
DATA CLASSIFICATION USING MULTI-LAYERED
FEED-FORWARD NEURAL NETWORK

A Dissertation Submitted in partial fulfillment of the requirements

for the award of the degree of

MASTER OF ENGINEERING
(Computer Technology & Applications)

By

PIYUSH KUMAR SRIVASTAVA
College Roll No. 17/CTA/04

University Roll No. 8510

Under the guidance of

Dr. S.K.Saxena

 Department Of Computer Engineering

Delhi College of Engineering

Bawana Road, Delhi-110042

(University of Delhi)

June-2006

CERTIFICATE

This is to certify that dissertation entitled “Data Classification Using Multi-layered

Feed-forward Neural Network” which is submitted by Piyush Kumar Srivastava in

partial fulfillment of the requirement for the award of degree M.E. in Computer

Technology & Applications to Delhi College of Engineering, Delhi is a record of the

candidate own work carried out by him under my supervision.

Dr. S.K.Saxena

Department of Computer Engineering

Delhi College of Engineering

Bawana Road, Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to

everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Dr. S.K.Saxena, Department of

Computer Engineering for the constant motivation and support during the duration of this

project. It is my privilege and owner to have worked under the supervision. His

invaluable guidance and helpful discussions in every stage of this project really helped

me in materializing this project. It is indeed difficult to put his contribution in few words.

I would also like to take this opportunity to present my sincere regards to my teachers

viz. Professor D. Roy Choudhary, Dr Goldie Gabrani, Mr. Rajeev Kumar and Mrs. Rajni

Jindal for their support and encouragement.

I am thankful to my friends and classmates for their unconditional support and motivation

during this project.

Piyush Kumar Srivastava

M.E. (Computer Technology & Applications)

College Roll No. 17/CTA/04

Delhi University Roll No. 8510

ABSTRACT

Artificial neural networks can be most adequately characterized as 'computational

models' with particular properties such as the ability to adapt or learn, to generalize, or to

cluster or organize data, and which operation is based on parallel processing.

Numerous advances have been made in developing intelligent systems, some inspired by

biological neural networks. Researchers from many scientific disciplines are designing

artificial neural networks (ANNs) to solve a variety of problems in pattern recognition,

prediction, optimization, associative memory, and control.

Conventional approaches have been proposed for solving these problems. Although

successful applications can be found in certain well-constrained environments, none is

flexible enough to perform well outside its domain. ANNs provide exciting alternatives,

and many applications could benefit from using them.

Classification is one of the data mining problems receiving great attention recently in the

database community. This project will implement an approach to discover symbolic

classification rules using neural networks. Neural networks have not been thought suited

for data mining because how the classifications were made is not explicitly stated as

symbolic rules that are suitable for verification or interpretation by humans. With the

proposed approach, concise symbolic rules with high accuracy can be extracted from a

neural network.

The network is first trained to achieve the required accuracy rate. Redundant connections

of the network are then removed by a network pruning algorithm. The activation values

of the hidden units in the network are analyzed, and classification rules are generated

using the result of this analysis. The effectiveness of the proposed approach is clearly

demonstrated by the experimental results on a set of standard data mining test problems.

TABLE OF CONTENTS

1. INTRODUCTION 1

2. DATA CLASSIFICATION 3

2.1. Data, Information, and Knowledge 3
2.2. What can data mining do? 4
2.3. How does data mining work? 5
2.4. What technological infrastructure is required? 7
2.5. Data Preparation (in Data Mining) 10

3. NEURAL NETWORKS 11
3.1. Introduction 11
3.2. Historical background 12
3.3. Neural networks versus conventional computers 12
3.4. Human and Artificial Neurons - investigating the similarities 13

3.4.1. How the Human Brain Learns? 13
3.4.2. Human Neurons to Artificial Neurons 14
3.4.3. Firing rules 15
3.4.4. Pattern Recognition - an example 17
3.4.5. A more complicated neuron 19

4. DATA PREPARATION 21
4.1. Data Cleansing 21
4.2. Data Selection 21
4.3. Data Preprocessing 22
4.4. Computed attributes 22
4.5. Scaling 23

5. NEURAL NETWORK TOPOLOGIES 24
5.1. Feed-Forward Networks 24
5.2. Limited Recurrent Networks 25
5.3. Fully Recurrent Networks 26

6. NEURAL NETWORK MODELS 29
6.1. Back Propagation Networks 29
6.2. Kohonen Feature Maps 31
6.3. Recurrent Back Propagation 34
6.4. Radial Basis Function 34
6.5. Adaptive Resonance Theory 35
6.6. Probabilistic Neural Networks 36
6.7. Key Issues in Selecting Models and Architecture 37

7. TRAINING AND TESTING NEURAL NETWORK 39
7.1. Back-propagation Algorithm 39
7.2. Defining Success: When Is the Neural Network Trained? 42
7.3. Classification 43

8. ANALYZING NEURAL NETWORKS 45
8.1. Discovering What the Network learned 45

9. IMPLEMENTATION OF THE PROJECT 47
9.1. Data Format 47
9.2. Attribute-Relation File Format 47
9.3. Installation 52
9.4. Configuration 52
9.5. Output 54
9.6. Architecture 58
9.7. Evaluation 59

10. CLASS DESCRIPTION 62

11. FUTURE WORK 98

12. CONCLUSION 99

13. REFERENCES 100

1

1. Introduction
Data Classification is one of the applications of Data Mining, “Data Mining is

the efficient discovery of valuable information from large collection of data.” In

Data classification, stored data is used to locate data in predetermined groups.

There are various conventional methods exist to implement data classification,

but no one is as fast as human brain. I am implementing Data classification

using Neural Network which is different from conventional computer

approach.

Neural networks take a different approach to problem solving than that of

conventional computers. Neural networks process information in a similar way

the human brain does. Neural networks learn by example. They cannot be

programmed to perform a specific task.

The main aim of my project is to implement a basic neural network which

simulates the behavior of neural network that is how the neural networks learn,

how they process their nodes and how they classify the data given as input.

Approach: I have used java 1.5 as programming language to implement this

project. The project has been developed on java Text Editor. The input format is

a subset of the arff(Attribute Relationship file format) format used by Weka2, a

popular open source data mining tool. Specifically, the only supported attribute

types are numerical (numeric, integer, real), and nominal.

After learning and validation has been performed, the model, i.e. the trained

neural network, and some validation metrics are output as plain text. The model

is output layer by layer, from the input layer over the hidden layers to the output

layer, and each layer node by node in order For each node its position in the

network and its links to the nodes of the previous layer along with the learned

weights are shown.

The system can be divided into the components configuration, command line

evaluation, parsing, data representation, data normalization, the neural network,

2

validation, and output.

The purpose of this project is to implement the basic neural network and to classify

the data using implemented neural network.

Why Use Neural Network:

 Neural network is advantageous than conventional computer because it can be as

fast as human brain. Neural networks, with their remarkable ability to derive

meaning from complicated or imprecise data, can be used to extract patterns and

detect trends that are too complex to be noticed by either humans or other computer

techniques. A trained neural network can be thought of as an "expert" in the

category of information it has been given to analyze. This expert can then be used to

provide projections given new situations of interest and answer "what if" questions.

Other advantages include: Adaptive learning, Self-Organization, Real Time

Operation, Fault Tolerance via Redundant Information Coding, etc.

3

2. Data Classification

Data Classification is one of the applications of Data Mining, “Data Mining is the

efficient discovery of valuable information from large collection of data.”

Generally, data mining is the process of analyzing data from different perspectives

and summarizing it into useful information - information that can be used to

increase revenue, cuts costs, or both. Data mining software is one of a number of

analytical tools for analyzing data. It allows users to analyze data from many

different dimensions or angles, categorize it, and summarize the relationships

identified. Technically, data mining is the process of finding correlations or patterns

among dozens of fields in large relational databases.

Although data mining is a relatively new term, the technology is not. Companies

have used powerful computers to sift through volumes of supermarket scanner data

and analyze market research reports for years. However, continuous innovations in

computer processing power, disk storage, and statistical software are dramatically

increasing the accuracy of analysis while driving down the cost.

2.1 Data, Information, and Knowledge

Data

Data are any facts, numbers, or text that can be processed by a computer. Today,

organizations are accumulating vast and growing amounts of data in different

formats and different databases. This includes:

• operational or transactional data such as, sales, cost, inventory, payroll, and

accounting

• nonoperational data, such as industry sales, forecast data, and macro

economic data

• meta data - data about the data itself, such as logical database design or data

dictionary definitions

4

Information

The patterns, associations, or relationships among all this data can provide

information. For example, analysis of retail point of sale transaction data can yield

information on which products are selling and when.

Knowledge

Information can be converted into knowledge about historical patterns and future

trends. For example, summary information on retail supermarket sales can be

analyzed in light of promotional efforts to provide knowledge of consumer buying

behavior. Thus, a manufacturer or retailer could determine which items are most

susceptible to promotional efforts.

Data Warehouses

Dramatic advances in data capture, processing power, data transmission, and

storage capabilities are enabling organizations to integrate their various databases

into data warehouses. Data warehousing is defined as a process of centralized data

management and retrieval. Data warehousing, like data mining, is a relatively new

term although the concept itself has been around for years. Data warehousing

represents an ideal vision of maintaining a central repository of all organizational

data. Centralization of data is needed to maximize user access and analysis.

Dramatic technological advances are making this vision a reality for many

companies. And, equally dramatic advances in data analysis software are allowing

users to access this data freely. The data analysis software is what supports data

mining.

2.2 What can data mining do?

Data mining is primarily used today by companies with a strong consumer focus -

retail, financial, communication, and marketing organizations. It enables these

5

companies to determine relationships among "internal" factors such as price,

product positioning, or staff skills, and "external" factors such as economic

indicators, competition, and customer demographics. And, it enables them to

determine the impact on sales, customer satisfaction, and corporate profits. Finally,

it enables them to "drill down" into summary information to view detail

transactional data.

2.3 How does data mining work?

While large-scale information technology has been evolving separate transaction

and analytical systems, data mining provides the link between the two. Data mining

software analyzes relationships and patterns in stored transaction data based on

open-ended user queries. Several types of analytical software are available:

statistical, machine learning, and neural networks. Generally, any of four types of

relationships are sought:

• Classes: Stored data is used to locate data in predetermined groups. For

example, a restaurant chain could mine customer purchase data to determine

when customers visit and what they typically order. This information could

be used to increase traffic by having daily specials.

• Clusters: Data items are grouped according to logical relationships or

consumer preferences. For example, data can be mined to identify market

segments or consumer affinities.

• Associations: Data can be mined to identify associations. The beer-diaper

example is an example of associative mining.

• Sequential patterns: Data is mined to anticipate behavior patterns and

trends. For example, an outdoor equipment retailer could predict the

likelihood of a backpack being purchased based on a consumer's purchase of

sleeping bags and hiking shoes.

6

Data mining consists of five major elements:

• Extract, transform, and load transaction data onto the data warehouse

system.

• Store and manage the data in a multidimensional database system.

• Provide data access to business analysts and information technology

professionals.

• Analyze the data by application software.

• Present the data in a useful format, such as a graph or table.

Different levels of analysis are available:

• Artificial neural networks: Non-linear predictive models that learn through

training and resemble biological neural networks in structure.

• Genetic algorithms: Optimization techniques that use processes such as

genetic combination, mutation, and natural selection in a design based on the

concepts of natural evolution.

• Decision trees: Tree-shaped structures that represent sets of decisions.

These decisions generate rules for the classification of a dataset. Specific

decision tree methods include Classification and Regression Trees (CART)

and Chi Square Automatic Interaction Detection (CHAID) . CART and

CHAID are decision tree techniques used for classification of a dataset.

They provide a set of rules that you can apply to a new (unclassified) dataset

to predict which records will have a given outcome. CART segments a

dataset by creating 2-way splits while CHAID segments using chi square

tests to create multi-way splits. CART typically requires less data

preparation than CHAID.

7

• Nearest neighbor method: A technique that classifies each record in a

dataset based on a combination of the classes of the k record(s) most similar

to it in a historical dataset (where k 1). Sometimes called the k-nearest

neighbor technique.

• Rule induction: The extraction of useful if-then rules from data based on

statistical significance.

• Data visualization: The visual interpretation of complex relationships in

multidimensional data. Graphics tools are used to illustrate data

relationships.

2.4 What technological infrastructure is required?

Today, data mining applications are available on all size systems for mainframe,

client/server, and PC platforms. System prices range from several thousand dollars

for the smallest applications up to $1 million a terabyte for the largest. Enterprise-

wide applications generally range in size from 10 gigabytes to over 11 terabytes.

NCR has the capacity to deliver applications exceeding 100 terabytes. There are two

critical technological drivers:

• Size of the database: the more data being processed and maintained, the

more powerful the system required.

• Query complexity: the more complex the queries and the greater the

number of queries being processed, the more powerful the system required.

Relational database storage and management technology is adequate for many data

mining applications less than 50 gigabytes. However, this infrastructure needs to be

significantly enhanced to support larger applications. Some vendors have added

extensive indexing capabilities to improve query performance. Others use new

hardware architectures such as Massively Parallel Processors (MPP) to achieve

8

order-of-magnitude improvements in query time. For example, MPP systems from

NCR link hundreds of high-speed Pentium processors to achieve performance levels

exceeding those of the largest supercomputers.

