1: B.18757824387473022
12: B.15936852187461508
13: 0.8884748A567864472
14: 0.894879206434318665
15: B.83704330063234672
I6: B.P6AA9165655190762

54

e C:AWINDOWS\system32icmd. exe

Mode 1: 2

Inputs Weights

-4.423375728572748

18: 0.84971276465436773
[1: 0.16378221495732698
12: 0.11336664212108145
[3: 0.8A45585089476A4547
[4: 0.06806777530778579]
I5: 0.88496193555553919
16: B.80467130187915@8341

Inputs Weights

-4.3868291520729565

18: B8.11543827636678249
[1: 8.811143787583566288
12: 9.12885A98A4551892
13: 0.0674300354139111985
[4: 6.223436559499623E-4
I5: 0.8283921@5366@78485
16: 7.182614043929929E-4

Hidden Layer:2
Node 2: B

Inputs Weights

Node -4.25069064669823

Node 1:08: 0.83778272718632037

Node 1:1: 0.053480441085850754
Node 1:2: 0.82893543145924958

Node 1:3: 0.22254434538508164

Node 2: 1

Inputs Weights

Node -4.253869358145067

Node 1:08: 0.21373624201640629
Node 1:1: 0.12923285387686778
Node 1:2: 0.06454946355945963

55

Node 2: 2

Inputs Heights

Node -4.254887400772487

Node 1:0: 8.16143322047240583
Node 1:1: 8.14195122053936454
Node 1:2: 8.12141425160184814
Node 1:3: 8.11698578786373745

Node 2: 3

Inputs Heights

Node —4.25173375292424

Node 1:@: 8.85314618@39736@25
Node 1:1: B.85526816440824239
Node 1:2: 8.19043527625192672
Node 1:3: 8.171071682085457877

Dutput Layer:

Node 0: play - yes

Inputs Heights

Node 0.6264963113920418

Node 2:8: 8.23523368943389456
Node 2:1: 8.21811027261594523
Node 2:2: 8.6999668805501225
Node 2:3: 8.441815790280%606

Node 0: play - no

Inputs Heights

Node —8.6782255612494691
Node 2:0: B.5678@15452571529
Node 2:1: 8.64292943777208618
Node 2:2: ©.5834824579194126
Node 2:3: 0.2627649394948725

Performing validation of sample...
lJalidation of sample:

Mean Abhgolute Error = B.4551975113712133
Root Mean Squared Error: 0.47936846010056554

Correctly Classified: ¢ / 14

56

\WINDOWS\system32\cmd.exe .
Precision Fl-measure
1.8 . 8.8
n.8 . 8.9

Confusion Matrix:
classified as:

no
A
A

Ferforming n—fold cross validation...

Mean Absolute Errop : A.49284201862910143
Root Mean Squared Error: B.5138878725883895

Correctly Classified: 9 ~ 14
Precision Recall Fl-measure
1.8 8.0 8.0
B.a8 8.0 8.0

C:\j2edkl.4.8_@3\hinsnn>_

The model is output layer by layer, from the input layeer the hidden layers to
the output layer, and each layer node by node in ordeedeh node its position in
the network and its links to the nodes of the previous lagaigawith the learned
weights are shown.The validation metrics, mean labscerror and root mean
squared error, as well as a confusion matrix with therdetrgy fl-measures for a

nominal target attribute, are given for the whole dengtus the cross-validation

57

average.

9.6 Architecture

The system can be divided into the components configmatommand line
evaluation, parsing, data representation, data normalizatihe neural network,
validation, and output. In more detail, this is

Configuration
Classes: Config

Contains the configuration used by all parts of the systemgxamplethe
learning rate, the name of the input file, the targeibate, .. .

CommandLine Evaluation

Classes: EvalArgs, Option, Optionint, OptionNat, Offioable,
OptionLearningRate, OptionMomentum, OptionString, OptiatsN

The command line flags (see Sec. 2) are checked for tmessc and
evaluated. A Config object is created and initialized basetthe@se settings.

The different types of flags are represented by diftersubclasses of
Option.These serve to provide the different types afsfla.g. a string with
OptionString or a real numeric with OptionDouble, aodhsure further type
restrictions, e.g. the valid range of a real value fptidbLearningRate, by
further sub-classing in combination with JML constraints.

Parsing
Classes: ReadArff

Parses the input file given in the arff format, and e®at data schema and sample
based on it.

Data Sample

Classes: Sample, Schema, Attribute, Attributelnt, AtteBRal,
AttributeNominal

A data sample is represented by its schema and the dataallhe schema specifies
the structure of the sample's data records in termdrdfidés. That is, each element
of a data record must be of a type compatible with threesponding schema
attribute. Attributes of the different numeric and nomim#libutes are subclasses of
the abstract class Attribute.

Data nor malization

Before data can be entered into the neural network ormalized based on the
whole sample (see Sec. 4). NormalizerSample normadizgsiata record, using the

58

appropriate attribute normalizer for each element ofeberd.

Neur al Networ k

Classes: NeuralNetwork, Node, Nodelnput, NodeHidden, NodeOutput,
Connection, Weight

The neural network is represented as a network of conneetigthted nodes. The
subclasses of Node represent nodes of the input, a hidden, outfthg @myer.
Connections are bidirectional, to feed data forwardexnors feed backward during
the learning process. Weights are attached to each camaail each node, except
for the input nodes.

