
CPLD IMPLEMENTATION OF 8255

PROGRAMMABLE PERIPHERAL INTERFACE

A dissertation submitted in partial fulfillment of the requirement for the

award of

MASTERS DEGREE

In

CONTROL & INSTRUMENTATION ENGINEERING

By

SUMIT MISHRA

Enrollment No:10/C & I /2002

RollNo: 4351

Under the guidance of

Prof. PARMOD KUMAR

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

NEW DELHI – 110 042

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

CERTIFICATE

This is to certify that this report entitled, “CPLD IMPLEMENTATION

OF 8255 PROGRAMMABLE PERIPHERAL INTERFACE ”,submitted

by , Sumit Mishra in the partial fulfillment of the requirement for the award

of Masters Degree in Control and Instrumentation Engineering ,

embodies the work done under my supervision.

 Prof. Parmod Kumar

 Head of Department

 Date: DCE, Delhi.

ACKNOWLEDGEMENT

With deep sense of gratitude I express my sincere thanks to Prof. Parmod

Kumar(Head of the department Electrical engineering) Electrical

Engineering department ,Delhi College Of Engineering, Delhi ,for his

constant encouragement and guidance rendered during execution of this

project work. I am thankful to him for extending time to time support

and for providing necessary facilities .Without wise counsel and able

guidance of Prof. Parmod Kumar ,it would have been impossible to

complete the project in this manner.

I am also thankful to Prof. B.N. Mishra Chairman Logic Eastern India

Pvt. Ltd for providing me necessary facilities for completion of this work.

Sumit Mishra

CONTENTS

Chapters Pages

1: Introduction 1-2

 1.1 Introduction to 8255 ppi
 1.2 Motivation for thesis

2: VHDL 3-14
 2.1 Introduction
 2.2 History Of Development

2.3 Advantages of using VHDL for
 modeling Digital Hardware.
 2.4 Modeling Technique using VHDL
 2.4.1 Structural Style
 2.4.2 Data Flow Style
 2.4.3 Behavioral Style

3: Design Flow 15-17

 3.1 Analysis
 3.2 Design
 3.3 Technology Mapping
 3.4 Prototyping

4: Complex Programmable Logic Device 18-38
 4.1 Advantages of using CPLD

 4.2 Cool runner XPLA3 Family
 4.3 Cool runner XPLA3 Architecture
 4.3.1 Zero power interconnect array

 4.3.2 Logic Block Fan in
 4.3.3 Logic Block
 4.3.4 Variable Function Multiplexer
 4.3.5 Fold Back Nands
 4.3.6 PAL versus PLA

 4.3.7 Product term Sharing
 4.3.8 Product term Allocation Method

 4.3.9 Macrocell

 4.3.10 Input / Output cell
 4.3.11 Timing Model

 5: Specification 39-40
 5.1 Functional Description

 5.1.1 Mode 0 : Basic Input/Output
 5.1.2 Mode 1: Strobed Input/Output
 5.1.3 Mode 2: Strobed Bidirectional Bus
 Input/Output
 5.1.4 Bit Set Reset Feature(BSR)

6: Functional Organization 41-46
 6.1 Data Bus Buffer
 6.2 Control Logic
 6.2.1 Chip Select
 6.2.2 Address Line A0 and A1
 6.2.3 Read signal
 6.2.4 Write signal
 6.2.5 Reset signal
 6.3 Ports A,B,C

 7: Programming and Operation 47-58
 7.1 Operation
 7.2 Programming in Mode 0
 7.3 Programming in Mode 1
 7.4 Programming in Mode 2

8: Simulation results 59-65

 9: Conclusion 66

 10: Discussion and further work 67-68

 Bibiliography 69

 1

1 INTRODUCTION

1.1 Introduction to 8255ppi

The 8255 is a programmable peripheral interface which is used for

parallel data transfer / acquisition. It is used as a general-purpose device

for interfacing parallel I/O devices to the system data bus. It has three 8-

bit ports: Port A, Port B, and Port C, which are arranged in two groups of

12 pins. The 8255 can be programmed to operate in three modes: Mode

0, Mode 1, and Mode 2. Each port has a unique address, and data can

be read from or written to a port, when the 8255 is interfaced in I/O

Mapped I/O Mode, by issuing either an IN or OUT instruction

respectively. In addition to the addresses assigned to the three ports,

another address is assigned to the control register into which control

words are written for programming the 8255 to operate in various modes.

The 8255 is generally assigned four consecutive addresses in the I/O

space.