Data Mining is an analytic process designed to explore data (usually large amounts

of data - typically business or market related) in search of consistent patterns and/or

systematic relationships between variables, and then to validate the findings by

applying the detected patterns to new subsets of data. The ultimate goal of data

mining is prediction. The process of data mining consists of three stages:

Stage 1: Exploration. This stage usually starts with data preparation which may

involve cleaning data, data transformations, selecting subsets of records and - in

case of data sets with large numbers of variables ("fields") - performing some

preliminary feature selection operations to bring the number of variables to a

manageable range (depending on the statistical methods which are being

considered). Then, depending on the nature of the analytic problem, this first stage

of the process of data mining may involve anywhere between a simple choice of

straightforward predictors for a regression model, to elaborate exploratory analyses

using a wide variety of graphical and statistical methods (see Exploratory Data

Analysis (EDA)) in order to identify the most relevant variables and determine the

complexity and/or the general nature of models that can be taken into account in the

next stage.

Stage 2: Model building and validation. This stage involves considering various

models and choosing the best one based on their predictive performance (i.e.,

explaining the variability in question and producing stable results across samples).

This may sound like a simple operation, but in fact, it sometimes involves a very

elaborate process. There are a variety of techniques developed to achieve that goal -

many of which are based on so-called "competitive evaluation of models," that is,

applying different models to the same data set and then comparing their

performance to choose the best. These techniques - which are often considered the

9

core of predictive data mining - include: Bagging (Voting, Averaging), Boosting,

Stacking (Stacked Generalizations), and Meta-Learning.

Stage 3: Deployment. That final stage involves using the model selected as best in

the previous stage and applying it to new data in order to generate predictions or

estimates of the expected outcome.

The concept of Data Mining is becoming increasingly popular as a business

information management tool where it is expected to reveal knowledge structures

that can guide decisions in conditions of limited certainty. Recently, there has been

increased interest in developing new analytic techniques specifically designed to

address the issues relevant to business Data Mining (e.g., Classification Trees), but

Data Mining is still based on the conceptual principles of statistics including the

traditional Exploratory Data Analysis (EDA) and modeling and it shares with them

both some components of its general approaches and specific techniques.

However, an important general difference in the focus and purpose between Data

Mining and the traditional Exploratory Data Analysis (EDA) is that Data Mining is

more oriented towards applications than the basic nature of the underlying

phenomena. In other words, Data Mining is relatively less concerned with

identifying the specific relations between the involved variables. For example,

uncovering the nature of the underlying functions or the specific types of

interactive, multivariate dependencies between variables are not the main goal of

Data Mining. Instead, the focus is on producing a solution that can generate useful

predictions. Therefore, Data Mining accepts among others a "black box" approach

to data exploration or knowledge discovery and uses not only the traditional

Exploratory Data Analysis (EDA) techniques, but also such techniques as Neural

Networks which can generate valid predictions but are not capable of identifying the

specific nature of the interrelations between the variables on which the predictions

are based.

10

Data Mining is often considered to be "a blend of statistics, AI [artificial

intelligence], and data base research" (Pregibon, 1997, p. 8), which until very

recently was not commonly recognized as a field of interest for statisticians, and

was even considered by some "a dirty word in Statistics" (Pregibon, 1997, p. 8).

Due to its applied importance, however, the field emerges as a rapidly growing and

major area (also in statistics) where important theoretical advances are being made

(see, for example, the recent annual International Conferences on Knowledge

Discovery and Data Mining, co-hosted by the American Statistical Association).

2.5 Data Preparation (in Data Mining)

Data preparation and cleaning is an often neglected but extremely important step in

the data mining process. The old saying "garbage-in-garbage-out" is particularly

applicable to the typical data mining projects where large data sets collected via

some automatic methods (e.g., via the Web) serve as the input into the analyses.

Often, the method by which the data where gathered was not tightly controlled, and

so the data may contain out-of-range values (e.g., Income: -100), impossible data

combinations (e.g., Gender: Male, Pregnant: Yes), and the like. Analyzing data that

has not been carefully screened for such problems can produce highly misleading

results, in particular in predictive data mining.

11

3. Neural Networks

3.1 Introduction

A Neural Network or more appropriately Artificial Neural Network (ANN) is an

information processing paradigm that is inspired by the way biological nervous

systems, such as the brain, process information. Artificial Neural Network is basically a

mathematical model of what goes in our mind (or brain). The key element of this

paradigm is the novel structure of the information processing system. It is composed

of a large number of highly interconnected processing elements (neurons) working

in unison to solve specific problems. The brain of all the advanced living creatures

consists of neurons, a basic cell, which when interconnected produces what we call

Neural Network. The sole purpose of a Neuron is to receive electrical signals,

accumulate them and see further if they are strong enough to pass forward.

So simple in its basic functionality but the interconnections of these produces

beings (me, u and others) capable of writing about them. Phew! The real thing lies

not in neurons but the complex pattern in which they are interconnected. NNs are

just like a game of chess, easy to learn but hard to master. As the moves of chess are

simple, yet the succession of moves is what makes the game complex and fun to

play. Imagine a chess game in which you are allowed only one single move. Would

that game be fun to play?

In the same way, a single neuron is useless. Well, practically useless. It is the

complex connection between them and values attached with them (explained later)

which makes brains capable of thinking and having a sense of consciousness (much

debated). ANNs, like people, learn by example. An ANN is configured for a

specific application, such as pattern recognition or data classification, through a

learning process. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons. This is true of ANNs as well

12

3.2 Historical background

Neural network simulations appear to be a recent development. However, this field

was established before the advent of computers, and has survived at least one major

setback and several eras. Many important advances have been boosted by the use of

inexpensive computer emulations. Following an initial period of enthusiasm, the

field survived a period of frustration and disrepute. During this period when funding

and professional support was minimal, important advances were made by relatively

few researchers. These pioneers were able to develop convincing technology which

surpassed the limitations identified by Minsky and Papert. Minsky and Papert,

published a book (in 1969) in which they summed up a general feeling of frustration

(against neural networks) among researchers, and was thus accepted by most

without further analysis. Currently, the neural network field enjoys a resurgence of

interest and a corresponding increase in funding.

The first artificial neuron was produced in 1943 by the neurophysiologist Warren

McCulloch and the logician Walter Pits. But the technology available at that time

did not allow them to do too much.

3.3 Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of

conventional computers. Conventional computers use an algorithmic approach i.e.

the computer follows a set of instructions in order to solve a problem. Unless the

specific steps that the computer needs to follow are known the computer cannot

solve the problem. That restricts the problem solving capability of conventional

computers to problems that we already understand and know how to solve. But

computers would be so much more useful if they could do things that we don't

exactly know how to do.

Neural networks process information in a similar way the human brain does. The

network is composed of a large number of highly interconnected processing

13

elements (neurons) working in parallel to solve a specific problem. Neural networks

learn by example. They cannot be programmed to perform a specific task. The

examples must be selected carefully otherwise useful time is wasted or even worse

the network might be functioning incorrectly. The disadvantage is that because the

network finds out how to solve the problem by itself, its operation can be

unpredictable.

On the other hand, conventional computers use a cognitive approach to problem

solving; the way the problem is to solved must be known and stated in small

unambiguous instructions. These instructions are then converted to a high level

language program and then into machine code that the computer can understand.

These machines are totally predictable; if anything goes wrong is due to a software

or hardware fault.

Neural networks and conventional algorithmic computers are not in competition but

complement each other. There are tasks are more suited to an algorithmic approach

like arithmetic operations and tasks that are more suited to neural networks. Even

more, a large number of tasks, require systems that use a combination of the two

approaches (normally a conventional computer is used to supervise the neural

network) in order to perform at maximum efficiency.

3.4 Human and Artificial Neurons - investigating the similarities

3.4.1 How the Human Brain Learns?

Much is still unknown about how the brain trains itself to process information, so

theories abound. In the human brain, a typical neuron collects signals from others

through a host of fine structures called dendrites. The neuron sends out spikes of

electrical activity through a long, thin stand known as an axon, which splits into

thousands of branches. At the end of each branch, a structure called a synapse

converts the activity from the axon into electrical effects that inhibit or excite

activity from the axon into electrical effects that inhibit or excite activity in the

connected neurons. When a neuron receives excitatory input that is sufficiently

14

large compared with its inhibitory input, it sends a spike of electrical activity down

its axon. Learning occurs by changing the effectiveness of the synapses so that the

influence of one neuron on another changes.

Fig 3.1 Components of a neuron

Fig 3.2 the synapse

3.4.2 Human Neurons to Artificial Neurons

We conduct these neural networks by first trying to deduce the essential features of

neurons and their interconnections. We then typically program a computer to

15

simulate these features. However because our knowledge of neurons is incomplete

and our computing power is limited, our models are necessarily gross idealizations

of real networks of neurons.

Fig 3.3 the neuron model

An artificial neuron is a device with many inputs and one output. The neuron has

two modes of operation; the training mode and the using mode. In the training

mode, the neuron can be trained to fire (or not), for particular input patterns. In the

using mode, when a taught input pattern is detected at the input, its associated

output becomes the current output. If the input pattern does not belong in the taught

list of input patterns, the firing rule is used to determine whether to fire or not.

Fig 3.4 A simple neuron

3.4.3 Firing rules

16

The firing rule is an important concept in neural networks and accounts for their

high flexibility. A firing rule determines how one calculates whether a neuron

should fire for any input pattern. It relates to all the input patterns, not only the ones

on which the node was trained.

A simple firing rule can be implemented by using Hamming distance technique.

The rule goes as follows:

Take a collection of training patterns for a node, some of which cause it to fire (the

1-taught set of patterns) and others which prevent it from doing so (the 0-taught

set). Then the patterns not in the collection cause the node to fire if, on comparison,

they have more input elements in common with the 'nearest' pattern in the 1-taught

set than with the 'nearest' pattern in the 0-taught set. If there is a tie, then the pattern

remains in the undefined state.

For example, a 3-input neuron is taught to output 1 when the input (X1,X2 and X3)

is 111 or 101 and to output 0 when the input is 000 or 001. Then, before applying

the firing rule, the truth table is;

X1: 0 0 0 0 1 1 1 1

X2: 0 0 1 1 0 0 1 1

X3: 0 1 0 1 0 1 0 1

OUT: 0 0 0/1 0/1 0/1 1 0/1 1

As an example of the way the firing rule is applied, take the pattern 010. It differs

from 000 in 1 element, from 001 in 2 elements, from 101 in 3 elements and from

111 in 2 elements. Therefore, the 'nearest' pattern is 000 which belongs in the 0-

taught set. Thus the firing rule requires that the neuron should not fire when the

input is 001. On the other hand, 011 is equally distant from two taught patterns that

have different outputs and thus the output stays undefined (0/1).

By applying the firing in every column the following truth table is obtained;

17

X1: 0 0 0 0 1 1 1 1

X2: 0 0 1 1 0 0 1 1

X3: 0 1 0 1 0 1 0 1

OUT: 0 0 0 0/1 0/1 1 1 1

The difference between the two truth tables is called the generalization of the

neuron. Therefore the firing rule gives the neuron a sense of similarity and enables

it to respond 'sensibly' to patterns not seen during training.

3.4.4 Pattern Recognition - an example

An important application of neural networks is pattern recognition. Pattern

recognition can be implemented by using a feed-forward (figure 1) neural network

that has been trained accordingly. During training, the network is trained to

associate outputs with input patterns. When the network is used, it identifies the

input pattern and tries to output the associated output pattern. The power of neural

networks comes to life when a pattern that has no output associated with it, is given

as an input. In this case, the network gives the output that corresponds to a taught

input pattern that is least different from the given pattern.

Fig 3.5 a feed-forward neural network

18

The network of figure 1 is trained to recognize the patterns T and H. The associated

patterns are all black and all white respectively as shown below.

If we represent black squares with 0 and white squares with 1 then the truth tables

for the 3 neurons after generalization are;

X11: 0 0 0 0 1 1 1 1

X12: 0 0 1 1 0 0 1 1

X13: 0 1 0 1 0 1 0 1

OUT: 0 0 1 1 0 0 1 1

Top neuron

X21: 0 0 0 0 1 1 1 1

X22: 0 0 1 1 0 0 1 1

X23: 0 1 0 1 0 1 0 1

OUT: 1 0/1 1 0/1 0/1 0 0/1 0

Middle neuron

X21: 0 0 0 0 1 1 1 1

X22: 0 0 1 1 0 0 1 1

X23: 0 1 0 1 0 1 0 1

OUT: 1 0 1 1 0 0 1 0

Bottom neuron

19

 From the tables it can be seen the following associations can be extracted:

In this case, it is obvious that the output should be all blacks since the input pattern

is almost the same as the 'T' pattern.

Here also, it is obvious that the output should be all whites since the input pattern is

almost the same as the 'H' pattern.

Here, the top row is 2 errors away from the T and 3 from an H. So the top output is

black. The middle row is 1 error away from both T and H so the output is random.

The bottom row is 1 error away from T and 2 away from H. Therefore the output is

black. The total output of the network is still in favor of the T shape.

