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ABSTRACT 
 
Artificial neural networks can be most adequately characterized as 'computational 

models' with particular properties such as the ability to adapt or learn, to generalize, or to 

cluster or organize data, and which operation is based on parallel processing. 

 

Numerous advances have been made in developing intelligent systems, some inspired by 

biological neural networks. Researchers from many scientific disciplines are designing 

artificial neural networks (ANNs) to solve a variety of problems in pattern recognition, 

prediction, optimization, associative memory, and control.  

Conventional approaches have been proposed for solving these problems. Although 

successful applications can be found in certain well-constrained environments, none is 

flexible enough to perform well outside its domain. ANNs provide exciting alternatives, 

and many applications could benefit from using them. 

 

Classification is one of the data mining problems receiving great attention recently in the 

database community. This project will implement an approach to discover symbolic 

classification rules using neural networks. Neural networks have not been thought suited 

for data mining because how the classifications were made is not explicitly stated as 

symbolic rules that are suitable for verification or interpretation by humans. With the 

proposed approach, concise symbolic rules with high accuracy can be extracted from a 

neural network. 

The network is first trained to achieve the required accuracy rate. Redundant connections 

of the network are then removed by a network pruning algorithm. The activation values 

of the hidden units in the network are analyzed, and classification rules are generated 

using the result of this analysis. The effectiveness of the proposed approach is clearly 

demonstrated by the experimental results on a set of standard data mining test problems. 
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1. Introduction 
Data Classification is one of the applications of Data Mining, “Data Mining is 

the efficient discovery of valuable information from large collection of data.” In 

Data classification, stored data is used to locate data in predetermined groups. 

There are various conventional methods exist to implement data classification, 

but no one is as fast as human brain. I am implementing Data classification 

using Neural Network which is different from conventional computer 

approach. 

Neural networks take a different approach to problem solving than that of 

conventional computers. Neural networks process information in a similar way 

the human brain does. Neural networks learn by example. They cannot be 

programmed to perform a specific task. 

The main aim of my project is to implement a basic neural network which 

simulates the behavior of neural network that is how the neural networks learn, 

how they process their nodes and how they classify the data given as input. 

 

Approach: I have used java 1.5 as programming language to implement this 

project. The project has been developed on java Text Editor. The input format is 

a subset of the arff(Attribute Relationship file format) format used by Weka2, a 

popular open source data mining tool. Specifically, the only supported attribute 

types are numerical (numeric, integer, real), and nominal. 

After learning and validation has been performed, the model, i.e. the trained 

neural network, and some validation metrics are output as plain text. The model 

is output layer by layer, from the input layer over the hidden layers to the output 

layer, and each layer node by node in order For each node its position in the 

network and its links to the nodes of the previous layer along with the learned 

weights are shown. 

The system can be divided into the components configuration, command line 

evaluation, parsing, data representation, data normalization, the neural network, 
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validation, and output. 

The purpose of this project is to implement the basic neural network and to classify 

the data using implemented neural network.  

Why Use Neural Network: 

 Neural network is advantageous than conventional computer because it can be as 

fast as human brain. Neural networks, with their remarkable ability to derive 

meaning from complicated or imprecise data, can be used to extract patterns and 

detect trends that are too complex to be noticed by either humans or other computer 

techniques. A trained neural network can be thought of as an "expert" in the 

category of information it has been given to analyze. This expert can then be used to 

provide projections given new situations of interest and answer "what if" questions. 

Other advantages include: Adaptive learning, Self-Organization, Real Time 

Operation, Fault Tolerance via Redundant Information Coding, etc.  
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2. Data Classification 
 
Data Classification is one of the applications of Data Mining, “Data Mining is the 

efficient discovery of valuable information from large collection of data.” 

Generally, data mining is the process of analyzing data from different perspectives 

and summarizing it into useful information - information that can be used to 

increase revenue, cuts costs, or both. Data mining software is one of a number of 

analytical tools for analyzing data. It allows users to analyze data from many 

different dimensions or angles, categorize it, and summarize the relationships 

identified. Technically, data mining is the process of finding correlations or patterns 

among dozens of fields in large relational databases.  

Although data mining is a relatively new term, the technology is not. Companies 

have used powerful computers to sift through volumes of supermarket scanner data 

and analyze market research reports for years. However, continuous innovations in 

computer processing power, disk storage, and statistical software are dramatically 

increasing the accuracy of analysis while driving down the cost.  

2.1 Data, Information, and Knowledge 

Data 

Data are any facts, numbers, or text that can be processed by a computer. Today, 

organizations are accumulating vast and growing amounts of data in different 

formats and different databases. This includes:  

• operational or transactional data such as, sales, cost, inventory, payroll, and 

accounting 

• nonoperational data, such as industry sales, forecast data, and macro 

economic data  

• meta data - data about the data itself, such as logical database design or data 

dictionary definitions  
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Information 

The patterns, associations, or relationships among all this data can provide 

information. For example, analysis of retail point of sale transaction data can yield 

information on which products are selling and when.  

Knowledge 

Information can be converted into knowledge about historical patterns and future 

trends. For example, summary information on retail supermarket sales can be 

analyzed in light of promotional efforts to provide knowledge of consumer buying 

behavior. Thus, a manufacturer or retailer could determine which items are most 

susceptible to promotional efforts.  

Data Warehouses  

Dramatic advances in data capture, processing power, data transmission, and 

storage capabilities are enabling organizations to integrate their various databases 

into data warehouses. Data warehousing is defined as a process of centralized data 

management and retrieval. Data warehousing, like data mining, is a relatively new 

term although the concept itself has been around for years. Data warehousing 

represents an ideal vision of maintaining a central repository of all organizational 

data. Centralization of data is needed to maximize user access and analysis. 

Dramatic technological advances are making this vision a reality for many 

companies. And, equally dramatic advances in data analysis software are allowing 

users to access this data freely. The data analysis software is what supports data 

mining.  

 

2.2 What can data mining do?  

Data mining is primarily used today by companies with a strong consumer focus - 

retail, financial, communication, and marketing organizations. It enables these 
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companies to determine relationships among "internal" factors such as price, 

product positioning, or staff skills, and "external" factors such as economic 

indicators, competition, and customer demographics. And, it enables them to 

determine the impact on sales, customer satisfaction, and corporate profits. Finally, 

it enables them to "drill down" into summary information to view detail 

transactional data.  

2.3 How does data mining work?  

While large-scale information technology has been evolving separate transaction 

and analytical systems, data mining provides the link between the two. Data mining 

software analyzes relationships and patterns in stored transaction data based on 

open-ended user queries. Several types of analytical software are available: 

statistical, machine learning, and neural networks. Generally, any of four types of 

relationships are sought:  

• Classes: Stored data is used to locate data in predetermined groups. For 

example, a restaurant chain could mine customer purchase data to determine 

when customers visit and what they typically order. This information could 

be used to increase traffic by having daily specials. 

• Clusters: Data items are grouped according to logical relationships or 

consumer preferences. For example, data can be mined to identify market 

segments or consumer affinities.  

• Associations: Data can be mined to identify associations. The beer-diaper 

example is an example of associative mining.  

• Sequential patterns: Data is mined to anticipate behavior patterns and 

trends. For example, an outdoor equipment retailer could predict the 

likelihood of a backpack being purchased based on a consumer's purchase of 

sleeping bags and hiking shoes.  
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Data mining consists of five major elements:  

• Extract, transform, and load transaction data onto the data warehouse 

system.  

• Store and manage the data in a multidimensional database system.  

• Provide data access to business analysts and information technology 

professionals.  

• Analyze the data by application software.  

• Present the data in a useful format, such as a graph or table.  

Different levels of analysis are available:  

• Artificial neural networks: Non-linear predictive models that learn through 

training and resemble biological neural networks in structure. 

• Genetic algorithms: Optimization techniques that use processes such as 

genetic combination, mutation, and natural selection in a design based on the 

concepts of natural evolution.  

• Decision trees: Tree-shaped structures that represent sets of decisions. 

These decisions generate rules for the classification of a dataset. Specific 

decision tree methods include Classification and Regression Trees (CART) 

and Chi Square Automatic Interaction Detection (CHAID) . CART and 

CHAID are decision tree techniques used for classification of a dataset. 

They provide a set of rules that you can apply to a new (unclassified) dataset 

to predict which records will have a given outcome. CART segments a 

dataset by creating 2-way splits while CHAID segments using chi square 

tests to create multi-way splits. CART typically requires less data 

preparation than CHAID.  
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• Nearest neighbor method: A technique that classifies each record in a 

dataset based on a combination of the classes of the k record(s) most similar 

to it in a historical dataset (where k 1). Sometimes called the k-nearest 

neighbor technique.  

• Rule induction: The extraction of useful if-then rules from data based on 

statistical significance.  

• Data visualization: The visual interpretation of complex relationships in 

multidimensional data. Graphics tools are used to illustrate data 

relationships.  

2.4 What technological infrastructure is required? 

Today, data mining applications are available on all size systems for mainframe, 

client/server, and PC platforms. System prices range from several thousand dollars 

for the smallest applications up to $1 million a terabyte for the largest. Enterprise-

wide applications generally range in size from 10 gigabytes to over 11 terabytes. 

NCR has the capacity to deliver applications exceeding 100 terabytes. There are two 

critical technological drivers:  

• Size of the database: the more data being processed and maintained, the 

more powerful the system required.  

• Query complexity: the more complex the queries and the greater the 

number of queries being processed, the more powerful the system required.  

Relational database storage and management technology is adequate for many data 

mining applications less than 50 gigabytes. However, this infrastructure needs to be 

significantly enhanced to support larger applications. Some vendors have added 

extensive indexing capabilities to improve query performance. Others use new 

hardware architectures such as Massively Parallel Processors (MPP) to achieve 
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order-of-magnitude improvements in query time. For example, MPP systems from 

NCR link hundreds of high-speed Pentium processors to achieve performance levels 

exceeding those of the largest supercomputers. 

Data Mining is an analytic process designed to explore data (usually large amounts 

of data - typically business or market related) in search of consistent patterns and/or 

systematic relationships between variables, and then to validate the findings by 

applying the detected patterns to new subsets of data. The ultimate goal of data 

mining is prediction. The process of data mining consists of three stages: 

Stage 1: Exploration. This stage usually starts with data preparation which may 

involve cleaning data, data transformations, selecting subsets of records and - in 

case of data sets with large numbers of variables ("fields") - performing some 

preliminary feature selection operations to bring the number of variables to a 

manageable range (depending on the statistical methods which are being 

considered). Then, depending on the nature of the analytic problem, this first stage 

of the process of data mining may involve anywhere between a simple choice of 

straightforward predictors for a regression model, to elaborate exploratory analyses 

using a wide variety of graphical and statistical methods (see Exploratory Data 

Analysis (EDA)) in order to identify the most relevant variables and determine the 

complexity and/or the general nature of models that can be taken into account in the 

next stage.  

Stage 2: Model building and validation. This stage involves considering various 

models and choosing the best one based on their predictive performance (i.e., 

explaining the variability in question and producing stable results across samples). 

This may sound like a simple operation, but in fact, it sometimes involves a very 

elaborate process. There are a variety of techniques developed to achieve that goal - 

many of which are based on so-called "competitive evaluation of models," that is, 

applying different models to the same data set and then comparing their 

performance to choose the best. These techniques - which are often considered the 
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core of predictive data mining - include: Bagging (Voting, Averaging), Boosting, 

Stacking (Stacked Generalizations), and Meta-Learning.  

Stage 3: Deployment. That final stage involves using the model selected as best in 

the previous stage and applying it to new data in order to generate predictions or 

estimates of the expected outcome. 

The concept of Data Mining is becoming increasingly popular as a business 

information management tool where it is expected to reveal knowledge structures 

that can guide decisions in conditions of limited certainty. Recently, there has been 

increased interest in developing new analytic techniques specifically designed to 

address the issues relevant to business Data Mining (e.g., Classification Trees), but 

Data Mining is still based on the conceptual principles of statistics including the 

traditional Exploratory Data Analysis (EDA) and modeling and it shares with them 

both some components of its general approaches and specific techniques.  

However, an important general difference in the focus and purpose between Data 

Mining and the traditional Exploratory Data Analysis (EDA) is that Data Mining is 

more oriented towards applications than the basic nature of the underlying 

phenomena. In other words, Data Mining is relatively less concerned with 

identifying the specific relations between the involved variables. For example, 

uncovering the nature of the underlying functions or the specific types of 

interactive, multivariate dependencies between variables are not the main goal of 

Data Mining. Instead, the focus is on producing a solution that can generate useful 

predictions. Therefore, Data Mining accepts among others a "black box" approach 

to data exploration or knowledge discovery and uses not only the traditional 

Exploratory Data Analysis (EDA) techniques, but also such techniques as Neural 

Networks which can generate valid predictions but are not capable of identifying the 

specific nature of the interrelations between the variables on which the predictions 

are based.  
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Data Mining is often considered to be "a blend of statistics, AI [artificial 

intelligence], and data base research" (Pregibon, 1997, p. 8), which until very 

recently was not commonly recognized as a field of interest for statisticians, and 

was even considered by some "a dirty word in Statistics" (Pregibon, 1997, p. 8). 

Due to its applied importance, however, the field emerges as a rapidly growing and 

major area (also in statistics) where important theoretical advances are being made 

(see, for example, the recent annual International Conferences on Knowledge 

Discovery and Data Mining, co-hosted by the American Statistical Association).  