1.2 Motivation for thesis :

Data acquisition is the most important part of signal processing. The

features of 8255 PPI are suitable for multi channel data acquisition

system and for sending control signal to the field instruments .It is a

single entity and it requires additional circuitry like Digital to Analog

and Analog to Digital Converter to be able to accept data from the field

 2

and to send analog control signals if required as per the case be. This

complete setup requires considerable board area. If we design and

implement it on a Programmable Logic Device Like CPLD the area

requirement will be reduced to a single Integrated Chip i.e. the PLD itself.

This is possible because contemporary Programmable Logic Devices have

high gate density and higher operating clock frequency, so the speed

aspect is also taken care of. Secondly if we ever there be requirement to

change the architecture the PLD can be reprogrammed without affecting

the pin locking already in place(ISP-In System Programmability).

 3

2 VHDL

2.1 Introduction

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC

is an acronym for Very High Speed Integrated Circuits). It is a hardware

description language that can be used to model a digital system at many

levels of abstraction, ranging from the algorithmic level to the gate level.

The complexity of the digital system being modeled could vary from that

of a simple gate to a complete digital electronic system, or anything in

between. The digital system can also be described hierarchically. Timing

can also be explicitly modeled in the same description. The VHDL can be

regarded as in integrated amalgamation of the following languages :

sequential language +

concurrent language +

net-list language +

timing specifications +

waveform generation language => VHDL

Therefore, the language has constructs that enable us to express the

concurrent or sequential behavior of a digital system with or without

timing. It also allows us to model the system as an interconnection or

components. Test waveforms can also be generated using the same

 4

constructs. All the above constructs may be combined to provide a

comprehensive description of the system in a single model.

2.2 History of development

The requirements for the language were first generated in 1981 under

the VHSIC program. In this program, a number of U.S. companies were

involved in designing VHSIC chips for the Department of Defense (DoD).

At that time, most of the companies were using different hardware

description languages to describe and develop their integrated circuits.

As a result, different vendors could not effectively exchange designs with

one another. Also, different vendors provided DoD with descriptions of

their chips in different hardware description languages. Reprocurement

and reuse was also a big issue. Thus, a need for a standardized hardware

description language for the design, documentation, and verification of

digital systems was generated.

A team of three companies, IBM, Texas Instruments, and Intermetrics,

were first awarded the contract by the DoD to develop a version of the

language in 1983. Version 7.2 of VHDL was developed and released to

the public in 1985. There was strong industry participation throughout

the VHDL language development process, especially from the companies

that were developing VHSIC chips. After the release on version 7.2, there

was an increasing need to make the language in industry-wide standard.

Consequently, the language was transferred to the IEEE for

 5

standardization in 1986. After a substantial enhancement to the

language, made by a team of industry, university, and DoD

representatives, the language was standardized by the IEEE in December

1987; this version of the language is known as the IEEE Std 1076-1987.

The official language of description appears in the IEEE Standard VHDL

Language Reference Manual, available from IEEE. The language has also

been recognized as an American Nation Standards Institute (ANSI)

standard.

2.3 Advantages of using VHDL for modelling digital

hardware

The following are the major capabilities that the language provides along

with the features that differentiate it from other hardware description

languages.

The language can be used as an exchange medium between chip vendors

and CAD tool users. Different chip vendors can provide VHDL

descriptions of their components to system designers. CAD tool users

can use it to capture the behaviour of the design at a high level of

abstraction for functional simulation.

The language can also be used as a communication medium between

different CAD and CAE tools. For example, a schematic capture program

may be used to generate a VHDL description for the design, which can be

used as an input to a simulation program.

 6

The language supports hierarchy; that is, a digital system can be

modeled as a set of interconnected components; each components, in

turn, can be modeled as a set interconnected subcomponents.

The language supports flexible design methodologies : top-down, bottom-

up, mixed.

The language is not technology-specific, but is capable of supporting

technology-specific features. It can also support various hardware

technologies; for example, we may define new logic types and new

components; we may also specify technologies-specific attributes. By

being technology-independent, the same model can be synthesized into

different vendor libraries.

It supports both synchronous and asynchronous timing models.

Various digital modeling techniques, such as finite-state machine

descriptions, descriptions, and Boolean equations, can be modeled using

the language.

The language is publicly available, human-readable, machine-readable,

and above all, it is not proprietary.

The language supports three basic different description styles:

structural, dataflow, and behavioral. A design may also be expressed in

any combination of these three descriptive styles.

It supports a wide range of abstraction levels ranging from abstract

behavioral descriptions to very precise gate-level descriptions. It does

 7

not, however, support modeling at or below the transistor level. It allows

a design to be captured at a mixed level using a single coherent

language.