Validation

Classes: Validation, ConfusionMatrix

A network is validated by computing for a sample all outpatsl providing the
correct and the computed outputs to a Validation objecbriiputes the validation
metrics described in section 5. If the target attributeoiminal, the validation object
does automatically create a confusion matrix.

Output
ClassesPrint

Formats and print output of the system, like the help messape
Configuration.

9.7 Evaluation

To get a sense of how good the learned network models tdesdane metrics to
validate a model and some empirical test results asepted in the following.
Metrics

After a network has been trained on a sample, it isadiately evaluated on this
same sample.

In detail, for a sample of size n the metrics are:

Mean Absolute Error

The sum of the absolute differences between the atcarel computed output for
each record, divided by the number of recofdstoutputi - correctil)/n

Root Mean Squared Error

The square root of the sum of the squared differencegebr the correct and
computed output for each record, divided by the number of redalidgoutputi -
correcti)2)/n)

For a nominal target value the following additional nestare computed:

59

Correctly Classified

The number of records which have been correctly ¢iedsin contrast
to the number of incorrectly classified ones.

Confusion Matrix

A matrix where the rows correspond to the corregdavalue, the columns to the
computed value, and each cell contains how often thesmasurred. For example,
the confusion matrix

O W >

P Wo >
OoO~NpRL @
oopr0

says that A has been classified 8 times correctly g&rue positive), 2 times
incorrectly as B or C (false negative), and 4 times B drave been incorrectly
classified as A (false positive).

Precision

The precision of a valueis the number of times it has been classified cosrectl
divided by the number of times it has been classifietectly plus the number of

times another value has been misclassified asus, the precision of A is 8/(8 +

4) = 0.66.

Recall

Similarly, the recall of a value is the number of éanit has been classified
correctly, divided by the number of times it has beesstli@d correctly plus the
number of times it has been misclassified. Thus,eabalrof A is 8/(8 + 2) = 0.8.

F1-measure

Finally, the F1-measure of a value is computed as twastitagorecision times its
recall divided by the sum of its precision and recaiug; the precision of A is (2
*0.66 * 0.8)/(0.66 + 0.8) = 0.73.

Cross- Validation

As mentioned, the previous metrics are applied to thenatigample, that is the
sample is the training and the validation data set ats#me time. This is
problematic, as it is unclear how the performance ef btwork will be on
unseen data, which comes from the same area as gmeabdata, but was not
available for training the net. The model could be pefftacthe training data, but
at the same time overfit it and not generalize wall dny new data, which is
clearly not desired.

60

To get an idea how well the model generalizes, crosdatan is applied.
That is, the data samp&is partitioned intan setsSh, and for the i.th setup\ S
is the training set, whil8 is the validation set. Now, for this setup a new neural
network is trained on the training set, where the ndtwws the same initial
structure and initial weights as the model trained ovemthole sampl& Then,
the new trained network is evaluated over the valida@nwhich is unseen data
for this particular network, and thus a generalization tes
This is done for each of the partitions. Finally, then validation results are
averaged, thus giving an indication on how well the nagmodel might scale
for new data.

61

10. Class Description

= Class Attribute

java.lang.Object
Lnn. Attribute
Direct Known Subclasses:
Attributelnt, AttributeNominal, AttributeReal
public abstract clasattribute
extends java.lang.Object

The specification of an attribute of a data scheraajts name and (by subclassing) its
type. An attribute in some data sample mey for exatglevidth' ‘double’.

Field Detall
name

private final java.lang.String nane
Specifications: spec_public

Constructor Detalil

Attribute

public At t ri but e(java.lang.String name)
Parameters:
name - The attribute's name.

Method Detall
getName

public java.lang.String get Name()
Returns:
The attribute's name.

isNumerical

public abstract boolean i sSNuneri cal ()
Instead of doing run time checks to distinguish betwéféereint specializations
of this class, this is done with this method. | dok# |, but | don't like run time
type checks either, and was thus not motivated to Eadruse them in Java. And
a better design eluded me.
Returns:
If this is a numerical or nominal attribute.

62

parseValue

public abstract java.lang.Object par seVal ue(java.lang.String value)
Used to parse the data input. Converts a value oftthisute type given as a
string to the native representation, e.g. Integer, Do&tieg.

Parameters:

value - The string representation of a valid attribute value
Throws:

Termination - If value is not a valid value representation.

createNor malizer

public abstract NormalizerAttribute creat eNormal i zer ()
Returns:
A normalizer specific for this attribute's instance.

- Class Config

java.lang.Object
Lnn. Config

public clasConfig
extends java.lang.Object

Contains all configuration, i.e. the structure of the aknetwork, the validation options,

Field Detall
dataFileName

private java.lang.String dat aFi | eName
Specifications: spec_public

options

private final java.util. ArrayList options
Specifications: spec_public

tar getAttributeOption

private final OptionString target Attri buteQption
Specifications: spec_public

tar getAttribute

63

private Attribute targetAttribute
the target attribute
Specifications: spec_public

tar getAttributel ndex

private int target Attri but el ndex
the index of the targetAttribute within the attributeshe input data schema, i.e.
the i.th attribute defined in the input (starting countin@)at
Specifications: spec_public

hiddenL ayers

private final OptionNats hi ddenLayers
Specifications: spec_public

lear ningRate

private final OptionLearningRate | ear ni ngRat e
Specifications: spec_public

momentum

private final OptionMomentum nonent um
Specifications: spec_public

epochs

private final OptionNat epochs
Specifications: spec_public

n_fold_validation

private final OptionNat n_fol d_validation
Specifications: spec_public

Constructor Detail

Config

public Confi g()
Creates the default configuration.