2.5 Data Preparation (in Data Mining) 

Data preparation and cleaning is an often neglected but extremely important step in 

the data mining process. The old saying "garbage-in-garbage-out" is particularly 

applicable to the typical data mining projects where large data sets collected via 

some automatic methods (e.g., via the Web) serve as the input into the analyses. 

Often, the method by which the data where gathered was not tightly controlled, and 

so the data may contain out-of-range values (e.g., Income: -100), impossible data 

combinations (e.g., Gender: Male, Pregnant: Yes), and the like. Analyzing data that 

has not been carefully screened for such problems can produce highly misleading 

results, in particular in predictive data mining. 
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3. Neural Networks 

3.1 Introduction 

A Neural Network or more appropriately Artificial Neural Network (ANN) is an 

information processing paradigm that is inspired by the way biological nervous 

systems, such as the brain, process information. Artificial Neural Network is basically a 

mathematical model of what goes in our mind (or brain). The key element of this 

paradigm is the novel structure of the information processing system. It is composed 

of a large number of highly interconnected processing elements (neurons) working 

in unison to solve specific problems.  The brain of all the advanced living creatures 

consists of neurons, a basic cell, which when interconnected produces what we call 

Neural Network. The sole purpose of a Neuron is to receive electrical signals, 

accumulate them and see further if they are strong enough to pass forward. 

So simple in its basic functionality but the interconnections of these produces 

beings (me, u and others) capable of writing about them. Phew! The real thing lies 

not in neurons but the complex pattern in which they are interconnected. NNs are 

just like a game of chess, easy to learn but hard to master. As the moves of chess are 

simple, yet the succession of moves is what makes the game complex and fun to 

play. Imagine a chess game in which you are allowed only one single move. Would 

that game be fun to play?  

In the same way, a single neuron is useless. Well, practically useless. It is the 

complex connection between them and values attached with them (explained later) 

which makes brains capable of thinking and having a sense of consciousness (much 

debated). ANNs, like people, learn by example. An ANN is configured for a 

specific application, such as pattern recognition or data classification, through a 

learning process. Learning in biological systems involves adjustments to the 

synaptic connections that exist between the neurons. This is true of ANNs as well  
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3.2 Historical background 

Neural network simulations appear to be a recent development. However, this field 

was established before the advent of computers, and has survived at least one major 

setback and several eras. Many important advances have been boosted by the use of 

inexpensive computer emulations. Following an initial period of enthusiasm, the 

field survived a period of frustration and disrepute. During this period when funding 

and professional support was minimal, important advances were made by relatively 

few researchers. These pioneers were able to develop convincing technology which 

surpassed the limitations identified by Minsky and Papert. Minsky and Papert, 

published a book (in 1969) in which they summed up a general feeling of frustration 

(against neural networks) among researchers, and was thus accepted by most 

without further analysis. Currently, the neural network field enjoys a resurgence of 

interest and a corresponding increase in funding.  

The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits. But the technology available at that time 

did not allow them to do too much.  

3.3 Neural networks versus conventional computers 

Neural networks take a different approach to problem solving than that of 

conventional computers. Conventional computers use an algorithmic approach i.e. 

the computer follows a set of instructions in order to solve a problem. Unless the 

specific steps that the computer needs to follow are known the computer cannot 

solve the problem. That restricts the problem solving capability of conventional 

computers to problems that we already understand and know how to solve. But 

computers would be so much more useful if they could do things that we don't 

exactly know how to do.  

Neural networks process information in a similar way the human brain does. The 

network is composed of a large number of highly interconnected processing 
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elements (neurons) working in parallel to solve a specific problem. Neural networks 

learn by example. They cannot be programmed to perform a specific task. The 

examples must be selected carefully otherwise useful time is wasted or even worse 

the network might be functioning incorrectly. The disadvantage is that because the 

network finds out how to solve the problem by itself, its operation can be 

unpredictable. 

On the other hand, conventional computers use a cognitive approach to problem 

solving; the way the problem is to solved must be known and stated in small 

unambiguous instructions. These instructions are then converted to a high level 

language program and then into machine code that the computer can understand. 

These machines are totally predictable; if anything goes wrong is due to a software 

or hardware fault. 

Neural networks and conventional algorithmic computers are not in competition but 

complement each other. There are tasks are more suited to an algorithmic approach 

like arithmetic operations and tasks that are more suited to neural networks. Even 

more, a large number of tasks, require systems that use a combination of the two 

approaches (normally a conventional computer is used to supervise the neural 

network) in order to perform at maximum efficiency.  

3.4 Human and Artificial Neurons - investigating the similarities 

3.4.1 How the Human Brain Learns? 

Much is still unknown about how the brain trains itself to process information, so 

theories abound. In the human brain, a typical neuron collects signals from others 

through a host of fine structures called dendrites. The neuron sends out spikes of 

electrical activity through a long, thin stand known as an axon, which splits into 

thousands of branches. At the end of each branch, a structure called a synapse 

converts the activity from the axon into electrical effects that inhibit or excite 

activity from the axon into electrical effects that inhibit or excite activity in the 

connected neurons. When a neuron receives excitatory input that is sufficiently 
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large compared with its inhibitory input, it sends a spike of electrical activity down 

its axon. Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron on another changes. 

 

Fig 3.1 Components of a neuron 

 

 

 

 

Fig 3.2 the synapse 

3.4.2 Human Neurons to Artificial Neurons 

We conduct these neural networks by first trying to deduce the essential features of 

neurons and their interconnections. We then typically program a computer to 
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simulate these features. However because our knowledge of neurons is incomplete 

and our computing power is limited, our models are necessarily gross idealizations 

of real networks of neurons. 

 

Fig 3.3 the neuron model 

An artificial neuron is a device with many inputs and one output. The neuron has 

two modes of operation; the training mode and the using mode. In the training 

mode, the neuron can be trained to fire (or not), for particular input patterns. In the 

using mode, when a taught input pattern is detected at the input, its associated 

output becomes the current output. If the input pattern does not belong in the taught 

list of input patterns, the firing rule is used to determine whether to fire or not. 

 

Fig 3.4 A simple neuron 

3.4.3 Firing rules 
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The firing rule is an important concept in neural networks and accounts for their 

high flexibility. A firing rule determines how one calculates whether a neuron 

should fire for any input pattern. It relates to all the input patterns, not only the ones 

on which the node was trained.  

A simple firing rule can be implemented by using Hamming distance technique. 

The rule goes as follows:  

Take a collection of training patterns for a node, some of which cause it to fire (the 

1-taught set of patterns) and others which prevent it from doing so (the 0-taught 

set). Then the patterns not in the collection cause the node to fire if, on comparison, 

they have more input elements in common with the 'nearest' pattern in the 1-taught 

set than with the 'nearest' pattern in the 0-taught set. If there is a tie, then the pattern 

remains in the undefined state.  

For example, a 3-input neuron is taught to output 1 when the input (X1,X2 and X3) 

is 111 or 101 and to output 0 when the input is 000 or 001. Then, before applying 

the firing rule, the truth table is;  

X1:   0  0  0  0  1  1  1  1  

X2:   0  0  1  1  0  0  1  1  

X3:   0  1  0  1  0  1  0  1  

          

OUT:  0  0  0/1  0/1  0/1  1  0/1  1  

As an example of the way the firing rule is applied, take the pattern 010. It differs 

from 000 in 1 element, from 001 in 2 elements, from 101 in 3 elements and from 

111 in 2 elements. Therefore, the 'nearest' pattern is 000 which belongs in the 0-

taught set. Thus the firing rule requires that the neuron should not fire when the 

input is 001. On the other hand, 011 is equally distant from two taught patterns that 

have different outputs and thus the output stays undefined (0/1).  

By applying the firing in every column the following truth table is obtained;  
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X1:   0  0  0  0  1  1  1  1  

X2:   0  0  1  1  0  0  1  1  

X3:   0  1  0  1  0  1  0  1  

          

OUT:  0  0  0  0/1  0/1  1  1  1  

The difference between the two truth tables is called the generalization of the 

neuron. Therefore the firing rule gives the neuron a sense of similarity and enables 

it to respond 'sensibly' to patterns not seen during training.  

3.4.4 Pattern Recognition - an example 

An important application of neural networks is pattern recognition. Pattern 

recognition can be implemented by using a feed-forward (figure 1) neural network 

that has been trained accordingly. During training, the network is trained to 

associate outputs with input patterns. When the network is used, it identifies the 

input pattern and tries to output the associated output pattern. The power of neural 

networks comes to life when a pattern that has no output associated with it, is given 

as an input. In this case, the network gives the output that corresponds to a taught 

input pattern that is least different from the given pattern.  

 
Fig 3.5 a feed-forward neural network  
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The network of figure 1 is trained to recognize the patterns T and H. The associated 

patterns are all black and all white respectively as shown below.  

 

If we represent black squares with 0 and white squares with 1 then the truth tables 

for the 3 neurons after generalization are;  

X11:   0  0  0  0  1  1  1  1  

X12:   0  0  1  1  0  0  1  1  

X13:   0  1  0  1  0  1  0  1  

          

OUT:  0  0  1  1  0  0  1  1  

Top neuron  

X21:   0  0  0  0  1  1  1  1  

X22:   0  0  1  1  0  0  1  1  

X23:   0  1  0  1  0  1  0  1  

          

OUT:  1  0/1  1  0/1  0/1  0  0/1  0  

Middle neuron  

X21:   0  0  0  0  1  1  1  1  

X22:   0  0  1  1  0  0  1  1  

X23:   0  1  0  1  0  1  0  1  

          

OUT:  1  0  1  1  0  0  1  0  

Bottom neuron  
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 From the tables it can be seen the following associations can be extracted: 

 

In this case, it is obvious that the output should be all blacks since the input pattern 

is almost the same as the 'T' pattern. 

 

Here also, it is obvious that the output should be all whites since the input pattern is 

almost the same as the 'H' pattern. 

 

Here, the top row is 2 errors away from the T and 3 from an H. So the top output is 

black. The middle row is 1 error away from both T and H so the output is random. 

The bottom row is 1 error away from T and 2 away from H. Therefore the output is 

black. The total output of the network is still in favor of the T shape. 

  

3.4.5 A more complicated neuron 
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The previous neuron doesn't do anything that conventional computers don't do 

already. A more sophisticated neuron (figure 2) is the McCulloch and Pitts model 

(MCP). The difference from the previous model is that the inputs are ‘weighted’; 

the effect that each input has at decision making is dependent on the weight of the 

particular input. The weight of an input is a number which when multiplied with the 

input gives the weighted input. These weighted inputs are then added together and if 

they exceed a pre-set threshold value, the neuron fires. In any other case the neuron 

does not fire.  

 

Fig 3.6 An MCP neuron 

In mathematical terms, the neuron fires if and only if;  

X1W1 + X2W2 + X3W3 + ... > T  

The addition of input weights and of the threshold makes this neuron a very flexible 

and powerful one. The MCP neuron has the ability to adapt to a particular situation 

by changing its weights and/or threshold. Various algorithms exist that cause the 

neuron to 'adapt'; the most used ones are the Delta rule and the back error 

propagation. The former is used in feed-forward networks and the latter in feedback 

networks.  
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4. Data Preparation 
Before giving the data to neural network for training we have to prepare the data, 

because the data can be in any format we have to make it acceptable. 

4.1 Data Cleansing 

When operational data gets loaded into a centralized data warehouse, the data often 

must go through a process known as "data cleansing." A sad but true fact is that not 

all operational transactions are correct. They might contain inaccurate values, 

missing data, or other inconsistencies in the data. The transaction might be checked 

by an application program, which detects the bad data and notifies the originator of 

this, but the bad data often remains in the database. This was not such a problem 

when the database was viewed primarily as an archival mechanism. However, if 

the data warehouse is to be turned into a fount of raw material for corporate 

business intelligence gathering, then the data must be as clean and correct as 

possible. 

 

Several techniques are being used to clean data either before or after it gets into the 

data warehouse. These include rule-based techniques, which evaluate each data 

item against metaknowledge (knowledge about the data) about the range of data 

expected in that field and constraints or relationships to other fields in the record 

(Simoudis, livezey, and Kerber 1995). Visualization can also be used to easily 

identify outliers, or out of range data, ill large data sets. Another approach is to use 

statistical information to set missing or incorrect field values to neutral, valid values 

 

4.2 Data Selection 

Once we have the database to train the neural network, the next step is to decide 

what data is important for the task we are trying to automate. Maybe our database 

has 100 fields, but only 10 are used in making a decision. The problem is that, in 

many cases, we don't know exactly which parameters are important in a decision 

process. Fortunately, neural networks can be used to help determine which 



 
 

22 

parameters are important and to build a model relating those parameters. 

The data selection process really takes place across two dimensions. First is the 

column or parameters, which will be part of the data mining process. Second is the 

selection of rows or records, based on the values of individual fields. The 

underlying mechanism used to access all relational databases is SQL, as discussed 

earlier. However, most database front-end tools allow users to specify which data to 

access using fill-in-the-blank forms. 

 

The data selection step requires some detailed knowledge of the problem domain 

and the underlying data. Often the data that is stored in the database needs to be 

massaged or enhanced before data minlng can begin. This preprocessing step is 

described in the next section. 

 

4.3 Data Preprocessing 

Data preprocessing is the step when the clean data we have selected is enhanced. 