3.4.5 A more complicated neuron

20

The previous neuron doesn't do anything that conventional computers don't do

already. A more sophisticated neuron (figure 2) is the McCulloch and Pitts model

(MCP). The difference from the previous model is that the inputs are ‘weighted’;

the effect that each input has at decision making is dependent on the weight of the

particular input. The weight of an input is a number which when multiplied with the

input gives the weighted input. These weighted inputs are then added together and if

they exceed a pre-set threshold value, the neuron fires. In any other case the neuron

does not fire.

Fig 3.6 An MCP neuron

In mathematical terms, the neuron fires if and only if;

X1W1 + X2W2 + X3W3 + ... > T

The addition of input weights and of the threshold makes this neuron a very flexible

and powerful one. The MCP neuron has the ability to adapt to a particular situation

by changing its weights and/or threshold. Various algorithms exist that cause the

neuron to 'adapt'; the most used ones are the Delta rule and the back error

propagation. The former is used in feed-forward networks and the latter in feedback

networks.

21

4. Data Preparation
Before giving the data to neural network for training we have to prepare the data,

because the data can be in any format we have to make it acceptable.

4.1 Data Cleansing

When operational data gets loaded into a centralized data warehouse, the data often

must go through a process known as "data cleansing." A sad but true fact is that not

all operational transactions are correct. They might contain inaccurate values,

missing data, or other inconsistencies in the data. The transaction might be checked

by an application program, which detects the bad data and notifies the originator of

this, but the bad data often remains in the database. This was not such a problem

when the database was viewed primarily as an archival mechanism. However, if

the data warehouse is to be turned into a fount of raw material for corporate

business intelligence gathering, then the data must be as clean and correct as

possible.

Several techniques are being used to clean data either before or after it gets into the

data warehouse. These include rule-based techniques, which evaluate each data

item against metaknowledge (knowledge about the data) about the range of data

expected in that field and constraints or relationships to other fields in the record

(Simoudis, livezey, and Kerber 1995). Visualization can also be used to easily

identify outliers, or out of range data, ill large data sets. Another approach is to use

statistical information to set missing or incorrect field values to neutral, valid values

4.2 Data Selection

Once we have the database to train the neural network, the next step is to decide

what data is important for the task we are trying to automate. Maybe our database

has 100 fields, but only 10 are used in making a decision. The problem is that, in

many cases, we don't know exactly which parameters are important in a decision

process. Fortunately, neural networks can be used to help determine which

22

parameters are important and to build a model relating those parameters.

The data selection process really takes place across two dimensions. First is the

column or parameters, which will be part of the data mining process. Second is the

selection of rows or records, based on the values of individual fields. The

underlying mechanism used to access all relational databases is SQL, as discussed

earlier. However, most database front-end tools allow users to specify which data to

access using fill-in-the-blank forms.

The data selection step requires some detailed knowledge of the problem domain

and the underlying data. Often the data that is stored in the database needs to be

massaged or enhanced before data minlng can begin. This preprocessing step is

described in the next section.

4.3 Data Preprocessing

Data preprocessing is the step when the clean data we have selected is enhanced.

Sometimes this enhancement involves generating new data items from one or more

fields, and sometimes it means replacing several fields with a single field that

contains more information. Remember, the number of input fields IS not

necessarily a measure of the information content being provided to the Data mining

algorithm. Sometimes the data needs to be transformed into a form that is accept-

able as input to a specific data mining algorithm, such as a neural network.

4.4 Computed attributes

\A common requirement in data mining is to take two or more fields in combination

to yield a new field or attribute. This is usually in the form of a ratio of two values,

but could also be the sum, product, or difference of the values. Other

transformations could be turning a date into a day of the week or day of the year.

Computed attributes are often necessary because the transaction processing

application was designed to handle the minimum amount of data required to log the

transaction. In the past, the focus has been on minimizing storage requirements and

23

processing time, and not on maximizing the amount of information gathered by

transactions.

4.5 Scaling

Another transformation involves the more general issue of scaling data for

presentation to the neural network. Most neural network models accept numeric

data only in the range of 0.0 to 1.0 or -1.0 to +1.0, depending on the activation

functions used in the neural processing elements. Consequently, data usually must

be scaled down to that range.

Scalar values that are more or less uniformly distributed over a range can be scaled

directly to the 0 to 1.0 range. If the data values are skewed, a piece-wise linear or a

logarithmic function can be used to transform the data, which can then be scaled

into the desired range. Discrete variables can be represented by coded types with 0

and 1 values, or they can be assigned values in the desired continuous range.

24

5. Neural Network Topologies

The arrangement of neural processing units and their interconnections can have a

profound impact on the processing capabilities of the neural networks. In general,

all neural networks have some set of processing units that receive inputs from the

outside world, which we refer to appropriately as the input units Many neural

networks also have one or more layers of hidden processing units that receive

inputs only from other processing units. A layer or slab of processing units receives

a vector of data or the outputs of a previous layer of units and processes them in

parallel. The set of processing units that represents the final result of the neural

network computation is designated as the output units. There are three major

connection topologies that define how data flows between the input, hidden, and

output processing units. These main categories feed forward, limited recurrent, and

fully recurrent networks are described in detail in the next sections.

5.1 Feed-Forward Networks

Feed-forward networks are used in situations when we can bring all of the

information to bear on a problem at once, and we can present it to the neural

network. It is like a pop quiz, where the teacher walks in, writes a set of facts on the

board, and says, �OK, tell me the answer.� You must take the data, process it, and

�jump to a conclusion.� In this type of neural network, the data flows through the

network in one direction, and the answer is based solely on the current set of inputs.

In Figure 5.1, we see a typical feed-forward neural network topology. Data enters

the neural network through the input units on the left. The input values are assigned

to the input units as the unit activation values. The output values of the units are

modulated by the connection weights, either being magnified if the connection

weight is positive and greater than 1.0, or being diminished if the connection weight

is between 0.0 and 1.0. If the connection weight is negative, the signal is magnified

or diminished in the opposite direction.

25

Fig5.1: Feed-forward neural networks.

Each processing unit combines all of the input signals corning into the unit along

with a threshold value. This total input signal is then passed through an activation

function to determine the actual output of the processing unit, which in turn

becomes the input to another layer of units in a multi-layer network. The most

typical activation function used in neural networks is the S-shaped or sigmoid (also

called the logistic) function. This function converts an input value to an output

ranging from 0 to 1. The effect of the threshold weights is to shift the curve right or

left, thereby making the output value higher or lower, depending on the sign of the

threshold weight. As shown in Figure 5.1, the data flows from the input layer

through zero, one, or more succeeding hidden layers and then to the output layer. In

most networks, the units from one layer are fully connected to the units in the next

layer. However, this is not a requirement of feed-forward neural networks. In some

cases, especially when the neural network connections and weights are constructed

from a rule or predicate form, there could be less connection weights than in a fully

connected network. There are also techniques for pruning unnecessary weights from

a neural network after it is trained. In general, the less weights there are, the faster

the network will be able to process data and the better it will generalize to unseen

inputs. It is important to remember that feed-forward is a definition of connection

topology and data flow. It does not imply any specific type of activation function or

training paradigm.

5.2 Limited Recurrent Networks

26

Recurrent networks are used in situations when we have current information to give

the network, but the sequence of inputs is important, and we need the neural

network to somehow store a record of the prior inputs and factor them in with the

current data to produce an answer. In recurrent networks, information about past

inputs is fed back into and mixed with the inputs through recurrent or feedback

connections for hidden or output units. In this way, the neural network contains a

memory of the past inputs via the activations (see Figure 5.2).

Figure 5.2: Partial recurrent neural networks

Two major architectures for limited recurrent networks are widely used. Elman

(1990) suggested allowing feedback from the hidden units to a set of additional

inputs called context units. Earlier, Jordan (1986) described a network with

feedback from the output units back to a set of context units. This form of

recurrence is a compromise between the simplicity of a feed-forward network and

the complexity of a fully recurrent neural network because it still allows the popular

back propagation training algorithm (described in the following) to be used.

5.3 Fully Recurrent Networks

27

Fully recurrent networks, as their name suggests, provide two-way connections

between all processors in the neural network. A subset of the units is designated as

the input processors, and they are assigned or clamped to the specified input values.

The data then flows to all adjacent connected units and circulates back and forth

until the activation of the units stabilizes. Figure 6.3 shows the input units feeding

into both the hidden units (if any) and the output units. The activations of the hidden

and output units then are recomputed until the neural network stabilizes. At this

point, the output values can be read from the output layer of processing units.

Figure 5.3: Fully recurrent neural networks
Fully recurrent networks are complex, dynamical systems, and they exhibit all of

the power and instability associated with limit cycles and chaotic behavior of such

systems. Unlike feed-forward network variants, which have a deterministic time to

produce an output value (based on the time for the data to flow through the

network), fully recurrent networks can take an in-determinate amount of time.

In the best case, the neural network will reverberate a few times and quickly settle

into a stable, minimal energy state. At this time, the output values can be read from

the output units. In less optimal circumstances, the network might cycle quite a few

28

times before it settles into an answer. In worst cases, the network will fall into a

limit cycle, visiting the same set of answer states over and over without ever settling

down. Another possibility is that the network will enter a chaotic pattern and never

visit the same output state.

By placing some constraints on the connection weights, we can ensure that the

network will enter a stable state. The connections between units must be

symmetrical. Fully recurrent networks are used primarily for optimization problems

and as associative memories. A nice attribute with optimization problems is that

depending on the time available, you can choose to get the recurrent network�s

current answer or wait a longer time for it to settle into a better one. This behavior is

similar to the performance of people in certain tasks.

29

6. Neutral Network Models

The combination of topology, learning paradigm (supervised or non-supervised

learning), and learning algorithm define a neural network model. There is a wide

selection of popular neural network models. For data mining, perhaps the back

propagation network and the Kohonen feature map are the most popular. However,

there are many different types of neural networks in use. Some are optimized for

fast training, others for fast recall of stored memories, others for computing the best

possible answer regardless of training or recall time. But the best model for a given

application or data mining function depends on the data and the function required.

The discussion that follows is intended to provide an intuitive understanding of the

differences between the major types of neural networks. No details of the

mathematics behind these models are provided.

6.1 Back Propagation Networks

A back propagation neural network uses a feed-forward topology, supervised

learning, and the (what else) back propagation learning algorithm. This algorithm

was responsible in large part for the reemergence of neural networks in the

mid1980s.

Back propagation is a general purpose learning algorithm. It is powerful but also

expensive in terms of computational requirements for training. A back propagation

network with a single hidden layer of processing elements can model any

continuous function to any degree of accuracy (given enough processing elements

in the hidden layer). There are literally hundreds of variations of back propagation

in the neural network literature, and all claim to be superior to basic back

propagation in one way or the other. Indeed, since back propagation is based on a

relatively simple form of optimization known as gradient descent, mathematically

astute observers soon proposed modifications using more powerful techniques such

as conjugate gradient and Newton’s methods. However, basic back propagation is

30

still the most widely used variant. Its two primary virtues are that it is simple and

easy to understand, and it works for a wide range of problems.

Fig 6.1: Back propagation networks

The basic back propagation algorithm consists of three steps (see Figure 6.1). The

input pattern is presented to the input layer of the network. These inputs are

propagated through the network until they reach the output units. This forward pass

produces the actual or predicted output pattern. Because back propagation is a

supervised learning algorithm, the desired outputs are given as part of the training

vector. The actual network outputs are subtracted from the desired outputs and an

error signal is produced. This error signal is then the basis for the back propagation

step, whereby the errors are passed back through the neural network by computing

the contribution of each hidden processing unit and deriving the corresponding

adjustment needed to produce the correct output. The connection weights are then

adjusted and the neural network has just learned from an experience.

As mentioned earlier, back propagation is a powerful and flexible tool for data

modeling and analysis. Suppose you want to do linear regression. A back

propagation network with no hidden units can be easily used to build a regression

model relating multiple input parameters to multiple outputs or dependent variables.

This type of back propagation network actually uses an algorithm called the delta

rule, first proposed by Widrow and Hoff (1960).

31

Adding a single layer of hidden units turns the linear neural network into a

nonlinear one, capable of performing multivariate logistic regression, but with some

distinct advantages over the traditional statistical technique. Using a back

propagation network to do logistic regression allows you to model multiple outputs

at the same time. Confounding effects from multiple input parameters can be

captured in a single back propagation network model. Back propagation neural

networks can be used for classification, modeling, and time-series forecasting. For

classification problems, the input attributes are mapped to the desired classification

categories. The training of the neural network amounts to setting up the correct set

of discriminate functions to correctly classify the inputs. For building models or

function approximation, the input attributes are mapped to the function output. This

could be a single output such as a pricing model, or it could be complex models

with multiple outputs such as trying to predict two or more functions at once.

Two major learning parameters are used to control the training process of a back

propagation network. The learn rate is used to specify whether the neural network

is going to make major adjustments after each learning trial or if it is only going to

make minor adjustments. Momentum is used to control possible oscillations in the

weights, which could be caused by alternately signed error signals. While most

commercial back propagation tools provide anywhere from 1 to 10 or more

parameters for you to set, these two will usually produce the most impact on the

neural network training time and performance.