Arbitrarily large designs can be modeled using the language, and there

are not limitations imposed by the language on the size of a design.

The language has elements that make large-scale design modeling easier,

for example, components, functions, procedures, and package.

Test benches can be written using the same language to test other VHDL

models.

Nominal propagation delays, min-max delays, setup and hold timing,

timing constraints, and spike detection can all be described very

naturally in this language.

The use of generics and attributes in the models facilitate back

annotation of static information such as timing or placement

information.

Generics and attributes are also useful in describing parameterized

designs.

A model can not only describe the functionality of a designs, but can also

contain information about the design itself in terms of user-defined

attributes, such as total area and speed.

 8

A common language can be used to describe library components from

different vendors. Tools that understand VHDL models will have no

difficulty in reading models from a variety of vendors since the language

is a standard.

Models written in this language can be verified by simulation since

precise simulation semantics are defined for each language construct.

Behavioral models that conform to a certain synthesis description style

are capable of being synthesized to gate-level descriptions.

The capability of defining new data types provides the power to describe

and simulate a new design technique at a very level of abstraction

without any concern about the implementation details.

2.4 Modeling technique using VHDL

Entity declaration : The entity declaration specifics the name of the entity

being modeled and lists the set of interface ports. Ports are signals

through which the entity communicates with the other models in its

external environment.

ARCHITECTURE BODY

The internal details of an entity are specified by an architecture body

using any of the following modeling styles :

1. Structural style : As a set of interconnected components (to

represent structure). It represents the lowest level of abstraction i.e. no

abstraction at all.

 9

2. Data Flow Style : As a set of concurrent assignments statements

(to represent data flow). It represents an abstraction level higher than

structural style in which be specify only logical expression.

3. Behavioural style : As a set of sequential assignment statements

(to represent behavior). It represents the highest level of abstraction in

which we specify only the behaviour of the entity.

 10

AN EXAMPLE

 Figure 1: 2 X 4 DECODER CIRCUIT

2.4.1 Structural style :

entity DECORDER2×4 is

 port (A, B, ENABLE: in BIT; Z: out BIT_VECTOR(0to 3));

end DECODER2×4;

architecture DEC_STR of DECORDER2×4 is

 component INV

PORT(PIN: in BIT;POUT:out BIT);

 11

end component;

component NAND3

port(DO,D1,D2:in BIT;DZ:out BIT);

end component;

signal ABAR,BABAR:BIT;

begin

VO:INV port map(A,ABAR);

V1:INV port map(B,BBAR);

NO:NAND3 port map(ENABLE,ABAR,BBAR,Z(0));

N1: NAND3 port map(ABAR,B,ENABLE,Z(1));

N2: NAND port map(A,BBAR,ENABLE,Z(2));

N3: NAND port map(A,B,ENABLE,Z(3);

End DEC_STR;

 12

2.4.2 Data Flow style :

entity DECORDER2×4 is

 port (A, B, ENABLE: in BIT; Z: out BIT_VECTOR(0to 3));

end DECODER2×4;

architecture DEC_DATAFLOW of DECORDER2×4 is

signal ABAR,BBAR:BIT;

BEGIN

Z(3)<=not(A and B and ENABLE);

Z(0)<=not(ABAR and BBAR and ENABLE);

BBAR<= not B;

Z(2)<=not (A and BBAR and ENABLE);

ABAR<=not A;

Z(1)<=not(ABAR and B and ENABLE);

End DEC_DATAFLOW;

 13

2.4.3 Behavioural style :

entity DECORDER2×4 is

 port (A, B, ENABLE: in BIT; Z: out BIT_VECTOR(0to 3));

end DECODER2×4;

architecture DEC_SEQUENTIAL of DECODERS2×4 is

begin

 process (A, B, ENABLE)

 variable ABAR, BBAR: BIT;

begin

 ABAR : = not A;

 BBAR := not B;

 If ENABLE = ‘1’ then

 Z(3) <= not (A and B);

 Z(0) <= not (BBAR and BBAR);

 Z(2) <= not (A and BBAR);

 Z(1) <= not (ABAR and B);

Else

 Z <= “1111”;

 14

end if;

end process;

end DEC_SEQUENTIAL;

 15

3 DESIGN FLOW

 16

3.1 Analysis :

 The analysis phase consists of writing a specification. The specification

can be written in VHDL or ordinary language. The purpose of the

specification is to find out WHAT HAS TO BE DONE. The specification

can be described in VHDL and then verified in a VHDL simulator.

