

1

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CERTIFICATE

This is to certify that the thesis titled “Customizing the Cellular Message Encryption

Algorithm” submitted by Mallika Tyagi (2K2\EC\641), Neha Gupta (2K2\EC\649),

Pallavi Tyagi (2K2\EC\654) and Piyush Kharbanda (2K2\EC\656) to the Department

of Electronics and Communications in partial fulfillment of the requirements of the

award of the degree of Bachelor of Engineering, is a bonafide record of the work carried

out by them under my supervision and guidance.

The results embodied in this thesis have not been submitted to any other university or

Institute for the award of any degree or diploma.

Ms. Rajeshwari Pandey
Dept. of Electronics and Communications
Delhi College of Engineering
Bawana Road, New Delhi- 110062

2

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

ACKNOWLEDGEMENT

We take this opportunity to acknowledge the encouragement and support given to us by

our respected Project guide, Ms. Rajeshwari Pandey. We thank her for providing us with

the opportunity to work on this project and making all the necessary resources available

to us.

We would also like to express our gratitude to all the persons who have helped us along

the way, in the least bit by thought or action.

Pallavi Tyagi
2K2/EC/654

Mallika Tyagi
2K2/EC/641

Neha Gupta
2K2/EC/649

Piyush Kharbanda
2K2/EC/656

3

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

INDEX

Abstract 5

Chapter 1 6
Introduction 7

• Motivation 8
• Problem Definition 9
• Summary 10
• Thesis overview 11

Chapter 2 12
Introduction to Cryptography 13
Details of Cryptography 14

• Private Key Cryptography 16
• Block Ciphers 17
• Cryptanalysis 17
• Avalanche Effect 18

Chapter 3 19
Cellular Message Encryption Algorithm 20
Description of CMEA 21
Observations 23
Attacks on CMEA 24

• Chosen Plaintext Attack 25
• Known Plaintext Attack 26

Feasibility of Attacks 28

Chapter 4 29
Weaknesses of the CMEA algorithm 30
Why is CMEA Weak : Properties of CMEA 30
Analysis of the properties of CMEA 35

4

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Chapter 5 36
Customized CMEA 37
Modifications in the CMEA 37
Modifications to be kept 42
Confusion and Diffusion in Modified CMEA 43

BIBLIOGRAPHY 46

APPENDIX 47
C- Code 48

5

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

ABSTRACT

Real time applications like mobile handsets and the Personal Digital Assistants (PDA’s)

have become an important organ of our system design. Data security has gained utmost

importance because of the rapid growth of the data communication industry and for

military purposes. As the cellular telephony boomed, the need for security has increased:

both for privacy and fraud prevention.

Since the birth of the cellular industry, security has been a major concern for both service

providers and subscribers. Service providers are primarily concerned with security to

prevent fraudulent operations such as cloning or subscription fraud, while subscribers are

mainly concerned with privacy issues.

With the advent of second-generation digital technology platforms like TDMA/CDMA,

operators were able to enhance their network security by using improved encryption

algorithms and other means. CDMA2000 systems use the standardized CAVE (Cellular

Authentication and Voice Encryption) algorithm for authentication purposes. The

Cellular Message Encryption Algorithm (CMEA), a block cipher is used to encrypt the

control channel. The CMEA has been broken and it has been proven that it is extremely

vulnerable to cryptographic attacks. In the present thesis, the properties of CMEA that

render it vulnerable have been identified and the algorithm has been accordingly

modified. Further, a cryptanalysis of the new or customized algorithm has been carried

out to prove that it is indeed secure to previous specialized attacks as well as standard

attacks like linear and differential cryptanalysis.

6

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CHAPTER 1
INTRODUCTION

7

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

INTRODUCTION

Cryptography is concerned with the introduction of schemes that should be able to

withstand any abuse. Such schemes are constructed so as to maintain a desired

functionality, even under malicious attempts aimed at making them deviate from their

desired functionality.

Security of information results from the need for private transmission of both military

and diplomatic messages. The ancient Greeks and Spartans enciphered their military

messages. For the Chinese merely writing the message made it private since very few

people knew the language. The first electronic computers were built during the Second

World War to help with cracking codes. The first computers were physically massive and

slow. But the advent of the transistor and the development of technology have made the

computers smaller and faster.

Today’s era of communication has increased the importance of financial data exchange,

image processing, biometrics, etc. Thus there has been a shift in the modern day

cryptology. Thus cryptology today not only provides authentication, data integrity and

non repudiation, but has also the added task of providing security in menacing

environments.

The design of cryptographic schemes is a daunting task. One cannot rely on intuition

regarding the typical state of the environment. The adversary attacking the system will try

to manipulate the environment into conducive states. In a nutshell the attacker will try to

break a system in an unconventional way by adopting strategies which the designer may

not have envisioned. A secured cryptographic scheme has to withstand such types of

attacks. This tussle of the cryptographer (designers of cryptographic algorithms) and the

cryptanalyst (those who practice the art and science of breaking codes) has continued for

ages.

8

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

1.1 Motivation

With ever increasing growth of data communication in the field of E-commerce

transactions, data security has gained utmost importance. Several cryptosystems like

DES, RSA and AES have been developed to protect secured data. With the advent of

wireless communication and other handheld devices like Personal Digital Assistants

security provided by cryptographic algorithms has attained importance of new

dimensions.

As cellular telephony industry has boomed, the need for security has increased: both for

privacy and fraud prevention. Because all cellular communications are sent over a radio

link, anyone with the appropriate receiver can passively eavesdrop on all cell phone

transmissions in the area without fear of detection. The cellular telephony industry

players in particular are especially concerned with fraud prevention.

Cryptographic mechanisms are one obvious way to combat cloning fraud, and indeed, the

industry is turning to cryptography for protection. In 1992, the TR-45 working group

within the Telecommunications Industry Association (TIA) developed a standard for

integration of cryptographic technology into tomorrow's digital cellular systems, which

has been updated at least once. Some of the most recent cellphones to hit the market

already include these cryptographic protection mechanisms. The TIA standard [1]

describes four cryptographic primitives for use in the CDMA2000 digital cellular

systems:

• CAVE, a mixing function, is intended for challenge-response authentication

protocols and for key generation.

• A repeated XOR mask is applied to voice data for voice privacy.

• ORYX, a LSFR-based stream cipher intended for wireless data services.

• CMEA (Control Message Encryption Algorithm), a block cipher, is used to

encrypt the control channel.

9

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

The Voice Privacy Mask algorithms, the ORYX algorithm as well as CMEA have been

found to be insecure. This thesis focuses on the weaknesses of the CMEA algorithm [2]

since it is not used to protect voice communications; instead, it is intended to protect

sensitive control data, such as the digits dialed by the cell phone user. A successful break

of CMEA might reveal user calling patterns. Also sent CMEA-encrypted are digits dialed

(all DTMF tones) by the remote endpoint and alphanumeric personal pages received by

the cell phone user. Finally, compromise of the control channel contents could lead to any

confidential data the user types on the keypad: calling card PIN numbers may be an

especially widespread concern, and credit card numbers, bank account numbers, and

voicemail PIN numbers. The proven insecurity of such widely used encryption

algorithms once again raises a question mark over the practice of closed door encryption

algorithm design.

1.2 Problem Definition

The aim of the present thesis is to improve the security of the CMEA algorithm. This

thesis performs a thorough analysis of the weaknesses identified in [2] in the CMEA and

proposes a modified version of the algorithm which we shall call the “Customized-

CMEA” or “C-CMEA”. Thus the thesis focuses on the following:

• Identify the properties of the CMEA leading to its inherent insecurity. Modify

the algorithm so as to remove the causes of the easy cryptanalysis of the CMEA.

• Carry out the cryptanalysis of the C-CMEA against specialized attacks [2] as

well as standard cryptanalytic attacks.

• Implement the C-CMEA in hardware.

10

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

1.3 Summary of our work

The work in the thesis may be summarized as follows:

1) Identifying the properties of the CMEA leading to its inherent

insecurity. Modify the algorithm so as to remove the causes of the

easy cryptanalysis of the CMEA:
The thesis focuses on the parts of the CMEA that lead to the cryptanalysis of the

algorithm as given in [2]. The steps that cause these weaknesses have been studied, and

accordingly the algorithm is modified so that these weaknesses are rectified. An effort

has been made to ensure that the algorithm retains its original structure and only

necessary changes have been made.

2) Carrying out the cryptanalysis of the C-CMEA against specialized

attacks [2] as well as standard cryptanalytic attacks:
Proving the security of any new algorithm is a difficult task. First we verified both

logically as well as computationally that the C-CMEA is indeed resistant to the types of

attacks discussed in [2]. The next logical step was to test the algorithm’s strength against

standard attacks like linear and differential cryptanalysis. The confusion and diffusion

properties were checked to make sure that the algorithm provided sufficient amount of

confusion as well as diffusion as required by any good cryptographic algorithm. Also

finer issues were kept in mind against future attacks like Meet in the Middle attack.

11

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

1.4 Thesis Overview

The thesis is organized in the following sections, including the introduction present in

this section.

1) Survey
The evolution of cryptography has been briefed in section 2. The various techniques and

principles of the art have been presented. The final objective is to explain the lineage of

the current work in the vast and interesting world of ciphers.

2) Cellular Message Encryption Algorithm
Section 3 contains a description of the Cellular Message Encryption Algorithm (CMEA).

It lists out some salient points of the algorithm and its weaknesses. It also describes the

various attacks that have been successfully mounted on the algorithm in [2].

12

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CHAPTER 2
CRYPTOGRAPHY – A SURVEY

13

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

2.1 Introduction - The development of modern day cryptography

Security of information results from the need for private transmission of both military

and diplomatic messages. The need is as old as civilization itself. The art of keeping

messages secret is called cryptography, and is practiced by cryptographers.

Cryptography is used to protect information from illegal access if possible. The primitive

operation of cryptography is called encryption. The operation transforms messages into

representation that is meaningless for all parties other than the intended receiver. Almost

all cryptosystems rely upon the difficulty of reversing the encryption transformation in

order to provide security to communication. Cryptanalysis is the art and science of

breaking the encrypted message. The branch of science encompassing both cryptography

and cryptanalysis is cryptology and its practitioners are cryptologists. In short cryptology

evolves from the long lasting tussle between the cryptographer and the cryptanalyst.

For many years cryptography was the exclusive domain of the military. After the world

wars there was a shift of focus of cryptography as it became of interest to the research

community in general. The development if the world of communications and the mass

awareness of cryptography soon made it a very useful tool of modern day technology. A

large number of cryptographic papers laid to the rebirth of the science. Horst Fiestel

began the development of the Data Encryption Standard (DES) (which is a private key

algorithm) and laid the foundation of Fiestel Networks in general. Martin Hellman and

Whitefield Diffie developed the public key cryptography in 1975.

The modern day cryptographer does more than merely providing security by jumbling up

the message. He has to look into the application areas that suit the present day world. The

development of VLSI technology has made the once cumbersome computers faster and

smaller. The modern day cryptographer has the added task of providing security amidst

the conflicting requirements of throughput, power and area.

14

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

2.2 Cryptography – a few technical details

The aim of the cryptographer is to find methods to secure and authenticate messages. The

original message is called the plaintext and the encrypted output is called the ciphertext.

A secret key is employed to generate the cipher text from the plaintext. The process of

converting the plaintext to the ciphertext is called encryption and the reverse is called

decryption. The cryptographer tries to keep the message secret from the attacker or

intruder. A cryptosystem is a communication system encompassing a message source, an

encryptor, an insecure channel, a decryptor, a message destination and a secure key

transfer mechanism. This is represented in figure 2.1

A Ciphertext only attack is an attack where the cryptanalyst has access to the ciphertexts

generated using a given key but has no access to corresponding plaintext or the key.

FIGURE 2.1 Secret Key Cryptosystem

 A Known-plaintext attack is an attack where the cryptanalyst has access to ciphertexts as

well as the corresponding plaintexts, but not the key.

15

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

A Chosen-plaintext attack is an attack where the cryptanalyst can choose plaintexts to be

encrypted and has access to the resulting ciphertexts, again their purpose being to

determine the key.

These attacks are measured against a worst case referred to as the brute force method.

This method is a trial and error approach, where by every possible key is tried until the

correct one is found. Any attack that permits the recovery of the key faster than the brute

force method is considered successful.

In modern cryptography we have two distinct types of ciphers

• Private Key(or secret key or symmetric key) ciphers

• Public Key ciphers.

These types differ in the manner in which the keys are shared. In private –key

cryptography both the encryptor and the decryptor use the same key. Thus key must

somehow be securely exchanged before secret key communication can begin.

FIGURE 2.2 Public Key Cryptosystem

In public key cryptography the encryption and decryption keys are different. Thus in such

algorithms we have a key pair consisting of:

• Private Key (or Symmetric key) which must be secret and is kept to decrypt

messages.

• Public key which can be freely distributed and is used to encrypt messages.

16

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Public and Private keys algorithms have complementary advantages and disadvantages.

Thus they have their specific application areas. Private Key ciphers have higher data

throughput but the key must remain secret at both ends. Thus in a large network there are

many key pairs that must be managed. Sound cryptographic practice dictates that the key

should be changed frequently for each communication session. The throughputs of most

popular public key encryption methods are several methods of magnitudes smaller than

the most symmetric key schemes. In a large network the number of key pairs to be

maintained is much smaller and there is no need of frequent key changes. In practice

public key cryptography is used for efficient key management while symmetric key

encryption algorithms are used for bulk data encryption. Since the present thesis deals

with private key algorithms, it has been dealt with exclusively in the subsequent section.

2.2.1 Private Key Cryptography

The private key algorithms can be divided into two types:

• Block ciphers

• Stream ciphers

Block ciphers operate on blocks of plaintexts and ciphertexts. Identical plaintext blocks

always encrypt to the same cipher text blocks for a given key. The algorithm DES uses

64 bit block size where as Rijndael uses 128 bits. The CMEA is also a block cipher

operating on n number of octets at a time where n>=2. The security of the data depends

on the block sizes for the data and the key. As the key space increases, the probability of

success of the adversary reduces increasing the security of the scheme. Stream ciphers

operate on streams of plaintext one at a time. Thus a stream cipher may be imagined as a

block cipher where the bloc length is one. The topic of our present work is block ciphers

and we focus on such type of cryptographic schemes.