Method Detail

optionForFlag

public Option opti onFor Fl ag(java.lang.String flag)

64

Parameters:

flag -the command line flag correspondig to this option
Returns:

the option with the given flag, i.e. hiddenLayers fdrnidden-layers'.

getOptions

public java.util.lterator get Opti ons()
Returns:
An iterator over all options.

getDataFileName

public java.lang.String get Dat aFi | eName()
Returns:
Returns the name of the data file.

setDataFileName

public void set Dat aFi | eNane(java.lang.String dataFileName)
Parameters:
dataFileName - The name of the data file to set.

getTargetAttribute

public Attribute get Target Attri but e()
Returns:
Returns the targetAttribute of the data sample.

getTargetAttributel ndex

public int get Target Attri but el ndex()
Returns:
Returns the index of the targetAttribute within theilattes of the data sample,
starting with 0.

getHiddenL ayers

public java.util.ArrayList get Hi ddenLayer s()
Returns:
Returns the number of nodes per hidden layers as an Ifitgger

getL earningRate

public double get Lear ni ngRat e()
Returns:
Returns the learning rate of the neural network.

65

getM omentum

public double get Monment um()
Returns:
Returns the momentum of the neural network.

getEpochs

public int get Epochs()
Returns:
Returns the epochs used to train the neural network.

getNFoldValidation

public int get NFol dVal i dat i on()
Returns:
Returns the number of folds of the n-fold cross vailichat

updateT ar getAttribute

public void updat eTar get At t ri but e(Sample sample)
If the target attribute was given as a command lineittagame is verified.
Otherwise, the last attribute given in the input Isged as the target attribute.
Parameters:
sample - the data sample to learn

= Class ConfusionM atrix
java.lang.Object
L_nn. Conf usi onMat ri x

public clasConfusionM atrix
extends java.lang.Object

A confusion matrix for a nominal target attribute.

Field Detall
nominal

private final java.util. ArrayList nom nal
Specifications: spec_public

sampleSize
private int sanpl eSi ze

66

Specifications: spec_public

matrix

private java.util.HashMap mat ri x
Specifications: spec_public

Constructor Detalil

ConfusionM atrix

public Conf usi onMat r i x(AttributeNominal attribute)
Creates a confusion matrix for the given nominal Btireé. The confusion matrix
is then built incrementaly as the records are evaliegathst the network and the
results are registereekgister (String, String).

Method Detall
register

public void r egi st er (java.lang.String correct,
java.lang.String computed)

Registers the performance of the model on a record@jives the correct and the
computed value of the nominal attribute.

print

public void pri nt (java.io.PrintStream out)
Prints the evaluation:

« the number of correctly classified records,
« the recall, precision, and f1-measure per value,
« and the confusion matrix.

When target is the value to measure, then

« true positive is the number of times target was cdyretassified,

- false negative is the number of times target wasdhect output, but
another value was computed as output.

- false positive is the number of times target was rettrrect output, but
was computed as output.

For example, take the confusion matrix

- -ABC
-« A811
- B370
- C109

67

where the rows contain the correct and the colutmasdmputed output. Totally
8 + 7 + 9 = 24 out of 30 records are classified correEtly.the value A we get

+ true positive = 8
» false positive=3+1=4
« false negative=1+1=2

Based on this, for the value A we get

« precision = true positive / (true positive + false poes) =8/ (8 + 4) =
0.66

+ recall = true positive / (true positive + false negat=8 /(8 + 2) = 0.8

« fl-measure = 2 * precision * recall / (precision + recald * 0.66 * 0.8 /
(0.66 +0.8) =0.73

Parameters:
out - The stream to print to.

= Class Connection
java.lang.Object
L_nn. Connecti on

public classConnection
extends java.lang.Object

A (weighted) connection between two nodes.

Field Detall
Ssour ce

private final Node source
Specifications: spec_public

tar get

private final NodeHidden t ar get
Specifications: spec_public

weight

private final Weight wei ght
Specifications: spec_public

Constructor Detail

68

Connection

public Connect i on(Node source,NodeHidden target,
Config config)

Creates the connection between the source and tadgt Does not register itself
to the source or target node.

Parameters:

source - Connected from this node.

target - Connected to this node.

Method Detall
getSource

public Node get Sour ce()
Returns:
The source node.

getTarget

public NodeHidden get Tar get ()
Returns:
The target node.

getWeight

public Weight get Wi ght ()
Returns:
The weight.

» ClassEvalArgs

java.lang.Object
L_nn. Eval Args

public clas€EvalArgs
extends java.lang.Object

Parses the command line arguments and evaluates them.

Field Detall
helpFlag

public static final java.lang.String hel pFl ag
flag for printing a help synopsis.

69

Constructor Detalil
EvalArgs

public Eval Args()

Method Detail

evalCommandLine

public static void eval CommandLi ne(Config config,
java.lang.String [] args)

Evaluate command line flags. The flags are mostly giveoiniig, plus special
ones like helpFlag defined in this class.