6.2 Kohonen Feature Maps

Kohonen feature maps are feed-forward networks that use an unsupervised training

algorithm, and through a process called self-organization, configure the output units

into a topological or spatial map. Kohonen (1988) was one of the few researchers

who continued working on neural networks and associative memory even after they

lost their cachet as a research topic in the 1960s. His work was reevaluated during

the late 1980s, and the utility of the self-organizing feature map was recognized.

32

Kohonen has presented several enhancements to this model, including a supervised

learning variant known as Learning Vector Quantisation (LVQ).

A feature map neural network consists of two layers of processing units an input

layer fully connected to a competitive output layer. There are no hidden units. When

an input pattern is presented to the feature map, the units in the output layer

compete with each other for the right to be declared the winner. The winning output

unit is typically the unit whose incoming connection weights are the closest to the

input pattern (in terms of Euclidean distance). Thus the input is presented and each

output unit computes its closeness or match score to the input pattern. The output

that is deemed closest to the input pattern is declared the winner and so earns the

right to have its connection weights adjusted. The connection weights are moved in

the direction of the input pattern by a factor determined by a learning rate

parameter. This is the basic nature of competitive neural networks.

The Kohonen feature map creates a topological mapping by adjusting not only the

winner’s weights, but also adjusting the weights of the adjacent output units in close

proximity or in the neighborhood of the winner. So not only does the winner get

adjusted, but the whole neighborhood of output units gets moved closer to the input

pattern. Starting from randomized weight values, the output units slowly align

themselves such that when an input pattern is presented, a neighborhood of units

responds to the input pattern. As training progresses, the size of the neighborhood

radiating out from the winning unit is decreased. Initially large numbers of output

units will be updated, and later on smaller and smaller numbers are updated until at

the end of training only the winning unit is adjusted. Similarly, the learning rate will

decrease as training progresses, and in some implementations, the learn rate decays

with the distance from the winning output unit.

33

Figure 6.2: Kohonen self-organizing feature maps

Looking at the feature map from the perspective of the connection weights, the

Kohonen map has performed a process called vector quantization or code book

generation in the engineering literature. The connection weights represent a typical

or prototype input pattern for the subset of inputs that fall into that cluster. The

process of taking a set of high dimensional data and reducing it to a set of clusters is

called segmentation. The high-dimensional input space is reduced to a two-

dimensional map. If the index of the winning output unit is used, it essentially

partitions the input patterns into a set of categories or clusters.

From a data mining perspective, two sets of useful information are available from a

trained feature map. Similar customers, products, or behaviors are automatically

clustered together or segmented so that marketing messages can be targeted at

homogeneous groups. The information in the connection weights of each cluster

defines the typical attributes of an item that falls into that segment. This information

lends itself to immediate use for evaluating what the clusters mean. When combined

with appropriate visualization tools and/or analysis of both the population and

segment statistics, the makeup of the segments identified by the feature map can be

analyzed and turned into valuable business intelligence.

34

6.3 Recurrent Back Propagation

Recurrent back propagation is, as the name suggests, a back propagation network

with feedback or recurrent connections. Typically, the feedback is limited to either

the hidden layer units or the output units. In either configuration, adding feedback

from the activation of outputs from the prior pattern introduces a kind of memory to

the process. Thus adding recurrent connections to a back propagation network

enhances its ability to learn temporal sequences without fundamentally changing the

training process. Recurrent back propagation networks will, in general, perform

better than regular back propagation networks on time-series prediction problems.

6.4 Radial Basis Function

Radial basis function (RBF) networks are feed-forward networks trained using a

supervised training algorithm. They are typically configured with a single hidden

layer of units whose activation function is selected from a class of functions called

basis functions. While similar to back propagation in many respects, radial basis

function networks have several advantages. They usually train much faster than

back propagation networks. They are less susceptible to problems with non-

stationary inputs because of the behavior of the radial basis function hidden units.

Radial basis function networks are similar to the probabilistic neural networks in

many respects (Wasserrnan 1993). Popularized by Moody and Darken (1989),

radial basis function networks have proven to be a useful neural network

architecture. The major difference between radial basis function networks and back

propagation networks is the behavior of the single hidden layer. Rather than using

the sigmoidal or S-shaped activation function as in back propagation, the hidden

units in RBF networks use a Gaussian or some other basis kernel function. Each

hidden unit acts as a locally tuned processor that computes a score for the match

between the input vector and its connection weights or centers. In effect, the basis

units are highly specialized pattern detectors. The weights connecting the basis units

35

to the outputs are used to take linear combinations of the hidden units to product the

final classification or output.

Remember that in a back propagation network, all weights in all of the layers are

adjusted at the same time. In radial basis function networks, however, the weights

into the hidden layer basis units are usually set before the second layer of weights is

adjusted. As the input moves away from the connection weights, the activation

value falls off. This behavior leads to the use of the term center for the first-layer

weights. These center weights can be computed using Kohonen feature maps,

statistical methods such as K-Means clustering, or some other means. In any case,

they are then used to set the areas of sensitivity for the RBF hidden units, which

then remain fixed. Once the hidden layer weights are set, a second phase of training

is used to adjust the output weights. This process typically uses the standard back

propagation training rule.

In its simplest form, all hidden units in the RBF network have the same width or

degree of sensitivity to inputs. However, in portions of the input space where there

are few patterns, it is sometime desirable to have hidden units with a wide area of

reception. Likewise, in portions of the input space, which are crowded, it might be

desirable to have very highly tuned processors with narrow reception fields.

Computing these individual widths increases the performance of the RBF network

at the expense of a more complicated training process.

6.5 Adaptive Resonance Theory

Adaptive resonance theory (ART) networks are a family of recurrent networks that

can be used for clustering. Based on the work of researcher Stephen Grossberg

(1987), the ART models are designed to be biologically plausible. Input patterns are

presented to the network, and an output unit is declared a winner in a process

similar to the Kohonen feature maps. However, the feedback connections from the

winner output encode the expected input pattern template. If the actual input pattern

does not match the expected connection weights to a sufficient degree, then the

36

winner output is shut off, and the next closest output unit is declared as the winner.

This process continues until one of the output units expectation is satisfied to within

the required tolerance. If none of the out put units wins, then a new output unit is

committed with the initial expected pattern set to the current input pattern.

The ART family of networks has been expanded through the addition of fuzzy

logic, which allows real-valued inputs, and through the ARTMAP architecture,

which allows supervised training. The ARTMAP architecture uses back-to-back

ART networks, one to classify the input patterns and one to encode the matching

output patterns. The MAP part of ARTMAP is a field of units (or indexes,

depending on the implementation) that serves as an index between the input ART

network and the output ART network.While the details of the training algorithm are

quite complex, the basic operation for recall is surprisingly simple. The input

pattern is presented to the input ART network, which comes up with a winner

output. This winner output is mapped to a corresponding output unit in the output

ART network. The expected pattern is read out of the output ART network, which

provides the overall output or prediction pattern.

6.6 Probabilistic Neural Networks
Probabilistic neural networks (PNN) feature feed-forward architecture and

supervised training algorithm similar to back propagation (Specht, 1990). Instead of

adjusting the input layer weights using the generalized delta rule, each training input

pattern is used as the connection weights to a new hidden unit. In effect, each input

pattern is incorporated into the PNN architecture. This technique is extremely fast,

since only one pass through the network is required to set the input connection

weights. Additional passes might be used to adjust the output weights to fine-tune

the network outputs.

Several researchers have recognized that adding a hidden unit for each input pattern

might be overkill. Various clustering schemes have been proposed to cut down on

the number of hidden units when input patterns are close in input space and can be

represented by a single hidden unit. Probabilistic neural networks offer several

advantages over back propagation networks (Wasserman, 1993). Training is much

37

faster, usually a single pass. Given enough input data, the PNN will converge to a

Bayesian (optimum) classifier. Probabilistic neural networks allow true incremental

learning where new training data can be added at any time without requiring

retraining of the entire network. And because of the statistical basis for the PNN, it

can give an indication of the amount of evidence it has for basing its decision.

Model Training paradigm Topology Primary functions
Adaptive Resonance
Theory
ARTMAP
Back propagation
Radial basis function
networks
Probabilistic neural
networks
Kohonen feature map
Learning vector
quantisation
Recurrent back
propagation
Temporal difference
learning

Unsupervised

Supervised
Supervised

Supervised

Supervised
Unsupervised
Supervised
Supervised
Reinforcement

Recurrent

Recurrent
Feed-forward

Feed-forward

Feed-forward
Feed-forward
Feed-forward
Limited
recurrent
Feed-
forward

Clustering

Classification
Classification,
modeling,time-series
Classification,
Modeling,time-series
Classification
Clustering
Classification
Modeling, time-
series
Time-series

Table 6.1: Neural Network Models and Their Functions

6.7 Key Issues in Selecting Models and Architecture

Selecting which neural network model to use for a particular application is

straightforward if you use the following process. First, select the function you want

to perform. This can include clustering, classification, modeling, or time-series

approximation. Then look at the input data you have to train the network. If the data

is all binary, or if it contains real-valued inputs, that might disqualify some of the

network architectures. Next you should determine how much data you have and

how fast you need to train the network. This might suggest using probabilistic

neural networks or radial basis function networks rather than a back propagation

network. Table 6.1 can be used to aid in this selection process. Most commercial

neural network tools should support at least one variant of these algorithms.

38

Our definition of architecture is the number of inputs, hidden, and output units. So

in my view, you might select a back propagation model, but explore several

different architectures having different numbers of hidden layers, and/or hidden

units.

Data type and quantity: In some cases, whether the data is all binary or contains

some real numbers might help determine which neural network model to use. The

standard ART network (called ART l) works only with binary data and is probably

preferable to Kohonen maps for clustering if the data is all binary. If the input data

has real values, then fuzzy ART or Kohonen maps should be used.

Training requirements: Online or batch learning In general, whenever we want

online learning, then training speed becomes the overriding factor in determining

which neural network model to use. Back propagation and recurrent back

propagation train quite slowly and so are almost never used in real-time or online

learning situations. ART and radial basis function networks, however, train quite

fast, usually in a few passes over the data.

Functional requirements: Based on the function required, some models can be

disqualified. For example, ART and Kohonen feature maps are clustering

algorithms. They cannot be used for modeling or time-series forecasting. If you

need to do clustering, then back propagation could be used, but it will be much

slower training than using ART of Kohonen maps.

39

7. Training and Testing Neural Network
7.1 Back-propagation Algorithm

 Fig 7.1 A multilayer Network

Fig 7.2 The stepwise Activation function of the Perceptron (above), and

the Sigmoid Activation Function of the Backpropagation Unit (below)

o1 o2 oC

1 h1 h2 h3 hB

1 x1 x2 x3 x4 xA

Output units

Hidden units

Input units

W2ij

W1ij

1.0

0.5

40

Given: A set of input-output vector pairs.

Compute: A set of weights for a multi layer network that maps inputs onto

corresponding outputs.

1. Let A be the number of units in the input layer, as determined by the

length of the training input vectors. Let C be the number of units in

the output layer. Now choose B, the number of units in the hidden

layer. As figure 7.1, the input and hidden layers each have an extra

unit used for shareholding; therefore, the units in these layers will

sometimes be indexed by the ranges (0,…,A) and (0,….,B). We

denote the activation levels of the units in the input layer by xj, in the

hidden layer by hj, and in the output layer by oj. Weights connecting

the input layer to the hidden layer are denoted by w1ij, where the

subscript i indexes the input units and j indexes the hidden units.

Likewise, weights connecting the input layer to the output layer are

denoted by w2ij, with I indexing to hidden units and j indexing

output units.

2. Initialize the weights in the network. Each weight should be set

randomly to a number between -0.1 and 0.1.

W1ij = random(-0.1,0.1) for all i = 0,….A, j = 1,….B

W2ij = random(-0.1,0.1) for all i = 0,….B, j = 1,….C

3 Initialize the activations of the thresholding units. The values of

these thresholding units should never change.

 x0 = 1.0

 h0 = 1.0

4. Choose an input-output pair. Suppose the input vector is xi and the

target output vector is yi. Assign activation levels to the input units.

5. Propagate the activation from the units in the input layer to the units

in the hidden layer using the activation function of figure 7.2:

41

0

1

1
 1......

1
A

ij ii

j
w x

h for all j B
e =

−
= =

∑+

Note that I ranges from 0 to A. w10j is the thresholding weight for

hidden unit j (its propensity to fire irrespective of its inputs). x0 is

always 1.0.

6. Propagate the activations from the units in the hidden layer to the

units in the output layer.

0

2

1
 1......

1
B

ij ii

j
w h

o for all j C
e =

−
= =

∑+

 Again, the thresholding weight w20j for output unit j plays a role in

the weighted summation. ho is always 1.0.

7. Compute the errors of the units in the hidden layer, denoted δ2j.

Errors are based on the network’s actual output (oj) and the target

output (yj).

 2 (1)() 1....j j j j jo o y o for all j Cδ = − − =

8. Compute the errors of the units in the hidden layer, denoted δ1j.

0

1 (1) 2 . 2 1....
C

j j j i ji
i

h h w for all j Bδ δ
=

= − =∑

9. Adjust the weights between the hidden layer and output layer. The

learning rate is denoted η; its function is the same as in perceptron

learning. A reasonable value of η is 0.35.