17

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

2.2.2 Block Ciphers

The block ciphers are a widely researched topic in the present crypto world. Security and

efficient implementations are two of the most important design objectives of such

ciphers. Shannon’s principle of confusion and diffusion are applied in the designs of

block ciphers. Confusion obscures the relationship between the plaintext and the

ciphertext. This works to make the relationship between the statistics of the plaintexts and

the ciphertexts as complicated as possible. Diffusion dissipates the redundancy of the

plaintext by spreading it over the ciphertext. Product or iterated cipher is one where

confusion and diffusion is achieved by the repeated application of the same single

ciphers. This helps the iterated cipher achieve security goals while being easily

implementable at the same time. The cipher structure which is repeated is called a round.

In modern day cryptography there are two different types of confusion, a key dependent

and a key independent function. Key dependent confusion is obtained by the bit wise

exclusive-or of key bits and plaintexts. Non linear transformations are used to obtain key

independent confusion. The non linear step is often implemented by means of a look up

table called a Substitution Box or an S-Box The S-Box is one of the most important

aspects of the design of ciphers. If the S-Box did not provide non-linearity to the cipher

the cascading of the rounds could be represented by a single step. Thus with a linear S-

box any number of rounds is equivalent to a single application of a different S-Box.

2.2.3 Cryptanalysis

The strength of a cipher can be measured only by its resistance to known cryptanalytic

attacks. Knowledge of this technique is important from the point of view of crypto

algorithm designs. Some of the well known cryptanalytic techniques are:

• Differential Cryptanalysis.

In 1990 Eli Biham and Ali Shamir introduced the method. Let us consider a pair

of known texts (x1 and x2) maintaining a fixed difference, measured by the bit

18

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

wise exclusive or of x1 and x2. Due to the nature of the round transform the

corresponding difference in the cipher text depends upon the key. Thus, by

encrypting a large number of pairs of plaintexts, all with a given difference and

then examining the difference in the plaintexts one can gain knowledge about

the key.

• Linear Cryptanalysis.

Linear Cryptanalysis proposed by Mitsuru Matsui in 1993. The approach was

based on linear approximations to the non-linear S-box. The basic premise is

that the linear approximation of a non linear S-box will hold with a certain

probability. By chaining such linear approximations one may approximate the

entire cipher through a linear equation.

The cryptanalyst uses a combination of algebraic and statistical methods to evaluate the

security of ciphers.

2.2.4 Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the

plaintext or the key should produce a significant change in the cipher text. In particular, a

change in one bit of the plaintext or one bit of the key should produce a change in many

bits of the cipher text. If the change is small this might provide a way to reduce the size

of the plaintext or the key space to be searched.

19

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CHAPTER 3
CELLULAR MESSAGE ENCRYPTION

ALGORITHM

20

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Introduction

The CMEA is used in CDMA2000 systems along with the Cellular Authentication and

Voice Encryption (CAVE) Algorithm which is used to generate the CMEA keys. As

mentioned earlier it is used to encrypt sensitive control data and hence its security is an

important issue. The functional schematic of the various algorithms used in CDMA2000

systems[3] is given in figure 3.1.

FIGURE 3.1: CDMA Encryption and Authentication

The CAVE algorithm [4], which is nothing but a nonlinear mixing function, as shown

above ,is used to for authentication and as well as for generating keys for the ORYX as

well as CMEA algorithm. Bruce and Wagner in their work [2] have shown that the

CMEA is deeply flawed and have described an attack on CMEA which requires 40 to 80

known plaintexts, has time complexity about 224 to 232, and finishes in minutes or hours

of computation on a standard workstation. We shall

21

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

3.1 A description of CMEA

We describe the CMEA specification fully here for reference. CMEA is a byte oriented

variable-width block cipher with a 64 bit key. Block sizes may be any number of bytes.

In practice, US cellular telephony systems typically apply CMEA to 2-6 byte blocks, with

the block size potentially varying without any key changes. CMEA is quite simple, and

appears to be optimized for 8-bit microprocessors with severe resource limitations.

CMEA consists of three layers. The first layer performs one non-linear pass on the block,

this effects left-to-right diffusion. The second layer is a purely linear, unkeyed operation

intended to make changes propagate in the opposite direction. One can think of the

second step as (roughly speaking) XORing the right half of the block onto the left half.

The third layer performs a final nonlinear pass on the block from left to right; in fact, it is

the inverse of the first layer.

CMEA obtains the non-linearity in the first and third layer from an 8-bit keyed lookup

table known as the T-box. The T-box calculates its 8-bit output as

Given input byte x and 8-byte key . In this equation C is an unkeyed 8-bit

lookup table known as the CaveTable; all operations are performed using 8-bit

arithmetic.

22

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

FIGURE 3.2: The CAVE Table

We now provide a specification of CMEA. The algorithm encrypts an n-byte message

 to a cipher text under the key as follows:

23

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Here all operations are byte-wide arithmetic: + and - are addition and subtraction modulo

256, ̕ represents a logical bitwise exclusive or, V represents a logical bitwise or, and the

keyed T function is as described previously.

3.2 Observations

First, we list some preliminary observations made in [2]:

• CMEA is its own inverse. In other words, every key is a “weak key" (in the strict

sense, from the DES nomenclature, of being self-inverse). This was apparently

originally a design goal, for unknown reasons.

• CMEA is typically used to encrypt short blocks. Because the cellular telephony

specification does not use random IVs, does not use block chaining modes, and

encrypts short blocks under CMEA, codebook attacks could be a threat. On the

other hand, the cell phone specifications require the CMEA key to be re-derived

(using CAVE as a pseudo-random generator) for every call, so the amount of text

required for a codebook attack may often be unavailable. (In a codebook attack,

one obtains the encryption of every possible plaintext, records those pairs in a

lookup table, and uses it to completely decrypt future messages without needing

to know the key.) Codebooks attacks may still be possible though. practice. In

some contexts, each digit dialed will be encrypted in a separate CMEA block

(with fixed padding), because CMEA is used in ECB mode, the result is a simple

substitution cipher on the digits 0-9. Techniques from classical cryptography may

well suffice to recover useful information about the dialed digits, especially when

side information is available.

• One bit of the plaintext leaks. The LSB (least-significant bit) of the ciphertext is

the complement of the LSB of the plaintext.

24

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

• The T-box has some key equivalence classes. Simultaneously complementing the

MSB (most significant bit) of K0 and K1 leaves the action of the T-box

unchanged; the same holds for K2i and K2i+1 for i = 0, 1, 2, 3. Therefore for the rest

of the paper we take the MSBs of K0, K2, K4, and K6 to all be 0, without loss of

generality, and we see that the effective key length of CMEA is at most 60 bits.

• Recovering the value of all 256 of the T-box entries suffices to break CMEA,

even if the key K0…7 is never recovered.

• The value of T(0) occupies a position of special importance. T(0) is always used

to obtain C0 from P0. One cannot trivially predict where other T-box entries are

likely to be used. Knowing T(0) lets one learn the inputs to the T-box lookups that

modify the second byte in the message.

• The CaveTable has a much skewed statistical distribution. It is not a permutation;

92 of the 256 possible 8-bit values never appear. Some values appear as many as

four times. The distribution appears to be consistent with that of a random

function. The skew in the CaveTable means that the T-box values are skewed,

too: we know T(i) - i must appear in the CaveTable, so for any input to the T-box,

we can immediately rule out 92 possibilities for the corresponding T-box output

without needing any knowledge of the CMEA key.

3.3 Attacks on CMEA

The attacks on CMEA have been briefed underneath:

25

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

3.3.1 A chosen-plaintext attack

CMEA is weak against chosen-plaintext attacks: one can recover all of the Tbox entries

with about 338 chosen texts (on average) and very little work. This attack works on any

fixed block length n > 2; the attacker is not assumed to have control over n.

The attack proceeds in two stages, first recovering T(0), and then recovering the

remainder of the T-box entries, the CMEA key itself is never identified. First, one learns

T(0) with (256 _ 92)=2 = 82 chosen plaintexts (on average). For each guess x at the value

of T(0), obtain the encryption of the message

P = (1 - x; 1 - x; 1 - x;),

e.g. the message P where each byte has the value 1 – x, if the result is of the form C = (-

x;....) then we can conclude with high probability that indeed T(0) = x. False alarms

occasionally occur, but they can be ruled out quickly in the second phase because of the

skewed CaveTable distribution. Note that there are only 256 - 92 = 164 possible values of

T(0), since T(0) must appear in the CaveTable, and therefore we expect to identify the

correct value after about 164=2 = 82 trials, on average.

In the second phase of the attack, one learns all of the remaining T-box entries with 256

more chosen plaintexts. For each byte j, to learn the value of T(j), let k = ((n-1) j)-(n-2),

where the desired blocks are n bytes long. Obtain the encryption of the message

P = (1 - T(0); 1 - T(0);.... ; 1 - T(0); k - T(0); 0) ,

If the result is of the form C = (t-T(0);....), then we may conclude that T(j) = t, except for

a possible error in the LSB. A more sophisticated analysis can resolve the uncertainty in

the LSB of the T-box entries.

In practice, chosen-plaintext queries may be available in some special situations. Suppose

the targeted cell phone user can be persuaded to a call a phone number under the

26

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

attacker's control perhaps a memorized survey, answering machine, or operator. The

phone message the user receives might prompt the user to enter digits (chosen in advance

by the attacker), thus silently enabling a chosen plaintext attack on CMEA. Alternatively,

the phone message might send chosen DTMF tones to the targeted cell phone user, thus

mounting chosen-plaintext queries at will.

3.3.2 A known-plaintext attack

We now describe a known plaintext attack on CMEA needing about 40-80 known texts.

The attack assumes that each known plaintext is enciphered with a 3-byte block width.

The (unoptimized) implementation has a time complexity of 224 to 232, and can be

easily parallelized.

The cryptanalysis has two phases. The first phase gathers information about the T-box

entries from the known CMEA encryptions, eliminating many possibilities for the values

of each T-box output. In this way we reduce the problem to that of cryptanalysis of the T-

box algorithm, given some partial information about T-box input/output pairs. In the

second phase, we take advantage of the statistical biases in the CaveTable to cryptanalyze

the T-box and recover the CMEA key K0…7, using pruned search and meet-in-the-middle

techniques to enhance performance.

The first phase is implemented as follows. Because T(0) occupies a position of special

importance, we exhaustively search over the 164 possibilities for T(0). (Remember that

T(0) must appear in the CaveTable, and so there are only 256_92 = 164 possibilities for

it.) For each guess at T(0), we set up a 256 X 256 array pi ,j which records for each i, j

whether T(i) = j is possible. All values for T(i), i > 0 are initially listed as possible. Since

T(i) - i is a CaveTable output and the CaveTable has an uneven distribution, we can

immediately rule out 92 values for T(i).

27

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Next, we gradually eliminate impossible values using the known texts as follows. The

general idea is that each known plaintext/ciphertext pair lets us establish several

implications of the form

T(0) = t0 , T(i) = j => T(i’) = j’ (1)

If we have already eliminated T(i’) = j’ as impossible, then we can conclude that T(i) = j

is also impossible via the contra positive of (1). In this way, we successively rule out

more and more possibilities in the pi ,j array, until we either reach a contradiction (in

which case we start over with another guess at T(0)) or until we run out of logical

deductions to make (in which case we proceed to the second phase).

The second phase recovers the CMEA key from the information about T previously

accumulated in the pi ,j array. Our simplest key recovery algorithm is based on pruned

search. First, one guesses K6 and K7. Then, we peel of the effect of the last 1/4 of the T-

box, and check whether the intermediate value is a possible CaveTable output. The

intermediate value must always be one of the 164 possible CaveTable outputs when we

find the correct K6 ,K7; because the CaveTable is so heavily skewed, incorrect K6 ,K7

guesses will usually be quickly identified by this test, if we have knowledge about a

number of T-box entries. Next, one continues by guessing K4, K5, pruning the search as

before, and continuing the pruned search until the entire key is recovered. This technique

is very effective if enough information is available in the p i,j array. Unfortunately, pruned

search very quickly becomes extremely computationally intensive if too few known texts

are available: at each stage, too many candidates survive the pruning, and the search

complexity grows exponentially.

We have a more sophisticated key recovery algorithm which can reduce the computation

workload dramatically in these instances. The basic idea is that the T-box is subject to a

classic meet-in-the-middle optimization: one can work halfway through the T-box given

only K0…3, and one can work backwards up to the middle given just K4…7. This enables us

to precompute a lookup table that contains the intermediate value corresponding to each

28

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

K0…3 value. Then, we try each possible K4…7 value, work backwards through some known

T-box outputs, and look for a match in the precomputed lookup table. Of course the

search pruning techniques can be applied to K4…7 to further reduce the complexity of the

meet-in-the-middle algorithm. The combination of pruned search and meet-in-the-middle

cryptanalysis allows us to efficiently recover the entire CMEA key with as few as 40-80

known plaintexts.

3.4 Feasibility of the attacks

The known plaintext attack is much more devastating than the chosen plaintext attack

described in Section 3.31. Chosen plaintext may be difficult to obtain in practice, but

known plaintext is likely to be much easier to acquire.

There are a number of realistic ways that the required known plaintext can be collected in

practice. Dialed digits are typically CMEA-encrypted with 3-byte blocks, typically each

block will contain only one digit, and often the telephone number dialed will be known.

DTMF tones sent on the line will usually be CMEA-encrypted. If the user can be

persuaded to dial a number under adversarial control, using their calling card, then the

DTMF tones and user-dialed digits will be known to the attacker, providing a ready

source of known plaintext, after recovering the CMEA key in a known-plaintext attack,

the attacker could decrypt the calling card number and make false calls billed to the

victim's name. Furthermore, alphanumeric pages sent to cellular phones are becoming

increasingly common, and alphanumeric pages are sent over the control channel. These

pages may have a large known component, which will provide some known plaintext. It

should be clear that known plaintext may be available from a number of potential

sources.

29

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CHAPTER 4
WEAKNESS of the CMEA ALGORITHM

30

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Introduction

In this chapter, we shall analyze the properties of the CMEA which cause its weakness.

The recovery of all the 256 values of the T-Box is equivalent to breaking of the cipher, so

the strength of the T-Box requires special attention and has been treated subsequently in

details in this and the next chapter.