Parameters:

config - The configuration to be modified based on the commaedaiguments.
args - The command line arguments

Throws:
Termination - If the arguments are malformed.
isFlag
protected static boolean i sFl ag(java.lang.String flag)

Is this string a valid flag? Flags start with --'-gré.g. --help".

= ClassMain
java.lang.Object
L nn. Mai n

public clasdM ain
extends java.lang.Object

Main class - contains the main function.

Constructor Detail
Main

public Mai n()

Method Detalil

main

70

public static void mai n(java.lang.String[] args)
Main class - evaluates the command line, reads therdatathe neural network,
validates it, and outputs the results.
Parameters:
args - command line options

validate

private static void val i dat e(Config config,
Sample sample,
NeuralNetwork model,
NeuralNetwork initialN et)

performs validation of the model and outputs the computtdaca

Parameters:

config - system configuration

sample - data sample

model - the network trained on the sample

initialNet - a copy of model in its initial state, for performimgss validation

= Class NeuralNetwork

java.lang.Object
L_nn. Neur al Net wor k

public clasdNeuralNetwork
extends java.lang.Object

A fully-connected feed-forward neural network.

Field Detall
config

private final Config config
Specifications: spec_public

schema

private final Schema schema
Specifications: spec_public

normalizer

private final NormalizerSample normal i zer
Specifications: spec_public

layers

71

private java.util.ArrayList | ayers
Specifications: spec_public

Constructor Detail

Neur alNetwor k

public Neur al Net wor k(Config config,
Sample sample)

Creates a neural network based on the given sample.
Parameters:

config - The configuration.

sample - The sample to learn.

Neur alNetwor k

public Neur al Net wor k(NeuralNetwork network)
Creates an independent copy of network, with the s, i.e. identical layers,
nodes, weights, ...

Method Detall
createl ayers

private void creat eLayers()
Creates the network's layers, connects them, anghassindom initial weights.

copy

public NeuralNetwork copy()
Returns:
an independent copy of the network, with the same se¢éupgentical layers,
nodes, weights, ...
Specifications: pure

reset

protected void reset ()
Clears cached values within the network remaining fronfetsterun.

run

public void r un(Sample sample)
Trains the network on the given data sample. The lEampst use the same
schema as the schema used when creating the netwerkafdmeters like
epochs, learning rate, ..., are taken from the config usticonstructor.
Parameters:

72

sample - The data sample to learn.

validate

public void val i dat e(Sample sample,
Validation validation)

Run the network on the sample, and tell validation all@utorrect and
computed output for each record. The sample must usertieessdnema as use to
create the network.

Parameters:

sample - The data sample to learn.

validation - The validation object to extend.

printWeights

private void pri nt Wi ght s(java.io.PrintStream out,
NodeHidden node,
int layer)
Prints the incoming weights of a node with their weigh
Parameters:
out - The stream to print to.
node - The node whose incoming weights are to be printed.

layer - The layer of the node.

print

public void pri nt (java.io.PrintStream out)
Prints the network, layer by layer and node by noda&gatath their weight.
Parameters:
out - The stream to print to.

= ClassNode

java.lang.Object
L_nn. Node
Direct Known Subclasses:
NodeHidden, Nodelnput

public abstract claddode
extends java.lang.Object

A node of a neural network.

Field Detalil

inConnections

73

final java.util. ArrayList i nConnecti ons
Specifications: spec_public

outConnections

final java.util. ArrayList out Connecti ons
Specifications: spec_public

Constructor Detalil

Node

public Node()
Creates a new node.

Node

public Node(Node node)

Method Detail
copy

public abstract Node copy()
Returns:
an independent copy of this node.

getlnConnections

protected java.util.List get I nConnect i ons()
Returns:
The connections from the previous layer.

getOutConnections

protected java.util.List get Qut Connect i ons()
Returns:
The connections to the next layer.

connectFrom

public void connect Fr omConnection connection)
Adds a connection to the previous layer.
Parameters:
connection - The connection.

connectTo

74

public void connect To(Connection connection)
Adds a connection to the next layer.
Parameters:
connection - The connection.

reset

public abstract void reset ()
Needs to be called each time a new record is fed toetiveork. This invalidates
the old output, and the old backpropagation data.

getOutput
public abstract double get Cut put ()
Compute the output of this node.
Returns:

The node's output.

propagate

public abstract void pr opagat e()
Do backpropagation.

= ClassNodeHidden

java.lang.Object
L_nn. Node
L_nn. NodeHi dden
Direct Known Subclasses:
NodeOutput

public classNodeHidden
extends Node

A node of a hidden layer of a neural network.

Field Detall
config

private final Config config
Specifications: spec_public

weight

private final Weight wei ght
Specifications: spec_public

75

output

private double out put
Specifications: spec_public

outputValid

private boolean out put Valid
Is output in sync, or does it have to be recomputed?
Specifications: spec_public

delta

protected double delta
Cache for the current delta of this node (for backprogagati
Specifications: spec_public

deltavalid

private boolean deltavalid
Is delta in sync, or does it have to be recomputed?
Specifications: spec_public

Constructor Detalil
NodeHidden

public NodeHi dden(Config config)
Creates anew node of a hidden layer and initializesatghw randomly.