3.2 Design :

 The design phase means transforming the specification into an

architecture and VHDL code. The phase starts with defining an

architecture (block diagram). When the architecture is ready, the VHDL

code is written for the various components (blocks) or ready-made

components copied from a library. Then the function of the design is

verified in a simulator. When the result agrees with the specification, the

designer can go on to the next phase. In this phase the major challenge

is HOW SHOULD THE ARCHITECTURE AND COMPONENTS BE

DESIGNED?

3.3 Technology Mapping :

 It is parameters such as price, performance and supply, etc., that

determine which technology will be selected. This phase is now largely

automated. The time constraints are described in a format which can be

read by the synthesis tool. If the synthesis tool cannot meet the time

constraints, the design phase must be repeated in full or in part. An

 17

approved synthesis produces a technology-dependent netlist (schematic),

which is an input file for other tools.

3.4 Prototyping :

 A prototype is then built and compared with the specification

Programming of an FPGA (Field Programmable Gate Array) for the design

is called prototyping. If the RESULT is the same as the SPECIFICATION,

the circuit is ready. This comparison is called validation.

 18

4 COMPLEX PROGRAMMABLE LOGIC DEVICE

4.1 Advantages of using CPLD

•It is the best prototyping solution because CPLD comes with in built

hard ware to implement

•Cost effective solutions.

•Involves less risk.

•Design security.

•Consumes less board area.

•Reconfigurable computing.

•Best suits Flexibility

•In system programmability.

•Less project development time.

•Best hardware verification for design.

4.2 CoolRunner XPLA3 Family

XPLA3 is from the CoolRunner CPLD family. The XPLA3 family includes

devices ranging from 32 to 384 macrocells. XPLA3 was created to

maintain the same competitive advantages as the existing CoolRunner

 19

families, add additional features, increase performance, and offer a

substantially lower cost. The CoolRunner XPLA3 is a non-volatile (Flash

based), 0.35µ CMOS CPLD which offers ultra low power consumption, a

flexible architecture, and high-speed capabilities.

4.3 CoolRunner XPLA3 Architecture

Designers want CPLD devices that offer high speed, high density, and the

flexibility to make changes to their design at any stage of the design

process. A particular device’s ability to meet all of these critical needs

efficiently is often constrained by the basic architecture of the CPLD.The

basic components of CPLD architecture that affect the device’s speed,

density, and design flexibility can be broken into four distinct areas.

These four areas are the basic interconnect methodology, logic block

architecture, logic allocation method, and the timing model of the device.

The CoolRunner XPLA3 architecture is the result of extensive research

into the effect architecture has on these critical system needs and

delivers a third generation solution that is superior to previous

architectures. From a high-level, the architecture of CoolRunner XPLA3

CPLDs appears similar to many other CPLD architectures. As shown in

Figure 2, the XPLA3 architecture consists of logic blocks containing

macrocells interconnected by a routing matrix. Each XPLA3 logic block

contains 16 macrocells. The routing matrix is called the ZIA (Zero-power

Interconnect Array) and provides 36 true and complement signals to

 20

each logic block. A 4-bit Universal Bus is used to provide an individual

asynchronous clock (UCLK), reset (URST), preset (UPST), and output

enable (UOE). These bus lines are driven by four multiplexers (muxes),

with the mux inputs consisting of a single control p-term from each Logic

Block. The 32 macrocell version of XPLA3 will have two logic blocks,

which means a maximum of two universal control functions can be

implemented. All other family members can have up to four universal

functions. Four external clock signals (Global Clocks) are muxed down to

two, selectable at each logic block.

4.3.1 Zero Power Interconnect Array

The basic premise of CPLD architecture is the construction of large

devices that are built upon multiple PLD blocks that are connected via

an interconnect matrix (see Figure 3). In CPLDs, this interconnect

resource is supposed to act like a crosspoint switch to route signals from

 21

the Inputs, I/Os, and macrocell feedbacks to the logic blocks where these

signals are needed. The interconnect must also be very fast to support

the high speeds that designers expect in today’s CPLDs. The ability to

lock pins is problematic when interconnect fails in its ability to route

signals under worst case conditions. The ideal performance of an

interconnect is to fully emulate a crosspoint switch, where every input to

the array can be connected to every output of the array under fixed

pinouts. Some first generation devices used full crosspoint switch arrays,

and as a result offered 100% routability, at a significant price. As shown

in Figure 4, building a crosspoint switch with these devices required a

fuse at every intersection of the input and output line in the array. For a

128 macrocell device, this would translate into more than 65,000

connections. More significantly, these fully populated crosspoint switches

were relatively slow, accounting for an 8 ns to 15 ns delay.