4.1 Why is CMEA weak?

We have already made some observations in Chapter 3 regarding CMEA. There we

pointed out some of the weaknesses in the algorithm. It should be noted that some of the

properties lead to the successful breaking of the cipher, whereas others, though they give

away some information do not contribute to the success of the two types of attacks given

in Section 3.3. First let us consider the properties that lead to the successful cryptanalysis

of the cipher.

4.1.1 Property 1:
If the plaintext is of the form :

 P = {1-x,1-x,…1-x}

And the ciphertext is of the from :

 C = {-x,...}

Then there is a very high probability that T(0)=x, where T(i) is the output of the T-Box

corresponding to input ‘i’.

Analysis:
 P’0 = P0 + T(0)

 = 1 – x + T(0).

 If T(0) = x , we have P’0 = 1.

Thus , y1 = y0 + P’0 = 0 + 1.

Likewise,

 P’1 = P1 + T(1 1)

31

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 = 1 + 1 = 2

Thus , y2 = y1 + P1

 = 1 + 1 = 2.

Thus continuing we have

 P’n-1 = 1

So, P’’ = P’0 – T(0)

 = - T(0) = - x

Hence,

C0 = P’’0 – T(0)

 = - T(0) = - x

The probability when using the CaveTable is dependent on the fact that the initial guess

for T(0) is correct and the possible number of trails is thus only (256-92)/2 = 82 on the

average.

4.1.2 Property 2:
If the plaintext is of the form :

 P = {1-T(0), 1-T(0),….., 1-T(0), k-T(0),0}

And the ciphertext is

C = {t-T(0),…}

Where k = ((n-1) j) – (n-2), then there is a very high probability that t = T(j).

Analysis:
Now P’n-2 = Pn-2 + T(y n-2 n-2)

 = Pn-2 + T(0) , since yn-2 = n-2

 = k – T(0) + T(0) = k

Using this fact,

 y n-1 = yn-2 +P’n-2

 = (n-2) + k

 = (n-1) j.

Therefore,

 P’n-1 = Pn-1 + T(yn-1 n-1)

32

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 = 0 + T(j).

Thus, C0 = t – T(0) = P’’0 – T(0)

 = P’0 (P’n-1 V 1) – T(0)

Thus, t = 1 (T(j) V1)

 = T(j) , with very high probability, with some confusion in the LSB.

4.1.3 Property 3:

The CMEA algorithm uses a very skewed CaveTable[2]. The CaveTable is not a

permutation and 92 of the 256 values never occur. The CaveTable was shown in

FIGURE 3.2. The frequency distribution of the CaveTable entries is given in FIGURE

4.1. We see that some of the values occur as many as 3 and 4 times. For every repeated

values some value has to be missing. This property of the CaveTable considerably

reduces the number of plain texts needed in both the attacks given in Section 3.3.

33

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

4.1.4 Property 4:

The CMEA algorithm uses a four round T-Box which can be subjected to a meet in the

middle attack [2].

4.1.5 Property 5:

The Least Significant Bit of the ciphertext is always the complement of the Least

Significant Bit of the plaintext. i.e. one bit always leaks.

Analysis:
Using original CMEA algorithm we get:

C0=((P0 + T(0) (P’2 or 1)) – T(0)

P0 T0 (P0 T0) 1 C0 (=P’0)

0 0 1 1

0 1 0 1

1 0 0 0

1 1 1 0
TABLE 4.1 Truth Table for LSB of P0

Consider LSB’s: As far as (P(0)+T(0))’s LSB is concerned it is an equivalent exclusive

or operation on P(0) and T(0)’s LSB’s (neglecting carry). The LSB output can be

obtained as shown in TABLE 4.1. We see that the LSB of ciphertext is always the

complement of the LSB of plaintext,

4.1.6 Property 6:
The T-Box has some Key-Equivalence classes. As mentioned in Section 3.2,

simultaneously complementing the Most Significant Bits of K2i and K2i+1 for i = 0,1,2

leaves the action of the T-Box unchanged. This reduces the key length of the CMEA to

34

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

60 bits instead of 64 bits since we can assume the Most Significant Bits of K0, K2 , K4 and

K6 to all be 0 or 1.

Analysis :

In the T-Box Function :

T(X)=C(((C(((C(((C((X K0)+K1)+X) K2)+K3)+x) K4)+K5)+X) K6)+K7)+X,

consider the function : f(X)=((X K0)+K1). Let us consider the Most Significant Bits

of all the three terms. In order to consider the effect of the other Least Significant Bits.,

we include a carry term which can be zero or one. The invariance after simultaneous

complementing the Most Significant Bits of the pairs of keys is because the carry is not

being accounted for. In f(x), the MSB is being neglected. This can be seen from the

TABLE 4.2. In case of both a1 and a2 after complementing the Most Significant Bits of

K0 and K1 the difference is in the New Carry which is being neglected irrespective of the

Carry (which is due the other less significant bit operations).

 CARRY = 0 CARRY = 1

 X K0 K1 f(X) f(X)
a1 0 0 0 0 1
 0 0 1 1 0
 0 1 0 1 0

a2 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 0

Table 4.2

35

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

4.2 Analysis of the properties

Using the above properties one can explain why the CMEA algorithm is weak against the

chosen plaintext and the known plain text attacks. The causes of the attacks are enlisted

below:

1. Chosen Plain Text Attack: The CMEA is weak against this attack because of

properties 1 and 2 (and to an extent property 3).

2. Known Plain Text Attack: The CMEA is weak against this attack because of

properties 3 and 4.

Properties 5 and 6 give away some information to the attacker which though not used in

the cryptanalysis of the algorithm as described in Section 3.3, can be possible weak

points of the algorithm. The next chapter deals with ways of overcoming some of these

weaknesses in the CMEA.

36

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

CHAPTER 5
CUMOSTIZED CELLULAR MESSAGE

ENCRYPTION ALGORITHM

37

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

Introduction

In this section the weaknesses that are given in Chapter 3 will be removed by elimination

their causes as identified in Chapter 4. Each property that causes a dent in the CMEA’s

weakness will be dealt with so that none of the attacks that have been described in

Chapter 3 work against the algorithm. In addition, ways to deal with some of the

properties that could be weak points in the CMEA but are not used explicitly in the two

attacks are also covered in this chapter.

5.1 Modifications in the CMEA

In this section the modifications needed in the CMEA corresponding to each of the

Properties identified in Section 4.1 are presented.

5.1.1 Modification 1:

The update equation of P’ needs to be changed so that Properties 1 and 2 do not work.

Thus the modified equation is of the form:

 P’i = Pi + T(yi f(i,n)

Such that as we vary i from 0 to n-1 (where n is the number of byte blocks in the

plaintext) the T-Box is not predictably accessed. In the original CMEA property 1 exists

because for a particular nature of the input plaintext and the key the T-Box was always

referred at the point 0. So, the function f(i,n) should be such that the T-Box is accessed at

different points. After considering several forms of the function f(i,n) the proposed

function is f(i,n) = 2i%n, hence the update equation becomes :

P’i = P i + T(yi 2i % n)

Thus the algorithm is transferred to:

38

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

5.1.2 Modification 2:

The CaveTable is replaced with the Advanced Encryption Standard’s (AES) S-Box

which can be efficiently implemented. Thus the distribution is no more skewed and all

the possible 256 values appear as a possibility.

After modifications 1 and 2 the Chosen Plain text attack is nullified and the Known Plain

text attack is also evaded easily. The following is the explanation:

For 50,000 variations of the key, plaintexts of the form (1 – T(0), 1 – T(0),…..,1 – T(0))

gives ciphertext of the form (-T(0),….) only 0.766 % of the time .However to prove that

no similar attack of the same type is possible, we need a more rigorous approach :

Let the P0 block of plain text be (1-x).

Thus P’0 = P0 + T(y0 0)

 = 1 – x + T(0 0)

39

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 = 1- x + T(0)

Let x = T(0). So P’0 = 1 and y1 = y0 + P’0 =1

Similarly ,

 P’1 = P1 + T(1 2)

 = P1 + T(3).

Hence if we have P1 = 1 – x1 and let x1 = T(3).

So, P’1 = 1 and y2 = y1 + P’1 =1 + 1 = 2

Likewise,

P’2 = P2 + T(y 2 4)

 = P 2 + T(2 4)

 = 1 – x + T(6), if P2 = 1- x

 = 1 , using the guess that x = T(6).

y3 = y2 + P’2 = 2 + 1 =3

For the fourth block,

 P’3 = P3 + T(y3 6)

 = P3 + T(3 6)

 = 1 – x2 + T(5), if P3 =1- x2

 = 1, using the guess x2 = T(5).

Thus if we have four blocks in the plaintext (without loss generality) then

 P’’0 = P’0 P’3 V 1) = 0.

Thus for four input blocks if one obtains chosen plaintexts of the form

 P = (1-T(0), 1 – T(3), 1 – T(6), 1- T(5))

Then the ciphertext is of the form C = (-T(0),….)

40

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

The number of trials on an average required is (2564)/2 which is equivalent to a brute

force search on the entire plain text space and is much larger than that required for

original CMEA. Note that as the CaveTable has been replaced by the S-Box of the

Rijndael-AES the number of possible values of each T-Box access is 256.

The above proof for block four length plaintext can be extended to plaintext of any

length. In order to reduce the order of the plaintext required in the modified CMEA to

carry out the above attacks, there should be a repetition in the point at which the T-Box is

accessed . Supposed we have i = i1 and i = i2 for which the T-Box is accessed at the same

point. Thus

 i1 2i%n = i2 2i % n

or (i1 i2) = 2(i1 i2) %n

If, 2(i1 i2) < n, then the equation is possible only if i1 = i2, contradicting our initial

assumption.

 Also, if 2(i1 i2) = kn + r > n (where k >= 1 and r < n), we have

(kn + r)/2 = (kn + r) % n = r,

or kn = r,

Which is not possible as r<n. Thus we have a contradiction and hence the T-Box is not

accessed at the same point. Thus the attack does not work against the modified CMEA.

Also the number of plaintexts grows exponentially with the number of blocks. For an n

byte block the number of chosen plaintexts is of the order of 256n. Thus the number of

plaintexts to be investigated is equal to that in a brute force search on the entire plaintext

space. Such a large number of plaintext requirements make the attack ineffective against

the modified CMEA.

As the CaveTable has been replaces by the AES S-Box the skewness of the CaveTable no

longer exists. All of the 256 values may appear.

41

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

5.1.3 Modification 3:
 The T-Box previously had only four rounds. The number of rounds in the T-Box

has been increased to eight rounds to prevent meet-in-the-middle attack. For this purpose,

the output of the four round T-Box is recycled again through the T-Box.

5.1.4 Modification 4:
 The or with 1 in the second stage of the CMEA is removed. This removes the

property that the LSB of the ciphertext is always the complement of the LSB of the

plaintext. This can be explained by using the modified version and resorting to its truth

table.

Using the modified version:

C0 = ((P0 +T(0)) P’2)-T(0)

From the truth table (TABLE 5.1) we see that the Least Significant Bits of the plaintext

and the cipher text are no longer related.

P[0] T[0] P’[2] (P[0]xorT[0])XORp’[2]) C[0]

0 0 0 0 0
0 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 0

TABLE 5.1 Truth Table for LSB of plaintext and ciphertext

.

42

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

5.1.5 Modification 5:

From TABLE 4.2 we saw that by complementing the Most Significant Bits of K0 and K1

or a similar pair of odd and even keys, the output does not change. However the Carry

out in the 2 cases is different. In order to incorporate the effect of the carry from the

MSB, it was exclusive or-ed with the Least Significant Bit of the resultant f(X). The

Truth Table showing the carry over is given in TABLE 5.2.

For 50,000 random combination of data and keys, we get the average number of changes

in cipher texts (byte wise) by simultaneously changing the Most Significant Bits of all

four pairs of Equivalence Class Keys as approximately 99.5 % as opposed to 0% of the

times earlier.

 CARRY = 0 CARRY = 1

 X K0 K1 f(X) New
Carry f(X) New

Carry
a1 0 0 0 0 0 1 0
 0 0 1 1 0 0 1
 0 1 0 1 0 0 1

a2 0 1 1 0 1 1 1
 1 0 0 1 0 0 1
 1 0 1 0 1 1 1
 1 1 0 0 0 1 0
 1 1 1 1 0 0 1

Table 5.2

5.2 Modifications to be kept

It was mentioned that the fourth and fifth modifications in the CMEA did not contribute

towards preventing the Chosen plain text and the Known Plain text attacks. So it was

decided to not include these changes while performing dedicated cryptanalysis of the new

algorithm so as to not change the algorithm more than absolutely necessary.

43

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

In a nutshell, the first three modifications are absolutely necessary in order that the

CMEA’s use in CDMA2000 systems is continued without compromising with the

customer’s privacy, while the other modifications might be used in case an attack

exploiting these properties is devised in the future. Also, since we have carried out

dedicated cryptanalysis of the modified algorithm, we ourselves have checked that the

properties do not make the cipher insecure. A reduction in the Key set from 264 to 260

does not make much difference practically and by knowing the Least Significant Bit of

the ciphertext and hence the plaintext the attacker will not be able to break the algorithm.

5.3 Confusion and Diffusion in the Modified CMEA

This section of the chapter deals with the Diffusion and Confusion of the customized

CMEA algorithm. Before continuing to more exhaustive and rather rigorous measures

like differential and linear cryptanalysis, it is essential to first verify the confusion and

diffusion property of the customized CMEA. For this purpose, the algorithm has been

subjected to Avalanche Attack. A function has good Avalanche effect when a change in

one bit of the input results in a change in half of the output bits.

Diffusion criteria require that a change in a single bit of the plain text should cause a

change in several bits of the cipher text, keeping the key constant. In order to test the

diffusion property the customized CMEA has been subjected on pairs of plain texts that

differ by one bit. The number of bits affected should have a mean of n/2 where n is the

number of bits in the cipher. In other words it is expected that for a good cipher

approximately half of the output bits should be affected. The experiments have been

performed on block size of three bytes (24bits). In FIGURE 5.1, the frequency of the

number of bits affected has been plotted versus the number of bits affected. The plot

shows that around 12 bits are affected for a maximum number of cases. Also the

computed average is around 11.98. The plot shows that the algorithm provides sufficient

diffusion property.