NodeHidden

public NodeHi dden(NodeHidden node)

Method Detail

copy

public Node copy()

getWeight
public Weight get Wi ght ()

Returns:
Returns the weight.

isOutputValid
76

protected boolean i sQut put Val i d()
Returns:
Is the current output valid, or does it have to bemgnded?.

setOutputValid

protected void set Qut put Val i d(boolean outputValid)
Parameters:
outputvalid - Validate/Invalidate the cached output.

isDeltaValid

protected boolean i sDel taval i d()
Returns:
Is the current delta valid, or does it have to be recoaadut

setDeltaValid

protected void set Del t aVal i d(boolean deltaValid)
Parameters:
deltavalid - Validate/Invalidate the cached delta.

reset

public void reset ()
Description copied from class: Node
Needs to be called each time a new record is fed toetiveork. This invalidates
the old output, and the old backpropagation data.

getOutput

public double get Cut put ()
The output of the node is computed as

« the sum of the weighted input of all incoming connections,
+ plus the node's weight,
« normalized by the sigmoid function.

Returns:
The node's output.

setOutput

protected void set Qut put (double output)
Cache the node's output.
Parameters:
output - The current output.

77

getDelta

public double get Del t a()
Compute the delta of this node in backpropagation. The dedtdidden node is
computed as

« the node's output,
+ times (1 minus the node's output),
« times the sum of the weighted deltas of the outgoimpections.

Returns:
The node's delta.

setDelta

protected void set Del t a(double delta)
Cache the node's delta in backpropagation.
Parameters:
delta - The current delta.

propagate

public void pr opagat e()
Does backpropagation. Adjusts the node's weight andieeaining connection's
weight by callingweight.propagate(double, double)

» Class Nodel nput
java.lang.Object
L_nn. Node
L nn. Nodel nput

public clasNodel nput
extends Node

An input node of a neural network.

Field Detail
input

private double i nput
The last value fed into this input node.
Specifications: spec_public

Constructor Detail

78

Nodel nput

public Nodel nput ()
Creates a node of the input layer.

Nodel nput

public Nodel nput (Nodelnput node)
Specifications: pure
public normal_behavior
requires node != null;

Method Detail
copy

public Node copy()

reset

public void reset ()
Description: same as class Node

setlnputValue

public void set | nput Val ue(double value)
Sets the input of this node (when a record is fed ir@am#twork).
Parameters:
value - Input value.

getOutput

public double get Cut put ()
Just returns the value fed into this node.
Returns:

Network Input.

propagate

public void pr opagat e()
Does nothing - input nodes are not adjusted.

= Class NodeOutput

java.lang.Object
L_nn. Node
L_nn. NodeHi dden
L nn. NodeQut put

79

public classNodeOutput
extends NodeHidden

A node of the output layer of a neural network.

Field Detail
correctOutput

double cor rect Qut put
The correct output for the record fed into the nekwor
Specifications. spec_public

Constructor Detalil
NodeOutput

public NodeCQut put (Config config)
Creates a node of the output layer.

NodeOutput

public NodeCQut put (NodeOutput node)

Method Detail

copy
public Node copy()
Overrides:

copy in classNodeHidden

getDelta

public double get Del t a()
The delta of an output node is computed as

« the node's output,
+ times (1 minus the node's output),
« times (the correct output minus the node's output).

Overrides:

getDelta in classSNodeHidden
Returns:

The node's delta.

80

setCorrectOutputValue

public void set Cor r ect Qut put Val ue(double value)
Tells the node the correct target value of the inpudrcec

= Class Nor malizer Attribute

java.lang.Object
L_nn. Normal i zerAttri bute
Direct Known Subclasses:
NormalizerAttributelnt, NormalizerAttributeNominal, KwoalizerAttributeReal

public abstract claddor malizer Attribute
extends java.lang.Object

A normalizer for an attribute and a sample. A normaailis created for an attribute (of a
specific type), and computes the normalization functieethan a concrete sample.

Field Detall
attribute

private final Attribute attribute
Specifications: spec_public

Constructor Detalil

Normalizer Attribute

public Nor mal i zer At t ri but e(Attribute attribute)
Initializes the normalizer based on the given attribute.
Parameters:
attribute - The attribute to normalize.

Method Detail
getAttribute

public Attribute get Attri bute()
Returns:
The normalized attribute.

register

public abstract void r egi st er (java.lang.Object value)
Registers a data value as part of the sample to naemali

normalize

81

public abstract java.util.List nor mal i ze(java.lang.Object value)
Performs min-max normalization on a numeric attribatel 1-of-N encoding for
on a nominal attribute.
Parameters:
value - The value to normalize.
Returns:
The normalized value as a list of doubles.

denormalize

public abstract java.lang.Object denor mal i ze(java.util.List value)
Denormalizes a previously normalized value, i.e. idriierse function of
normalize(Object)
Parameters:
value - The normalized value.
Returns:
Value denormalized.

normalizedSize

public abstract int normal i zedSi ze()
Returns:
The number of reals returned txymalize(Object)

= Class Option

java.lang.Object
L_nn. Option
Direct Known Subclasses:
OptionDouble, Optionint, OptionNats, OptionString
public abstract clagSption
extends java.lang.Object

A command line flag representing a configuration optiond@ete subclasses should add
a value field of the wanted type.