 2 . 2 . 0.... , 1.....ij j iw h for all i B j Cη δ∆ = = =

10. Adjust the weights between the input layer and the hidden layer.

 1 . 1 . 0.... , 1.....ij j iw x for all i A j Bη δ∆ = = =

42

11. Go to step 4 and repeat. When all the input-output pairs have been

presented to the network, one epoch has been completed. Repeat

steps 4 to 10 for as many epoch is desired.

The algorithm generalizes straightforwardly to networks of more than

three layers. For each extra layer, insert a forward propagation step

between steps 6 and 7, an error computation step between step 8 and 9,

and a weight adjustment step between step 10 and 11. Error computation

for hidden units should use the equation in step 8, but with I ranging

over the units in the next layer, not necessarily the output layer.

The speed of learning can be increased by modifying the weight

modification steps 9 and 10 to include a momentum term α. The weight

update formulas become;

 2 (1) . 2 . 2 ()ij j i ijw t h w tη δ α∆ + = + ∆

 1 (1) . 1 . 1 ()ij j i ijw t h w tη δ α∆ + = + ∆

Where hi, xi, δ1j and δ2j are measured at time t+1. 1 ()ijw t∆ is the change

the weight experienced during the previous forward-backward pass. If α

is set to 0.9 or so, learning speed is improved.

Recall that the activation function has a sigmoid shape. Since infinite

weights would be required for the actual outputs of the network to reach

0.0 and 1.0, binary target outputs (the yj’s of steps 4 and above) are

usually given as 0.1 and 0.9 instead. The sigmoid is required by

backpropagation because the derivation of the weight update rule

requires that the activation function be continuous and differentiable.

7.2 Defining Success: When Is the Neural Network Trained?

Once you have selected a neural network model, chosen the data representations,

and are all ready to start training, the next decision is, "How do you know when the

network is trained?" Depending on the type of neural network and on the function

you are performing, the answer to this question will vary. If you are performing

43

classification, then you want to monitor the number of correct and incorrect

classifications the network makes when it is in testing mode. When clustering data,

the training process is usually determined by the number of passes, or epochs, taken

through the training data. If you are trying to build a model or time-series

forecaster, then you probably want to minimize the prediction error. Regardless of

the function required, once the neural network is trained and meets the specified

accuracy, then the connection weights are "locked" so they cannot be adjusted. In

the following sections, we explore the acceptance criteria used for training neural

network to perform classification, clustering, modeling, and time-series forecasting.

7.3 Classification

The measure of success in a classification problem is the accuracy of the classifier,

usually termed as the percentage of correct classifications. In some applications,

getting an incorrect c1assiflcation is worse than getting no classification at all. In

~hese cases, a "don't know" or uncertain answer is desired. By selecting your data

representation for the network outputs, you can obtain the behavior you require.

For example, let's say we want to classify customers into three types: poor, good,

and excellent. We use a one-of-N code to represent our output and then train the

network with an error tolerance of 0.1. We created an output f1Iter that selects the

highest output unit as the winning category. Thatis, if the outputs are 0.9,0.4, and

0.3, we say that the winner is 0.9, and the corresponding category is poor. Note also

that if the outputs are 0.9, 0.89, and 0.87, we would still classify the customer as

poor, even though the network has high prediction values for good and excellent.

Even if the outputs were 0.2, 0.19, and 0.1, the output c1assiflcation would be that

the customer was poor. One way to avoid this problem is to put a threshold limit on

the output units before you perform the one-of-N code conversion. Usually we want

the output value to be at least 0.6 before we say that the unit is ON.

If we put this threshold value in place, then we could add a fourth category,

unknown or undecided, to represent the case where none of the network output units

had a value above 0.6. A confusion matrix is a text or graphic visualization that

44

indicates where the classification errors are occurring. A text version lists the

possible output categories and the corresponding percentages of correct and

incorrect classifications .

45

8. Analyzing Neural Network
When data mining is used for decision support applications, creating the neural

network model is only the first part of the process. The next part, and the most

important from a decision maker's perspective, is to find out what the neural

network learned. In this section, I describe activities that are used to open up the

neural network "black box" and transform the collection of network weights into a

set of visualizations, rules, and parameter relationships that people can easily

comprehend.

8.1 Discovering What the Network learned

When using neural networks as models for transaction processing, the most

important issue is whether the weights in the neural network accurately capture the

classification, model, or forecast needed for the application. If we use credit files to

create a neural network loan officer, then what matters is that we maximize our

profit and minimize our losses. However, in decision support applications, what is

important is not that the neural network was able to learn to discriminate between

good and bad credit risks, but that the network was able to identify what factors are

key in making this determination. In short, for decision support applications, we

want to know what the neural network learned.

Unfortunately this is one of the most difficult aspects of using neural networks. One

approach is to treat the neural network as “black box”, probe it with test input and

record output. This is the input sensitivity approach. Another approach is to present

the input data to the neural network and then generate a set of rules that describe the

logical function performed by neural network based on inspection of its internal

states and connection weights. A third approach is to represent the neural network

visually using a graphical representation so that the wonderful pattern recognition

machine known as human brain can contribute to the process.

46

The technique used to analyze the neural networks depends on the type of data

mining function being performed. This is necessary because the type of information

neural network has learned is qualitatively different, based on the function it was

trained to do. For example if you are clustering customer for a market segmentation

application, the output of the neural network is the identifier of the cluster that the

customer fell into. At this point , statistical analysis of he attributes of the customers

in each segment might be warranted, along with visualization techniques described

in the following. Or we might want to view the connection weights following into

each output unit (cluster) and analyze them to see what the neural network learned

were t6he “prototypical” customer for that segment.

47

9. Implementation of the Project
I have implemented this project using java 1.5 programming language; I have used

Text Editor for writing source code in java. This project consist various classes

written in java. In this section I will describe about input and output of the project.

9.1 Data Format

The input format is a subset of the arff format used by Weka2, a popular open

source data mining tool.

Specifically, the only supported attribute types are numerical (numeric, integer,

real), and nominal. The unsupported types are of no use in the setting of providing a

simple neural network. Furthermore, missing and sparse data is not supported as

well, as these would require some data preprocessing which is not the focus of this

project. Weka comes with some sample data files, as an example here an excerpt

from the iris sample:

@RELATION iris

@ATTRIBUTE

@ATTRIBUTE

@ATTRIBUTE

@ATTRIBUTE

@ATTRIBUTE

sepallength

sepalwidth

petallength

petalwidth

class

REAL REAL REAL REAL

{Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA 5.1,3.5,1.4,O.2,Iris-setosa

In addition to the definition of the sample name and schema, that is four numeric

attributes and the nominal attribute class, the first data record is shown.

9.2 Attribute-relation file format

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a

list of instances sharing a set of attributes. ARFF files were developed by the

Machine Learning Project at the Department of Computer Science of The

University of Waikato for use with the Weka machine learning software.

48

Overview

ARFF files have two distinct sections. The first section is the Header information,

which is followed the Data information. The Header of the ARFF file contains the

name of the relation, a list of the attributes (the columns in the data), and their types.

An example header on the standard IRIS dataset looks like this:

 % 1. Title: Iris Plants Database
 @RELATION iris

 @ATTRIBUTE sepallength NUMERIC
 @ATTRIBUTE sepalwidth NUMERIC
 @ATTRIBUTE petallength NUMERIC
 @ATTRIBUTE petalwidth NUMERIC
 @ATTRIBUTE class {Iris-setosa,Iris-versic olor,Iris-
virginica}

The Data of the ARFF file looks like the following:
 @DATA
 5.1,3.5,1.4,0.2,Iris-setosa
 4.9,3.0,1.4,0.2,Iris-setosa
 4.7,3.2,1.3,0.2,Iris-setosa
 4.6,3.1,1.5,0.2,Iris-setosa
 5.0,3.6,1.4,0.2,Iris-setosa
 5.4,3.9,1.7,0.4,Iris-setosa
 4.6,3.4,1.4,0.3,Iris-setosa
 5.0,3.4,1.5,0.2,Iris-setosa
 4.4,2.9,1.4,0.2,Iris-setosa
 4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and
@DATA declarations are case insensitive.

Examples

Several well-known machine learning datasets are distributed with Weka in the
$WEKAHOME/data directory as ARFF files.

The ARFF Header Section

The ARFF Header section of the file contains the relation declaration and attribute
declarations.

The @relation Declaration

The relation name is defined as the first line in the ARFF file. The format is:

49

 @relation <relation-name>

where <relation-name> is a string. The string must be quoted if the name includes
spaces.

The @attribute Declarations

Attribute declarations take the form of an orderd sequence of @attribute

statements. Each attribute in the data set has its own @attribute statement which

uniquely defines the name of that attribute and it's data type. The order the attributes

are declared indicates the column position in the data section of the file. For

example, if an attribute is the third one declared then Weka expects that all that

attributes values will be found in the third comma delimited column.

The format for the @attribute statement is:

 @attribute <attribute-name> <datatype>

where the <attribute-name> must start with an alphabetic character. If spaces are to
be included in the name then the entire name must be quoted.

The <datatype> can be any of the four types currently (version 3.2.1) supported by
Weka:

• numeric
• <nominal-specification>
• string
• date [<date-format>]

where <nominal-specification> and <date-format> are defined below. The
keywords numeric, string and date are case insensitive.

Numeric attributes

Numeric attributes can be real or integer numbers.

Nominal attributes

Nominal values are defined by providing an <nominal-specification> listing the
possible values: {<nominal-name1>, <nominal-name2>, <nominal-name3>, ...}

For example, the class value of the Iris dataset can be defined as follows:

50

 @ATTRIBUTE class {Iris-setosa,Iris-versi color,Iris-
virginica}

Values that contain spaces must be quoted.

String attributes

String attributes allow us to create attributes containing arbitrary textual values.

This is very useful in text-mining applications, as we can create datasets with string

attributes, then write Weka Filters to manipulate strings (like

StringToWordVectorFilter). String attributes are declared as follows:

 @ATTRIBUTE LCC string

Date attributes

Date attribute declarations take the form:

 @attribute <name> date [<date-format>]

where <name> is the name for the attribute and <date-format> is an optional string

specifying how date values should be parsed and printed (this is the same format

used by SimpleDateFormat). The default format string accepts the ISO-8601

combined date and time format: "yyyy-MM-dd'T'HH:mm:ss". Dates must be

specified in the data section as the corresponding string representations of the

date/time (see example below).

ARFF Data Section

The ARFF Data section of the file contains the data declaration line and the actual
instance lines.

The @data Declaration

The @data declaration is a single line denoting the start of the data segment in the
file. The format is:

 @data

51

The instance data

Each instance is represented on a single line, with carriage returns denoting the end

of the instance. Attribute values for each instance are delimited by commas. They

must appear in the order that they were declared in the header section (i.e. the data

corresponding to the nth @attribute declaration is always the nth field of the

attribute).

Missing values are represented by a single question mark, as in:

 @data
 4.4,?,1.5,?,Iris-setosa

Values of string and nominal attributes are case sensitive, and any that contain
space must be quoted, as follows:

 @relation LCCvsLCSH

 @attribute LCC string
 @attribute LCSH string

 @data
 AG5, 'Encyclopedias and dictionaries.;Twentie th century.'
 AS262, 'Science -- Soviet Union -- History.'
 AE5, 'Encyclopedias and dictionaries.'
 AS281, 'Astronomy, Assyro-Babylonian.;Moon -- P hases.'
 AS281, 'Astronomy, Assyro-Babylonian.;Moon -- T ables.'

Dates must be specified in the data section using the string representation specified
in the attribute declaration. For example:

 @RELATION Timestamps

 @ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"

 @DATA
 "2001-04-03 12:12:12"
 "2001-05-03 12:59:55"

Sparse ARFF files

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be
explicitly represented.

52

Sparse ARFF files have the same header (i.e @relation and @attribute tags) but
the data section is different. Instead of representing each value in order, like this:

 @data
 0, X, 0, Y, "class A"
 0, 0, W, 0, "class B"

the non-zero attributes are explicitly identified by attribute number and their value
stated, like this:
 @data
 {1 X, 3 Y, 4 "class A"}
 {2 W, 4 "class B"}

Each instance is surrounded by curly braces, and the format for each entry is:
<index> <space> <value> where index is the attribute index (starting from 0).

9.3 Installation

The software is implemented as a number of plain Java files. The development

version is Java 1.5, thus to compile or run it the same version or a more recent one

is recommended, .

The compiled program, that is the NeuralNetwork. j ar file, is run by the command

java -jar NeuralNetwork.jar [options] file_name

The options and file_name parameters are described below.

The source code version NeuralNetwork. needs to be compiled first. The

compilation instructions below assume that the source has been unpacked in the

current working directory.

9.4 Configuration

The only way to configure the program is by command line flags. The option --

help lists all available flags, along with their default values and a concise

explanation:

java -jar NeuralNetwork.jar --help

53

This is the only flag which takes no argument and does not require a file name to be

specified. All other flags, as listed below, take exactly one argument. For an

explanation of unknown terminology or concepts, refer to section 4.