44

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

FIGURE 5.1 Diffusion in Customized CMEA

A confusion criterion requires that a change in a single bit in the key should cause a

change in several bits of the ciphertext, keeping the plaintext constant. In order to test the

confusion property of the customized CMEA has been used to encrypt plaintexts with

pair of keys which differ in only one bit. The number of output bits affected according to

the Avalanche Criterion should be around n/2 where n is the number of bits of the cipher.

The experiments have been performed again on block size of three-bytes (twenty four

bits). In FIGURE 5.2 the frequency of the number of bits affected has been plotted versus

the number of bits affected. The plot shows that around 12 bits are affected for a

maximum number of cases.

Also, the computed average is around 11.91. Thus the plots show that the confusion

property is satisfied by the Customized CMEA.

45

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

FIGURE 5.2 Diffusion in Customized CMEA

In the next chapter we shall consider dedicated Cryptanalysis of the Customized CMEA,

wherein the Linear and Differential Cryptanalysis of the algorithm shall be carried out.

46

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

BIBLIOGRAPHY

[1] Cryptoanalysis of CMEA, David Wagner, University Of Californai Berkeley

[2] Cryptoanalysis of CMEA, Bruce scheineier Counterpane systems

[3] www.firewall.cx

[4] Network Security, William Stallings

47

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

APPENDIX
C- CODE

48

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

PROGRAM 1

//This program finds the number of keys that are affected by a given dx/dy pair and saves
them in the data1 - data9 files :small execution time
#include<stdio.h>

void filewrite(char *Filename,int dy[256][256],int Beg,int End)
{FILE *fp;
 int i,j;
 fp=fopen(Filename,"w");
 fprintf(fp," ");
 for(i=Beg;i<=End;i++)
 fprintf(fp,"%3d",i);
 fprintf(fp,"\n\n");
 for(i=0;i<256;i++)
 { fprintf(fp,"%3d",i);
 for(j=Beg;j<=End;j++)
 fprintf(fp,"%3d",dy[i][j]);
 fprintf(fp,"\n");
 }
 fclose(fp);
}

int main()
{unsigned char k,x1,x2,dx,y1,y2;
 int dy[256][256];
 int i,j,keycnt,sum,max,probreqd[256],keyprob[256][256],keytemp[256][256];
 for(i=0;i<256;i++)//Initialising
 for(j=0;j<256;j++)
 keyprob[i][j]=0;
 for(keycnt=0;keycnt<256;keycnt++)
{//For all possible keys
 k=(unsigned char)keycnt;
 for(i=0;i<256;i++)
 for(j=0;j<256;j++)
 dy[i][j]=0;
 //printf("\nKEY = %0x\n",k);
 for(j=0;j<256;j++) //for all possible dx
 {dx=(unsigned char)j;
 //printf("Check ");
 //printf("%0x ",j);
 for(i=0;i<256;i++)
 {x1=(unsigned char)i;
 y1=x1+k;
 x2=x1^dx;
 y2=x2+k;

49

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 dy[j][y2^y1]++; //DDT entry
 }
 for(i=0;i<256;i++)
 if(dy[j][i])
 {//printf("fount ");
 keyprob[j][i]++;
 }
 }
 }//end of key round
 /*printf("\n\n");
 for(i=0;i<256;i++)
 for(j=0;j<256;j++)
 printf("%d ",keyprob[i][j]);*/
 // printf("Key = %d, prob of dx = %d, dy= %d ==>%d
\n",i,chkprobdx,chkprobdy,probreqd[i]);

 filewrite("data1",keyprob,0,30);
 filewrite("data2",keyprob,31,60);
 filewrite("data3",keyprob,61,90);
 filewrite("data4",keyprob,91,120);
 filewrite("data5",keyprob,121,150);
 filewrite("data6",keyprob,151,180);
 filewrite("data7",keyprob,181,210);
 filewrite("data8",keyprob,211,240);
 filewrite("data9",keyprob,241,256);
 printf("\n\n Reqd = %d",keyprob[230][34]);
}

PROGRAM 2

//This program is used to demonstrate the T[0] vulnerability of the CMEA algorithm
//It can be shown that by using the methods described we can overcome the weakness by
making a very small change
//in the CMEA function.

#include<stdio.h>
#define PLAIN1 0x02
#define PLAIN2 0xd2
#define PLAIN3 0xf3
#define CMEAK0 0xa1
#define CMEAK1 0x74
#define CMEAK2 0x26
#define CMEAK3 0xdd
#define CMEAK4 0x02
#define CMEAK5 0x75

50

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

#define CMEAK6 0x69
#define CMEAK7 0x14
#define no_of_octets 3
unsigned char cmeakey[8];
void lastbits(unsigned char *,unsigned char *);
void assignkey(int);
unsigned char CaveTable[256] =
{0xd9, 0x23, 0x5f, 0xe6, 0xca, 0x68, 0x97, 0xb0,
0x7b, 0xf2, 0x0c, 0x34, 0x11, 0xa5, 0x8d, 0x4e,
0x0a, 0x46, 0x77, 0x8d, 0x10, 0x9f, 0x5e, 0x62,
0xf1, 0x34, 0xec, 0xa5, 0xc9, 0xb3, 0xd8, 0x2b,
0x59, 0x47, 0xe3, 0xd2, 0xff, 0xae, 0x64, 0xca,
0x15, 0x8b, 0x7d, 0x38, 0x21, 0xbc, 0x96, 0x00,
0x49, 0x56, 0x23, 0x15, 0x97, 0xe4, 0xcb, 0x6f,
0xf2, 0x70, 0x3c, 0x88, 0xba, 0xd1, 0x0d, 0xae,
0xe2, 0x38, 0xba, 0x44, 0x9f, 0x83, 0x5d, 0x1c,
0xde, 0xab, 0xc7, 0x65, 0xf1, 0x76, 0x09, 0x20,
0x86, 0xbd, 0x0a, 0xf1, 0x3c, 0xa7, 0x29, 0x93,
0xcb, 0x45, 0x5f, 0xe8, 0x10, 0x74, 0x62, 0xde,
0xb8, 0x77, 0x80, 0xd1, 0x12, 0x26, 0xac, 0x6d,
0xe9, 0xcf, 0xf3, 0x54, 0x3a, 0x0b, 0x95, 0x4e,
0xb1, 0x30, 0xa4, 0x96, 0xf8, 0x57, 0x49, 0x8e,
0x05, 0x1f, 0x62, 0x7c, 0xc3, 0x2b, 0xda, 0xed,
0xbb, 0x86, 0x0d, 0x7a, 0x97, 0x13, 0x6c, 0x4e,
0x51, 0x30, 0xe5, 0xf2, 0x2f, 0xd8, 0xc4, 0xa9,
0x91, 0x76, 0xf0, 0x17, 0x43, 0x38, 0x29, 0x84,
0xa2, 0xdb, 0xef, 0x65, 0x5e, 0xca, 0x0d, 0xbc,
0xe7, 0xfa, 0xd8, 0x81, 0x6f, 0x00, 0x14, 0x42,
0x25, 0x7c, 0x5d, 0xc9, 0x9e, 0xb6, 0x33, 0xab,
0x5a, 0x6f, 0x9b, 0xd9, 0xfe, 0x71, 0x44, 0xc5,
0x37, 0xa2, 0x88, 0x2d, 0x00, 0xb6, 0x13, 0xec,
0x4e, 0x96, 0xa8, 0x5a, 0xb5, 0xd7, 0xc3, 0x8d,
0x3f, 0xf2, 0xec, 0x04, 0x60, 0x71, 0x1b, 0x29,
0x04, 0x79, 0xe3, 0xc7, 0x1b, 0x66, 0x81, 0x4a,
0x25, 0x9d, 0xdc, 0x5f, 0x3e, 0xb0, 0xf8, 0xa2,
0x91, 0x34, 0xf6, 0x5c, 0x67, 0x89, 0x73, 0x05,
0x22, 0xaa, 0xcb, 0xee, 0xbf, 0x18, 0xd0, 0x4d,
0xf5, 0x36, 0xae, 0x01, 0x2f, 0x94, 0xc3, 0x49,
0x8b, 0xbd, 0x58, 0x12, 0xe0, 0x77, 0x6c, 0xda };

//////////////////Beginning of tbox////////////////////////
unsigned char tbox(unsigned char z){
 int k_index,i;
 unsigned char result,result1,result2;
 //printf(" %d size %d",cmeakey[1],sizeof(cmeakey));
 k_index = 0;

51

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 result = z;

 for (i = 0; i < 4; i++)
 {
 result =result^cmeakey[k_index];
 result =result + cmeakey[k_index+1];
 /* result1 =result^cmeakey[k_index];
 result2 =result + cmeakey[k_index+1];
 if((result2<cmeakey[k_index+1])||(result2<result1))
 result2^=0x01;
 result = z + CaveTable[result2];*/
 result = z + CaveTable[result];
 k_index += 2;
 }
 return(result);
}

///////////////////////End of tbox/////////////////////
void CMEA(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 //msg_buf[octet_count - 1 - msg_index] | 0x00;
 msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)

52

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA////////////////////////
void CMEA2(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)((octet_count-z-1) ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 //msg_buf[octet_count - 1 - msg_index] | 0x00;
 msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 k = tbox((unsigned char)((octet_count-z-1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA2////////////////////////

unsigned long int checker(unsigned char *msg,unsigned char *plain){

53

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

unsigned long int countmatches,total,countrite=0;
int i;
unsigned int count1,count2,count3;
countmatches=0;
for(count1=0;count1<=255;count1++){
 for(count2=0;count2<=255;count2++){
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=(unsigned char)count3;
 msg[1]=plain[1]=(unsigned char)count2;
 msg[2]=plain[2]=(unsigned char)count1;
 CMEA2(msg);
 CMEA2(msg);
 for(i=0;i<3;i++)
 if(plain[i]==msg[i])
 countrite++;

 }
 }
 }
total=count1*count2*count3;
return total-countrite/3;

}
///////////////////////EO Check data//////////////////////////////////

void assignkey(int swch)
{
 int i;
 if(swch==0)
 { cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;
 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;
 cmeakey[7]=CMEAK7;
 }
 else if(swch==1)
 { //printf("\t\tKeychanged!!\t\t ");
 for(i=0;i<8;i++)
 cmeakey[i]=rand()%256;
 }
 else if(swch==2)
 { for(i=0;i<7;i+=2)
 { //printf("\n%dth cmeakey previous =%0x",i,cmeakey[i]);

54

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 cmeakey[i]=cmeakey[i]^0x80;
 cmeakey[i+1]=cmeakey[i+1]^0x80;
 //printf("\t\t%dth cmeakey changed =%0x",i,cmeakey[i]);
 }
 }

}
///EO assignkeys///////////////////////////////

void checkT0()
{ int i,j;
 unsigned char msg[3];
 unsigned char plain[3];
 unsigned char t0;
 long int countcodebreaks=0;
 int key_changes;
 for(key_changes=1;key_changes<=500000;key_changes++)
 { assignkey(1);
 t0=tbox(0);
 for(i=0;i<no_of_octets;i++)
 msg[i]=plain[i]=(1-t0)&0xff;
 /*msg[0]=plain[0]=msg[2]=plain[2]=1-tbox(2);
 msg[1]=plain[1]=1-tbox(0);*/
 CMEA2(msg);
 if(msg[0]==(unsigned char)(-t0))
 { countcodebreaks++;
 //printf("\nCode broken !! C[1-t0] = msg[0] = %d !!\n\n",msg[0]);
 }

 }

 printf("\n\nAmbiguity = %d",countcodebreaks);
 printf("\n\nFraction of keys satisfying the equality =
%f",(float)countcodebreaks/key_changes);
}
//////////////////////////////////EO checkT0///

int main()
{
 long unsigned int i,j;
 unsigned int count1,count2,count3;

55

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 unsigned char msg[no_of_octets];
 unsigned char plain[no_of_octets];
 int nochange,countchanges;

 if(!(checker(msg,plain)))
 printf("\n\nSuccess!! \n");

 else
 printf("\n\nDecrypted value not matching with plain text!!\n");

 checkT0();

PROGRAM 3

//This program is used to demonstrate the LSB leakage of the CMEA algorithm
//It can be shown that by using the methods described we can overcome the weakness by
making a very small change
//in the CMEA function.