Field detail
flag

private final java.lang.String flag
Specifications: spec_public

description

82

private final java.lang.String description
Specifications: spec_public

Constructor Detail

Option

public Opt i on(java.lang.String flag,
java.lang.String description)

Parameters:

flag - The command line flag, e.g. --epochs'.

description - A short description, e.g 'number of epochs used totinaimeural
net'.

Method Detall
getFlag

public java.lang.String get Fl ag()
Returns:
The flag corresponding to this option.

getDescription

public java.lang.String get Descri ption()
Returns:
The description corresponding to this option.

getType

public abstract java.lang.String get Type()
Returns:
A textual description of the option's type, e.g. 'int'.

valueToString

public abstract java.lang.String val ueToStri ng()
Returns:
The string representation of this configuration value.

setValue

public abstract void set Val ue(java.lang.String argument)
Parameters:
argument - The option value is set based on this string. argumest contain a
valid value representation for the concrete Option type.
Throws:
Termination - If argument is not a valid value representation.

83

= Class OptionString

java.lang.Object
L_nn. Option
L_nn. OptionString
public clasOptionString
extends Option

Option specialized for type String.

Field Detall
value

private java.lang.String val ue
Specifications: spec_public

Constructor detall
OptionString

public Opt i onSt ri ng(java.lang.String flag,
java.lang.String description,
java.lang.String value)

Parameters:
value - The initial value to be represented by this object.

Method Detail

getType
public java.lang.String get Type()
getValue
public java.lang.String get Val ue()
Returns:

The current value represented by this object.

valueToString

public java.lang.String val ueToStri ng()
setValue
public void set Val ue(java.lang.String value)

84

Sets this object's value to the given value.
Parameters:
value - the new value.

= ClassPrint

java.lang.Object
Lnn. Print
public classrint
extends java.lang.Object

Printing / Output.

Field Detall
flagwidth

private static final int flagWdth
The width of the flag name column.

typeWidth

private static final int typeWdth
The width of the type column.

Constructor Detalil
Print

public Print()

Method Detall

fill

public static void fill (java.lang.StringBuffer aString, int width)
Extends the string with ' ' at the end until its s&e= width.

fill

public static java.lang.String fill (java.lang.String aString,

int width)

Like fill(StringBuffer, int) for a String.

fill

public static java.lang.String fill (int number,

85

int width)

Like fill(StringBuffer, int) for an int.
fill
public static java.lang.String fill (double number,
int width)
Like fill(StringBuffer, int) for an double.

printHelpFlag

private static void pri nt Hel pFl ag(java.io.PrintStream out,
java.lang.String flag,
java.lang.String type,
java.lang.String value,
java.lang.String description)
Prints a command line flag with a short description.
Parameters:

out - Where to print to.

flag - The command line flag.

type - The flag's type.

value - The current value of the flag.
description - A short description of the flag.

printHelpFlag

private static void pri nt Hel pFl ag(java.io.PrintStream out,
Option option)
Prints a command line flag with a short description.
Parameters:
out - Where to print to.
option - The command line flag.

printHelp

public static void pri nt Hel p(java.io.PrintStream out)
Prints a short help including all flags with a shortodgsion.
Parameters:

out - Where to print to.

printConfigOption

private static void print Confi gOpt i on(java.io.PrintStream out,
java.lang.Str ing option,
java.lang.Str ing description)
Prints a configuration option and its current value.
Parameters:

out - Where to print to.

86

option - The configuration option.
description - A short description of the option.

printConfigOption

private static void print Confi gOpt i on(java.io.PrintStream out,
Option option)
Prints a configuration option and its current value.
Parameters:

out - Where to print to.
option - The configuration option.

printConfig

public static void pri nt Confi g(java.io.PrintStream out,
Config config)
Prints the configuration, i.e. all variables and thanrent values.
Parameters:
out - Where to print to.

= Class ReadArff

java.lang.Object

L_nn. ReadAr f f
public clasReadArff
extends java.lang.Object

A very simple parser of the arff format. Doesn't Handissing or sparse data.

Constructor Detail
ReadAr ff

public ReadAr ff ()

Method Detail

readAr ff

public static Sample r eadAr f f (java.lang.String fileName)
Reads data in the arff fromat from a file into a skngbject.
Parameters:
fleName - The file name of the arff file to parse.
Returns:
The data sample created from the data in the input file.
Throws:

87

Termination - If input can not be parsed.
skipLine

private static boolean ski pLi ne(java.lang.String line)
Checks if an input line can be skipped because it corgaigsvhite space or a
comment.
Parameters:
line - The line to check.
Returns:
True iff the line contains a comment or only whitespace.

readName

private static java.lang.String
r eadNane(java.io.BufferedReader reader)
throws java.io.lO Exception

Reads the name of the data schema.
Parameters:

reader - The input file.

Returns;

The name of the schema.

Throws.

Termination - If '@relation’ is not the next valid line.
java.io.lOException

readRelation
private static Schema r eadRel at i on(java.io.BufferedReader reader)
throws java.io.lOExcept ion,
Termination

Reads the attributes of the data schema.
Parameters.
reader - The input file.
Returns:
The data schema.
Throws:
Termination - If the '@attribute’ definitions are not next in the.f

java.io.lOException

readData

private static Sample r eadDat a(java.io.BufferedReader reader,
java.lang.String sch emaName,
Schema schema)
throws java.io.lOException,
Termination

Reads the data of the relation.