 22

The next step in interconnect evolution was the use of multiplexers to

emulate crosspoint switches, a technique that all contemporary devices

employ. Figure 5 shows a set of 16 muxes that are two bits wide which

form an interconnect that has 32 inputs and 16 outputs. The use of

muxes has two immediate effects. The first is that the delay through the

interconnect is typically equivalent to a single mux delay, which is

typically well under 0.5 ns. The second effect is the reduction of

connections required to implement the interconnect. As a result, the

number of connections required for a 128 macrocell device can be

reduced from approximately 65,000 to less than 2,000.

Unfortunately, if the architecture of this interconnect is not well

engineered, signal blocking can occur. The issue with this 2:1 Mux

approach is that only half of the inputs can enter the logic block. The key

to building an efficient non-blocking muxed based interconnect is to

include many overlapping, wide muxes which give each input multiple

chances to get into the logic block. The main trade-off is routability (non-

blocking) and costs (silicon area and performance).Enough resources

 23

(wide Muxes) need to be included to ensure not only that the device will

be able to route the design but must also be architected to facilitate last

minutes design changes once the pins have been locked.

The XPLA3 interconnect (see Figure 6) was architected by the software

group that was responsible for ensuring that it would be capable of re-

routing fixed pinout designs. By extensively simulating the width of the

muxes and the number deployed, a mux based interconnect can be

designed such that the probability of signal blocking is statistically very

low.The XPLA3 interconnect employs a sufficiently large number of input

muxes, of sufficient width, to guarantee routability under worst case

conditions. The final interconnect architecture was subjected to over 16

million iterations of worst case fixed pinout routing. This resulted in

worst case signal routing of 99.997% when every I/O, input pin, and

macrocell is in use and has a fixed pinout. If only 35 of the 36 logic block

inputs are used, 100% of the 16 million fixed signal routings completed

successfully. It is believed that this type of solution allows designers total

freedom to make design iterations without the fear of having to re-layout

the PCB. Not every CPLD architecture is able to support interconnect

routing that is this robust.

 24

.

4.3.2 Logic Block Fan-in

The fan-in to each logic block in a CoolRunner XPLA3 CPLD from the ZIA

is advertised as 36.However, the architecture of the XPLA3 CPLD actually

provides 40 routing channels to each logic block. The software defaults to

using a logic block fan-in of 36 and can utilize any 36 of the 40 fan-in to

the logic block, i.e., the 36 routing channels utilized by the software are

not dedicated. These four extra fan-in signals are reserved and can be

enabled in software when necessary

4.3.3 Logic Block

Figure 7 illustrates the logic block architecture. There are 36 pairs of

true and complement inputs from the ZIA that feed 48 product terms

(PTs) in the array. Each logic block contains a PLA (Programmable Logic

Array) which provides a pool of 48 PTs that can be used as macrocell

clocks, control terms (reset, preset, clock-enables, or output-enables), or

as needed by the 16 macrocells in the logic block. These 48 product

 25

terms can be used by one or all 16 of the macrocells in the logic block.

None of the product terms are dedicated, therefore, product terms that

are not used for control terms or macrocell clocks may be used for

macrocell logic.Within the 48 product terms there are:

• Eight product terms, PT[0-7], can be used to generate eight local

control terms (LCT[0:7]) that are available for use, by each macrocell, as

asynchronous clocks, resets, presets, and output enables. One of the

control product terms in each Logic Block is made available to the

Universal Control Term Bus. It can drive any one of the four Universal

Control Terms through the Universal Control Term Mux.

• Sixteen product terms, PT[16:31], are coupled with the associated

programmable OR gate into the VFM (Variable Function Multiplexer). The

VFM increases logic optimization by implementing any two input logic

function before entering the macrocell.

• Sixteen product terms, PT[32:47], can be used as asynchronous clocks

or as clock enables.

• Eight fold-back NAND product terms, PT[8:15], are available for ease of

fitting and pin locking. These fold-back NAND structures increase the

virtual width of the product term and allow more logic to be placed in

less silicon area.

 26

A "Power Up" input to the ZIA, active during the initialization of the PLD,

allows individual macrocells to be reset or preset depending on the

customer configuration pattern.

4.3.4 Variable Function Mux (VFM)

A Variable Function Mux is a small part of the PLA logic that feeds

directly into each macrocell. Every macrocell has its own VFM. As shown

in Figure 8, this VFM can be thought of as a flexible programmable logic

element that can synthesize any two input logic element, such as XOR,

XNOR, etc. Each VFM has two inputs, a single product term input and a

sum of products input. Both of these inputs come directly from the PLA;

the sum of products input may consist of up to 48 product terms.