. --target-attribute

Takes the name of an attribute as specified in the input file. This attribute

becomes the target attribute for the classification. If not given, the attribute

specified last in the input is used as the target attribute.

. --hidden-layers

Specifies the number of hidden layers and the number of nodes within each

hidden layer (see Sec. 4). These are to be given as a comma separated list of

non-negative integers, e.g. 4,6,2 for three hidden layers with four, six, and two

nodes. If zero nodes are specified for a layer, this layer is omitted. Thus 0

amounts to no hidden layer at all.

. --learning rate

The learning rate of the back-propagation algorithm (see Sec. 4). This must be

a real number greater than zero and less than one.

. --momentum

The momentum of the back-propagation algorithm (see Sec. 4). This must be

a real number greater or equal than zero and less than one.

. --epochs

The number of times the sample data is fed into the neural network to train it .

This must be an integer greater than zero. This is the only termination

criterion for the learning process.

. --n-fold-validation

Cross-validation is performed over the given number of folds of the data

sample. This must be an integer greater or equal to zero. For zero no cross

validation is performed.

54

Note that validation is performed over the whole sample in any case.

9.5 Output

After learning and validation has been performed, the model, i.e. the trained neural

network, and some validation metrics are output as plain text.

55

56

57

The model is output layer by layer, from the input layer over the hidden layers to

the output layer, and each layer node by node in order. For each node its position in

the network and its links to the nodes of the previous layer along with the learned

weights are shown.The validation metrics, mean absolute error and root mean

squared error, as well as a confusion matrix with the according fl-measures for a

nominal target attribute, are given for the whole sample plus the cross-validation

58

average.

9.6 Architecture

The system can be divided into the components configuration, command line
evaluation, parsing, data representation, data normalization, the neural network,
validation, and output. In more detail, this is

 Configuration

Classes: Config

Contains the configuration used by all parts of the system, for examplethe
learning rate, the name of the input file, the target attribute, .. .

 CommandLine Evaluation

Classes: EvalArgs, Option, OptionInt, OptionNat, OptionDouble,
OptionLearningRate, OptionMomentum, OptionString, OptionNats.
The command line flags (see Sec. 2) are checked for correctness and
evaluated. A Config object is created and initialized based on these settings.

The different types of flags are represented by different subclasses of
Option.These serve to provide the different types of flags, e.g. a string with
OptionString or a real numeric with OptionDouble, and to ensure further type
restrictions, e.g. the valid range of a real value for OptionLearningRate, by
further sub-classing in combination with JML constraints.

 Parsing

Classes: ReadArff

Parses the input file given in the arff format, and creates a data schema and sample
based on it.

 Data Sample

Classes: Sample, Schema, Attribute, AttributeInt, AttributeReal,
AttributeNominal

A data sample is represented by its schema and the actual data. The schema specifies

the structure of the sample's data records in terms of attributes. That is, each element

of a data record must be of a type compatible with the corresponding schema

attribute. Attributes of the different numeric and nominal attributes are subclasses of

the abstract class Attribute.

 Data normalization

Before data can be entered into the neural network it is normalized based on the
whole sample (see Sec. 4). NormalizerSample normalizes any data record, using the

59

appropriate attribute normalizer for each element of the record.

 Neural Network

Classes: NeuralNetwork, Node, NodeInput, NodeHidden, NodeOutput,
Connection, Weight

The neural network is represented as a network of connected weighted nodes. The
subclasses of Node represent nodes of the input, a hidden, or the output layer.
Connections are bidirectional, to feed data forward and errors feed backward during
the learning process. Weights are attached to each connection and each node, except
for the input nodes.

 Validation

Classes: Validation, ConfusionMatrix

A network is validated by computing for a sample all outputs, and providing the
correct and the computed outputs to a Validation object. It computes the validation
metrics described in section 5. If the target attribute is nominal, the validation object
does automatically create a confusion matrix.

 Output

Classes: Print

Formats and print output of the system, like the help message or the
Configuration.

9.7 Evaluation

To get a sense of how good the learned network models the data, some metrics to
validate a model and some empirical test results are presented in the following.
Metrics
After a network has been trained on a sample, it is immediately evaluated on this
same sample.
In detail, for a sample of size n the metrics are:

Mean Absolute Error

The sum of the absolute differences between the correct and computed output for
each record, divided by the number of records: (Li loutputi - correctil)/n

Root Mean Squared Error

The square root of the sum of the squared differences between the correct and
computed output for each record, divided by the number of records: 0JLi(outputi -
correcti)2)/n)

For a nominal target value the following additional metrics are computed:

60

Correctly Classified

The number of records which have been correctly classified, in contrast
to the number of incorrectly classified ones.

Confusion Matrix

A matrix where the rows correspond to the correct target value, the columns to the
computed value, and each cell contains how often this case occurred. For example,
the confusion matrix

 A B C

 A 8 1 1
B 3 7 0
C 1 0 9

says that A has been classified 8 times correctly as A (true positive), 2 times
incorrectly as B or C (false negative), and 4 times B or C have been incorrectly
classified as A (false positive).

Precision

The precision of a value x is the number of times it has been classified correctly,
divided by the number of times it has been classified correctly plus the number of
times another value has been misclassified as x. Thus, the precision of A is 8/(8 +
4) = 0.66.

 Recall

Similarly, the recall of a value is the number of times it has been classified
correctly, divided by the number of times it has been classified correctly plus the
number of times it has been misclassified. Thus, the recall of A is 8/(8 + 2) = 0.8.

F1-measure

Finally, the F1-measure of a value is computed as two times its precision times its
recall divided by the sum of its precision and recall. Thus, the precision of A is (2
* 0.66 * 0.8)/(0.66 + 0.8) = 0.73.

Cross- Validation

As mentioned, the previous metrics are applied to the original sample, that is the
sample is the training and the validation data set at the same time. This is
problematic, as it is unclear how the performance of the network will be on
unseen data, which comes from the same area as the original data, but was not
available for training the net. The model could be perfect for the training data, but
at the same time overfit it and not generalize well for any new data, which is
clearly not desired.

61

To get an idea how well the model generalizes, cross-validation is applied.
That is, the data sample S is partitioned into n sets Sn, and for the i.th setup S \ Si
is the training set, while Si is the validation set. Now, for this setup a new neural
network is trained on the training set, where the network has the same initial
structure and initial weights as the model trained over the whole sample S. Then,
the new trained network is evaluated over the validation set, which is unseen data
for this particular network, and thus a generalization test.
This is done for each of the n partitions. Finally, the n validation results are
averaged, thus giving an indication on how well the original model might scale
for new data.

62

10. Class Description
� Class Attribute

java.lang.Object
 nn.Attribute

Direct Known Subclasses:
AttributeInt, AttributeNominal, AttributeReal

public abstract class Attribute
extends java.lang.Object

The specification of an attribute of a data schema, i.e. its name and (by subclassing) its
type. An attribute in some data sample mey for example be 'width' 'double'.

Field Detail

 name

 private final java.lang.String name

Specifications: spec_public

Constructor Detail

 Attribute

 public Attribute(java.lang.String name)

Parameters:
name - The attribute's name.

Method Detail

 getName

 public java.lang.String getName()

Returns:
The attribute's name.

 isNumerical

 public abstract boolean isNumerical()

Instead of doing run time checks to distinguish between different specializations
of this class, this is done with this method. I don't like it, but I don't like run time
type checks either, and was thus not motivated to learn and use them in Java. And
a better design eluded me.
Returns:
If this is a numerical or nominal attribute.

63

 parseValue

 public abstract java.lang.Object parseValue(java.lang.String value)

Used to parse the data input. Converts a value of this attribute type given as a
string to the native representation, e.g. Integer, Double, String.
Parameters:
value - The string representation of a valid attribute value.
Throws:
Termination - If value is not a valid value representation.

 createNormalizer

 public abstract NormalizerAttribute createNormalizer()

Returns:
A normalizer specific for this attribute's instance.

==
� Class Config

java.lang.Object
 nn.Config

public class Config
extends java.lang.Object

Contains all configuration, i.e. the structure of the neural network, the validation options,

Field Detail

 dataFileName

 private java.lang.String dataFileName

Specifications: spec_public

 options

 private final java.util.ArrayList options

Specifications: spec_public

 targetAttributeOption

 private final OptionString targetAttributeOption

Specifications: spec_public

 targetAttribute

64

 private Attribute targetAttribute

the target attribute
Specifications: spec_public

 targetAttributeIndex

 private int targetAttributeIndex

the index of the targetAttribute within the attributes in the input data schema, i.e.
the i.th attribute defined in the input (starting counting at 0).
Specifications: spec_public

 hiddenLayers

 private final OptionNats hiddenLayers

Specifications: spec_public

 learningRate

 private final OptionLearningRate learningRate

Specifications: spec_public

 momentum

 private final OptionMomentum momentum

Specifications: spec_public

 epochs

 private final OptionNat epochs

Specifications: spec_public

 n_fold_validation

 private final OptionNat n_fold_validation

Specifications: spec_public

Constructor Detail

 Config

 public Config()

Creates the default configuration.

Method Detail

 optionForFlag

 public Option optionForFlag(java.lang.String flag)

65

Parameters:
flag - the command line flag correspondig to this option
Returns:
the option with the given flag, i.e. hiddenLayers for '--hidden-layers'.

 getOptions

 public java.util.Iterator getOptions()

Returns:
An iterator over all options.

 getDataFileName

 public java.lang.String getDataFileName()

Returns:
Returns the name of the data file.

 setDataFileName

 public void setDataFileName(java.lang.String dataFileName)

Parameters:
dataFileName - The name of the data file to set.

 getTargetAttribute

 public Attribute getTargetAttribute()

Returns:
Returns the targetAttribute of the data sample.

 getTargetAttributeIndex

 public int getTargetAttributeIndex()

Returns:
Returns the index of the targetAttribute within the attributes of the data sample,
starting with 0.

 getHiddenLayers

 public java.util.ArrayList getHiddenLayers()

Returns:
Returns the number of nodes per hidden layers as an Integer list.

 getLearningRate

 public double getLearningRate()

Returns:
Returns the learning rate of the neural network.

66

 getMomentum

 public double getMomentum()

Returns:
Returns the momentum of the neural network.

 getEpochs

 public int getEpochs()

Returns:
Returns the epochs used to train the neural network.

 getNFoldValidation

 public int getNFoldValidation()

Returns:
Returns the number of folds of the n-fold cross validation.

 updateTargetAttribute

 public void updateTargetAttribute(Sample sample)

If the target attribute was given as a command line flag its name is verified.
Otherwise, the last attribute given in the input is selected as the target attribute.
Parameters:
sample - the data sample to learn

===

� Class ConfusionMatrix
java.lang.Object
 nn.ConfusionMatrix

public class ConfusionMatrix
extends java.lang.Object

A confusion matrix for a nominal target attribute.

Field Detail

 nominal

 private final java.util.ArrayList nominal

Specifications: spec_public

 sampleSize

 private int sampleSize

67

Specifications: spec_public

 matrix

 private java.util.HashMap matrix

Specifications: spec_public

Constructor Detail

 ConfusionMatrix

 public ConfusionMatrix(AttributeNominal attribute)

Creates a confusion matrix for the given nominal Attribute. The confusion matrix
is then built incrementaly as the records are evaluated against the network and the
results are registered (register (String, String)).

Method Detail

 register

 public void register(java.lang.String correct,
 java.lang.String computed)

Registers the performance of the model on a record, i.e. gives the correct and the
computed value of the nominal attribute.

 print

 public void print(java.io.PrintStream out)

Prints the evaluation:

• the number of correctly classified records,
• the recall, precision, and f1-measure per value,
• and the confusion matrix.

When target is the value to measure, then

• true positive is the number of times target was correctly classified,
• false negative is the number of times target was the correct output, but

another value was computed as output.
• false positive is the number of times target was not the correct output, but

was computed as output.

For example, take the confusion matrix

• - A B C
• A 8 1 1
• B 3 7 0
• C 1 0 9

68

where the rows contain the correct and the columns the computed output. Totally
8 + 7 + 9 = 24 out of 30 records are classified correctly. For the value A we get

• true positive = 8
• false positive = 3 + 1 = 4
• false negative = 1 + 1 = 2

Based on this, for the value A we get

• precision = true positive / (true positive + false positive) = 8 / (8 + 4) =
0.66

• recall = true positive / (true positive + false negative) = 8 / (8 + 2) = 0.8
• f1-measure = 2 * precision * recall / (precision + recall) = 2 * 0.66 * 0.8 /

(0.66 + 0.8) = 0.73

Parameters:
out - The stream to print to.

==
� Class Connection
java.lang.Object
 nn.Connection

public class Connection
extends java.lang.Object

A (weighted) connection between two nodes.

Field Detail

 source

 private final Node source

Specifications: spec_public

 target

 private final NodeHidden target

Specifications: spec_public

 weight

 private final Weight weight

Specifications: spec_public

Constructor Detail

69

 Connection

 public Connection(Node source,NodeHidden target,
Config config)

Creates the connection between the source and target code. Does not register itself
to the source or target node.
Parameters:
source - Connected from this node.
target - Connected to this node.