88

Parameters.

reader - The input file.

schemaName - The name of the schema.
schema - The schema of the data.

Returns:

The data sample.

Throws:

Termination - If the input is malformed.

java.io.lOException

parseCSV

private static java.util. ArrayList par seCSV(java.lang.String line)
throws Termina tion

Splits a comma separated string into its componertsioRes enclosing
whitespace.

Parameters:

line - The string to split.

Returns:

The data schema.

Throws:

Termination - If the '@attribute’ definitions are not next in the.f

unquote

private static java.lang.String unquot e(java.lang.String string)
throws Termination

Ungotes a string, i.e. removes enclosing "" characéeid removes enclosing
whitespace.

Parameters:

string - The string to unquote.

Returns:

The unquoted string.

Throws:
Termination

» Class Sample
java.lang.Object

L_nn. Sanpl e
public classSample
extends java.lang.Object

Represents a data sample, i.e. schema and data.

89

Field Detall
name

private final java.lang.String nane
Specifications: spec_public

schema

private final Schema schema
Specifications: spec_public

records

private final java.util. ArrayList records
Specifications: spec_public

Constructor Detail

Sample

public Sanpl e(java.lang.String name,
Schema schema)

Creates an empty sample based on its schema. Thédatiugs filled in later on.
Parameters:

name - The sample name.

schema - The sample schema.

Method Detall
getName

public java.lang.String get Name()
Returns:
The sample name.

addData

public void addDat a(java.util.ArrayList data)
throws Termination

Adds a (string) data record to the sample. The recaivés in string format,
each value is transformed internally to the appropatitédute value.

Parameters:

data - The record as strings.

Throws:

Termination - If the data does not correspond to the sample schema.

90

addRecord

public void addRecor d(java.util. ArrayList record)
Adds a data record to the sample. Each record value masvalue
corresponding to its attribute type as specified in tha sichema.

Throws:
Termination - If the data does not correspond to the sample schema.
addSample
public void addSanpl e(Sample sample)
Adds all records of sample. Both samples have to ussathe schema.
Parameters:

sample - A data sample.

partition

public java.util.ArrayList partiti on(int partitions)
Partitions the sample randomly into partition parts.
Parameters:
partitions - The number of partitions to split to.
Returns:

The partitions.

getSchema

public Schema get Schema()
Returns:
The schema.

getSampleSize

public int get Sanpl eSi ze()
Returns:
The current sample size.

getRecord

public java.util.List get Recor d(int index)
Retrieves the index.th record of the data sample.
Parameters:
index - The index of the record to return.
Returns:

The current sample size.
toString

91

public java.lang.String toString()
Overrides:
toString in clasgava.lang.Object
Returns:
A string representation of the schema and the sample.

= Class Schema

java.lang.Object

L_nn. Schena
public classSchema
extends java.lang.Object

The schema of a sample, i.e its attributes definitions

Field Detall
attributes

private final java.util. ArrayList attributes
Specifications: spec_public

Constructor Detalil

Schema

public Schena()
Specifications: pure

Method Detail
addAttribute

public void addAt t ri but e(Attribute attribute)
Adds a new attribute to the schema. Order matterguats are indexed in order
of addition, starting from O.
Parameters:
attribute - A new attribute of the schema.

getNumber OfAttributes

public int get Nunmber OF At t ri but es()
Returns:
The number of attributes of the schema.
getAttribute

92

public Attribute get Att ri but e(int index)
Parameters:
index - The index of the attribute to return.
Returns:
The requested attribute.

toString

public java.lang.String toString()
Overrides:
toString in clasgava.lang.Object

= Class Termination

java.lang.Object
L java.lang. Throwable
L java.lang.Error
L_nn. Ter ni nati on

All Implemented Interfaces:

java.io.Serializable
public classT ermination
extends java.lang.Error

This Error class is used to abort the program. As tlligram is merely a simple demo,
no fancy exception handling is done anywhere - it méegiypinates with a descriptive
error message whenever an unexpected error is encalntere

Constructor Detalil
Termination

public Ter m nat i on(java.lang.String message)
Parameters:
message - Description of the error

= ClassValidation
java.lang.Object
L_nn. val i dati on

public classvalidation
extends java.lang.Object

Validates a model on a sample.

93

Field Detall
meanAbsoluteError

private double meanAbsol ut eEr r or
Specifications: spec_public

rootM eanSquar edError

private double r oot MeanSquar edEr r or
Specifications: spec_public

confusionM atrix

private final ConfusionMatrix confusi onMatri x
Generate a confusion matrix for a nominal targeibaite.

sampleSize

private int sanpl eSi ze
Specifications: spec_public

Constructor Detalil
Validation

public Val i dat i on(Config config)
Create a validation object for the target attribute ifipeldn config. Build the

validation incrementally vigegister(List, List, NormalizerSample)

Method Detall
updateM eanAbsoluteError

protected void updat eMeanAbsol ut eEr r or (java.util.List correct,
java.util.Li st computed)

Updates the mean absolute error with one record'sfcdatisn result.

Parameters:
correct - The correct classification (denormalized).
computed - The classification computed by the model (denormalized)

updateRootM eanSquar edError

protected void updat eRoot MeanSquar edEr r or (java.util.List correct,
java.util .List computed)

Updates the root mean squared error with one record'sficiaissn result.