 27

4.3.5 Fold-back NANDs

Fold-back NANDs are powerful architectural additions for synthesis

capable tools and provide increased density. Figure 9 illustrates how a

Fold-back NAND is constructed. The key operation of a Fold-back NAND

is to allow the software synthesis to use De Morgan’s Theorem to

create"virtual" PTs. In other words, equations can be re-written using De

Morgan’s Theorem to reduce the number of PTs needed to implement the

equivalent functionality.

Figure 10 shows an example of how Fold-back NANDs can be used to

reduce the number of required product terms. Fold-back NANDs are

especially effective in state machines and decoder designs. XPLA3 devices

use Fold-back NANDs to cost effectively implement higher density logic

 28

(Fold-back NANDs require much less silicon area than additional product

terms).

4.3.6 PAL versus PLA

There are two basic types of product term generators: a PAL

(programmable AND, fixed OR) and a PLA (programmable AND,

programmable OR). Both types of logic use an AND array to build up a

product term; the difference between the two is how the product terms

are summed.The PAL is comprised of a programmable AND array

followed by a fixed number input OR element. Each OR element has a

certain number of dedicated PTs and sharing of these PTs is not allowed.

The PLA array differs from the PAL in that the AND array is followed by a

programmable width OR array (see Figure 11). Having a programmable

OR Array allows PTs to be shared between macrocells (effectively

increasing device density), to have excellent pin locking (every PT is

 29

available to every macrocell), and provides a very simple timing model.

The XPLA3 architecture is based on a PLA; all non-CoolRunner CPLDs

employ a PAL.

4.3.7 Product Term Sharing

Many logic designs, such as decoders and state machines, have common

logic components. If an architecture allows for sharing of resources (e.g.,

PLA), this common logic can be built up one time and provided to all

higher expressions that require this common sub-expression. This

sharing of logic means that common logic does not have to be duplicated.

Figure 12 is intended to help illustrate the PAL / PLA product term

sharing differences.

 30

4.3.8 Product Term Allocation Method

There are two different approaches used by CPLD manufactures to

allocate logic: product terms steering and PLA implementation. Product-

term steering dedicates a certain number of product terms to each

macrocell in the logic block. Steering mechanisms are used that allow a

macrocel’s product terms to be steered to adjacent macrocells when

needed. The PLA array is a programmable AND, programmable OR

structure, therefore all product terms in the array are available to all of

the macrocells in the logic block; there are no dedicated product terms.

In addition, all product terms that are common to multiple macrocells in

the logic block can be implemented once and shared by all macrocells in

the logic block.

Figure 13 illustrates a product-term steering type of logic-block

architecture. Note that this logic-block architecture is not used in XPLA3

devices. In this figure, each macrocell has four dedicated product terms.

When a macrocell needs additional product terms, the product terms

 31

from an adjacent macrocell are steered to this macrocell. This macrocell

whose product terms were re-directed may now be stranded and un-

usable.

Consider the case where a design has been completed and the board-

level debugging has begun. It is determined that a design change is

necessary in the CPLD logic and this design change requires that a

certain macrocell now requires seven product terms. If the CPLD logic

block architecture is similar to that shown in Figure 13 and the

surrounding macrocells are currently utilized as outputs, this design

change can not be implemented. Taking this example further, if a design

change is such that the pinout can be maintained, there is a high

probability that the timing of the design will change as additional

product terms are steered to implement the new logic.

 If, however, this design is targeted to a CoolRunner XPLA3 CPLD,

unused product terms in the PLA can be used to implement the pinouts

 32

design change without affecting any of the macrocells in the logic block

or the device pinout as shown in Figure 14. All product terms in the PLA

are available to each macrocell in the logic block, therefore, the pinout

can be maintained. An additional advantage of the PLA structure is that

product terms that are common to multiple macrocells in the logic block

are implemented once and shared.