#include<stdio.h>
#define PLAIN1 0x02
#define PLAIN2 0xd2
#define PLAIN3 0xf3
#define CMEAK0 0xa1
#define CMEAK1 0x74
#define CMEAK2 0xf6
#define CMEAK3 0xdd
#define CMEAK4 0x02
#define CMEAK5 0x75
#define CMEAK6 0x69
#define CMEAK7 0x14
#define no_of_octets 3
unsigned char cmeakey[8];
void lastbits(unsigned char *,unsigned char *);
void assignkey(int);
unsigned char CaveTable[256] =
{0xd9, 0x23, 0x5f, 0xe6, 0xca, 0x68, 0x97, 0xb0,
0x7b, 0xf2, 0x0c, 0x34, 0x11, 0xa5, 0x8d, 0x4e,
0x0a, 0x46, 0x77, 0x8d, 0x10, 0x9f, 0x5e, 0x62,
0xf1, 0x34, 0xec, 0xa5, 0xc9, 0xb3, 0xd8, 0x2b,
0x59, 0x47, 0xe3, 0xd2, 0xff, 0xae, 0x64, 0xca,
0x15, 0x8b, 0x7d, 0x38, 0x21, 0xbc, 0x96, 0x00,
0x49, 0x56, 0x23, 0x15, 0x97, 0xe4, 0xcb, 0x6f,

56

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

0xf2, 0x70, 0x3c, 0x88, 0xba, 0xd1, 0x0d, 0xae,
0xe2, 0x38, 0xba, 0x44, 0x9f, 0x83, 0x5d, 0x1c,
0xde, 0xab, 0xc7, 0x65, 0xf1, 0x76, 0x09, 0x20,
0x86, 0xbd, 0x0a, 0xf1, 0x3c, 0xa7, 0x29, 0x93,
0xcb, 0x45, 0x5f, 0xe8, 0x10, 0x74, 0x62, 0xde,
0xb8, 0x77, 0x80, 0xd1, 0x12, 0x26, 0xac, 0x6d,
0xe9, 0xcf, 0xf3, 0x54, 0x3a, 0x0b, 0x95, 0x4e,
0xb1, 0x30, 0xa4, 0x96, 0xf8, 0x57, 0x49, 0x8e,
0x05, 0x1f, 0x62, 0x7c, 0xc3, 0x2b, 0xda, 0xed,
0xbb, 0x86, 0x0d, 0x7a, 0x97, 0x13, 0x6c, 0x4e,
0x51, 0x30, 0xe5, 0xf2, 0x2f, 0xd8, 0xc4, 0xa9,
0x91, 0x76, 0xf0, 0x17, 0x43, 0x38, 0x29, 0x84,
0xa2, 0xdb, 0xef, 0x65, 0x5e, 0xca, 0x0d, 0xbc,
0xe7, 0xfa, 0xd8, 0x81, 0x6f, 0x00, 0x14, 0x42,
0x25, 0x7c, 0x5d, 0xc9, 0x9e, 0xb6, 0x33, 0xab,
0x5a, 0x6f, 0x9b, 0xd9, 0xfe, 0x71, 0x44, 0xc5,
0x37, 0xa2, 0x88, 0x2d, 0x00, 0xb6, 0x13, 0xec,
0x4e, 0x96, 0xa8, 0x5a, 0xb5, 0xd7, 0xc3, 0x8d,
0x3f, 0xf2, 0xec, 0x04, 0x60, 0x71, 0x1b, 0x29,
0x04, 0x79, 0xe3, 0xc7, 0x1b, 0x66, 0x81, 0x4a,
0x25, 0x9d, 0xdc, 0x5f, 0x3e, 0xb0, 0xf8, 0xa2,
0x91, 0x34, 0xf6, 0x5c, 0x67, 0x89, 0x73, 0x05,
0x22, 0xaa, 0xcb, 0xee, 0xbf, 0x18, 0xd0, 0x4d,
0xf5, 0x36, 0xae, 0x01, 0x2f, 0x94, 0xc3, 0x49,
0x8b, 0xbd, 0x58, 0x12, 0xe0, 0x77, 0x6c, 0xda };

//////////////////Beginning of tbox////////////////////////
unsigned char tbox(unsigned char z){
 int k_index,i;
 unsigned char result,result1,result2;
 //printf(" %d size %d",cmeakey[1],sizeof(cmeakey));
 k_index = 0;
 result = z;

 for (i = 0; i < 4; i++)
 {
 /* result =result^cmeakey[k_index];
 result =result + cmeakey[k_index+1];*/
 result1 =result^cmeakey[k_index];
 result2 =result + cmeakey[k_index+1];
 if((result2<cmeakey[k_index+1])||(result2<result1))
 result2^=0x01;
 result = z + CaveTable[result2];
 // result = z + CaveTable[result];
 k_index += 2;
 }

57

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 return(result);
}

///////////////////////End of tbox/////////////////////
void CMEA(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 //msg_buf[octet_count - 1 - msg_index] | 0x00;
 msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA////////////////////////
void CMEA2(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */

58

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)((octet_count-z-1) ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 msg_buf[octet_count - 1 - msg_index] | 0x00;
 //msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 k = tbox((unsigned char)((octet_count-z-1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA2////////////////////////

unsigned long int checker(unsigned char *msg,unsigned char *plain){
unsigned long int countmatches,total,countrite=0;
int i;
unsigned int count1,count2,count3;
countmatches=0;
for(count1=0;count1<=0;count1++){
 for(count2=0;count2<=0;count2++){
 for(count3=0;count3<=0;count3++){
 msg[0]=plain[0]=(unsigned char)count3;
 msg[1]=plain[1]=(unsigned char)count2;
 msg[2]=plain[2]=(unsigned char)count1;
 CMEA2(msg);
 CMEA2(msg);
 for(i=0;i<3;i++)
 if(plain[i]==msg[i])

59

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 countrite++;

 }
 }
 }
total=count1*count2*count3;
return total-countrite/3;

}
///////////////////////EO Check data//////////////////////////////////

void assignkey(int swch)
{
 int i;
 if(swch==0)
 { cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;
 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;
 cmeakey[7]=CMEAK7;
 }
 else if(swch==1)
 { //printf("\t\tKeychanged!!\t\t ");
 for(i=0;i<8;i++)
 cmeakey[i]=rand()%256;
 }
 else if(swch==2)
 { for(i=0;i<7;i+=2)
 { //printf("\n%dth cmeakey previous =%0x",i,cmeakey[i]);
 cmeakey[i]=cmeakey[i]^0x80;
 cmeakey[i+1]=cmeakey[i+1]^0x80;
 //printf("\t\t%dth cmeakey changed =%0x",i,cmeakey[i]);
 }
 }

}
///EO assignkeys///////////////////////////////

void checkT0()
{ int i,j;
 unsigned char msg[3];
 unsigned char plain[3];

60

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 unsigned char t0;
 long int countcodebreaks=0;
 int key_changes;
 for(key_changes=1;key_changes<=50000;key_changes++)
 { assignkey(1);
 t0=tbox(0);
 for(i=0;i<no_of_octets;i++)
 msg[i]=plain[i]=(1-t0)&0xff;
 /*msg[0]=plain[0]=msg[2]=plain[2]=1-tbox(2);
 msg[1]=plain[1]=1-tbox(0);*/
 CMEA2(msg);
 if(msg[0]==(unsigned char)(-t0))
 { countcodebreaks++;
 printf("\nCode broken !! C[1-t0] = msg[0] = %d !!\n\n",msg[0]);
 }

 }

 printf("\n\nAmbiguity = %d",countcodebreaks);
 printf("\n\nFraction of keys satisfying the equality =
%f",(float)countcodebreaks/key_changes);
}
//////////////////////////////////EO checkT0///

void Keyunchanged(unsigned char *msg)
{ int i,j;
 unsigned long int suma,sumb;
 unsigned char msg2[3],plain[3];
 int temp,temp2;
 unsigned long int count1,count2,count3,counta,countb;
 printf("\n\nKEY UNCHANGED\n\n");
 printf("\tPlaintext\tMine\tCMEA\n");
 suma=sumb=0;
 for(count1=0;count1<=255;count1++)
 for(count2=0;count2<=255;count2++)
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=msg2[0]=(unsigned char)count3;
 msg[1]=plain[1]=msg2[1]=(unsigned char)count2;
 msg[2]=plain[2]=msg2[2]=(unsigned char)count1;
 CMEA(msg);
 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { //printf("\n%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);

61

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];
 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }

 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(count1*count2*count3));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(count1*count2*count3));
 printf("\nPercentage fall = %lf",(float)(suma-sumb)*100/suma);
}
/////////////////////////EO Keyunchanged//////////////////////

 void Plainunchanged(unsigned char *msg)
{ unsigned long int i0,i1,i2,i3,i4,i5,i6,i7;
 int i,j,temp,temp2;
 long unsigned int suma,sumb,counta,countb;
 unsigned char msg2[3],plain[3];
 suma=sumb=0;
 for(i=0;i<3;i++)
 plain[i]=msg2[i]=msg[i];
 for(i0=0;i0<=1;i0++)
 for(i1=0;i1<=1;i1++)
 for(i2=0;i2<=1;i2++)
 for(i3=0;i3<=1;i3++)
 for(i4=0;i4<=1;i4++)
 for(i5=0;i5<=1;i5++)
 for(i6=0;i6<=255;i6++)
 for(i7=0;i7<=255;i7++)
 { cmeakey[0]=i0;
 cmeakey[1]=i1;
 cmeakey[2]=i2;
 cmeakey[3]=i3;
 cmeakey[4]=i4;

62

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 cmeakey[5]=i5;
 cmeakey[6]=i6;
 cmeakey[7]=i7;
 CMEA(msg);
 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { //printf("%d octet : %0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);
 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];
 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }
 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(i0*i1*i2*i3*i4*i5*i6*i7));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(i0*i1*i2*i3*i4*i5*i6*i7));
 if(sumb>suma)
 printf("\nPercentage rise = %lf%%",((float)(sumb-suma)*100/suma));
 else
 printf("\nPercentage fall = %lf%%",((float)(suma-sumb)*100/suma));
}
////////////////////////////////EO keyunchanged/////////////

int main()
{
 long unsigned int i,j;
 unsigned int count1,count2,count3;
 unsigned char msg[no_of_octets];
 unsigned char plain[no_of_octets];
 int nochange,countchanges;

63

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

/*
 if(!(checker(msg,plain)))
 printf("\n\nSuccess!! \n");

 else
 printf("\n\nDecrypted value not matching with plain text!!\n");
 checkT0();
*/
Plainunchanged(msg);
// Keyunchanged(msg);
 }

/*

int switchmsbkey(unsigned char *msg,unsigned char *plain)
{ unsigned char msg2[no_of_octets];
 long int i,mismatch;
 for(i=0;i<no_of_octets;i++)
 msg2[i]=msg[i];
 assignkey(1);
 CMEA(msg);
 assignkey(2);
 CMEA(msg2);
 mismatch=0;
 for(i=0;i<no_of_octets;i++)
 if(msg[i]!=msg2[i])
 mismatch++;
 if(mismatch>2)
 { //printf("\n\nValue changed by changing MSBs!!");
 return 1;
 }
 else
 { //printf("\n\nNo value change...try again!! \n");
 return 0;
 }
}
//////////////////////EO switchmsbkey///////////////////////

void Nonlinearcheck()
{ const long int no_of_terms=24;
 unsigned char msg1[3],msg2[3],temp,cryptedxor[3];
 int i,j,delta_p,delta_c,distribution[no_of_terms][no_of_terms];
 unsigned long int
i1,j1,count1,count2,count3,countcipher,countplain;//countdetection=0;

64

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 for(j1=0;j1<no_of_terms;j1++)
 for(i1=0;i1<no_of_terms;i1++)
 distribution[i1][j1]=0;
 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0x00;msg2[1]=0x0;msg2[
2]=0x0;
 for(count1=0;count1<6;count1++)
 for(count2=0;count2<6;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;
 countplain=countcipher=0;
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 //printf("%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);

 for(j=0;j<8;j++)
 { if(temp&0x01)
 countplain++;
 temp=temp>>1;
 }
 }
 CMEA2(msg1);
 CMEA2(msg2);
 //CMEA2(msg1xormsg2);
 //printf("\t");
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 for(j=0;j<8;j++)
 { if(temp&0x01)
 countcipher++;
 temp=temp>>1;
 }
 }
 distribution[countplain][countcipher]++;
 //printf("\n");
 }
 printf("\n ");
 for(i=0;i<no_of_terms;i++)
 if(i<=10)
 printf(" %d ",i);
 else printf("%d ",i);
 for(i1=0;i1<no_of_terms;i1++)
 { printf("\n%d",i1);
 for(j1=0;j1<no_of_terms;j1++)
 printf(" %d ",distribution[i1][j1]);

65

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
 //printf("\n\n%d",countdetection);
}

////////////////////////////////EO Nonlinearcheck/////////////
void Nonlinearcheck2()
{ unsigned char msg1[3],msg2[3],msg1xormsg2[3],cryptedxor[3],temp[3];
 int i,j;
 unsigned long int count1,count2,count3,countnonlinear=0;

 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0xa0;msg2[1]=0xab;msg2
[2]=0xca;
 for(count1=0;count1<256;count1++)
 for(count2=0;count2<256;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;
 //for(i=0;i<3;i++)
 // printf("\n%0x\n\n",msg1xormsg2[i]=msg1[i]^msg2[i]);
 for(i=0;i<3;i++)
 msg1xormsg2[i]=msg1[i]^msg2[i];
 CMEA(msg1);
 CMEA(msg2);
 CMEA(msg1xormsg2);
 //printf("\t");
 for(i=0;i<3;i++)

 { cryptedxor[i]=msg1[i]^msg2[i];
 //printf("\nMsg1= %0x \tMsg2= %0x\tXORed msges=%0x\t
CryptedXORs=%0x",msg1[i],msg2[i],cryptedxor[i],msg1xormsg2[i]);
 if(!(cryptedxor[i]^msg1xormsg2[i]))
 { //printf(" Linearity Alert %d!!!! ",i);
 countnonlinear++;
 }
 }
 //printf("\n");
 }
 printf("\n\nNo of non linearities = %ld out of
%ld",countnonlinear,count1*count2*count3);

}
////////////////////////////////EO Nonlinearcheck2/////////////

PROGRAM 4

//This program is used to demonstrate the Key_Equivalence_classes of the CMEA
algorithm

66

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

//It can be shown that by using the methods described we can overcome the weakness by
making
// a very small change in the Tbox function.