Sometimes this enhancement involves generating new data items from one or more 

fields, and sometimes it means replacing several fields with a single field that 

contains more information. Remember, the number of input fields IS not 

necessarily a measure of the information content being provided to the Data mining 

algorithm. Sometimes the data needs to be transformed into a form that is accept-

able as input to a specific data mining algorithm, such as a neural network. 

 

4.4 Computed attributes 

\A common requirement in data mining is to take two or more fields in combination 

to yield a new field or attribute. This is usually in the form of a ratio of two values, 

but could also be the sum, product, or difference of the values. Other 

transformations could be turning a date into a day of the week or day of the year.  

Computed attributes are often necessary because the transaction processing 

application was designed to handle the minimum amount of data required to log the 

transaction. In the past, the focus has been on minimizing storage requirements and 
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processing time, and not on maximizing the amount of information gathered by 

transactions. 

4.5 Scaling 

Another transformation involves the more general issue of scaling data for 

presentation to the neural network. Most neural network models accept numeric 

data only in the range of 0.0 to 1.0 or -1.0 to +1.0, depending on the activation 

functions used in the neural processing elements. Consequently, data usually must 

be scaled down to that range. 

Scalar values that are more or less uniformly distributed over a range can be scaled 

directly to the 0 to 1.0 range. If the data values are skewed, a piece-wise linear or a 

logarithmic function can be used to transform the data, which can then be scaled 

into the desired range. Discrete variables can be represented by coded types with 0 

and 1 values, or they can be assigned values in the desired continuous range. 
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5. Neural Network Topologies  
   
The arrangement of neural processing units and their interconnections can have a 

profound impact on the processing capabilities of the neural networks. In general, 

all neural networks have some set of processing units that receive inputs from the 

outside world, which we refer to appropriately as the input units Many neural 

networks also have one or more layers of hidden processing units that receive 

inputs only from other processing units. A layer or slab of processing units receives 

a vector of data or the outputs of a previous layer of units and processes them in 

parallel. The set of processing units that represents the final result of the neural 

network computation is designated as the output units. There are three major 

connection topologies that define how data flows between the input, hidden, and 

output processing units. These main categories feed forward, limited recurrent, and 

fully recurrent networks are described in detail in the next sections.  

     
5.1 Feed-Forward Networks  
   
Feed-forward networks are used in situations when we can bring all of the 

information to bear on a problem at once, and we can present it to the neural 

network. It is like a pop quiz, where the teacher walks in, writes a set of facts on the 

board, and says, �OK, tell me the answer.� You must take the data, process it, and 

�jump to a conclusion.� In this type of neural network, the data flows through the 

network in one direction, and the answer is based solely on the current set of inputs.  

   
In Figure 5.1, we see a typical feed-forward neural network topology. Data enters 

the neural network through the input units on the left. The input values are assigned 

to the input units as the unit activation values. The output values of the units are 

modulated by the connection weights, either being magnified if the connection 

weight is positive and greater than 1.0, or being diminished if the connection weight 

is between 0.0 and 1.0. If the connection weight is negative, the signal is magnified 

or diminished in the opposite direction.  
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Fig5.1: Feed-forward neural networks.  

   
Each processing unit combines all of the input signals corning into the unit along 

with a threshold value. This total input signal is then passed through an activation 

function to determine the actual output of the processing unit, which in turn 

becomes the input to another layer of units in a multi-layer network. The most 

typical activation function used in neural networks is the S-shaped or sigmoid (also 

called the logistic) function. This function converts an input value to an output 

ranging from 0 to 1. The effect of the threshold weights is to shift the curve right or 

left, thereby making the output value higher or lower, depending on the sign of the 

threshold weight. As shown in Figure 5.1, the data flows from the input layer 

through zero, one, or more succeeding hidden layers and then to the output layer. In 

most networks, the units from one layer are fully connected to the units in the next 

layer. However, this is not a requirement of feed-forward neural networks. In some 

cases, especially when the neural network connections and weights are constructed 

from a rule or predicate form, there could be less connection weights than in a fully 

connected network. There are also techniques for pruning unnecessary weights from 

a neural network after it is trained. In general, the less weights there are, the faster 

the network will be able to process data and the better it will generalize to unseen 

inputs. It is important to remember that feed-forward is a definition of connection 

topology and data flow. It does not imply any specific type of activation function or 

training paradigm.    

  
5.2 Limited Recurrent Networks  
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Recurrent networks are used in situations when we have current information to give 

the network, but the sequence of inputs is important, and we need the neural 

network to somehow store a record of the prior inputs and factor them in with the 

current data to produce an answer. In recurrent networks, information about past 

inputs is fed back into and mixed with the inputs through recurrent or feedback 

connections for hidden or output units. In this way, the neural network contains a 

memory of the past inputs via the activations (see Figure 5.2).  

   

 
   

Figure 5.2: Partial recurrent neural networks  
   
Two major architectures for limited recurrent networks are widely used. Elman 

(1990) suggested allowing feedback from the hidden units to a set of additional 

inputs called context units. Earlier, Jordan (1986) described a network with 

feedback from the output units back to a set of context units. This form of 

recurrence is a compromise between the simplicity of a feed-forward network and 

the complexity of a fully recurrent neural network because it still allows the popular 

back propagation training algorithm (described in the following) to be used.  

     
5.3 Fully Recurrent Networks  
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Fully recurrent networks, as their name suggests, provide two-way connections 

between all processors in the neural network. A subset of the units is designated as 

the input processors, and they are assigned or clamped to the specified input values. 

The data then flows to all adjacent connected units and circulates back and forth 

until the activation of the units stabilizes. Figure 6.3 shows the input units feeding 

into both the hidden units (if any) and the output units. The activations of the hidden 

and output units then are recomputed until the neural network stabilizes. At this 

point, the output values can be read from the output layer of processing units.  

   

 
   

Figure 5.3: Fully recurrent neural networks  
Fully recurrent networks are complex, dynamical systems, and they exhibit all of 

the power and instability associated with limit cycles and chaotic behavior of such 

systems. Unlike feed-forward network variants, which have a deterministic time to 

produce an output value (based on the time for the data to flow through the 

network), fully recurrent networks can take an in-determinate amount of time.  

In the best case, the neural network will reverberate a few times and quickly settle 

into a stable, minimal energy state. At this time, the output values can be read from 

the output units. In less optimal circumstances, the network might cycle quite a few 
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times before it settles into an answer. In worst cases, the network will fall into a 

limit cycle, visiting the same set of answer states over and over without ever settling 

down. Another possibility is that the network will enter a chaotic pattern and never 

visit the same output state.  

By placing some constraints on the connection weights, we can ensure that the 

network will enter a stable state. The connections between units must be 

symmetrical. Fully recurrent networks are used primarily for optimization problems 

and as associative memories. A nice attribute with optimization problems is that 

depending on the time available, you can choose to get the recurrent network�s 

current answer or wait a longer time for it to settle into a better one. This behavior is 

similar to the performance of people in certain tasks.  
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6. Neutral Network Models 
   
The combination of topology, learning paradigm (supervised or non-supervised 

learning), and learning algorithm define a neural network model. There is a wide 

selection of popular neural network models. For data mining, perhaps the back 

propagation network and the Kohonen feature map are the most popular. However, 

there are many different types of neural networks in use. Some are optimized for 

fast training, others for fast recall of stored memories, others for computing the best 

possible answer regardless of training or recall time. But the best model for a given 

application or data mining function depends on the data and the function required.  

The discussion that follows is intended to provide an intuitive understanding of the 

differences between the major types of neural networks. No details of the 

mathematics behind these models are provided.  

     
6.1 Back Propagation Networks  
   
A back propagation neural network uses a feed-forward topology, supervised 

learning, and the (what else) back propagation learning algorithm. This algorithm 

was responsible in large part for the reemergence of neural networks in the 

mid1980s.  

Back propagation is a general purpose learning algorithm. It is powerful but also 

expensive in terms of computational requirements for training. A back propagation 

network with a single hidden layer of processing elements can model any 

continuous function to any degree of accuracy (given enough processing elements 

in the hidden layer). There are literally hundreds of variations of back propagation 

in the neural network literature, and all claim to be superior to basic back 

propagation in one way or the other. Indeed, since back propagation is based on a 

relatively simple form of optimization known as gradient descent, mathematically 

astute observers soon proposed modifications using more powerful techniques such 

as conjugate gradient and Newton’s methods. However, basic back propagation is 
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still the most widely used variant. Its two primary virtues are that it is simple and 

easy to understand, and it works for a wide range of problems.  

   

 
Fig 6.1: Back propagation networks  

   
   
The basic back propagation algorithm consists of three steps (see Figure 6.1). The 

input pattern is presented to the input layer of the network. These inputs are 

propagated through the network until they reach the output units. This forward pass 

produces the actual or predicted output pattern. Because back propagation is a 

supervised learning algorithm, the desired outputs are given as part of the training 

vector. The actual network outputs are subtracted from the desired outputs and an 

error signal is produced. This error signal is then the basis for the back propagation 

step, whereby the errors are passed back through the neural network by computing 

the contribution of each hidden processing unit and deriving the corresponding 

adjustment needed to produce the correct output. The connection weights are then 

adjusted and the neural network has just learned from an experience.  

As mentioned earlier, back propagation is a powerful and flexible tool for data 

modeling and analysis. Suppose you want to do linear regression. A back 

propagation network with no hidden units can be easily used to build a regression 

model relating multiple input parameters to multiple outputs or dependent variables. 

This type of back propagation network actually uses an algorithm called the delta 

rule, first proposed by Widrow and Hoff (1960).  
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Adding a single layer of hidden units turns the linear neural network into a 

nonlinear one, capable of performing multivariate logistic regression, but with some 

distinct advantages over the traditional statistical technique. Using a back 

propagation network to do logistic regression allows you to model multiple outputs 

at the same time. Confounding effects from multiple input parameters can be 

captured in a single back propagation network model. Back propagation neural 

networks can be used for classification, modeling, and time-series forecasting. For 

classification problems, the input attributes are mapped to the desired classification 

categories. The training of the neural network amounts to setting up the correct set 

of discriminate functions to correctly classify the inputs. For building models or 

function approximation, the input attributes are mapped to the function output. This 

could be a single output such as a pricing model, or it could be complex models 

with multiple outputs such as trying to predict two or more functions at once. 

   
Two major learning parameters are used to control the training process of a back 

propagation network. The learn rate is used to specify whether the neural network 

is going to make major adjustments after each learning trial or if it is only going to 

make minor adjustments. Momentum is used to control possible oscillations in the 

weights, which could be caused by alternately signed error signals. While most 

commercial back propagation tools provide anywhere from 1 to 10 or more 

parameters for you to set, these two will usually produce the most impact on the 

neural network training time and performance.  

     
  
6.2 Kohonen Feature Maps  
   
Kohonen feature maps are feed-forward networks that use an unsupervised training 

algorithm, and through a process called self-organization, configure the output units 

into a topological or spatial map. Kohonen (1988) was one of the few researchers 

who continued working on neural networks and associative memory even after they 

lost their cachet as a research topic in the 1960s. His work was reevaluated during 

the late 1980s, and the utility of the self-organizing feature map was recognized. 



 
 

32 

Kohonen has presented several enhancements to this model, including a supervised 

learning variant known as Learning Vector Quantisation (LVQ).  

A feature map neural network consists of two layers of processing units an input 

layer fully connected to a competitive output layer. There are no hidden units. When 

an input pattern is presented to the feature map, the units in the output layer 

compete with each other for the right to be declared the winner. The winning output 

unit is typically the unit whose incoming connection weights are the closest to the 

input pattern (in terms of Euclidean distance). Thus the input is presented and each 

output unit computes its closeness or match score to the input pattern. The output 

that is deemed closest to the input pattern is declared the winner and so earns the 

right to have its connection weights adjusted. The connection weights are moved in 

the direction of the input pattern by a factor determined by a learning rate 

parameter. This is the basic nature of competitive neural networks.  

The Kohonen feature map creates a topological mapping by adjusting not only the 

winner’s weights, but also adjusting the weights of the adjacent output units in close 

proximity or in the neighborhood of the winner. So not only does the winner get 

adjusted, but the whole neighborhood of output units gets moved closer to the input 

pattern. Starting from randomized weight values, the output units slowly align 

themselves such that when an input pattern is presented, a neighborhood of units 

responds to the input pattern. As training progresses, the size of the neighborhood 

radiating out from the winning unit is decreased. Initially large numbers of output 

units will be updated, and later on smaller and smaller numbers are updated until at 

the end of training only the winning unit is adjusted. Similarly, the learning rate will 

decrease as training progresses, and in some implementations, the learn rate decays 

with the distance from the winning output unit.    
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Figure 6.2: Kohonen self-organizing feature maps  
   
Looking at the feature map from the perspective of the connection weights, the 

Kohonen map has performed a process called vector quantization or code book 

generation in the engineering literature. The connection weights represent a typical 

or prototype input pattern for the subset of inputs that fall into that cluster. The 

process of taking a set of high dimensional data and reducing it to a set of clusters is 

called segmentation. The high-dimensional input space is reduced to a two-

dimensional map. If the index of the winning output unit is used, it essentially 

partitions the input patterns into a set of categories or clusters.  