Method Detail

 getSource

 public Node getSource()

Returns:
The source node.

 getTarget

 public NodeHidden getTarget()

Returns:
The target node.

 getWeight

 public Weight getWeight()

Returns:
The weight.

===

� Class EvalArgs
java.lang.Object
 nn.EvalArgs

public class EvalArgs
extends java.lang.Object

Parses the command line arguments and evaluates them.

Field Detail

 helpFlag

 public static final java.lang.String helpFlag

flag for printing a help synopsis.

70

Constructor Detail

 EvalArgs

 public EvalArgs()

Method Detail

 evalCommandLine

 public static void evalCommandLine(Config config,
 java.lang.String [] args)

Evaluate command line flags. The flags are mostly given in config, plus special
ones like helpFlag defined in this class.
Parameters:
config - The configuration to be modified based on the command line arguments.
args - The command line arguments
Throws:
Termination - If the arguments are malformed.

 isFlag

 protected static boolean isFlag(java.lang.String flag)

Is this string a valid flag? Flags start with '--' or '-', e.g. '--help'.
===

� Class Main
java.lang.Object

 nn.Main

public class Main
extends java.lang.Object

Main class - contains the main function.

Constructor Detail

 Main

 public Main()

Method Detail

 main

71

 public static void main(java.lang.String[] args)

Main class - evaluates the command line, reads the data, runs the neural network,
validates it, and outputs the results.
Parameters:
args - command line options

 validate

 private static void validate(Config config,
 Sample sample,
 NeuralNetwork model,
 NeuralNetwork initialN et)

performs validation of the model and outputs the computed metrics
Parameters:
config - system configuration
sample - data sample
model - the network trained on the sample
initialNet - a copy of model in its initial state, for performing cross validation

===

� Class NeuralNetwork
java.lang.Object
 nn.NeuralNetwork

public class NeuralNetwork
extends java.lang.Object

A fully-connected feed-forward neural network.

Field Detail

 config

 private final Config config

Specifications: spec_public

 schema

 private final Schema schema

Specifications: spec_public

 normalizer

 private final NormalizerSample normalizer

Specifications: spec_public

 layers

72

 private java.util.ArrayList layers

Specifications: spec_public

Constructor Detail

 NeuralNetwork

 public NeuralNetwork(Config config,
 Sample sample)

Creates a neural network based on the given sample.
Parameters:
config - The configuration.
sample - The sample to learn.

 NeuralNetwork

 public NeuralNetwork(NeuralNetwork network)

Creates an independent copy of network, with the same setup, i.e. identical layers,
nodes, weights, ...

Method Detail

 createLayers

 private void createLayers()

Creates the network's layers, connects them, and assigns random initial weights.

 copy

 public NeuralNetwork copy()

Returns:
an independent copy of the network, with the same setup, i.e. identical layers,
nodes, weights, ...
Specifications: pure

 reset

 protected void reset()

Clears cached values within the network remaining from the last run.

 run

 public void run(Sample sample)

Trains the network on the given data sample. The sample must use the same
schema as the schema used when creating the network. The parameters like
epochs, learning rate, ..., are taken from the config used in the constructor.
Parameters:

73

sample - The data sample to learn.

 validate

 public void validate(Sample sample,
 Validation validation)

Run the network on the sample, and tell validation about the correct and
computed output for each record. The sample must use the same schema as use to
create the network.
Parameters:
sample - The data sample to learn.
validation - The validation object to extend.

 printWeights

 private void printWeights(java.io.PrintStream out,
 NodeHidden node,
 int layer)

Prints the incoming weights of a node with their weight.
Parameters:
out - The stream to print to.
node - The node whose incoming weights are to be printed.
layer - The layer of the node.

 print

 public void print(java.io.PrintStream out)

Prints the network, layer by layer and node by node, along with their weight.
Parameters:
out - The stream to print to.

===

� Class Node
java.lang.Object
 nn.Node

Direct Known Subclasses:
NodeHidden, NodeInput

public abstract class Node
extends java.lang.Object

A node of a neural network.

Field Detail

 inConnections

74

 final java.util.ArrayList inConnections

Specifications: spec_public

 outConnections

 final java.util.ArrayList outConnections

Specifications: spec_public

Constructor Detail

 Node

 public Node()

Creates a new node.

 Node

 public Node(Node node)

Method Detail

 copy

 public abstract Node copy()

Returns:
an independent copy of this node.

 getInConnections

 protected java.util.List getInConnections()

Returns:
The connections from the previous layer.

 getOutConnections

 protected java.util.List getOutConnections()

Returns:
The connections to the next layer.

 connectFrom

 public void connectFrom(Connection connection)

Adds a connection to the previous layer.
Parameters:
connection - The connection.

 connectTo

75

 public void connectTo(Connection connection)

Adds a connection to the next layer.
Parameters:
connection - The connection.

 reset

 public abstract void reset()

Needs to be called each time a new record is fed to the network. This invalidates
the old output, and the old backpropagation data.

 getOutput

 public abstract double getOutput()

Compute the output of this node.
Returns:
The node's output.

 propagate

 public abstract void propagate()

Do backpropagation.
===

� Class NodeHidden
java.lang.Object
 nn.Node

 nn.NodeHidden

Direct Known Subclasses:
NodeOutput

public class NodeHidden
extends Node

A node of a hidden layer of a neural network.

Field Detail

 config

 private final Config config

Specifications: spec_public

 weight

 private final Weight weight

Specifications: spec_public

76

 output

 private double output

Specifications: spec_public

 outputValid

 private boolean outputValid

Is output in sync, or does it have to be recomputed?
Specifications: spec_public

 delta

 protected double delta

Cache for the current delta of this node (for backprogagation).
Specifications: spec_public

 deltaValid

 private boolean deltaValid

Is delta in sync, or does it have to be recomputed?
Specifications: spec_public

Constructor Detail

 NodeHidden

 public NodeHidden(Config config)

Creates anew node of a hidden layer and initializes its weight randomly.

 NodeHidden

 public NodeHidden(NodeHidden node)

Method Detail

 copy

 public Node copy()

 getWeight

 public Weight getWeight()

Returns:
Returns the weight.

 isOutputValid

77

 protected boolean isOutputValid()

Returns:
Is the current output valid, or does it have to be recomputed?.

 setOutputValid

 protected void setOutputValid(boolean outputValid)

Parameters:
outputValid - Validate/Invalidate the cached output.

 isDeltaValid

 protected boolean isDeltaValid()

Returns:
Is the current delta valid, or does it have to be recomputed?.

 setDeltaValid

 protected void setDeltaValid(boolean deltaValid)

Parameters:
deltaValid - Validate/Invalidate the cached delta.

 reset

 public void reset()

Description copied from class: Node
Needs to be called each time a new record is fed to the network. This invalidates
the old output, and the old backpropagation data.

 getOutput

 public double getOutput()

The output of the node is computed as

• the sum of the weighted input of all incoming connections,
• plus the node's weight,
• normalized by the sigmoid function.

Returns:
The node's output.

 setOutput

 protected void setOutput(double output)

Cache the node's output.
Parameters:
output - The current output.

78

 getDelta

 public double getDelta()

Compute the delta of this node in backpropagation. The delta of a hidden node is
computed as

• the node's output,
• times (1 minus the node's output),
• times the sum of the weighted deltas of the outgoing connections.

Returns:
The node's delta.

 setDelta

 protected void setDelta(double delta)

Cache the node's delta in backpropagation.
Parameters:
delta - The current delta.

 propagate

 public void propagate()

Does backpropagation. Adjusts the node's weight and each incoming connection's
weight by calling Weight.propagate(double, double) .

===

� Class NodeInput
java.lang.Object
 nn.Node

 nn.NodeInput

public class NodeInput
extends Node

An input node of a neural network.

Field Detail

 input

 private double input

The last value fed into this input node.
Specifications: spec_public

Constructor Detail

79

 NodeInput

 public NodeInput()

Creates a node of the input layer.

 NodeInput

 public NodeInput(NodeInput node)

Specifications: pure
public normal_behavior
requires node != null;

Method Detail

 copy

 public Node copy()

 reset

 public void reset()

Description: same as class Node

 setInputValue

 public void setInputValue(double value)

Sets the input of this node (when a record is fed into the network).
Parameters:
value - Input value.

 getOutput

 public double getOutput()

Just returns the value fed into this node.
Returns:
Network Input.

 propagate

 public void propagate()

Does nothing - input nodes are not adjusted.
===

� Class NodeOutput
java.lang.Object

 nn.Node

 nn.NodeHidden

 nn.NodeOutput

80

public class NodeOutput
extends NodeHidden

A node of the output layer of a neural network.

Field Detail

 correctOutput

 double correctOutput

The correct output for the record fed into the network.
Specifications: spec_public

Constructor Detail

 NodeOutput

 public NodeOutput(Config config)

Creates a node of the output layer.

 NodeOutput

 public NodeOutput(NodeOutput node)

Method Detail

 copy

 public Node copy()

Overrides:
copy in class NodeHidden

 getDelta

 public double getDelta()

The delta of an output node is computed as

• the node's output,
• times (1 minus the node's output),
• times (the correct output minus the node's output).

Overrides:
getDelta in class NodeHidden
Returns:
The node's delta.

81

 setCorrectOutputValue

 public void setCorrectOutputValue(double value)

Tells the node the correct target value of the input record.
===

� Class NormalizerAttribute
java.lang.Object

 nn.NormalizerAttribute

Direct Known Subclasses:
NormalizerAttributeInt, NormalizerAttributeNominal, NormalizerAttributeReal

public abstract class NormalizerAttribute
extends java.lang.Object

A normalizer for an attribute and a sample. A normalizer is created for an attribute (of a
specific type), and computes the normalization function based on a concrete sample.

Field Detail

 attribute

 private final Attribute attribute

Specifications: spec_public

Constructor Detail

 NormalizerAttribute

 public NormalizerAttribute(Attribute attribute)

Initializes the normalizer based on the given attribute.
Parameters:
attribute - The attribute to normalize.

Method Detail

 getAttribute

 public Attribute getAttribute()

Returns:
The normalized attribute.

 register

 public abstract void register(java.lang.Object value)

Registers a data value as part of the sample to normalize.

 normalize

82

 public abstract java.util.List normalize(java.lang.Object value)

Performs min-max normalization on a numeric attribute, and 1-of-N encoding for
on a nominal attribute.
Parameters:
value - The value to normalize.
Returns:
The normalized value as a list of doubles.

 denormalize

 public abstract java.lang.Object denormalize(java.util.List value)

Denormalizes a previously normalized value, i.e. is the inverse function of
normalize(Object)
Parameters:
value - The normalized value.
Returns:
Value denormalized.

 normalizedSize

 public abstract int normalizedSize()

Returns:
The number of reals returned by normalize(Object) .

===

� Class Option

java.lang.Object
 nn.Option

Direct Known Subclasses:
OptionDouble, OptionInt, OptionNats, OptionString

public abstract class Option
extends java.lang.Object

A command line flag representing a configuration option Concrete subclasses should add
a value field of the wanted type.

Field detail

 flag

 private final java.lang.String flag

Specifications: spec_public

 description

83

 private final java.lang.String description

Specifications: spec_public

Constructor Detail

 Option

 public Option(java.lang.String flag,
 java.lang.String description)

Parameters:
flag - The command line flag, e.g. '--epochs'.
description - A short description, e.g 'number of epochs used to train the neural
net'.

Method Detail

 getFlag

 public java.lang.String getFlag()

Returns:
The flag corresponding to this option.

 getDescription

 public java.lang.String getDescription()

Returns:
The description corresponding to this option.

 getType

 public abstract java.lang.String getType()

Returns:
A textual description of the option's type, e.g. 'int'.

 valueToString

 public abstract java.lang.String valueToString()

Returns:
The string representation of this configuration value.

 setValue

 public abstract void setValue(java.lang.String argument)

Parameters:
argument - The option value is set based on this string. argument must contain a
valid value representation for the concrete Option type.
Throws:
Termination - If argument is not a valid value representation.

84

===

� Class OptionString

java.lang.Object
 nn.Option

 nn.OptionString

public class OptionString
extends Option

Option specialized for type String.

Field Detail

 value

 private java.lang.String value

Specifications: spec_public

Constructor detail

 OptionString

 public OptionString(java.lang.String flag,
 java.lang.String description,
 java.lang.String value)

Parameters:
value - The initial value to be represented by this object.

Method Detail

 getType

 public java.lang.String getType()

 getValue

 public java.lang.String getValue()

Returns:
The current value represented by this object.

 valueToString

 public java.lang.String valueToString()

 setValue

 public void setValue(java.lang.String value)

85

Sets this object's value to the given value.
Parameters:
value - the new value.

===

� Class Print

java.lang.Object

 nn.Print

public class Print
extends java.lang.Object

Printing / Output.

Field Detail

 flagWidth

 private static final int flagWidth

The width of the flag name column.

 typeWidth

 private static final int typeWidth

The width of the type column.