#include<stdio.h>
#define PLAIN1 0x02
#define PLAIN2 0xd2
#define PLAIN3 0xf3
#define CMEAK0 0xa1
#define CMEAK1 0x74
#define CMEAK2 0x26
#define CMEAK3 0xdd
#define CMEAK4 0x02
#define CMEAK5 0x75
#define CMEAK6 0x69
#define CMEAK7 0x14
#define no_of_octets 3
unsigned char cmeakey[8];
void lastbits(unsigned char *,unsigned char *);
void assignkey(int);
unsigned char CaveTable[256] =
{0xd9, 0x23, 0x5f, 0xe6, 0xca, 0x68, 0x97, 0xb0,
0x7b, 0xf2, 0x0c, 0x34, 0x11, 0xa5, 0x8d, 0x4e,
0x0a, 0x46, 0x77, 0x8d, 0x10, 0x9f, 0x5e, 0x62,
0xf1, 0x34, 0xec, 0xa5, 0xc9, 0xb3, 0xd8, 0x2b,
0x59, 0x47, 0xe3, 0xd2, 0xff, 0xae, 0x64, 0xca,
0x15, 0x8b, 0x7d, 0x38, 0x21, 0xbc, 0x96, 0x00,
0x49, 0x56, 0x23, 0x15, 0x97, 0xe4, 0xcb, 0x6f,
0xf2, 0x70, 0x3c, 0x88, 0xba, 0xd1, 0x0d, 0xae,
0xe2, 0x38, 0xba, 0x44, 0x9f, 0x83, 0x5d, 0x1c,
0xde, 0xab, 0xc7, 0x65, 0xf1, 0x76, 0x09, 0x20,
0x86, 0xbd, 0x0a, 0xf1, 0x3c, 0xa7, 0x29, 0x93,
0xcb, 0x45, 0x5f, 0xe8, 0x10, 0x74, 0x62, 0xde,
0xb8, 0x77, 0x80, 0xd1, 0x12, 0x26, 0xac, 0x6d,
0xe9, 0xcf, 0xf3, 0x54, 0x3a, 0x0b, 0x95, 0x4e,
0xb1, 0x30, 0xa4, 0x96, 0xf8, 0x57, 0x49, 0x8e,
0x05, 0x1f, 0x62, 0x7c, 0xc3, 0x2b, 0xda, 0xed,
0xbb, 0x86, 0x0d, 0x7a, 0x97, 0x13, 0x6c, 0x4e,
0x51, 0x30, 0xe5, 0xf2, 0x2f, 0xd8, 0xc4, 0xa9,
0x91, 0x76, 0xf0, 0x17, 0x43, 0x38, 0x29, 0x84,
0xa2, 0xdb, 0xef, 0x65, 0x5e, 0xca, 0x0d, 0xbc,
0xe7, 0xfa, 0xd8, 0x81, 0x6f, 0x00, 0x14, 0x42,
0x25, 0x7c, 0x5d, 0xc9, 0x9e, 0xb6, 0x33, 0xab,
0x5a, 0x6f, 0x9b, 0xd9, 0xfe, 0x71, 0x44, 0xc5,
0x37, 0xa2, 0x88, 0x2d, 0x00, 0xb6, 0x13, 0xec,
0x4e, 0x96, 0xa8, 0x5a, 0xb5, 0xd7, 0xc3, 0x8d,

67

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

0x3f, 0xf2, 0xec, 0x04, 0x60, 0x71, 0x1b, 0x29,
0x04, 0x79, 0xe3, 0xc7, 0x1b, 0x66, 0x81, 0x4a,
0x25, 0x9d, 0xdc, 0x5f, 0x3e, 0xb0, 0xf8, 0xa2,
0x91, 0x34, 0xf6, 0x5c, 0x67, 0x89, 0x73, 0x05,
0x22, 0xaa, 0xcb, 0xee, 0xbf, 0x18, 0xd0, 0x4d,
0xf5, 0x36, 0xae, 0x01, 0x2f, 0x94, 0xc3, 0x49,
0x8b, 0xbd, 0x58, 0x12, 0xe0, 0x77, 0x6c, 0xda };

//////////////////Beginning of tbox////////////////////////
unsigned char tbox(unsigned char z){
 int k_index,i;
 unsigned char result,result1,result2;
 //printf(" %d size %d",cmeakey[1],sizeof(cmeakey));
 k_index = 0;
 result = z;

 for (i = 0; i < 4; i++)
 {
 // result =result^cmeakey[k_index];
 // result =result + cmeakey[k_index+1];
 result1 =result^cmeakey[k_index];
 result2 =result + cmeakey[k_index+1];
 if((result2<cmeakey[k_index+1])||(result2<result1))
 result2^=0x01;
 result = z + CaveTable[result2];
 // result = z + CaveTable[result];
 k_index += 2;
 }
 return(result);
}

///////////////////////End of tbox/////////////////////
void CMEA(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }

68

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 //msg_buf[octet_count - 1 - msg_index] | 0x00;
 msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA////////////////////////
void CMEA2(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
/* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 msg_buf[octet_count - 1 - msg_index] | 0x00;
 //msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

69

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA2////////////////////////

unsigned long int checker(unsigned char *msg,unsigned char *plain){
unsigned long int countrite=0;
int i;
unsigned int count1,count2,count3;
 for(count1=0;count1<=2;count1++){
 for(count2=0;count2<=255;count2++){
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=(unsigned char)count3;
 msg[1]=plain[1]=(unsigned char)count2;
 msg[2]=plain[2]=(unsigned char)count1;
 CMEA(msg);
 //lastbits(msg,plain);
 CMEA(msg);
 for(i=0;i<3;i++)
 if(plain[i]==msg[i])
 countrite++;
 // printf("\n\n");

 }
 }
 }
 return count1*count2*count3-countrite/3;
}
///////////////////////EO Check data//////////////////////////////////

void assignkey(int swch)
{
 int i;
 if(swch==0)
 { cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;

70

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;
 cmeakey[7]=CMEAK7;
 }
 else if(swch==1)
 { //printf("\t\tKeychanged!!\t\t ");
 for(i=0;i<8;i++)
 { cmeakey[i]=rand()%256;

 }
 }
 else if(swch==2)
 { for(i=0;i<7;i+=2)
 { //printf("\n%dth cmeakey previous =%0x",i,cmeakey[i]);
 cmeakey[i]=cmeakey[i]^0x80;
 cmeakey[i+1]=cmeakey[i+1]^0x80;
 //printf("\t\t%dth cmeakey changed =%0x",i,cmeakey[i]);
 }
 }

}
/////////////////////EO assignkeys////////////////////////////
int switchmsbkey(unsigned char *msg,unsigned char *plain)
{ unsigned char msg2[no_of_octets];
 long int i,mismatch;
 for(i=0;i<no_of_octets;i++)
 msg2[i]=msg[i];
 assignkey(1);
 CMEA(msg);
 assignkey(2);
 CMEA(msg2);
 mismatch=0;
 for(i=0;i<no_of_octets;i++)
 if(msg[i]!=msg2[i])
 mismatch++;
 return mismatch;
}

//////////////////////EO switchmsbkey///////////////////////

int main()
{
 long unsigned int i,j;

71

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 unsigned int count1,count2,count3;
 unsigned char msg[no_of_octets];
 unsigned char plain[no_of_octets];
 long unsigned int countchanges;

 if(!(checker(msg,plain)))
 { countchanges=0;
 printf("\n\nSuccess!! \n");

 for(i=0;i<50000;i++)
 { for(j=0;j<3;j++)
 msg[j]=plain[j]=rand()%256;
 countchanges+=switchmsbkey(msg,plain);
 }
 printf("\n\nTotal number of key changes = %ld",i);
 printf("\n\n No of changes on switching MSB's = %ld",countchanges);
 printf("\n\n No of same Ctexts on switching MSB's = %ld\n\n",i*3-
countchanges);
 printf("\n\n Average output change per key msb switching = %f
",(float)countchanges/(i*3));
 }
 else
 printf("\n\nDecrypted value not matching with plain text!!\n");

}
//////////////////////EO main()//

PROGRAM 5

#include<stdio.h>
#define PLAIN1 0x02
#define PLAIN2 0xd2
#define PLAIN3 0xf3
#define CMEAK0 0xa1
#define CMEAK1 0x74
#define CMEAK2 0x26
#define CMEAK3 0xdd
#define CMEAK4 0x02
#define CMEAK5 0x75
#define CMEAK6 0x69
#define CMEAK7 0x14
#define no_of_octets 3
unsigned char cmeakey[8];
void lastbits(unsigned char *,unsigned char *);

72

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

void assignkey(int);
unsigned char CaveTable[256] =
{0xd9, 0x23, 0x5f, 0xe6, 0xca, 0x68, 0x97, 0xb0,
0x7b, 0xf2, 0x0c, 0x34, 0x11, 0xa5, 0x8d, 0x4e,
0x0a, 0x46, 0x77, 0x8d, 0x10, 0x9f, 0x5e, 0x62,
0xf1, 0x34, 0xec, 0xa5, 0xc9, 0xb3, 0xd8, 0x2b,
0x59, 0x47, 0xe3, 0xd2, 0xff, 0xae, 0x64, 0xca,
0x15, 0x8b, 0x7d, 0x38, 0x21, 0xbc, 0x96, 0x00,
0x49, 0x56, 0x23, 0x15, 0x97, 0xe4, 0xcb, 0x6f,
0xf2, 0x70, 0x3c, 0x88, 0xba, 0xd1, 0x0d, 0xae,
0xe2, 0x38, 0xba, 0x44, 0x9f, 0x83, 0x5d, 0x1c,
0xde, 0xab, 0xc7, 0x65, 0xf1, 0x76, 0x09, 0x20,
0x86, 0xbd, 0x0a, 0xf1, 0x3c, 0xa7, 0x29, 0x93,
0xcb, 0x45, 0x5f, 0xe8, 0x10, 0x74, 0x62, 0xde,
0xb8, 0x77, 0x80, 0xd1, 0x12, 0x26, 0xac, 0x6d,
0xe9, 0xcf, 0xf3, 0x54, 0x3a, 0x0b, 0x95, 0x4e,
0xb1, 0x30, 0xa4, 0x96, 0xf8, 0x57, 0x49, 0x8e,
0x05, 0x1f, 0x62, 0x7c, 0xc3, 0x2b, 0xda, 0xed,
0xbb, 0x86, 0x0d, 0x7a, 0x97, 0x13, 0x6c, 0x4e,
0x51, 0x30, 0xe5, 0xf2, 0x2f, 0xd8, 0xc4, 0xa9,
0x91, 0x76, 0xf0, 0x17, 0x43, 0x38, 0x29, 0x84,
0xa2, 0xdb, 0xef, 0x65, 0x5e, 0xca, 0x0d, 0xbc,
0xe7, 0xfa, 0xd8, 0x81, 0x6f, 0x00, 0x14, 0x42,
0x25, 0x7c, 0x5d, 0xc9, 0x9e, 0xb6, 0x33, 0xab,
0x5a, 0x6f, 0x9b, 0xd9, 0xfe, 0x71, 0x44, 0xc5,
0x37, 0xa2, 0x88, 0x2d, 0x00, 0xb6, 0x13, 0xec,
0x4e, 0x96, 0xa8, 0x5a, 0xb5, 0xd7, 0xc3, 0x8d,
0x3f, 0xf2, 0xec, 0x04, 0x60, 0x71, 0x1b, 0x29,
0x04, 0x79, 0xe3, 0xc7, 0x1b, 0x66, 0x81, 0x4a,
0x25, 0x9d, 0xdc, 0x5f, 0x3e, 0xb0, 0xf8, 0xa2,
0x91, 0x34, 0xf6, 0x5c, 0x67, 0x89, 0x73, 0x05,
0x22, 0xaa, 0xcb, 0xee, 0xbf, 0x18, 0xd0, 0x4d,
0xf5, 0x36, 0xae, 0x01, 0x2f, 0x94, 0xc3, 0x49,
0x8b, 0xbd, 0x58, 0x12, 0xe0, 0x77, 0x6c, 0xda };

/*unsigned char CaveTable2[256]=
{217, 35, 95,230,202,104,151,176,123,242, 12, 52, 17,165,141,
 78, 10, 70,119,141, 16,159, 94, 98,241, 52,236,165,201,179,
 216, 43, 89, 71,227,210,255,174,100,202, 21,139,125, 56, 33,
 188,150, 0, 73, 86, 35, 21,151,228,203,111,242,112, 60,136,
 186,209, 13,174,226, 56,186, 68,159,131, 93, 28,222,171,199,
 101,241,118, 9, 32,134,189, 10,241, 60,167, 41,147,203, 69,
 95,232, 16,116, 98,222,184,119,128,209, 18, 38,172,109,233,
 207,243, 84, 58, 11,149, 78,177, 48,164,150,248, 87, 73,142,
 5, 31, 98,124,195, 43,218,237,187,134, 13,122,151, 19,108,
 78, 81, 48,229,242, 47,216,196,169,145,118,240, 23, 67, 56,

73

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 41,132,162,219,239,101, 94,202, 13,188,231,250,216,129,111,
 0, 20, 66, 37,124, 93,201,158,182, 51,171, 90,111,155,217,
 254,113, 68,197, 55,162,136, 45, 0,182, 19,236, 78,150,168,
 90,181,215,195,141, 63,242,236, 4, 96,113, 27, 41, 4,121,
 227,199, 27,102,129, 74, 37,157,220, 95, 62,176,248,162,145,
 52,246, 92,103,137,115, 5, 34,170,203,238,191, 24,208, 77,
 245, 54,174, 1, 47,148,195, 73,139,189, 88, 18,224,119,108,
218 };*/

//////////////////Beginning of tbox////////////////////////
unsigned char tbox(unsigned char z){
 int k_index,i;
 unsigned char result,result1,result2;
 //printf(" %d size %d",cmeakey[1],sizeof(cmeakey));
 k_index = 0;
 result = z;

 for (i = 0; i < 4; i++)
 {
 result =result^cmeakey[k_index];
 result =result + cmeakey[k_index+1];
 /* result1 =result^cmeakey[k_index];
 result2 =result + cmeakey[k_index+1];
 if((result2<cmeakey[k_index+1])||(result2<result1))
 result2^=0x01;
 result = z + CaveTable[result2];*/
 result = z + CaveTable[result];
 k_index += 2;
 }
 return(result);
}

///////////////////////End of tbox/////////////////////
void CMEA(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];

74

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 msg_buf[octet_count - 1 - msg_index] | 0x00;
 //msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA////////////////////////
void CMEA2(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 msg_buf[octet_count - 1 - msg_index] | 0x00;
 //msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

75

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA2////////////////////////

unsigned long int checker(unsigned char *msg,unsigned char *plain){
unsigned long int countrite=0;
int i;
unsigned int count1,count2,count3;
 for(count1=0;count1<=255;count1++){
 for(count2=0;count2<=255;count2++){
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=(unsigned char)count3;
 msg[1]=plain[1]=(unsigned char)count2;
 msg[2]=plain[2]=(unsigned char)count1;
 CMEA(msg);
 lastbits(msg,plain);
 CMEA(msg);
 for(i=0;i<3;i++)
 if(plain[i]==msg[i])
 countrite++;
 // printf("\n\n");

 }
 }
 }
 return count1*count2*count3-countrite/3;
}
///////////////////////EO Check data//////////////////////////////////
 void lastbits(unsigned char *msg,unsigned char *plain)
 { int i=0;
 //for(i=0;i<no_of_octets;i++)
 {
 printf("\nLSB of Ptext %d=%d\t ",i,(plain[i]>>1)%2);
 //printf("\nPlaintext %d = %0x",i,plain[i]);
 printf("LSB of Ctext %d = %d",i,(msg[i]>>1)%2);
 //printf("\tCiphertext %d = %0x",i,msg[i]);