From a data mining perspective, two sets of useful information are available from a 

trained feature map. Similar customers, products, or behaviors are automatically 

clustered together or segmented so that marketing messages can be targeted at 

homogeneous groups. The information in the connection weights of each cluster 

defines the typical attributes of an item that falls into that segment. This information 

lends itself to immediate use for evaluating what the clusters mean. When combined 

with appropriate visualization tools and/or analysis of both the population and 

segment statistics, the makeup of the segments identified by the feature map can be 

analyzed and turned into valuable business intelligence.    
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6.3 Recurrent Back Propagation  

Recurrent back propagation is, as the name suggests, a back propagation network 

with feedback or recurrent connections. Typically, the feedback is limited to either 

the hidden layer units or the output units. In either configuration, adding feedback 

from the activation of outputs from the prior pattern introduces a kind of memory to 

the process. Thus adding recurrent connections to a back propagation network 

enhances its ability to learn temporal sequences without fundamentally changing the 

training process. Recurrent back propagation networks will, in general, perform 

better than regular back propagation networks on time-series prediction problems.  

     
 
6.4 Radial Basis Function  
 

Radial basis function (RBF) networks are feed-forward networks trained using a 

supervised training algorithm. They are typically configured with a single hidden 

layer of units whose activation function is selected from a class of functions called 

basis functions. While similar to back propagation in many respects, radial basis 

function networks have several advantages. They usually train much faster than 

back propagation networks. They are less susceptible to problems with non-

stationary inputs because of the behavior of the radial basis function hidden units. 

Radial basis function networks are similar to the probabilistic neural networks in 

many respects (Wasserrnan 1993). Popularized by Moody and Darken (1989), 

radial basis function networks have proven to be a useful neural network 

architecture. The major difference between radial basis function networks and back 

propagation networks is the behavior of the single hidden layer. Rather than using 

the sigmoidal or S-shaped activation function as in back propagation, the hidden 

units in RBF networks use a Gaussian or some other basis kernel function. Each 

hidden unit acts as a locally tuned processor that computes a score for the match 

between the input vector and its connection weights or centers. In effect, the basis 

units are highly specialized pattern detectors. The weights connecting the basis units 
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to the outputs are used to take linear combinations of the hidden units to product the 

final classification or output.  

Remember that in a back propagation network, all weights in all of the layers are 

adjusted at the same time. In radial basis function networks, however, the weights 

into the hidden layer basis units are usually set before the second layer of weights is 

adjusted. As the input moves away from the connection weights, the activation 

value falls off. This behavior leads to the use of the term center for the first-layer 

weights. These center weights can be computed using Kohonen feature maps, 

statistical methods such as K-Means clustering, or some other means. In any case, 

they are then used to set the areas of sensitivity for the RBF hidden units, which 

then remain fixed. Once the hidden layer weights are set, a second phase of training 

is used to adjust the output weights. This process typically uses the standard back 

propagation training rule.  

   

In its simplest form, all hidden units in the RBF network have the same width or 

degree of sensitivity to inputs. However, in portions of the input space where there 

are few patterns, it is sometime desirable to have hidden units with a wide area of 

reception. Likewise, in portions of the input space, which are crowded, it might be 

desirable to have very highly tuned processors with narrow reception fields. 

Computing these individual widths increases the performance of the RBF network 

at the expense of a more complicated training process.  

     
6.5 Adaptive Resonance Theory  
   
Adaptive resonance theory (ART) networks are a family of recurrent networks that 

can be used for clustering. Based on the work of researcher Stephen Grossberg 

(1987), the ART models are designed to be biologically plausible. Input patterns are 

presented to the network, and an output unit is declared a winner in a process 

similar to the Kohonen feature maps. However, the feedback connections from the 

winner output encode the expected input pattern template. If the actual input pattern 

does not match the expected connection weights to a sufficient degree, then the 
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winner output is shut off, and the next closest output unit is declared as the winner. 

This process continues until one of the output units expectation is satisfied to within 

the required tolerance. If none of the out put units wins, then a new output unit is 

committed with the initial expected pattern set to the current input pattern.  

The ART family of networks has been expanded through the addition of fuzzy 

logic, which allows real-valued inputs, and through the ARTMAP architecture, 

which allows supervised training. The ARTMAP architecture uses back-to-back 

ART networks, one to classify the input patterns and one to encode the matching 

output patterns. The MAP part of ARTMAP is a field of units (or indexes, 

depending on the implementation) that serves as an index between the input ART 

network and the output ART network.While the details of the training algorithm are 

quite complex, the basic operation for recall is surprisingly simple. The input 

pattern is presented to the input ART network, which comes up with a winner 

output. This winner output is mapped to a corresponding output unit in the output 

ART network. The expected pattern is read out of the output ART network, which 

provides the overall output or prediction pattern.      

 
6.6 Probabilistic Neural Networks  
Probabilistic neural networks (PNN) feature feed-forward architecture and 

supervised training algorithm similar to back propagation (Specht, 1990). Instead of 

adjusting the input layer weights using the generalized delta rule, each training input 

pattern is used as the connection weights to a new hidden unit. In effect, each input 

pattern is incorporated into the PNN architecture. This technique is extremely fast, 

since only one pass through the network is required to set the input connection 

weights. Additional passes might be used to adjust the output weights to fine-tune 

the network outputs.  

Several researchers have recognized that adding a hidden unit for each input pattern 

might be overkill. Various clustering schemes have been proposed to cut down on 

the number of hidden units when input patterns are close in input space and can be 

represented by a single hidden unit. Probabilistic neural networks offer several 

advantages over back propagation networks (Wasserman, 1993). Training is much 
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faster, usually a single pass. Given enough input data, the PNN will converge to a 

Bayesian (optimum) classifier. Probabilistic neural networks allow true incremental 

learning where new training data can be added at any time without requiring 

retraining of the entire network. And because of the statistical basis for the PNN, it 

can give an indication of the amount of evidence it has for basing its decision.  

 

Model  Training paradigm  Topology  Primary functions  
Adaptive Resonance 
Theory    
ARTMAP                   
Back propagation  
Radial basis function  
networks                     
Probabilistic neural 
networks  
Kohonen feature map  
Learning vector 
quantisation  
Recurrent back 
propagation  
Temporal difference 
learning  

Unsupervised  
 
Supervised  
Supervised  
   
Supervised  
   
Supervised  
Unsupervised  
Supervised  
Supervised  
Reinforcement  

Recurrent  
 
Recurrent  
Feed-forward  
   
Feed-forward  
   
Feed-forward  
Feed-forward  
Feed-forward  
Limited 
recurrent  
Feed-
forward            

Clustering  
 
Classification  
Classification, 
modeling,time-series  
Classification,  
Modeling,time-series  
Classification  
Clustering  
Classification  
Modeling, time-
series  
Time-series  

   
Table 6.1: Neural Network Models and Their Functions     

 
6.7 Key Issues in Selecting Models and Architecture  
   
Selecting which neural network model to use for a particular application is 

straightforward if you use the following process. First, select the function you want 

to perform. This can include clustering, classification, modeling, or time-series 

approximation. Then look at the input data you have to train the network. If the data 

is all binary, or if it contains real-valued inputs, that might disqualify some of the 

network architectures. Next you should determine how much data you have and 

how fast you need to train the network. This might suggest using probabilistic 

neural networks or radial basis function networks rather than a back propagation 

network. Table 6.1 can be used to aid in this selection process. Most commercial 

neural network tools should support at least one variant of these algorithms.  



 
 

38 

Our definition of architecture is the number of inputs, hidden, and output units. So 

in my view, you might select a back propagation model, but explore several 

different architectures having different numbers of hidden layers, and/or hidden 

units.  

   
Data type and quantity: In some cases, whether the data is all binary or contains 

some real numbers might help determine which neural network model to use. The 

standard ART network (called ART l) works only with binary data and is probably 

preferable to Kohonen maps for clustering if the data is all binary. If the input data 

has real values, then fuzzy ART or Kohonen maps should be used.  

Training requirements: Online or batch learning In general, whenever we want 

online learning, then training speed becomes the overriding factor in determining 

which neural network model to use. Back propagation and recurrent back 

propagation train quite slowly and so are almost never used in real-time or online 

learning situations. ART and radial basis function networks, however, train quite 

fast, usually in a few passes over the data.  

Functional requirements: Based on the function required, some models can be 

disqualified. For example, ART and Kohonen feature maps are clustering 

algorithms. They cannot be used for modeling or time-series forecasting. If you 

need to do clustering, then back propagation could be used, but it will be much 

slower training than using ART of Kohonen maps. 
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7. Training and Testing Neural Network 
7.1 Back-propagation Algorithm 

 

                          Fig 7.1 A multilayer Network 

 

   

Fig 7.2 The stepwise Activation function of the Perceptron (above), and 

the Sigmoid Activation Function of the Backpropagation Unit (below) 
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Given: A set of input-output vector pairs. 

Compute: A set of weights for a multi layer network that maps inputs onto 

corresponding outputs. 

1. Let A be the number of units in the input layer, as determined by the 

length of the training input vectors. Let C be the number of units in 

the output layer. Now choose B, the number of units in the hidden 

layer. As figure 7.1, the input and hidden layers each have an extra 

unit used for shareholding; therefore, the units in these layers will 

sometimes  be indexed by the ranges (0,…,A) and (0,….,B). We 

denote the activation levels of the units in the input layer by xj, in the 

hidden layer by hj, and in the output layer by oj. Weights connecting 

the input layer to the hidden layer are denoted by w1ij, where the 

subscript i indexes the input units and j indexes the hidden units. 

Likewise, weights connecting the input layer to the output layer are 

denoted by w2ij, with I indexing to hidden units and j indexing 

output units. 

2. Initialize the weights in the network. Each weight should be set 

randomly to a number between -0.1 and 0.1. 

W1ij = random(-0.1,0.1)   for all   i = 0,….A, j = 1,….B 

W2ij = random(-0.1,0.1)   for all   i = 0,….B, j = 1,….C 

3 Initialize the activations of the thresholding units. The values of 

these thresholding units should never change. 

                                          x0 = 1.0 

                                          h0 = 1.0  

4. Choose an input-output pair. Suppose the input vector is xi and the   

target output vector is yi. Assign activation levels to the input units. 

5.   Propagate the activation from the units in the input layer to the units 

in the hidden layer using the activation function of figure 7.2: 
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Note that I ranges from 0 to A. w10j is the thresholding weight for 

hidden unit j (its propensity to fire irrespective of its inputs). x0 is 

always 1.0. 

6. Propagate the activations from the units in the hidden layer to the 

units in the output layer. 
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   Again, the thresholding weight w20j for output unit j plays a role in  

the weighted summation. ho is always 1.0. 

 

7. Compute the errors of the units in the hidden layer, denoted δ2j. 

Errors are based on the network’s actual output (oj) and the target 

output (yj). 

                   2    (1 )( )       1....j j j j jo o y o for all j Cδ = − − =  

8. Compute the errors of the units in the hidden layer, denoted δ1j. 

                                         
0

1    (1 ) 2 . 2        1....
C

j j j i ji
i

h h w for all j Bδ δ
=

= − =∑  

9. Adjust the weights between the hidden layer and output layer. The 

learning rate is denoted η; its function is the same as in perceptron 

learning. A reasonable value of η is 0.35. 

                        2    . 2 .      0.... ,  1.....ij j iw h for all i B j Cη δ∆ = = =     

10.  Adjust the weights between the input layer and the hidden layer. 

                          1    . 1 .      0.... ,  1.....ij j iw x for all i A j Bη δ∆ = = =  
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11. Go to step 4 and repeat. When all the input-output pairs have been   

presented to the network, one epoch has been completed. Repeat 

steps 4 to 10 for as many epoch is desired. 

The algorithm generalizes straightforwardly to networks of more than 

three layers. For each extra layer, insert a forward propagation step 

between steps 6 and 7, an error computation step between step 8 and 9, 

and a weight adjustment step between step 10 and 11. Error computation 

for hidden units should use the equation in step 8, but with I ranging 

over the units in the next layer, not necessarily the output layer. 

The speed of learning can be increased by modifying the weight 

modification steps 9 and 10 to include a momentum term α. The weight 

update formulas become; 

                  2 ( 1)   . 2 .  2 ( )ij j i ijw t h w tη δ α∆ + = + ∆  

                   1 ( 1)   . 1 .  1 ( )ij j i ijw t h w tη δ α∆ + = + ∆  

Where hi, xi, δ1j and δ2j are measured at time t+1. 1 ( )ijw t∆ is the change 

the weight experienced during the previous forward-backward pass. If α 

is set to 0.9 or so, learning speed is improved. 

Recall that the activation function has a sigmoid shape. Since infinite 

weights would be required for the actual outputs of the network to reach 

0.0 and 1.0, binary target outputs (the yj’s of steps 4 and above) are 

usually given as 0.1 and 0.9 instead. The sigmoid is required by 

backpropagation because the derivation of the weight update rule 

requires that the activation function be continuous and differentiable. 

 

7.2 Defining Success: When Is the Neural Network Trained?  

Once you have selected a neural network model, chosen the data representations, 

and are all ready to start training, the next decision is, "How do you know when the 

network is trained?" Depending on the type of neural network and on the function 

you are performing, the answer to this question will vary. If you are performing 
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classification, then you want to monitor the number of correct and incorrect 

classifications the network makes when it is in testing mode. When clustering data, 

the training process is usually determined by the number of passes, or epochs, taken 

through the training data. If you are trying to build a model or time-series 

forecaster, then you probably want to minimize the prediction error. Regardless of 

the function required, once the neural network is trained and meets the specified 

accuracy, then the connection weights are "locked" so they cannot be adjusted. In 

the following sections, we explore the acceptance criteria used for training neural 

network to perform classification, clustering, modeling, and time-series forecasting.  