CPLD manufacturers who implement product-term steering will advise

designers to move to the next larger macrocell count device if their

current device utilization is > 80% so that pinout can be maintained if

design changes are necessary. Note that this recommendation means

that a design using 102 macrocells of a 128 macrocell device should be

implemented in the next larger CPLD (typically a 256-macrocell device) if

there is a possibility of design changes! Because of the high probability of

implementing design changes due to debug, feature additions, or system

test, this recommendation can significantly increase the cost of a

 33

systemand is a waste of silicon that has already been purchased. CPLDs

that utilize product-term steering do not allow designers to maximize the

benefits of In-System Programmability (ISP).Note that the key to

maintaining a fixed pinout is not only the efficiency of the routing matrix

but how the product terms are allocated within the logic block. With the

PLA structure implemented in a CoolRunner XPLA3 CPLD, fixed pinouts

are maintained after logic changes even at device utilizations of > 99%,

making the XPLA3 architecture optimal for ISP.

4.3.9 Macrocell

Each macrocell, as shown in Figure 15, can support combinatorial or

registered inputs, a universal preset and reset for each macrocell and

configurable D, T, or L registers with maximum clocking flexibility. There

are two feedback paths to the ZIA: one from the macrocell and one from

the I/O pin. When the I/O is used as an output, the output buffer is

enabled, and the macrocell feedback path can be used to feed back the

logic implemented in the macrocell. When the I/O pin is used as an

input, the output buffer will be tri-stated and the input signal will be fed

into the ZIA via the I/O feedback path. The logic implemented in the

buried macrocell can be fed back to the ZIA via the macrocell feedback

path. macrocells which are buried within a Logic Block and not

connected to an I/O are identical to the non-buried macrocells. Each

macrocell can be used to implement either register or combinatorial

functions.

 34

Register Functionality

The data input to each macrocell register is derived from the output of

Variable Function Multiplexer. Each macrocell register can be configured

as a D-, T-, or Latch-type flip-flop; this flip-flop may also be configured to

be an input register (see the section entitled, "Input Register

Configuration" for more details). Each flip-flop has both asynchronous

preset and reset capabilities. There are seven different preset and reset

sources: one universal control term (one for preset [UCT1] and one for

reset [UCT2]) and six shared local control terms (LCT[0-5]).

Clocking

Each macrocell register can be clocked from any one of ten sources

 • There are two global clocks that are derived from the four external

clock pins via a 4:2 multiplexer.

• There is one universal clock signal (UCT0) sourced by a universal

control term.

 35

• There are four Local Control Terms (LCT4-LCT7) which can be used as

clock signal and can be individually configured as either a product term

or sum term equation created from the 36 signals available inside the

logic block.

• There is one dedicated product term clock per macrocell. In addition to

having ten possible clock sources, polarity (rising or falling edge) is also

selectable at each macrocell. Hardware clock enables are also available

for added clock control.

Input Register Configuration

The XPLA3 device macrocells may have their registers configured as

input registers; this means that signals from a pin may be directly

latched by the register without having to pass through the interconnect

array. The setup time for this is 2 ns and is accompanied by a 0 ns hold

time. As shown in Figure 16, when implementing an input register the

preceding macrocell logic is still available for use as a buried

combinatorial node. This logic may be fed back to the interconnect array

for distribution elsewhere in the device.

 36

4.3.10 I/O Cell

The XPLA3 devices are implemented on a 0.35process and run off of a

single supply VDD of 3.3V. All I/Os are 5V tolerant and provide timing,

voltage, and current characteristics required by the PCI specification.

XPLA3 devices are PCI compatible but not compliant. CoolRunner CPLDs

are not compliant because the specification requires overshoot signal

conditioning diodes that the XPLA3 devices do not provide. If a designer

wishes to implement a PCI driver/ receiver, the designer will be required

to provide external diode clamps. With the exception of the clamp diode,

XPLA3 devices meet the stringent requirements of the PCI specification.

The Output Enable (OE) has eight possible states as shown in Table 1.

 37

The XPLA3 output buffers incorporate weak pull up resistors (option # 7)

to provide internal termination when I/Os are unused. These pull-ups

are not available for used I/Os. Please note that dedicated inputs (global

clocks) do not have a pull-up resistor and therefore should be properly

terminated (pulled Hgh or Low) if left unconnected. XPLA3 devices also

provide slew rate control for each macrocell output pin. The user has the

option to enable the slew rate control to reduce EMI. The nominal delay

for using this is 3 ns.

4.3.11 Timing Model

The final consideration when selecting a CPLD is the timing model.

CPLDs should offer fast, deterministic timing that remains invariant as

design changes are made. More specifically, since late changes often

involve adding additional logic, the ability of the device to maintain

predictable timing as the logic width increases is important.