76

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
 if((plain[0]>>1)%2==(msg[0]>>1)%2)
 printf("\n\nLSBs of texts not matching!!!\n\n");
 }
//////////////////////EO last bits///////////////////////////

void checkT0()
{ int i,j;
 unsigned char msg[3];
 unsigned char plain[3];
 unsigned char t0;
 long int countcodebreaks=0;
 int key_changes;
 for(key_changes=1;key_changes<=500;key_changes++)
 { assignkey(1);
 for(j=0;j<1;j++)
 { t0=tbox(j);
 //printf(" T%d = %d",j,t0);
 for(i=0;i<no_of_octets;i++)
 msg[i]=plain[i]=(1-t0)&0xff;

 CMEA(msg);
 if(msg[0]==(unsigned char)(-t0))
 { countcodebreaks++;
 printf("\nCode broken !! C[1-t0] = msg[0] = %d for j=%d
!!\n\n",msg[0],j);
 }
 }
 }

 printf("\n\nAmbiguity = %d",countcodebreaks);
 assignkey(0);
}
////////////////////////EO checkT0//////////////////////////////

void assignkey(int swch)
{
 int i;
 if(swch==0)
 { cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;
 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;

77

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 cmeakey[7]=CMEAK7;
 }
 else if(swch==1)
 { printf("\t\tKeychanged!!\t\t ");
 for(i=0;i<8;i++)
 { cmeakey[i]=rand()%256;

 }
 }
 else if(swch==2)
 { for(i=0;i<2;i++)
 { //printf("\n%dth cmeakey previous =%0x",i,cmeakey[i]);
 cmeakey[i]=cmeakey[i]^0x80;
 //printf("\t\t%dth cmeakey changed =%0x",i,cmeakey[i]);
 }
 }

}
/////////////////////EO assignkeys////////////////////////////
int switchmsbkey(unsigned char *msg,unsigned char *plain)
{ unsigned char msg2[no_of_octets];
 long int i,mismatch;
 for(i=0;i<no_of_octets;i++)
 msg2[i]=msg[i];
 assignkey(1);
 CMEA(msg);
 assignkey(2);
 CMEA(msg2);
 mismatch=0;
 for(i=0;i<no_of_octets;i++)
 if(msg[i]!=msg2[i])
 mismatch++;
 if(mismatch>2)
 { //printf("\n\nValue changed by changing MSBs!!");
 return 1;
 }
 else
 { //printf("\n\nNo value change...try again!! \n");
 return 0;
 }
}

//////////////////////EO switchmsbkey///////////////////////
void Keyunchanged(unsigned char *msg)
{ int i,j;
 unsigned long int suma,sumb;

78

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 unsigned char msg2[3],plain[3];
 int temp,temp2;
 unsigned long int count1,count2,count3,counta,countb;
 printf("\n\nKEY UNCHANGED\n\n");
 printf("\tPlaintext\tMine\tCMEA\n");
 suma=sumb=0;
 for(count1=0;count1<=255;count1++)
 for(count2=0;count2<=255;count2++)
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=msg2[0]=(unsigned char)count3;
 msg[1]=plain[1]=msg2[1]=(unsigned char)count2;
 msg[2]=plain[2]=msg2[2]=(unsigned char)count1;
 CMEA(msg);
 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { // printf("%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);
 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];
 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }

 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(count1*count2*count3));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(count1*count2*count3));
 printf("\nPercentage fall = %lf",(float)(suma-sumb)*100/suma);
}
/////////////////////////EO Keyunchanged//////////////////////
void Plainunchanged(unsigned char *msg)
{ unsigned long int i0,i1,i2,i3,i4,i5,i6,i7;
 int i,j,temp,temp2;
 long unsigned int suma,sumb,counta,countb;

79

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 unsigned char msg2[3],plain[3];
 for(i=0;i<3;i++)
 plain[i]=msg2[i]=msg[i];
 for(i0=0;i0<=255;i0++)
 for(i1=0;i1<=255;i1++)
 for(i2=0;i2<=255;i2++)
 for(i3=0;i3<=255 ;i3++)
 for(i4=0;i4<=255;i4++)
 for(i5=0;i5<=255;i5++)
 for(i6=0;i6<=255;i6++)
 for(i7=0;i7<=255;i7++)
 { cmeakey[0]=i0;
 cmeakey[1]=i1;
 cmeakey[2]=i2;
 cmeakey[3]=i3;
 cmeakey[4]=i4;
 cmeakey[5]=i5;
 cmeakey[6]=i6;
 cmeakey[7]=i7;
 CMEA(msg);
 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { //printf("%d octet : %0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);
 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];
 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }
 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(i0*i1*i2*i3*i4*i5*i6*i7));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(i0*i1*i2*i3*i4*i5*i6*i7));
 if(sumb>suma)
 printf("\nPercentage rise = %lf%%",((float)(sumb-suma)*100/suma));

80

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 else
 printf("\nPercentage fall = %lf%%",((float)(suma-sumb)*100/suma));
}
////////////////////////////////EO keyunchanged/////////////////////////////

void Nonlinearcheck()
{ const long int no_of_terms=24;
 unsigned char msg1[3],msg2[3],temp,cryptedxor[3];
 int i,j,delta_p,delta_c,distribution[no_of_terms][no_of_terms];
 unsigned long int
i1,j1,count1,count2,count3,countcipher,countplain;//countdetection=0;
 for(j1=0;j1<no_of_terms;j1++)
 for(i1=0;i1<no_of_terms;i1++)
 distribution[i1][j1]=0;
 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0x00;msg2[1]=0x0;msg2[
2]=0x0;
 for(count1=0;count1<6;count1++)
 for(count2=0;count2<6;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;
 countplain=countcipher=0;
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 //printf("%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);

 for(j=0;j<8;j++)
 { if(temp&0x01)
 countplain++;
 temp=temp>>1;
 }
 }
 CMEA2(msg1);
 CMEA2(msg2);
 //CMEA2(msg1xormsg2);
 //printf("\t");
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 for(j=0;j<8;j++)
 { if(temp&0x01)
 countcipher++;
 temp=temp>>1;
 }
 }
 distribution[countplain][countcipher]++;
 //printf("\n");

81

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
 printf("\n ");
 for(i=0;i<no_of_terms;i++)
 if(i<=10)
 printf(" %d ",i);
 else printf("%d ",i);
 for(i1=0;i1<no_of_terms;i1++)
 { printf("\n%d",i1);
 for(j1=0;j1<no_of_terms;j1++)
 printf(" %d ",distribution[i1][j1]);

 }
 //printf("\n\n%d",countdetection);
}

////////////////////////////////EO Nonlinearcheck/////////////
void Nonlinearcheck2()
{ unsigned char msg1[3],msg2[3],msg1xormsg2[3],cryptedxor[3],temp[3];
 int i,j;
 unsigned long int count1,count2,count3,countnonlinear=0;

 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0xa0;msg2[1]=0xab;msg2
[2]=0xca;
 for(count1=0;count1<256;count1++)
 for(count2=0;count2<256;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;
 //for(i=0;i<3;i++)
 // printf("\n%0x\n\n",msg1xormsg2[i]=msg1[i]^msg2[i]);
 for(i=0;i<3;i++)
 msg1xormsg2[i]=msg1[i]^msg2[i];
 CMEA(msg1);
 CMEA(msg2);
 CMEA(msg1xormsg2);
 //printf("\t");
 for(i=0;i<3;i++)

 { cryptedxor[i]=msg1[i]^msg2[i];
 //printf("\nMsg1= %0x \tMsg2= %0x\tXORed msges=%0x\t
CryptedXORs=%0x",msg1[i],msg2[i],cryptedxor[i],msg1xormsg2[i]);
 if(!(cryptedxor[i]^msg1xormsg2[i]))
 { //printf(" Linearity Alert %d!!!! ",i);
 countnonlinear++;
 }
 }
 //printf("\n");

82

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
 printf("\n\nNo of non linearities = %ld out of
%ld",countnonlinear,count1*count2*count3);

}

////////////////////////////////EO Nonlinearcheck2////////////////////////////////
int main()
{
 long unsigned int i,j,count,countrite;
 unsigned int count1,count2,count3;
 // char msg[3]={PLAIN1,PLAIN2,PLAIN3};
 // char plain[3]={PLAIN1,PLAIN2,PLAIN3};
 unsigned char msg[no_of_octets]={0xb6,0x2d,0xa2};//,0x44,0xfe,0x9b};
 unsigned char plain[no_of_octets]={0xb6,0x2d,0xa2};//,0x44,0xfe,0x9b};
 unsigned char t0;
 int nochange,countchanges;
 //Nonlinearcheck();
 // assignkey(0);
 //clrscr();
 //Keyunchanged(msg);
 //Plainunchanged(msg);
 if(checker(msg,plain)==0)
 printf("\n\nSuccess!!!!!!!!\n");
 /*{ countchanges=nochange=0;
 printf("\n\nSuccess!! \n");
 }
 for(i=0;i<5000;i++)
 { // for(j=0;j<3;j++)
 //msg[j]=plain[j]=rand()%256;
 if(switchmsbkey(msg,plain))
 countchanges++;
 else
 nochange++;
 }
 printf("\n\nTotal number of key chabges = %d",i);
 printf("\n\n No of changes on switching MSB's = %d",countchanges);
 printf("\n\n No of same Ctexts on switching MSB's = %d\n\n",nochange);

 }
 else
 printf("\n\nDecrypted value not matching with plain text!!\n");
 */
 // printf("Errors = %ld",checker(msg,plain));
 //checkT0();
/*

83

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 for(i=0;i<3;i++){
 msg[i]=((1-t0)&0x00ff);
 plain[i]=((1-t0)&0x00ff);
 }
 printf("T0= %d, sizeof int = %d",t0,sizeof(int));
 */
 }

PROGRAM 6

#include<stdio.h>
#define PLAIN1 0xA0
#define PLAIN2 0x7B
#define PLAIN3 0x1C
#define CMEAK0 0xA0
#define CMEAK1 0x7b
#define CMEAK2 0x1c
#define CMEAK3 0xd1
#define CMEAK4 0x02
#define CMEAK5 0x75
#define CMEAK6 0x69
#define CMEAK7 0x14
#define no_of_octets 6
unsigned char cmeakey[8];
void lastbits(unsigned char *,unsigned char *);
void assignkey(int);
unsigned char CaveTable[256] =
{0xd9, 0x23, 0x5f, 0xe6, 0xca, 0x68, 0x97, 0xb0,
0x7b, 0xf2, 0x0c, 0x34, 0x11, 0xa5, 0x8d, 0x4e,
0x0a, 0x46, 0x77, 0x8d, 0x10, 0x9f, 0x5e, 0x62,
0xf1, 0x34, 0xec, 0xa5, 0xc9, 0xb3, 0xd8, 0x2b,
0x59, 0x47, 0xe3, 0xd2, 0xff, 0xae, 0x64, 0xca,
0x15, 0x8b, 0x7d, 0x38, 0x21, 0xbc, 0x96, 0x00,
0x49, 0x56, 0x23, 0x15, 0x97, 0xe4, 0xcb, 0x6f,
0xf2, 0x70, 0x3c, 0x88, 0xba, 0xd1, 0x0d, 0xae,
0xe2, 0x38, 0xba, 0x44, 0x9f, 0x83, 0x5d, 0x1c,
0xde, 0xab, 0xc7, 0x65, 0xf1, 0x76, 0x09, 0x20,
0x86, 0xbd, 0x0a, 0xf1, 0x3c, 0xa7, 0x29, 0x93,
0xcb, 0x45, 0x5f, 0xe8, 0x10, 0x74, 0x62, 0xde,
0xb8, 0x77, 0x80, 0xd1, 0x12, 0x26, 0xac, 0x6d,
0xe9, 0xcf, 0xf3, 0x54, 0x3a, 0x0b, 0x95, 0x4e,
0xb1, 0x30, 0xa4, 0x96, 0xf8, 0x57, 0x49, 0x8e,
0x05, 0x1f, 0x62, 0x7c, 0xc3, 0x2b, 0xda, 0xed,
0xbb, 0x86, 0x0d, 0x7a, 0x97, 0x13, 0x6c, 0x4e,
0x51, 0x30, 0xe5, 0xf2, 0x2f, 0xd8, 0xc4, 0xa9,

84

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

0x91, 0x76, 0xf0, 0x17, 0x43, 0x38, 0x29, 0x84,
0xa2, 0xdb, 0xef, 0x65, 0x5e, 0xca, 0x0d, 0xbc,
0xe7, 0xfa, 0xd8, 0x81, 0x6f, 0x00, 0x14, 0x42,
0x25, 0x7c, 0x5d, 0xc9, 0x9e, 0xb6, 0x33, 0xab,
0x5a, 0x6f, 0x9b, 0xd9, 0xfe, 0x71, 0x44, 0xc5,
0x37, 0xa2, 0x88, 0x2d, 0x00, 0xb6, 0x13, 0xec,
0x4e, 0x96, 0xa8, 0x5a, 0xb5, 0xd7, 0xc3, 0x8d,
0x3f, 0xf2, 0xec, 0x04, 0x60, 0x71, 0x1b, 0x29,
0x04, 0x79, 0xe3, 0xc7, 0x1b, 0x66, 0x81, 0x4a,
0x25, 0x9d, 0xdc, 0x5f, 0x3e, 0xb0, 0xf8, 0xa2,
0x91, 0x34, 0xf6, 0x5c, 0x67, 0x89, 0x73, 0x05,
0x22, 0xaa, 0xcb, 0xee, 0xbf, 0x18, 0xd0, 0x4d,
0xf5, 0x36, 0xae, 0x01, 0x2f, 0x94, 0xc3, 0x49,
0x8b, 0xbd, 0x58, 0x12, 0xe0, 0x77, 0x6c, 0xda };