 
7.3 Classification  
 

The measure of success in a classification problem is the accuracy of the classifier, 

usually termed as the percentage of correct classifications. In some applications, 

getting an incorrect c1assiflcation is worse than getting no classification at all. In 

~hese cases, a "don't know" or uncertain answer is desired. By selecting your data 

representation for the network outputs, you can obtain the behavior you require.  

For example, let's say we want to classify customers into three types: poor, good, 

and excellent. We use a one-of-N code to represent our output and then train the 

network with an error tolerance of 0.1. We created an output f1Iter that selects the 

highest output unit as the winning category. Thatis, if the outputs are 0.9,0.4, and 

0.3, we say that the winner is 0.9, and the corresponding category is poor. Note also 

that if the outputs are 0.9, 0.89, and 0.87, we would still classify the customer as 

poor, even though the network has high prediction values for good and excellent. 

Even if the outputs were 0.2, 0.19, and 0.1, the output c1assiflcation would be that 

the customer was poor. One way to avoid this problem is to put a threshold limit on 

the output units before you perform the one-of-N code conversion. Usually we want 

the output value to be at least 0.6 before we say that the unit is ON.  

If we put this threshold value in place, then we could add a fourth category, 

unknown or undecided, to represent the case where none of the network output units 

had a value above 0.6. A confusion matrix is a text or graphic visualization that 
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indicates where the classification errors are occurring. A text version lists the 

possible output categories and the corresponding percentages of correct and 

incorrect classifications .  
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8. Analyzing Neural Network 
When data mining is used for decision support applications, creating the neural 

network model is only the first part of the process. The next part, and the most 

important from a decision maker's perspective, is to find out what the neural 

network learned. In this section, I describe activities that are used to open up the 

neural network "black box" and transform the collection of network weights into a 

set of visualizations, rules, and parameter relationships that people can easily 

comprehend.  

 

8.1 Discovering What the Network learned  

When using neural networks as models for transaction processing, the most 

important issue is whether the weights in the neural network accurately capture the 

classification, model, or forecast needed for the application. If we use credit files to 

create a neural network loan officer, then what matters is that we maximize our 

profit and minimize our losses. However, in decision support applications, what is 

important is not that the neural network was able to learn to discriminate between 

good and bad credit risks, but that the network was able to identify what factors are 

key in making this determination. In short, for decision support applications, we 

want to know what the neural network learned.  

 

Unfortunately this is one of the most difficult aspects of using neural networks. One 

approach is to treat the neural network as “black box”, probe it with test input and 

record output. This is the input sensitivity approach. Another approach is to present 

the input data to the neural network and then generate a set of rules that describe the 

logical function performed by neural network based on inspection of its internal 

states and connection weights. A third approach is to represent the neural network 

visually using a graphical representation so that the wonderful pattern recognition 

machine known as human brain can contribute to the process. 
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The technique used to analyze the neural networks depends on the type of data 

mining function being performed. This is necessary because the type of information 

neural network has learned is qualitatively different, based on the function it was 

trained to do. For example if you are clustering customer for a market segmentation 

application, the output of the neural network is the identifier of the cluster that the 

customer fell into. At this point , statistical analysis of he attributes of the customers 

in each segment might be warranted, along with visualization techniques described 

in the following. Or we might want to view the connection weights following into 

each output unit (cluster) and analyze them to see what the neural network learned 

were t6he “prototypical” customer for that segment. 
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9. Implementation of the Project 
I have implemented this project using java 1.5 programming language; I have used 

Text Editor for writing source code in java. This project consist various classes 

written in java. In this section I will describe about input and output of the project. 

 
9.1 Data Format 
 

The input format is a subset of the arff format used by Weka2, a popular open 

source data mining tool. 

Specifically, the only supported attribute types are numerical (numeric, integer, 

real), and nominal. The unsupported types are of no use in the setting of providing a 

simple neural network. Furthermore, missing and sparse data is not supported as 

well, as these would require some data preprocessing which is not the focus of this 

project. Weka comes with some sample data files, as an example here an excerpt 

from the iris sample: 

 
@RELATION iris 

 
@ATTRIBUTE 

@ATTRIBUTE 

@ATTRIBUTE 

@ATTRIBUTE 

@ATTRIBUTE 

 
sepallength 

sepalwidth 

petallength 

petalwidth 

class 

 
REAL REAL REAL REAL 

{Iris-setosa,Iris-versicolor,Iris-virginica} 

 
@DATA 5.1,3.5,1.4,O.2,Iris-setosa 
 

In addition to the definition of the sample name and schema, that is four numeric 

attributes and the nominal attribute class, the first data record is shown. 

 
9.2 Attribute-relation file format 

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a 

list of instances sharing a set of attributes. ARFF files were developed by the 

Machine Learning Project at the Department of Computer Science of The 

University of Waikato for use with the Weka machine learning software. 
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Overview 

ARFF files have two distinct sections. The first section is the Header information, 

which is followed the Data information. The Header of the ARFF file contains the 

name of the relation, a list of the attributes (the columns in the data), and their types. 

An example header on the standard IRIS dataset looks like this:  

   % 1. Title: Iris Plants Database 
   @RELATION iris 
 
   @ATTRIBUTE sepallength  NUMERIC 
   @ATTRIBUTE sepalwidth   NUMERIC 
   @ATTRIBUTE petallength  NUMERIC 
   @ATTRIBUTE petalwidth   NUMERIC 
   @ATTRIBUTE class        {Iris-setosa,Iris-versic olor,Iris-
virginica} 
   
The Data of the ARFF file looks like the following:  
   @DATA 
   5.1,3.5,1.4,0.2,Iris-setosa 
   4.9,3.0,1.4,0.2,Iris-setosa 
   4.7,3.2,1.3,0.2,Iris-setosa 
   4.6,3.1,1.5,0.2,Iris-setosa 
   5.0,3.6,1.4,0.2,Iris-setosa 
   5.4,3.9,1.7,0.4,Iris-setosa 
   4.6,3.4,1.4,0.3,Iris-setosa 
   5.0,3.4,1.5,0.2,Iris-setosa 
   4.4,2.9,1.4,0.2,Iris-setosa 
   4.9,3.1,1.5,0.1,Iris-setosa 
   

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and 
@DATA declarations are case insensitive.  

Examples 

Several well-known machine learning datasets are distributed with Weka in the 
$WEKAHOME/data directory as ARFF files.  

The ARFF Header Section 

The ARFF Header section of the file contains the relation declaration and attribute 
declarations.  

The @relation Declaration 

The relation name is defined as the first line in the ARFF file. The format is:  
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    @relation <relation-name>    

where <relation-name> is a string. The string must be quoted if the name includes 
spaces.  

The @attribute Declarations 

Attribute declarations take the form of an orderd sequence of @attribute 

statements. Each attribute in the data set has its own @attribute statement which 

uniquely defines the name of that attribute and it's data type. The order the attributes 

are declared indicates the column position in the data section of the file. For 

example, if an attribute is the third one declared then Weka expects that all that 

attributes values will be found in the third comma delimited column.  

The format for the @attribute statement is:  

    @attribute <attribute-name> <datatype> 
    

where the <attribute-name> must start with an alphabetic character. If spaces are to 
be included in the name then the entire name must be quoted.  

The <datatype> can be any of the four types currently (version 3.2.1) supported by 
Weka:  

• numeric  
• <nominal-specification>  
• string  
• date [<date-format>]  

where <nominal-specification> and <date-format> are defined below. The 
keywords numeric, string and date are case insensitive.  

Numeric attributes 

Numeric attributes can be real or integer numbers.  

Nominal attributes 

Nominal values are defined by providing an <nominal-specification> listing the 
possible values: {<nominal-name1>, <nominal-name2>, <nominal-name3>, ...}  

For example, the class value of the Iris dataset can be defined as follows:  
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    @ATTRIBUTE class        {Iris-setosa,Iris-versi color,Iris-
virginica} 
    

Values that contain spaces must be quoted.  

String attributes 

String attributes allow us to create attributes containing arbitrary textual values. 

This is very useful in text-mining applications, as we can create datasets with string 

attributes, then write Weka Filters to manipulate strings (like 

StringToWordVectorFilter). String attributes are declared as follows:  

    @ATTRIBUTE LCC    string 
    

Date attributes 

Date attribute declarations take the form:  

    @attribute <name> date [<date-format>] 
    

where <name> is the name for the attribute and <date-format> is an optional string 

specifying how date values should be parsed and printed (this is the same format 

used by SimpleDateFormat). The default format string accepts the ISO-8601 

combined date and time format: "yyyy-MM-dd'T'HH:mm:ss". Dates must be 

specified in the data section as the corresponding string representations of the 

date/time (see example below).  

ARFF Data Section 

The ARFF Data section of the file contains the data declaration line and the actual 
instance lines.  

The @data Declaration 

The @data declaration is a single line denoting the start of the data segment in the 
file. The format is:  

    @data 
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The instance data 

Each instance is represented on a single line, with carriage returns denoting the end 

of the instance. Attribute values for each instance are delimited by commas. They 

must appear in the order that they were declared in the header section (i.e. the data 

corresponding to the nth @attribute declaration is always the nth field of the 

attribute).  

Missing values are represented by a single question mark, as in:  

    @data 
    4.4,?,1.5,?,Iris-setosa 
    

Values of string and nominal attributes are case sensitive, and any that contain 
space must be quoted, as follows:  

    @relation LCCvsLCSH 
 
    @attribute LCC string 
    @attribute LCSH string 
 
    @data 
    AG5,   'Encyclopedias and dictionaries.;Twentie th century.' 
    AS262, 'Science -- Soviet Union -- History.' 
    AE5,   'Encyclopedias and dictionaries.' 
    AS281, 'Astronomy, Assyro-Babylonian.;Moon -- P hases.' 
    AS281, 'Astronomy, Assyro-Babylonian.;Moon -- T ables.' 
    

Dates must be specified in the data section using the string representation specified 
in the attribute declaration. For example:  

    @RELATION Timestamps 
 
    @ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"   
 
    @DATA  
    "2001-04-03 12:12:12" 
    "2001-05-03 12:59:55" 
    

Sparse ARFF files 

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be 
explicitly represented.  
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Sparse ARFF files have the same header (i.e @relation and @attribute tags) but 
the data section is different. Instead of representing each value in order, like this:  

    @data 
    0, X, 0, Y, "class A" 
    0, 0, W, 0, "class B" 
    

the non-zero attributes are explicitly identified by attribute number and their value 
stated, like this:  
    @data 
    {1 X, 3 Y, 4 "class A"} 
    {2 W, 4 "class B"} 
    

Each instance is surrounded by curly braces, and the format for each entry is: 
<index> <space> <value> where index is the attribute index (starting from 0).  

9.3 Installation 
 
The software is implemented as a number of plain Java files. The development 

version is Java 1.5, thus to compile or run it the same version or a more recent one 

is recommended, . 

The compiled program, that is the NeuralNetwork. j ar file, is run by the command 

 

java -jar NeuralNetwork.jar [options] file_name 

 

The options and file_name parameters are described below. 

The source code version NeuralNetwork. needs to be compiled first. The 

compilation instructions below assume that the source has been unpacked in the 

current working directory. 

9.4 Configuration 

The only way to configure the program is by command line flags. The option --

help lists all available flags, along with their default values and a concise 

explanation: 

 

java -jar NeuralNetwork.jar --help 
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This is the only flag which takes no argument and does not require a file name to be 

specified. All other flags, as listed below, take exactly one argument. For an 

explanation of unknown terminology or concepts, refer to section 4. 

. --target-attribute 

Takes the name of an attribute as specified in the input file. This attribute 

becomes the target attribute for the classification. If not given, the attribute 

specified last in the input is used as the target attribute. 

. --hidden-layers 

Specifies the number of hidden layers and the number of nodes within each 

hidden layer (see Sec. 4). These are to be given as a comma separated list of 

non-negative integers, e.g. 4,6,2 for three hidden layers with four, six, and two 

nodes. If zero nodes are specified for a layer, this layer is omitted. Thus 0 

amounts to no hidden layer at all. 

. --learning rate 

The learning rate of the back-propagation algorithm (see Sec. 4). This must be 

a real number greater than zero and less than one. 

. --momentum 

 

The momentum of the back-propagation algorithm (see Sec. 4). This must be 

a real number greater or equal than zero and less than one. 

. --epochs 

The number of times the sample data is fed into the neural network to train it . 

This must be an integer greater than zero. This is the only termination 

criterion for the learning process. 

. --n-fold-validation 

 

Cross-validation is performed over the given number of folds of the data 

sample. This must be an integer greater or equal to zero. For zero no cross 

validation is performed. 
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Note that validation is performed over the whole sample in any case. 

 

9.5 Output 
 

After learning and validation has been performed, the model, i.e. the trained neural 

network, and some validation metrics are output as plain text. 
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The model is output layer by layer, from the input layer over the hidden layers to 

the output layer, and each layer node by node in order. For each node its position in 

the network and its links to the nodes of the previous layer along with the learned 

weights are shown.The validation metrics, mean absolute error and root mean 

squared error, as well as a confusion matrix with the according fl-measures for a 

nominal target attribute, are given for the whole sample plus the cross-validation 
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average. 