Parameters:
correct - The correct classification (denormalized).

94

computed - The classification computed by the model (denormalized)

register

public void r egi st er (java.util.List correct,
java.util.List computed,
NormalizerSample normalizer)

Registers the performance of the model on a record@jives the correct and the
computed output, both in normalized form.

Parameters:

correct - The correct classification (normalized).

computed - The classification computed by the model (normalized).
normalizer - Normalizer to denormalize correct and computed.

print

public void pri nt (java.io.PrintStream out)
Prints the evaluation:

+ Mean Absolute Error: The sum of the absolut differereta/een the
correct and computed output for each record, divided by timbauof

records.

+ Root Mean Squared Error: The square root of (the sum diiffieeences
between the correct and computed output squared for eaxd dieided
by the number of records).

« Confusion Matrix:ConfusionMatrix.print(PrintStream)

Parameters:
out - The stream to print to.

= Class Weight

java.lang.Object

L nn. i ght
public clasaNeight
extends java.lang.Object

A weight of the network.

Field Detall
config

private final Config config
Specifications: spec_public

95

weight

private double wei ght
The actual weight.
Specifications: spec_public

adjustment

private double adj ust ment
The previous weight adjustment.
Specifications: spec_public

Constructor Detalil

Weight

public Wi ght (Config config)
Creates a new weight, randomly initialized in [O; 1]

Weight

public Wi ght (Weight weight)
Creates an independent copy of weight.

Method Detall
getWeight

public double get Wi ght ()
Returns:
The weight.

setWeight

public void set Wi ght (double weight)
Parameters:
weight - The new weight.

propagate

public void pr opagat e(double deltaNode,
double input)

Does backpropagation, i.e. changes the current weigéd lmasthe value input to
the connected node, and the nodes responsibility fartbe Takes the learning
rateConfig.getLearningRate() and the momentum

Config.getLearningRate() into account by setting the weight to

+ the current weight

96

+ plus the learning rate times the target node's deltas tingetarget node's
input,
+ plus the momentum times the previous weight adjustment.

Parameters:
deltaNode - The responsibility of the connected node for the error
input - The value previously input to the connected node.

— kAR AR ARFIAR mm m e — FhkkFrFRIEIIAK Fhk Ik ————

97

11. Future Work

This project can be extended by adding some functiorigdéy
1. adding graphical user interface, this project only supportsrand line.
2. it can be implemented for all neural network topologied model, this
project implements few of them.
3. error rate in learning process can be minimize by usirfeiexit
algorithms (genetic algorithms, etc.).

4. neural-network methods are thought to have twotditinins that make them
poorly suited to data-mining tasks: their learnegpdiheses are often
incomprehensible, and training times are often &sige. We can eliminate
these limitations

98

12. Conclusion

This project aimed at implementing a basic neural ndtwand providing usable
information about the neural networks that is thech#éecture, functionality and
efficiency.

This project will be helpful in understanding neural netgoand their behavior, it
will show how neural network is useful in data mining prablend can be the best

solution for such problem.
We can see that, for some problems, neural netvargkenore suitable i.e., they do a better

job of learning the target concept than other comlynosed data-mining methods.

We have not attempted to provide an exhaustiveesuo¥ the available neural-
network algorithms that are suitable for data ngniimstead, we have described
a subset of these methods, selected to illustrage bdreadth of relevant
approaches as well as the key issues that arigpglying neural networks in a
data-mining setting. It is our hope that our disiois of neural-network
approaches will serve to inspire some interestimgji@ations of these methods

to challenging datamining problems.

99

13. References

1. Artificial Intelligence, Elaine Rich, Kevin Knight, seetd edition, TMH
publication

2. Anintroduction to neural computing. Aleksander, I. and blorH. 2nd edition

3. Neural Networks at Pacific Northwest National Labonator

http://www.emsl.pnl.gov:2080/docs/cie/neural/neural.homepamé.

4. Industrial Applications of Neural Networks (research répdesprit, I.F.Croall,
J.P.Mason)

5. Neural Networks by Eric Davalo and Patrick Naim

6. Learning internal representations by error propagatioRuoyelhart, Hinton and
Williams (1986).

7. Klimasauskas, CC. (1989). The 1989 Neuro Computing Bibliography.
Hammerstrom, D. (1986). A Connectionist/Neural Netwoitli@graphy.

8. DARPA Neural Network Study (October, 1987-February, 1989). Mifcdln
Lab. Neural Networks, Eric Davalo and Patrick Naim

9. Pattern Recognition of Pathology Images
http://kopernik-eth.npac.syr.edu:1200/Task4/pattern.html

10.Richard Roiger and Cichael Geat2ata Mining: A Tutorial-Based Primer,
Addison-Wesley, 2003.

11.Robert GrothData Mining: Building Completive Advantage, Prentice Hall, 2000.

12.Dorian, P.: Data Preparation for Data Mining, Morgan fid@ann, 1999.

13.Weiss, S.M. and Kulikowski, C.A.: Computer Systems Tlesrn: Classification

and Prediction Methods from Statistics, Neural Netschvihe Learning, and
Expert Systems, Morgan Kaufmann, 1991.

14.Weiss, S.M. and Indurkhya, N.: Predictive Data Mining:PAactical Guide,
Morgan Kaufmann, 1997.

100

	front.pdf
	final report.pdf