/*unsigned char CaveTable2[256]=
{217, 35, 95,230,202,104,151,176,123,242, 12, 52, 17,165,141,
 78, 10, 70,119,141, 16,159, 94, 98,241, 52,236,165,201,179,
 216, 43, 89, 71,227,210,255,174,100,202, 21,139,125, 56, 33,
 188,150, 0, 73, 86, 35, 21,151,228,203,111,242,112, 60,136,
 186,209, 13,174,226, 56,186, 68,159,131, 93, 28,222,171,199,
 101,241,118, 9, 32,134,189, 10,241, 60,167, 41,147,203, 69,
 95,232, 16,116, 98,222,184,119,128,209, 18, 38,172,109,233,
 207,243, 84, 58, 11,149, 78,177, 48,164,150,248, 87, 73,142,
 5, 31, 98,124,195, 43,218,237,187,134, 13,122,151, 19,108,
 78, 81, 48,229,242, 47,216,196,169,145,118,240, 23, 67, 56,
 41,132,162,219,239,101, 94,202, 13,188,231,250,216,129,111,
 0, 20, 66, 37,124, 93,201,158,182, 51,171, 90,111,155,217,
 254,113, 68,197, 55,162,136, 45, 0,182, 19,236, 78,150,168,
 90,181,215,195,141, 63,242,236, 4, 96,113, 27, 41, 4,121,
 227,199, 27,102,129, 74, 37,157,220, 95, 62,176,248,162,145,
 52,246, 92,103,137,115, 5, 34,170,203,238,191, 24,208, 77,
 245, 54,174, 1, 47,148,195, 73,139,189, 88, 18,224,119,108,
218 };*/

//////////////////Beginning of tbox////////////////////////
unsigned char tbox(unsigned char z){
 int k_index,i;
 unsigned char result,result1,result2;
 //printf(" %d size %d",cmeakey[1],sizeof(cmeakey));
 k_index = 0;
 result = z;

 for (i = 0; i < 4; i++)
 {
 result =result^cmeakey[k_index];

85

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 result =result + cmeakey[k_index+1];
 /* result1 =result^cmeakey[k_index];
 result2 =result + cmeakey[k_index+1];
 if((result2<cmeakey[k_index+1])||(result2<result1))
 result2^=0x01;
 result = z + CaveTable[result2];*/
 result = z + CaveTable[result];
 k_index += 2;
 }
 return(result);
}

///////////////////////End of tbox/////////////////////
void CMEA(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 //msg_buf[octet_count - 1 - msg_index] | 0x00;
 msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;

86

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 }
}
///////////////////End of CMEA////////////////////////
void CMEA2(unsigned char *msg_buf)
{
 const int octet_count=no_of_octets;
 int msg_index,half;
 unsigned char k,z;
 /* first manipulation (inverse of third) */
 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 //k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 msg_buf[msg_index] += k;
 z += msg_buf[msg_index];
 }
/* second manipulation (self-inverse) */

 half = octet_count/2;
 for (msg_index = 0; msg_index < half; msg_index++)
 {
 msg_buf[msg_index] ^=
 msg_buf[octet_count - 1 - msg_index] | 0x00;
 //msg_buf[octet_count - 1 - msg_index] | 0x01;
 }

/* third manipulation (inverse of first) */

 z = 0;
 for (msg_index = 0; msg_index < octet_count; msg_index++)
 {
 k = tbox((unsigned char)(z ^ (msg_index & 0xff)));
 // k = tbox((unsigned char)((z+1) ^ (msg_index & 0xff)));
 z += msg_buf[msg_index];
 msg_buf[msg_index] -= k;
 }
}
///////////////////End of CMEA2////////////////////////

unsigned long int checker(unsigned char *msg,unsigned char *plain){
unsigned long int countrite=0;
int i;
unsigned int count1,count2,count3;
 for(count1=0;count1<=255;count1++){
 for(count2=0;count2<=255;count2++){

87

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=(unsigned char)count3;
 msg[1]=plain[1]=(unsigned char)count2;
 msg[2]=plain[2]=(unsigned char)count1;
 CMEA(msg);
 lastbits(msg,plain);
 CMEA(msg);
 for(i=0;i<3;i++)
 if(plain[i]==msg[i])
 countrite++;
 // printf("\n\n");

 }
 }
 }
 return count1*count2*count3-countrite/3;
}
///////////////////////EO Check data//////////////////////////////////
 void lastbits(unsigned char *msg,unsigned char *plain)
 { int i=0;
 //for(i=0;i<no_of_octets;i++)
 {
 printf("\nLSB of Ptext %d=%d\t ",i,(plain[i]>>1)%2);
 //printf("\nPlaintext %d = %0x",i,plain[i]);
 printf("LSB of Ctext %d = %d",i,(msg[i]>>1)%2);
 //printf("\tCiphertext %d = %0x",i,msg[i]);
 }
 if((plain[0]>>1)%2==(msg[0]>>1)%2)
 printf("\n\nLSBs of texts not matching!!!\n\n");
 }
//////////////////////EO last bits///////////////////////////

void checkT0()
{ int i,j;
 unsigned char msg[3];
 unsigned char plain[3];
 unsigned char t0;
 long int countcodebreaks=0;
 int key_changes;
 for(key_changes=1;key_changes<=500;key_changes++)
 { assignkey(1);
 for(j=0;j<1;j++)
 { t0=tbox(j);
 //printf(" T%d = %d",j,t0);
 for(i=0;i<no_of_octets;i++)
 msg[i]=plain[i]=(1-t0)&0xff;

88

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 CMEA(msg);
 if(msg[0]==(unsigned char)(-t0))
 { countcodebreaks++;
 printf("\nCode broken !! C[1-t0] = msg[0] = %d for j=%d
!!\n\n",msg[0],j);
 }
 }
 }

 printf("\n\nAmbiguity = %d",countcodebreaks);
 assignkey(0);
}
////////////////////////EO checkT0//////////////////////////////

void assignkey(int swch)
{
 int i;
 if(swch==0)
 { cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;
 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;
 cmeakey[7]=CMEAK7;
 }
 else if(swch==1)
 { printf("\t\tKeychanged!!\t\t ");
 for(i=0;i<8;i++)
 { cmeakey[i]=rand()%256;

 }
 }
 else if(swch==2)
 { for(i=0;i<2;i++)
 { //printf("\n%dth cmeakey previous =%0x",i,cmeakey[i]);
 cmeakey[i]=cmeakey[i]^0x80;
 //printf("\t\t%dth cmeakey changed =%0x",i,cmeakey[i]);
 }
 }

}
/////////////////////EO assignkeys////////////////////////////
int switchmsbkey(unsigned char *msg,unsigned char *plain)

89

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

{ unsigned char msg2[no_of_octets];
 long int i,mismatch;
 for(i=0;i<no_of_octets;i++)
 msg2[i]=msg[i];
 assignkey(1);
 CMEA(msg);
 assignkey(2);
 CMEA(msg2);
 mismatch=0;
 for(i=0;i<no_of_octets;i++)
 if(msg[i]!=msg2[i])
 mismatch++;
 if(mismatch>2)
 { //printf("\n\nValue changed by changing MSBs!!");
 return 1;
 }
 else
 { //printf("\n\nNo value change...try again!! \n");
 return 0;
 }
}

//////////////////////EO switchmsbkey///////////////////////
void Keyunchanged(unsigned char *msg)
{ int i,j;
 unsigned long int suma,sumb;
 unsigned char msg2[3],plain[3];
 int temp,temp2;
 unsigned long int count1,count2,count3,counta,countb;
 printf("\n\nKEY UNCHANGED\n\n");
 printf("\tPlaintext\tMine\tCMEA\n");
 suma=sumb=0;
 for(count1=0;count1<=255;count1++)
 for(count2=0;count2<=255;count2++)
 for(count3=0;count3<=255;count3++){
 msg[0]=plain[0]=msg2[0]=(unsigned char)count3;
 msg[1]=plain[1]=msg2[1]=(unsigned char)count2;
 msg[2]=plain[2]=msg2[2]=(unsigned char)count1;
 CMEA(msg);
 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { // printf("%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);
 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];

90

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }

 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(count1*count2*count3));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(count1*count2*count3));
 printf("\nPercentage fall = %lf",(float)(suma-sumb)*100/suma);
}
/////////////////////////EO Keyunchanged//////////////////////
void Plainunchanged(unsigned char *msg)
{ unsigned long int i0,i1,i2,i3,i4,i5,i6,i7;
 int i,j,temp,temp2;
 long unsigned int suma,sumb,counta,countb;
 unsigned char msg2[3],plain[3];
 for(i=0;i<3;i++)
 plain[i]=msg2[i]=msg[i];
 for(i0=0;i0<=255;i0++)
 for(i1=0;i1<=255;i1++)
 for(i2=0;i2<=255;i2++)
 for(i3=0;i3<=255 ;i3++)
 for(i4=0;i4<=255;i4++)
 for(i5=0;i5<=255;i5++)
 for(i6=0;i6<=255;i6++)
 for(i7=0;i7<=255;i7++)
 { cmeakey[0]=i0;
 cmeakey[1]=i1;
 cmeakey[2]=i2;
 cmeakey[3]=i3;
 cmeakey[4]=i4;
 cmeakey[5]=i5;
 cmeakey[6]=i6;
 cmeakey[7]=i7;
 CMEA(msg);

91

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 CMEA2(msg2);
 // printf("\n");
 for(i=0;i<no_of_octets;i++)
 { //printf("%d octet : %0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);
 temp = plain[i]^msg[i];
 temp2 = plain[i]^msg2[i];
 counta=countb=0;
 for(j=0;j<8;j++)
 { if(temp&0x01)
 counta++;
 if(temp2&0x01)
 countb++;
 temp=temp>>1;
 temp2=temp2>>1;
 }
 suma+=counta;
 sumb+=countb;
 //printf("\t%ld\t%ld\n",counta,countb);
 }
 }
 printf("\n\nTotal and average bit changes in CAVE = %ld,
%lf",suma,(float)suma/(i0*i1*i2*i3*i4*i5*i6*i7));
 printf("\nTotal and average bit changes in NEW = %ld,
%lf",sumb,(float)sumb/(i0*i1*i2*i3*i4*i5*i6*i7));
 if(sumb>suma)
 printf("\nPercentage rise = %lf%%",((float)(sumb-suma)*100/suma));
 else
 printf("\nPercentage fall = %lf%%",((float)(suma-sumb)*100/suma));
}
////////////////////////////////EO keyunchanged/////////////

void Nonlinearcheck()
{ const long int no_of_terms=24;
 unsigned char msg1[3],msg2[3],temp,cryptedxor[3];
 int i,j,delta_p,delta_c,distribution[no_of_terms][no_of_terms];
 unsigned long int
i1,j1,count1,count2,count3,countcipher,countplain;//countdetection=0;
 for(j1=0;j1<no_of_terms;j1++)
 for(i1=0;i1<no_of_terms;i1++)
 distribution[i1][j1]=0;
 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0x00;msg2[1]=0x0;msg2[
2]=0x0;
 for(count1=0;count1<6;count1++)
 for(count2=0;count2<6;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;

92

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 countplain=countcipher=0;
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 //printf("%d octet :
%0x\t%0x\t%0x",i,plain[i],msg[i],msg2[i]);

 for(j=0;j<8;j++)
 { if(temp&0x01)
 countplain++;
 temp=temp>>1;
 }
 }
 CMEA2(msg1);
 CMEA2(msg2);
 //CMEA2(msg1xormsg2);
 //printf("\t");
 for(i=0;i<no_of_octets;i++)
 { temp=msg1[i]^msg2[i];
 for(j=0;j<8;j++)
 { if(temp&0x01)
 countcipher++;
 temp=temp>>1;
 }
 }
 distribution[countplain][countcipher]++;
 //printf("\n");
 }
 printf("\n ");
 for(i=0;i<no_of_terms;i++)
 if(i<=10)
 printf(" %d ",i);
 else printf("%d ",i);
 for(i1=0;i1<no_of_terms;i1++)
 { printf("\n%d",i1);
 for(j1=0;j1<no_of_terms;j1++)
 printf(" %d ",distribution[i1][j1]);

 }
 //printf("\n\n%d",countdetection);
}

////////////////////////////////EO Nonlinearcheck/////////////
void Nonlinearcheck2()
{ unsigned char msg1[3],msg2[3],msg1xormsg2[3],cryptedxor[3],temp[3];
 int i,j;
 unsigned long int count1,count2,count3,countnonlinear=0;

93

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 msg1[0]=0xb1;msg1[1]=0x1c;msg1[2]=0x15;msg2[0]=0xa0;msg2[1]=0xab;msg2
[2]=0xca;
 for(count1=0;count1<256;count1++)
 for(count2=0;count2<256;count2++)
 for(count3=0;count3<256;count3++)
 { msg1[0]=count1;msg1[1]=count2;msg1[2]=count3;
 //for(i=0;i<3;i++)
 // printf("\n%0x\n\n",msg1xormsg2[i]=msg1[i]^msg2[i]);
 for(i=0;i<3;i++)
 msg1xormsg2[i]=msg1[i]^msg2[i];
 CMEA(msg1);
 CMEA(msg2);
 CMEA(msg1xormsg2);
 //printf("\t");
 for(i=0;i<3;i++)

 { cryptedxor[i]=msg1[i]^msg2[i];
 //printf("\nMsg1= %0x \tMsg2= %0x\tXORed msges=%0x\t
CryptedXORs=%0x",msg1[i],msg2[i],cryptedxor[i],msg1xormsg2[i]);
 if(!(cryptedxor[i]^msg1xormsg2[i]))
 { //printf(" Linearity Alert %d!!!! ",i);
 countnonlinear++;
 }
 }
 //printf("\n");
 }
 printf("\n\nNo of non linearities = %ld out of
%ld",countnonlinear,count1*count2*count3);

}

////////////////////////////////EO Nonlinearcheck2/////////////
int main()
{
 long unsigned int i;
 // char msg[3]={PLAIN1,PLAIN2,PLAIN3};
 // char plain[3]={PLAIN1,PLAIN2,PLAIN3};
 unsigned char msg[no_of_octets]={0xb6,0x2d,0xa2,0x44,0xfe,0x9B};
 cmeakey[0]=CMEAK0;
 cmeakey[1]=CMEAK1;
 cmeakey[2]=CMEAK2;
 cmeakey[3]=CMEAK3;
 cmeakey[4]=CMEAK4;
 cmeakey[5]=CMEAK5;
 cmeakey[6]=CMEAK6;

94

Customizing the Cellular Message Encryption Algorithm
Mallika Tyagi (2K2/EC641) • Neha Gupta (2K2/EC/649) • Pallavi Tyagi (2K2/EC/654) • Piyush Kharbanda (2K2/EC/656)

 cmeakey[7]=CMEAK7;
 CMEA(msg);
 printf("\n\n");
 for(i=0;i<6;i++)
 printf("\t%0x",msg[i]);

 }