 
9.6 Architecture 
 
The system can be divided into the components configuration, command line 
evaluation, parsing, data representation, data normalization, the neural network, 
validation, and output. In more detail, this is 
 

 Configuration 

Classes: Config 

Contains the configuration used by all parts of the system, for examplethe 
learning rate, the name of the input file, the target attribute, .. . 

 
 CommandLine Evaluation 

Classes: EvalArgs, Option, OptionInt, OptionNat, OptionDouble, 
OptionLearningRate, OptionMomentum, OptionString, OptionNats.  
The command line flags (see Sec. 2) are checked for correctness and 
evaluated. A Config object is created and initialized based on these settings. 

The different types of flags are represented by different subclasses of 
Option.These serve to provide the different types of flags, e.g. a string with 
OptionString or a real numeric with OptionDouble, and to ensure further type 
restrictions, e.g. the valid range of a real value for OptionLearningRate, by 
further sub-classing in combination with JML constraints. 

 

 Parsing 

Classes: ReadArff 

Parses the input file given in the arff format, and creates a data schema and sample 
based on it. 

 

 Data Sample 

Classes: Sample, Schema, Attribute, AttributeInt, AttributeReal, 
AttributeNominal 

 

A data sample is represented by its schema and the actual data. The schema specifies 

the structure of the sample's data records in terms of attributes. That is, each element 

of a data record must be of a type compatible with the corresponding schema 

attribute. Attributes of the different numeric and nominal attributes are subclasses of 

the abstract class Attribute. 

       Data normalization 
 

Before data can be entered into the neural network it is normalized based on the 
whole sample (see Sec. 4). NormalizerSample normalizes any data record, using the 
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appropriate attribute normalizer for each element of the record. 
 

 Neural Network 

Classes: NeuralNetwork, Node, NodeInput, NodeHidden, NodeOutput, 
Connection, Weight 

 

The neural network is represented as a network of connected weighted nodes. The 
subclasses of Node represent nodes of the input, a hidden, or the output layer. 
Connections are bidirectional, to feed data forward and errors feed backward during 
the learning process. Weights are attached to each connection and each node, except 
for the input nodes. 

 
 Validation 

 

Classes: Validation, ConfusionMatrix 

A network is validated by computing for a sample all outputs, and providing the 
correct and the computed outputs to a Validation object. It computes the validation 
metrics described in section 5. If the target attribute is nominal, the validation object 
does automatically create a confusion matrix. 

 

 Output 

Classes: Print 

Formats and print output of the system, like the help message or the 
Configuration. 

 
 
9.7 Evaluation 
 
To get a sense of how good the learned network models the data, some metrics to 
validate a model and some empirical test results are presented in the following. 
Metrics 
After a network has been trained on a sample, it is immediately evaluated on this 
same sample. 
In detail, for a sample of size n the metrics are: 

 
Mean Absolute Error 

The sum of the absolute differences between the correct and computed output for 
each record, divided by the number of records: (Li loutputi - correctil)/n 

 
Root Mean Squared Error 

The square root of the sum of the squared differences between the correct and 
computed output for each record, divided by the number of records: 0JLi(outputi - 
correcti)2)/n) 

 
For a nominal target value the following additional metrics are computed: 
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Correctly Classified 

The number of records which have been correctly classified, in contrast 
to the number of incorrectly classified ones. 

 
Confusion Matrix 

A matrix where the rows correspond to the correct target value, the columns to the 
computed value, and each cell contains how often this case occurred. For example, 
the confusion matrix 

 
     A   B   C 

   A   8   1    1 
B   3   7    0 
C   1   0    9 

 
 

says that A has been classified 8 times correctly as A (true positive), 2 times 
incorrectly as B or C (false negative), and 4 times B or C have been incorrectly 
classified as A (false positive). 
 
 
Precision 

 
The precision of a value x is the number of times it has been classified correctly, 
divided by the number of times it has been classified correctly plus the number of 
times another value has been misclassified as x. Thus, the precision of A is 8/(8 + 
4) = 0.66. 

 
   Recall 

Similarly, the recall of a value is the number of times it has been classified 
correctly, divided by the number of times it has been classified correctly plus the 
number of times it has been misclassified. Thus, the recall of A is 8/(8 + 2) = 0.8. 

 
F1-measure 

 
Finally, the F1-measure of a value is computed as two times its precision times its 
recall divided by the sum of its precision and recall. Thus, the precision of A is (2 
* 0.66 * 0.8)/(0.66 + 0.8) = 0.73. 

 
Cross- Validation 

 
As mentioned, the previous metrics are applied to the original sample, that is the 
sample is the training and the validation data set at the same time. This is 
problematic, as it is unclear how the performance of the network will be on 
unseen data, which comes from the same area as the original data, but was not 
available for training the net. The model could be perfect for the training data, but 
at the same time overfit it and not generalize well for any new data, which is 
clearly not desired. 
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To get an idea how well the model generalizes, cross-validation is applied. 
That is, the data sample S is partitioned into n sets Sn, and for the i.th setup S \ Si 
is the training set, while Si is the validation set. Now, for this setup a new neural 
network is trained on the training set, where the network has the same initial 
structure and initial weights as the model trained over the whole sample S. Then, 
the new trained network is evaluated over the validation set, which is unseen data 
for this particular network, and thus a generalization test. 
This is done for each of the n partitions. Finally, the n validation results are 
averaged, thus giving an indication on how well the original model might scale 
for new data. 
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10. Class Description 
� Class Attribute 

java.lang.Object 
  nn.Attribute 

Direct Known Subclasses:  
AttributeInt, AttributeNominal, AttributeReal  

public abstract class Attribute  
extends java.lang.Object 

The specification of an attribute of a data schema, i.e. its name and (by subclassing) its 
type. An attribute in some data sample mey for example be 'width' 'double'.  

Field Detail 

   name 

  private final java.lang.String name 

Specifications: spec_public 

Constructor Detail 

   Attribute 

  public Attribute(java.lang.String name) 

Parameters:  
name - The attribute's name. 

Method Detail 

   getName 

  public java.lang.String getName() 

Returns:  
The attribute's name.  

   isNumerical 

  public abstract boolean isNumerical() 

Instead of doing run time checks to distinguish between different specializations 
of this class, this is done with this method. I don't like it, but I don't like run time 
type checks either, and was thus not motivated to learn and use them in Java. And 
a better design eluded me.  
Returns:  
If this is a numerical or nominal attribute.  
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   parseValue 

  public abstract java.lang.Object parseValue(java.lang.String value) 

Used to parse the data input. Converts a value of this attribute type given as a 
string to the native representation, e.g. Integer, Double, String.  
Parameters:  
value  - The string representation of a valid attribute value.  
Throws:  
Termination  - If value is not a valid value representation.  

   createNormalizer 

  public abstract NormalizerAttribute createNormalizer() 

Returns:  
A normalizer specific for this attribute's instance.  

============================================== 
� Class Config 
 
java.lang.Object 
  nn.Config 

 
public class Config  
extends java.lang.Object 

Contains all configuration, i.e. the structure of the neural network, the validation options,  

Field Detail 

   dataFileName 

  private java.lang.String dataFileName 

Specifications: spec_public 

   options 

  private final java.util.ArrayList options 

Specifications: spec_public 

   targetAttributeOption 

  private final OptionString targetAttributeOption 

Specifications: spec_public 

   targetAttribute 
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  private Attribute targetAttribute 

the target attribute  
Specifications: spec_public 

   targetAttributeIndex 

  private int targetAttributeIndex 

the index of the targetAttribute within the attributes in the input data schema, i.e. 
the i.th attribute defined in the input (starting counting at 0).  
Specifications: spec_public 

   hiddenLayers 

  private final OptionNats hiddenLayers 

Specifications: spec_public 

   learningRate 

  private final OptionLearningRate learningRate 

Specifications: spec_public 

   momentum 

  private final OptionMomentum momentum 

Specifications: spec_public 

   epochs 

  private final OptionNat epochs 

Specifications: spec_public 

   n_fold_validation 

  private final OptionNat n_fold_validation 

Specifications: spec_public 

Constructor Detail 

   Config 

  public Config() 

Creates the default configuration.  

Method Detail 

   optionForFlag 

  public Option  optionForFlag(java.lang.String flag) 
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Parameters:  
flag  - the command line flag correspondig to this option  
Returns:  
the option with the given flag, i.e. hiddenLayers for '--hidden-layers'.  

   getOptions 

  public java.util.Iterator getOptions() 

Returns:  
An iterator over all options.  

   getDataFileName 

  public java.lang.String getDataFileName() 

Returns:  
Returns the name of the data file.  

   setDataFileName 

  public void setDataFileName(java.lang.String dataFileName) 

Parameters:  
dataFileName  - The name of the data file to set.  

   getTargetAttribute 

  public Attribute getTargetAttribute() 

Returns:  
Returns the targetAttribute of the data sample.  

   getTargetAttributeIndex 

  public int getTargetAttributeIndex() 

Returns:  
Returns the index of the targetAttribute within the attributes of the data sample, 
starting with 0.  

   getHiddenLayers 

  public java.util.ArrayList getHiddenLayers() 

Returns:  
Returns the number of nodes per hidden layers as an Integer list.  

   getLearningRate 

  public double getLearningRate() 

Returns:  
Returns the learning rate of the neural network.  



 
 

66 

   getMomentum 

  public double getMomentum() 

Returns:  
Returns the momentum of the neural network.  

   getEpochs 

  public int getEpochs() 

Returns:  
Returns the epochs used to train the neural network.  

   getNFoldValidation 

  public int getNFoldValidation() 

Returns:  
Returns the number of folds of the n-fold cross validation.  

   updateTargetAttribute 

  public void updateTargetAttribute(Sample sample) 

If the target attribute was given as a command line flag its name is verified. 
Otherwise, the last attribute given in the input is selected as the target attribute.  
Parameters:  
sample  - the data sample to learn  

=============================================================== 
 

� Class ConfusionMatrix 
java.lang.Object 
  nn.ConfusionMatrix 

 
public class ConfusionMatrix  
extends java.lang.Object 

A confusion matrix for a nominal target attribute.  

Field Detail 

   nominal 

  private final java.util.ArrayList nominal 

Specifications: spec_public 

   sampleSize 

  private int sampleSize 
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Specifications: spec_public 

   matrix 

  private java.util.HashMap matrix 

Specifications: spec_public 

Constructor Detail 

   ConfusionMatrix 

  public ConfusionMatrix(AttributeNominal attribute) 

Creates a confusion matrix for the given nominal Attribute. The confusion matrix 
is then built incrementaly as the records are evaluated against the network and the 
results are registered (register (String, String ) ).  

Method Detail 

   register 

  public void register(java.lang.String correct, 
                     java.lang.String computed) 

Registers the performance of the model on a record, i.e. gives the correct and the 
computed value of the nominal attribute.  

   print 

  public void print(java.io.PrintStream out) 

Prints the evaluation:  

• the number of correctly classified records,  
• the recall, precision, and f1-measure per value,  
• and the confusion matrix.  

When target is the value to measure, then  

• true positive is the number of times target was correctly classified,  
• false negative is the number of times target was the correct output, but 

another value was computed as output.  
• false positive is the number of times target was not the correct output, but 

was computed as output.  

For example, take the confusion matrix  

• - A B C  
• A 8 1 1  
• B 3 7 0  
• C 1 0 9  
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where the rows contain the correct and the columns the computed output. Totally 
8 + 7 + 9 = 24 out of 30 records are classified correctly. For the value A we get  

• true positive = 8  
• false positive = 3 + 1 = 4  
• false negative = 1 + 1 = 2  

Based on this, for the value A we get  

• precision = true positive / (true positive + false positive) = 8 / (8 + 4) = 
0.66  

• recall = true positive / (true positive + false negative) = 8 / (8 + 2) = 0.8  
• f1-measure = 2 * precision * recall / (precision + recall) = 2 * 0.66 * 0.8 / 

(0.66 + 0.8) = 0.73  

Parameters:  
out  - The stream to print to. 

========================================== 
� Class Connection 
java.lang.Object 
  nn.Connection 

 
public class Connection  
extends java.lang.Object 

A (weighted) connection between two nodes.  

Field Detail 

   source 

  private final Node source 

Specifications: spec_public 

   target 

  private final NodeHidden target 

Specifications: spec_public 

   weight 

  private final Weight weight 

Specifications: spec_public 

Constructor Detail 
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   Connection 

  public Connection(Node source,NodeHidden target,                 
Config config) 

Creates the connection between the source and target code. Does not register itself 
to the source or target node.  
Parameters:  
source  - Connected from this node.  
target  - Connected to this node. 

Method Detail 

   getSource 

  public Node getSource() 

Returns:  
The source node. 

   getTarget 

  public NodeHidden getTarget() 

Returns:  
The target node. 

   getWeight 

  public Weight getWeight() 

Returns:  
The weight. 

=============================================================== 

� Class EvalArgs 
java.lang.Object 
  nn.EvalArgs 

 
public class EvalArgs  
extends java.lang.Object 

Parses the command line arguments and evaluates them.  