Constructor Detail

 Print

 public Print()

Method Detail

 fill

 public static void fill(java.lang.StringBuffer aString, int width)

Extends the string with ' ' at the end until its size is >= width.

 fill

 public static java.lang.String fill(java.lang.String aString,
 int width)

Like fill(StringBuffer, int) for a String.

 fill

 public static java.lang.String fill(int number,

86

 int width)

Like fill(StringBuffer, int) for an int.

 fill

 public static java.lang.String fill(double number,
 int width)

Like fill(StringBuffer, int) for an double.

 printHelpFlag

 private static void printHelpFlag(java.io.PrintStream out,
 java.lang.String flag,
 java.lang.String type,
 java.lang.String value,
 java.lang.String description)

Prints a command line flag with a short description.
Parameters:
out - Where to print to.
flag - The command line flag.
type - The flag's type.
value - The current value of the flag.
description - A short description of the flag.

 printHelpFlag

 private static void printHelpFlag(java.io.PrintStream out,
 Option option)

Prints a command line flag with a short description.
Parameters:
out - Where to print to.
option - The command line flag.

 printHelp

 public static void printHelp(java.io.PrintStream out)

Prints a short help including all flags with a short description.
Parameters:
out - Where to print to.

 printConfigOption

 private static void printConfigOption(java.io.PrintStream out,
 java.lang.Str ing option,
 java.lang.Str ing description)

Prints a configuration option and its current value.
Parameters:
out - Where to print to.

87

option - The configuration option.
description - A short description of the option.

 printConfigOption

 private static void printConfigOption(java.io.PrintStream out,
 Option option)

Prints a configuration option and its current value.
Parameters:
out - Where to print to.
option - The configuration option.

 printConfig

 public static void printConfig(java.io.PrintStream out,
 Config config)

Prints the configuration, i.e. all variables and their current values.
Parameters:
out - Where to print to.

===

� Class ReadArff

java.lang.Object
 nn.ReadArff

public class ReadArff
extends java.lang.Object

A very simple parser of the arff format. Doesn't handle missing or sparse data.

Constructor Detail

 ReadArff

 public ReadArff()

Method Detail

 readArff

 public static Sample readArff(java.lang.String fileName)

Reads data in the arff fromat from a file into a sample object.
Parameters:
fileName - The file name of the arff file to parse.
Returns:
The data sample created from the data in the input file.
Throws:

88

Termination - If input can not be parsed.

 skipLine

 private static boolean skipLine(java.lang.String line)

Checks if an input line can be skipped because it contains only white space or a
comment.
Parameters:
line - The line to check.
Returns:
True iff the line contains a comment or only whitespace.

 readName

 private static java.lang.String
readName(java.io.BufferedReader reader)

 throws java.io.IO Exception

Reads the name of the data schema.
Parameters:
reader - The input file.
Returns:
The name of the schema.
Throws:
Termination - If '@relation' is not the next valid line.
java.io.IOException

 readRelation

 private static Schema readRelation(java.io.BufferedReader reader)
 throws java.io.IOExcept ion,
 Termination

Reads the attributes of the data schema.
Parameters:
reader - The input file.
Returns:
The data schema.
Throws:
Termination - If the '@attribute' definitions are not next in the file.
java.io.IOException

 readData

 private static Sample readData(java.io.BufferedReader reader,
 java.lang.String sch emaName,
 Schema schema)
 throws java.io.IOException,
 Termination

Reads the data of the relation.

89

Parameters:
reader - The input file.
schemaName - The name of the schema.
schema - The schema of the data.
Returns:
The data sample.
Throws:
Termination - If the input is malformed.
java.io.IOException

 parseCSV

 private static java.util.ArrayList parseCSV(java.lang.String line)
 throws Termina tion

Splits a comma separated string into its components. Removes enclosing
whitespace.
Parameters:
line - The string to split.
Returns:
The data schema.
Throws:
Termination - If the '@attribute' definitions are not next in the file.

 unquote

 private static java.lang.String unquote(java.lang.String string)
 throws Termination

Unqotes a string, i.e. removes enclosing "'" characters, and removes enclosing
whitespace.
Parameters:
string - The string to unquote.
Returns:
The unquoted string.
Throws:
Termination

===

� Class Sample

java.lang.Object
 nn.Sample

public class Sample
extends java.lang.Object

Represents a data sample, i.e. schema and data.

90

Field Detail

name

private final java.lang.String name

Specifications: spec_public

schema

private final Schema schema

Specifications: spec_public

records

private final java.util.ArrayList records

Specifications: spec_public

Constructor Detail

 Sample

 public Sample(java.lang.String name,
 Schema schema)

Creates an empty sample based on its schema. The actual data is filled in later on.
Parameters:
name - The sample name.
schema - The sample schema.

Method Detail

 getName

 public java.lang.String getName()

Returns:
The sample name.

 addData

 public void addData(java.util.ArrayList data)
 throws Termination

Adds a (string) data record to the sample. The record is given in string format,
each value is transformed internally to the appropriate attribute value.
Parameters:
data - The record as strings.
Throws:
Termination - If the data does not correspond to the sample schema.

91

 addRecord

 public void addRecord(java.util.ArrayList record)

Adds a data record to the sample. Each record value must be a value
corresponding to its attribute type as specified in the data schema.
Throws:
Termination - If the data does not correspond to the sample schema.

 addSample

 public void addSample(Sample sample)

Adds all records of sample. Both samples have to use the same schema.
Parameters:
sample - A data sample.

 partition

 public java.util.ArrayList partition(int partitions)

Partitions the sample randomly into partition parts.
Parameters:
partitions - The number of partitions to split to.
Returns:
The partitions.

 getSchema

 public Schema getSchema()

Returns:
The schema.

 getSampleSize

 public int getSampleSize()

Returns:
The current sample size.

 getRecord

 public java.util.List getRecord(int index)

Retrieves the index.th record of the data sample.
Parameters:
index - The index of the record to return.
Returns:
The current sample size.

 toString

92

 public java.lang.String toString()

Overrides:
toString in class java.lang.Object
Returns:
A string representation of the schema and the sample.

===

� Class Schema

java.lang.Object
 nn.Schema

public class Schema
extends java.lang.Object

The schema of a sample, i.e its attributes definitions.

Field Detail

attributes

private final java.util.ArrayList attributes

Specifications: spec_public

Constructor Detail

 Schema

 public Schema()

Specifications: pure

Method Detail

 addAttribute

 public void addAttribute(Attribute attribute)

Adds a new attribute to the schema. Order matters, attributes are indexed in order
of addition, starting from 0.
Parameters:
attribute - A new attribute of the schema.

 getNumberOfAttributes

 public int getNumberOfAttributes()

Returns:
The number of attributes of the schema.

 getAttribute

93

 public Attribute getAttribute(int index)

Parameters:
index - The index of the attribute to return.
Returns:
The requested attribute.

 toString

 public java.lang.String toString()

Overrides:
toString in class java.lang.Object

=== ====================

� Class Termination

java.lang.Object

 java.lang.Throwable

 java.lang.Error
 nn.Termination

All Implemented Interfaces:
java.io.Serializable

public class Termination
extends java.lang.Error

This Error class is used to abort the program. As this program is merely a simple demo,
no fancy exception handling is done anywhere - it merely terminates with a descriptive
error message whenever an unexpected error is encountered.

Constructor Detail

 Termination

 public Termination(java.lang.String message)

Parameters:
message - Description of the error

===

� Class Validation

java.lang.Object
 nn.Validation

public class Validation
extends java.lang.Object

Validates a model on a sample.

94

Field Detail

 meanAbsoluteError

 private double meanAbsoluteError

Specifications: spec_public

 rootMeanSquaredError

 private double rootMeanSquaredError

Specifications: spec_public

 confusionMatrix

 private final ConfusionMatrix confusionMatrix

Generate a confusion matrix for a nominal target attribute.

 sampleSize

 private int sampleSize

Specifications: spec_public

Constructor Detail

 Validation

 public Validation(Config config)

Create a validation object for the target attribute specified in config. Build the
validation incrementally via register(List, List, NormalizerSample) .

Method Detail

 updateMeanAbsoluteError

 protected void updateMeanAbsoluteError(java.util.List correct,
 java.util.Li st computed)

Updates the mean absolute error with one record's classification result.
Parameters:
correct - The correct classification (denormalized).
computed - The classification computed by the model (denormalized).

 updateRootMeanSquaredError

 protected void updateRootMeanSquaredError(java.util.List correct,
 java.util .List computed)

Updates the root mean squared error with one record's classification result.
Parameters:
correct - The correct classification (denormalized).

95

computed - The classification computed by the model (denormalized).

 register

 public void register(java.util.List correct,
 java.util.List computed,
 NormalizerSample normalizer)

Registers the performance of the model on a record, i.e. gives the correct and the
computed output, both in normalized form.
Parameters:
correct - The correct classification (normalized).
computed - The classification computed by the model (normalized).
normalizer - Normalizer to denormalize correct and computed.

 print

 public void print(java.io.PrintStream out)

Prints the evaluation:

• Mean Absolute Error: The sum of the absolut differences between the
correct and computed output for each record, divided by the number of
records.

• Root Mean Squared Error: The square root of (the sum of the differences
between the correct and computed output squared for each record divided
by the number of records).

• Confusion Matrix: ConfusionMatrix.print(PrintStream)

Parameters:
out - The stream to print to.

===

� Class Weight

java.lang.Object
 nn.Weight

public class Weight
extends java.lang.Object

A weight of the network.

Field Detail

 config

 private final Config config

Specifications: spec_public

96

 weight

 private double weight

The actual weight.
Specifications: spec_public

 adjustment

 private double adjustment

The previous weight adjustment.
Specifications: spec_public

Constructor Detail

 Weight

 public Weight(Config config)

Creates a new weight, randomly initialized in [0; 1[

 Weight

 public Weight(Weight weight)

Creates an independent copy of weight.

Method Detail

 getWeight

 public double getWeight()

Returns:
The weight.

 setWeight

 public void setWeight(double weight)

Parameters:
weight - The new weight.

 propagate

 public void propagate(double deltaNode,
 double input)

Does backpropagation, i.e. changes the current weight based on the value input to
the connected node, and the nodes responsibility for the error. Takes the learning
rate Config.getLearningRate() and the momentum
Config.getLearningRate() into account by setting the weight to

• the current weight

97

• plus the learning rate times the target node's delta, times the target node's
input,

• plus the momentum times the previous weight adjustment.

Parameters:
deltaNode - The responsibility of the connected node for the error.
input - The value previously input to the connected node.

==**************================**************===========******====

98

11. Future Work

This project can be extended by adding some functionality like:

1. adding graphical user interface, this project only supports command line.

2. it can be implemented for all neural network topologies and model, this

project implements few of them.

3. error rate in learning process can be minimize by using efficient

algorithms (genetic algorithms, etc.).

4. neural-network methods are thought to have two limitations that make them

poorly suited to data-mining tasks: their learned hypotheses are often

incomprehensible, and training times are often excessive. We can eliminate

these limitations

99

12. Conclusion

This project aimed at implementing a basic neural network, and providing usable

information about the neural networks that is their architecture, functionality and

efficiency.

This project will be helpful in understanding neural networks and their behavior, it

will show how neural network is useful in data mining problem and can be the best

solution for such problem.

We can see that, for some problems, neural networks are more suitable i.e., they do a better

job of learning the target concept than other commonly used data-mining methods.

We have not attempted to provide an exhaustive survey of the available neural-

network algorithms that are suitable for data mining. Instead, we have described

a subset of these methods, selected to illustrate the breadth of relevant

approaches as well as the key issues that arise in applying neural networks in a

data-mining setting. It is our hope that our discussion of neural-network

approaches will serve to inspire some interesting applications of these methods

to challenging datamining problems.

100

13. References

1. Artificial Intelligence, Elaine Rich, Kevin Knight, second edition, TMH

publication

2. An introduction to neural computing. Aleksander, I. and Morton, H. 2nd edition

3. Neural Networks at Pacific Northwest National Laboratory

http://www.emsl.pnl.gov:2080/docs/cie/neural/neural.homepage.html

4. Industrial Applications of Neural Networks (research reports Esprit, I.F.Croall,

J.P.Mason)

5. Neural Networks by Eric Davalo and Patrick Naim

6. Learning internal representations by error propagation by Rumelhart, Hinton and

Williams (1986).

7. Klimasauskas, CC. (1989). The 1989 Neuro Computing Bibliography.

Hammerstrom, D. (1986). A Connectionist/Neural Network Bibliography.

8. DARPA Neural Network Study (October, 1987-February, 1989). MIT Lincoln

Lab. Neural Networks, Eric Davalo and Patrick Naim

9. Pattern Recognition of Pathology Images

http://kopernik-eth.npac.syr.edu:1200/Task4/pattern.html

10. Richard Roiger and Cichael Geatz, Data Mining: A Tutorial-Based Primer,

Addison-Wesley, 2003.

11. Robert Groth, Data Mining: Building Completive Advantage, Prentice Hall, 2000.

12. Dorian, P.: Data Preparation for Data Mining, Morgan Kaufmann, 1999.

13. Weiss, S.M. and Kulikowski, C.A.: Computer Systems That Learn: Classification

and Prediction Methods from Statistics, Neural Nets, Machine Learning, and

Expert Systems, Morgan Kaufmann, 1991.

14. Weiss, S.M. and Indurkhya, N.: Predictive Data Mining: A Practical Guide,

Morgan Kaufmann, 1997.

	front.pdf
	final report.pdf