 
 

Field Detail 

   helpFlag 

  public static final java.lang.String helpFlag 

flag for printing a help synopsis.  
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Constructor Detail 

   EvalArgs 

  public EvalArgs() 

Method Detail 

   evalCommandLine 

  public static void evalCommandLine(Config config, 
                                   java.lang.String [] args) 

Evaluate command line flags. The flags are mostly given in config, plus special 
ones like helpFlag defined in this class.  
Parameters:  
config  - The configuration to be modified based on the command line arguments.  
args  - The command line arguments  
Throws:  
Termination  - If the arguments are malformed. 

   isFlag 

  protected static boolean isFlag(java.lang.String flag) 

Is this string a valid flag? Flags start with '--' or '-', e.g. '--help'.  
=============================================================== 

� Class Main 
java.lang.Object 

  nn.Main 

 
public class Main  
extends java.lang.Object 

Main class - contains the main function.  

 

Constructor Detail 

   Main 

  public Main() 

 
Method Detail 

   main 
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  public static void main(java.lang.String[] args) 

Main class - evaluates the command line, reads the data, runs the neural network, 
validates it, and outputs the results.  
Parameters:  
args  - command line options 

   validate 

  private static void validate(Config config, 
                             Sample sample, 
                             NeuralNetwork model, 
                             NeuralNetwork initialN et) 

performs validation of the model and outputs the computed metrics  
Parameters:  
config  - system configuration  
sample  - data sample  
model  - the network trained on the sample  
initialNet  - a copy of model in its initial state, for performing cross validation 

=============================================================== 

� Class NeuralNetwork 
java.lang.Object 
  nn.NeuralNetwork 

 
public class NeuralNetwork  
extends java.lang.Object 

A fully-connected feed-forward neural network.  

Field Detail 

   config 

  private final Config config 

Specifications: spec_public 

   schema 

  private final Schema schema 

Specifications: spec_public 

   normalizer 

  private final NormalizerSample normalizer 

Specifications: spec_public 

   layers 
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  private java.util.ArrayList layers 

Specifications: spec_public 

Constructor Detail 

   NeuralNetwork 

  public NeuralNetwork(Config config, 
                     Sample sample) 

Creates a neural network based on the given sample.  
Parameters:  
config  - The configuration.  
sample  - The sample to learn. 

   NeuralNetwork 

  public NeuralNetwork(NeuralNetwork network) 

Creates an independent copy of network, with the same setup, i.e. identical layers, 
nodes, weights, ...  
 

Method Detail 

   createLayers 

  private void createLayers() 

Creates the network's layers, connects them, and assigns random initial weights.  

   copy 

  public NeuralNetwork copy() 

Returns:  
an independent copy of the network, with the same setup, i.e. identical layers, 
nodes, weights, ...  
Specifications: pure  

   reset 

  protected void reset() 

Clears cached values within the network remaining from the last run.  

   run 

  public void run(Sample sample) 

Trains the network on the given data sample. The sample must use the same 
schema as the schema used when creating the network. The parameters like 
epochs, learning rate, ..., are taken from the config used in the constructor.  
Parameters:  
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sample  - The data sample to learn. 

   validate 

  public void validate(Sample sample, 
                     Validation validation) 

Run the network on the sample, and tell validation about the correct and 
computed output for each record. The sample must use the same schema as use to 
create the network.  
Parameters:  
sample  - The data sample to learn.  
validation  - The validation object to extend. 

   printWeights 

  private void printWeights(java.io.PrintStream out, 
                          NodeHidden node, 
                          int layer) 

Prints the incoming weights of a node with their weight.  
Parameters:  
out  - The stream to print to.  
node  - The node whose incoming weights are to be printed.  
layer  - The layer of the node. 

   print 

  public void print(java.io.PrintStream out) 

Prints the network, layer by layer and node by node, along with their weight.  
Parameters:  
out  - The stream to print to. 

=============================================================== 

� Class Node 
java.lang.Object 
  nn.Node 

Direct Known Subclasses:  
NodeHidden, NodeInput  

 
public abstract class Node  
extends java.lang.Object 

A node of a neural network.  

Field Detail 

   inConnections 
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  final java.util.ArrayList inConnections 

Specifications: spec_public 

   outConnections 

  final java.util.ArrayList outConnections 

Specifications: spec_public 

 
Constructor Detail 

   Node 

  public Node() 

Creates a new node.  

   Node 

  public Node(Node node) 

Method Detail 

   copy 

  public abstract Node copy() 

Returns:  
an independent copy of this node.  

   getInConnections 

  protected java.util.List getInConnections() 

Returns:  
The connections from the previous layer.  

   getOutConnections 

  protected java.util.List getOutConnections() 

Returns:  
The connections to the next layer.  

   connectFrom 

  public void connectFrom(Connection connection) 

Adds a connection to the previous layer.  
Parameters:  
connection  - The connection. 

   connectTo 
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  public void connectTo(Connection connection) 

Adds a connection to the next layer.  
Parameters:  
connection  - The connection. 

   reset 

  public abstract void reset() 

Needs to be called each time a new record is fed to the network. This invalidates 
the old output, and the old backpropagation data.  

   getOutput 

  public abstract double getOutput() 

Compute the output of this node.  
Returns:  
The node's output. 

   propagate 

  public abstract void propagate() 

Do backpropagation.  
=============================================================== 

� Class NodeHidden 
java.lang.Object 
  nn.Node 

      nn.NodeHidden 

Direct Known Subclasses:  
NodeOutput  

 
public class NodeHidden  
extends Node 

A node of a hidden layer of a neural network.  

Field Detail 

   config 

  private final Config config 

Specifications: spec_public 

   weight 

  private final Weight weight 

Specifications: spec_public 



 
 

76 

   output 

  private double output 

Specifications: spec_public 

   outputValid 

  private boolean outputValid 

Is output in sync, or does it have to be recomputed?  
Specifications: spec_public 

   delta 

  protected double delta 

Cache for the current delta of this node (for backprogagation).  
Specifications: spec_public 

   deltaValid 

  private boolean deltaValid 

Is delta in sync, or does it have to be recomputed?  
Specifications: spec_public 

Constructor Detail 

   NodeHidden 

  public NodeHidden(Config config) 

Creates anew node of a hidden layer and initializes its weight randomly.  

   NodeHidden 

  public NodeHidden(NodeHidden node) 

 
Method Detail 

   copy 

  public Node copy() 

   getWeight 

  public Weight getWeight() 

Returns:  
Returns the weight. 

   isOutputValid 



 
 

77 

  protected boolean isOutputValid() 

Returns:  
Is the current output valid, or does it have to be recomputed?. 

   setOutputValid 

  protected void setOutputValid(boolean outputValid) 

Parameters:  
outputValid  - Validate/Invalidate the cached output. 

   isDeltaValid 

  protected boolean isDeltaValid() 

Returns:  
Is the current delta valid, or does it have to be recomputed?. 

   setDeltaValid 

  protected void setDeltaValid(boolean deltaValid) 

Parameters:  
deltaValid  - Validate/Invalidate the cached delta. 

   reset 

  public void reset() 

Description copied from class: Node  
Needs to be called each time a new record is fed to the network. This invalidates 
the old output, and the old backpropagation data.  

   getOutput 

  public double getOutput() 

The output of the node is computed as  

• the sum of the weighted input of all incoming connections,  
• plus the node's weight,  
• normalized by the sigmoid function.  

Returns:  
The node's output. 

   setOutput 

  protected void setOutput(double output) 

Cache the node's output.  
Parameters:  
output  - The current output. 
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   getDelta 

  public double getDelta() 

Compute the delta of this node in backpropagation. The delta of a hidden node is 
computed as  

• the node's output,  
• times (1 minus the node's output),  
• times the sum of the weighted deltas of the outgoing connections.  

Returns:  
The node's delta. 

   setDelta 

  protected void setDelta(double delta) 

Cache the node's delta in backpropagation.  
Parameters:  
delta  - The current delta. 

   propagate 

  public void propagate() 

Does backpropagation. Adjusts the node's weight and each incoming connection's 
weight by calling Weight.propagate(double, double) .  

=============================================================== 

� Class NodeInput 
java.lang.Object 
  nn.Node 

      nn.NodeInput 

 
public class NodeInput  
extends Node 

An input node of a neural network.  

Field Detail 

   input 

  private double input 

The last value fed into this input node.  
Specifications: spec_public 

Constructor Detail 



 
 

79 

   NodeInput 

  public NodeInput() 

Creates a node of the input layer.  

   NodeInput 

  public NodeInput(NodeInput node) 

Specifications: pure  
public normal_behavior 
requires node != null; 

Method Detail 

   copy 

  public Node copy() 

   reset 

  public void reset() 

Description: same as class Node  

   setInputValue 

  public void setInputValue(double value) 

Sets the input of this node (when a record is fed into the network).  
Parameters:  
value  - Input value. 

   getOutput 

  public double getOutput() 

Just returns the value fed into this node.  
Returns:  
Network Input. 

   propagate 

  public void propagate() 

Does nothing - input nodes are not adjusted.  
=============================================================== 

� Class NodeOutput 
java.lang.Object 

  nn.Node 

      nn.NodeHidden 

          nn.NodeOutput 
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public class NodeOutput  
extends NodeHidden 

A node of the output layer of a neural network.  

Field Detail 

   correctOutput 

  double correctOutput 

The correct output for the record fed into the network.  
Specifications: spec_public 

Constructor Detail 

   NodeOutput 

  public NodeOutput(Config config) 

Creates a node of the output layer.  

   NodeOutput 

  public NodeOutput(NodeOutput node) 

Method Detail 

   copy 

  public Node copy() 

Overrides:  
copy  in class NodeHidden  

   getDelta 

  public double getDelta() 

The delta of an output node is computed as  

• the node's output,  
• times (1 minus the node's output),  
• times (the correct output minus the node's output).  

Overrides:  
getDelta  in class NodeHidden  
Returns:  
The node's delta. 
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   setCorrectOutputValue  

  public void setCorrectOutputValue(double value) 

Tells the node the correct target value of the input record.  
=============================================================== 

� Class NormalizerAttribute 
java.lang.Object 

  nn.NormalizerAttribute 

Direct Known Subclasses:  
NormalizerAttributeInt, NormalizerAttributeNominal, NormalizerAttributeReal  

 
public abstract class NormalizerAttribute  
extends java.lang.Object 

A normalizer for an attribute and a sample. A normalizer is created for an attribute (of a 
specific type), and computes the normalization function based on a concrete sample.  

Field Detail 

   attribute 

  private final Attribute attribute 

Specifications: spec_public 

Constructor Detail 

   NormalizerAttribute 

  public NormalizerAttribute(Attribute attribute) 

Initializes the normalizer based on the given attribute.  
Parameters:  
attribute  - The attribute to normalize. 

Method Detail 

   getAttribute 

  public Attribute getAttribute() 

Returns:  
The normalized attribute. 

   register 

  public abstract void register(java.lang.Object value) 

Registers a data value as part of the sample to normalize.  

   normalize 
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  public abstract java.util.List normalize(java.lang.Object value) 

Performs min-max normalization on a numeric attribute, and 1-of-N encoding for 
on a nominal attribute.  
Parameters:  
value  - The value to normalize.  
Returns:  
The normalized value as a list of doubles. 

   denormalize 

  public abstract java.lang.Object denormalize(java.util.List value) 

Denormalizes a previously normalized value, i.e. is the inverse function of 
normalize(Object)   
Parameters:  
value  - The normalized value.  
Returns:  
Value denormalized. 

   normalizedSize 

  public abstract int normalizedSize() 

Returns:  
The number of reals returned by normalize(Object) .  

=============================================================== 

� Class Option 

java.lang.Object 
  nn.Option 

Direct Known Subclasses:  
OptionDouble, OptionInt, OptionNats, OptionString  

public abstract class Option  
extends java.lang.Object 

A command line flag representing a configuration option Concrete subclasses should add 
a value field of the wanted type.  

Field detail 

   flag 

  private final java.lang.String flag 

Specifications: spec_public 

   description 
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  private final java.lang.String description 

Specifications: spec_public 

Constructor Detail 

   Option 

  public Option(java.lang.String flag, 
              java.lang.String description) 

Parameters:  
flag  - The command line flag, e.g. '--epochs'.  
description  - A short description, e.g 'number of epochs used to train the neural 
net'. 

Method Detail 

   getFlag 

  public java.lang.String getFlag() 

Returns:  
The flag corresponding to this option.  

   getDescription 

  public java.lang.String getDescription() 

Returns:  
The description corresponding to this option.  

   getType 

  public abstract java.lang.String getType() 

Returns:  
A textual description of the option's type, e.g. 'int'.  

   valueToString 

  public abstract java.lang.String valueToString() 

Returns:  
The string representation of this configuration value.  

   setValue 

  public abstract void setValue(java.lang.String argument) 

Parameters:  
argument  - The option value is set based on this string. argument must contain a 
valid value representation for the concrete Option type.  
Throws:  
Termination  - If argument is not a valid value representation.  
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=============================================================== 

� Class OptionString 

java.lang.Object 
  nn.Option 

      nn.OptionString 

public class OptionString  
extends Option 

Option specialized for type String.  

Field Detail 

   value 

  private java.lang.String value 

Specifications: spec_public 

Constructor detail 

   OptionString 

  public OptionString(java.lang.String flag, 
                    java.lang.String description, 
                    java.lang.String value) 

Parameters:  
value  - The initial value to be represented by this object.  

Method Detail 

   getType 

  public java.lang.String getType() 

   getValue 

  public java.lang.String getValue() 

Returns:  
The current value represented by this object. 

   valueToString 

  public java.lang.String valueToString() 

   setValue 

  public void setValue(java.lang.String value) 
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Sets this object's value to the given value.  
Parameters:  
value  - the new value.  

=============================================================== 

� Class Print 

java.lang.Object 

  nn.Print 

public class Print  
extends java.lang.Object 

Printing / Output.  

Field Detail 

   flagWidth 

  private static final int flagWidth 

The width of the flag name column.  

   typeWidth 

  private static final int typeWidth 

The width of the type column.  

Constructor Detail 

   Print 

  public Print() 

Method Detail 

   fill 

  public static void fill(java.lang.StringBuffer aString, int width) 

Extends the string with ' ' at the end until its size is >= width.  

   fill 

  public static java.lang.String fill(java.lang.String aString, 
                                    int width) 

Like fill(StringBuffer, int)  for a String.  

   fill 

  public static java.lang.String fill(int number, 
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                                    int width) 

Like fill(StringBuffer, int)  for an int.  

   fill 

  public static java.lang.String fill(double number, 
                                    int width) 

Like fill(StringBuffer, int)  for an double.  

   printHelpFlag 

  private static void printHelpFlag(java.io.PrintStream out, 
                                  java.lang.String flag, 
                                  java.lang.String type, 
                                  java.lang.String value, 
                                  java.lang.String description) 

Prints a command line flag with a short description.  
Parameters:  
out  - Where to print to.  
flag  - The command line flag.  
type  - The flag's type.  
value  - The current value of the flag.  
description  - A short description of the flag.  

   printHelpFlag 

  private static void printHelpFlag(java.io.PrintStream out, 
                                  Option option) 

Prints a command line flag with a short description.  
Parameters:  
out  - Where to print to.  
option  - The command line flag. 

   printHelp 

  public static void printHelp(java.io.PrintStream out) 

Prints a short help including all flags with a short description.  
Parameters:  
out  - Where to print to. 

   printConfigOption 

  private static void printConfigOption(java.io.PrintStream out, 
                                      java.lang.Str ing option, 
                                      java.lang.Str ing description) 

Prints a configuration option and its current value.  
Parameters:  
out  - Where to print to.  
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option  - The configuration option.  
description  - A short description of the option.  

   printConfigOption 

  private static void printConfigOption(java.io.PrintStream out, 
                                      Option option ) 

Prints a configuration option and its current value.  
Parameters:  
out  - Where to print to.  
option  - The configuration option.  

   printConfig 

  public static void printConfig(java.io.PrintStream out, 
                               Config config) 

Prints the configuration, i.e. all variables and their current values.  
Parameters:  
out  - Where to print to. 

=============================================================== 

� Class ReadArff 

java.lang.Object 
  nn.ReadArff 

public class ReadArff  
extends java.lang.Object 

A very simple parser of the arff format. Doesn't handle missing or sparse data.  

Constructor Detail 

   ReadArff 

  public ReadArff() 

Method Detail 

   readArff 

  public static Sample readArff(java.lang.String fileName) 

Reads data in the arff fromat from a file into a sample object.  
Parameters:  
fileName  - The file name of the arff file to parse.  
Returns:  
The data sample created from the data in the input file.  
Throws:  
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Termination  - If input can not be parsed. 

   skipLine 

  private static boolean skipLine(java.lang.String line) 

Checks if an input line can be skipped because it contains only white space or a 
comment.  
Parameters:  
line  - The line to check.  
Returns:  
True iff the line contains a comment or only whitespace. 

   readName 

  private static java.lang.String   
readName(java.io.BufferedReader reader) 

                                  throws java.io.IO Exception 

Reads the name of the data schema.  
Parameters:  
reader  - The input file.  
Returns:  
The name of the schema.  
Throws:  
Termination  - If '@relation' is not the next valid line.  
java.io.IOException  

   readRelation 

  private static Schema readRelation(java.io.BufferedReader reader) 
                            throws java.io.IOExcept ion, 
                                   Termination 

Reads the attributes of the data schema.  
Parameters:  
reader  - The input file.  
Returns:  
The data schema.  
Throws:  
Termination  - If the '@attribute' definitions are not next in the file.  
java.io.IOException  

   readData 

  private static Sample readData(java.io.BufferedReader reader, 
                               java.lang.String sch emaName, 
                               Schema schema) 
                        throws java.io.IOException,  
                               Termination 

Reads the data of the relation.  
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Parameters:  
reader  - The input file.  
schemaName - The name of the schema.  
schema - The schema of the data.  
Returns:  
The data sample.  
Throws:  
Termination  - If the input is malformed.  
java.io.IOException  

 

   parseCSV 

  private static java.util.ArrayList parseCSV(java.lang.String line) 
                                     throws Termina tion 

Splits a comma separated string into its components. Removes enclosing 
whitespace.  
Parameters:  
line  - The string to split.  
Returns:  
The data schema.  
Throws:  
Termination  - If the '@attribute' definitions are not next in the file.  

   unquote 

  private static java.lang.String unquote(java.lang.String string) 
                                 throws Termination  

Unqotes a string, i.e. removes enclosing "'" characters, and removes enclosing 
whitespace.  
Parameters:  
string  - The string to unquote.  
Returns:  
The unquoted string.  
Throws:  
Termination  

=============================================================== 

� Class Sample 

java.lang.Object 
  nn.Sample 

public class Sample  
extends java.lang.Object 

Represents a data sample, i.e. schema and data.  
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Field Detail 

name 

private final java.lang.String name 

Specifications: spec_public 

schema 

private final Schema schema 

Specifications: spec_public 

records 

private final java.util.ArrayList records 

Specifications: spec_public 

Constructor Detail 

   Sample 

  public Sample(java.lang.String name, 
              Schema schema) 

Creates an empty sample based on its schema. The actual data is filled in later on.  
Parameters:  
name - The sample name.  
schema - The sample schema. 

Method Detail 

   getName 

  public java.lang.String getName() 

Returns:  
The sample name. 

   addData 

  public void addData(java.util.ArrayList data) 
             throws Termination 

Adds a (string) data record to the sample. The record is given in string format, 
each value is transformed internally to the appropriate attribute value.  
Parameters:  
data  - The record as strings.  
Throws:  
Termination  - If the data does not correspond to the sample schema.  
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   addRecord 

  public void addRecord(java.util.ArrayList record) 

Adds a data record to the sample. Each record value must be a value 
corresponding to its attribute type as specified in the data schema.  
Throws:  
Termination  - If the data does not correspond to the sample schema.  

   addSample 

  public void addSample(Sample sample) 

Adds all records of sample. Both samples have to use the same schema.  
Parameters:  
sample  - A data sample. 

   partition 

  public java.util.ArrayList partition(int partitions) 

Partitions the sample randomly into partition parts.  
Parameters:  
partitions  - The number of partitions to split to.  
Returns:  
The partitions. 

   getSchema 

  public Schema getSchema() 

Returns:  
The schema. 

   getSampleSize 

  public int getSampleSize() 

Returns:  
The current sample size. 

   getRecord 

  public java.util.List getRecord(int index) 

Retrieves the index.th record of the data sample.  
Parameters:  
index  - The index of the record to return.  
Returns:  
The current sample size. 

   toString 
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  public java.lang.String toString() 

Overrides:  
toString  in class java.lang.Object  
Returns:  
A string representation of the schema and the sample.  

=============================================================== 

� Class Schema 

java.lang.Object 
  nn.Schema 

public class Schema  
extends java.lang.Object 

The schema of a sample, i.e its attributes definitions.  

Field Detail 

attributes 

private final java.util.ArrayList attributes 

Specifications: spec_public 

Constructor Detail 

   Schema 

  public Schema() 

Specifications: pure  

Method Detail 

   addAttribute 

  public void addAttribute(Attribute attribute) 

Adds a new attribute to the schema. Order matters, attributes are indexed in order 
of addition, starting from 0.  
Parameters:  
attribute  - A new attribute of the schema.  

   getNumberOfAttributes 

  public int getNumberOfAttributes() 

Returns:  
The number of attributes of the schema. 

   getAttribute 
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  public Attribute getAttribute(int index) 

Parameters:  
index  - The index of the attribute to return.  
Returns:  
The requested attribute. 

   toString 

  public java.lang.String toString() 

Overrides:  
toString  in class java.lang.Object 

=================================================== ==================== 

� Class Termination 

java.lang.Object 

  java.lang.Throwable 

      java.lang.Error 
          nn.Termination 

All Implemented Interfaces:  
java.io.Serializable  

public class Termination  
extends java.lang.Error 

This Error class is used to abort the program. As this program is merely a simple demo, 
no fancy exception handling is done anywhere - it merely terminates with a descriptive 
error message whenever an unexpected error is encountered.  

Constructor Detail 

   Termination 

  public Termination(java.lang.String message) 

Parameters:  
message  - Description of the error 

=============================================================== 

� Class Validation 

java.lang.Object 
  nn.Validation 

public class Validation  
extends java.lang.Object 

Validates a model on a sample.  
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Field Detail 

   meanAbsoluteError 

  private double meanAbsoluteError 

Specifications: spec_public 

   rootMeanSquaredError 

  private double rootMeanSquaredError 

Specifications: spec_public 

   confusionMatrix 

  private final ConfusionMatrix confusionMatrix 

Generate a confusion matrix for a nominal target attribute.  

   sampleSize 

  private int sampleSize 

Specifications: spec_public 

Constructor Detail 

   Validation 

  public Validation(Config config) 

Create a validation object for the target attribute specified in config. Build the 
validation incrementally via register(List, List, NormalizerSample) .  

Method Detail 

   updateMeanAbsoluteError 

  protected void updateMeanAbsoluteError(java.util.List correct, 
                                       java.util.Li st computed) 

Updates the mean absolute error with one record's classification result.  
Parameters:  
correct  - The correct classification (denormalized).  
computed  - The classification computed by the model (denormalized). 

   updateRootMeanSquaredError 

  protected void updateRootMeanSquaredError(java.util.List correct, 
                                          java.util .List computed) 

Updates the root mean squared error with one record's classification result.  
Parameters:  
correct  - The correct classification (denormalized).  
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computed  - The classification computed by the model (denormalized). 

   register 

  public void register(java.util.List correct, 
                     java.util.List computed, 
                     NormalizerSample normalizer) 

Registers the performance of the model on a record, i.e. gives the correct and the 
computed output, both in normalized form.  
Parameters:  
correct  - The correct classification (normalized).  
computed  - The classification computed by the model (normalized).  
normalizer  - Normalizer to denormalize correct and computed. 

   print 

  public void print(java.io.PrintStream out) 

Prints the evaluation:  

• Mean Absolute Error: The sum of the absolut differences between the 
correct and computed output for each record, divided by the number of 
records.  

• Root Mean Squared Error: The square root of (the sum of the differences 
between the correct and computed output squared for each record divided 
by the number of records).  

• Confusion Matrix: ConfusionMatrix.print(PrintStream)   

Parameters:  
out  - The stream to print to. 

=============================================================== 

� Class Weight 

java.lang.Object 
  nn.Weight 

public class Weight  
extends java.lang.Object 

A weight of the network.  

Field Detail 

   config 

  private final Config config 

Specifications: spec_public 
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   weight 

  private double weight 

The actual weight.  
Specifications: spec_public 

   adjustment 

  private double adjustment 

The previous weight adjustment.  
Specifications: spec_public 

Constructor Detail 

   Weight 

  public Weight(Config config) 

Creates a new weight, randomly initialized in [0; 1[  

   Weight 

  public Weight(Weight weight) 

Creates an independent copy of weight.  

Method Detail 

   getWeight 

  public double getWeight() 

Returns:  
The weight. 

   setWeight 

  public void setWeight(double weight) 

Parameters:  
weight  - The new weight. 

   propagate 

  public void propagate(double deltaNode, 
                      double input) 

Does backpropagation, i.e. changes the current weight based on the value input to 
the connected node, and the nodes responsibility for the error. Takes the learning 
rate Config.getLearningRate()  and the momentum 
Config.getLearningRate()  into account by setting the weight to  

• the current weight  
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• plus the learning rate times the target node's delta, times the target node's 
input,  

• plus the momentum times the previous weight adjustment.  

Parameters:  
deltaNode  - The responsibility of the connected node for the error.  
input  - The value previously input to the connected node. 

 
==**************================**************===========******==== 
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11. Future Work 
 
This project can be extended by adding some functionality like: 

1. adding graphical user interface, this project only supports command line. 

2. it can be implemented for all neural network topologies and model, this 

project implements few of them. 

3. error rate in learning process can be minimize by using efficient 

algorithms (genetic algorithms, etc.). 

4. neural-network methods are thought to have two limitations that make them 

poorly suited to data-mining tasks: their learned hypotheses are often 

incomprehensible, and training times are often excessive. We can eliminate 

these limitations 
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12. Conclusion 
 
This project aimed at implementing a basic neural network, and providing usable 

information about the neural networks that is their architecture, functionality and 

efficiency.  

This project will be helpful in understanding neural networks and their behavior, it 

will show how neural network is useful in data mining problem and can be the best 

solution for such problem.  

We can see that, for some problems, neural networks are more suitable i.e., they do a better 

job of learning the target concept than other commonly used data-mining methods. 

We have not attempted to provide an exhaustive survey of the available neural-

network algorithms that are suitable for data mining. Instead, we have described 

a subset of these methods, selected to illustrate the breadth of relevant 

approaches as well as the key issues that arise in applying neural networks in a 

data-mining setting. It is our hope that our discussion of neural-network 

approaches will serve to inspire some interesting applications of these methods 

to challenging datamining problems. 
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