Unfortunately, many devices have speeds that are attainable only under

 38

a limited set of conditions. As additional logic complexity is introduced,

the timing may suffer and be significantly different from the ’peak’ speed

promised. It is a good idea to review the timing information and/or model

for the device being considered. Sometimes it can be very difficult to

determine what the timing will be if 16 (or more) product terms are

used.In non-CoolRunner architectures, the user may be able to fit the

design, but may not be sure whether system timing requirements can be

met until after the design has been fit into the device. This is because

timing models of these architectures are very complex (dependent on

many variables such as: the number of parallel expanders borrowed,

sharable expanders, different routing channels, etc). Figure 17 shows the

XPLA3 timing model which has three main parameters, including TPD,

TSU, and TCO. As a result of the simplicity of this timing model, designers

can make reasonably accurate estimations of the performance of their

design before they began using the device. It is important to note that the

PLA timing is deterministic regardless of the number of PLA terms that

are used or the number that are shared by multiple outputs.

 39

5 Specification
The functioning of the 8255 in each of the three modes is described.

5.1 Mode 0: Basic Input/Output

In this mode, in addition to Port A and Port B, PC0-PC3 and PC4-PC7 of

Port C can be considered as two individual 4-bit ports. Therefore, four

ports, each of which can be configured either as an input port or an

output are available. It follows that there are sixteen possible

input/output configurations. Here the ports are simple input or output

ports: data is written to or read from the specified port without

handshaking. The data sent out to the output ports are latached, where

as inputs are not latched.

5.2 Mode 1 : Strobed Input / Output

In this mode, input or output data transfer is effected by strobes,

otherwise called handshaking signals. The two groups, Group A and

Group B, can be configured separately, with each group consisting of an

8-bit port and a 4-bit port. The 8-bit port can be programmed for imput

or output (unidirectional) operation with latched output and latched

input facilities. The 4-bit port is used for handshaking. In the output

 40

mode, data is continuously present on the output pins once the port is

written into by the CPU.

5.3 Mode 2 : Strobed Bidirectional Bus I/O

This mode allows bidirectional data transfer (transmission and reception)

over a single 8-bit data bus using handshaking signals. This feature is

available only in Group A with Port A as the 8-bit bidirectional data bus;

and PC3-PC7 are used for handshaking purpose. In this mode too, both

inputs and outputs are latched. Due to use of a single 8-bit data bus for

bidirectional data transfer, the data sent out by the CPU through Port A

appears on the bus connecting it to the peripheral, only when the

peripheral requests it.

5.4 BIT SET-RESET FEATURE (BSR)

In addition to the above modes, individual bits of Port C can be set or

reset by sending out a single OUT instruction to the control register.

When Port C is used for control / status operation, this feature can be

used to set or reset individual bits as if they were output ports.

 41

6 FUNCTIONAL ORGANIZATION

The 8255 Programmable Peripheral Interface is used as a general

purpose device to interface peripheral devices to the microcomputer

system bus. The Figure 18 on the next page shows the internal block

diagram of the 8255 Programmable peripheral interface. The functions of

each block are described next, with respect to block diagram.

 42

 Figure 18: BLOCK DIAGRAM OF 8255 PPI

 43

6.1 DATA BUS BUFFER

This tri-state bidirectional buffer is used to interface the 8255 to the

system data bus. Input or Output instructions executed by the CPU

either Read data from, or Write data into the buffer. Output data from

the CPU to the ports or control register, and input data to the CPU from

the ports or status register are all passed through the buffer.

6.2 CONTROL LOGIC

The control logic block accepts control bus signals as well as inputs from

the address bus, and issues commands to the individual group control

block (Group A control and Group B control). It issues appropriate

enabling signals to access the required data / control words or status

word. The input pins pertaining to the control logic section are described

below.

6.2.1 CHIP SELECT

This is an active low input which must be enabled for data transfer

operation between the CPU and the 8255.

 44

 Table 2: PORT AND REGISTER SELECT SIGNAL SUMMARY

6.2.2 A0 and A1

These input signals along with RD and WR inputs control the selection of

the control / status word registers or one of the three ports. The table 2

above summarizes the status of A0, A1, CS , RD , and WR to access the

control word / ports. A0 and A1 are generally connected to the A0, A1 bits

of the address bus; the 8255 therefore occupies four consecutive

locations in the I/O space.

 45

6.2.3 �� (Read)

When this input pin is made low, the CPU can read the data in the ports

or the status word, through the data buffer.

6.2.4 �� (Write)

When this input pin is made low, the CPU can write data onto the ports

or onto the control register through the data bus buffer.

6.2.5 RESET

When this input is made high, the control register is cleared and all the

ports are set to the input mode.

6.3 Ports A , B ,C

Port a has an 8-bit latched and buffered output and an 8-bit input latch.

Port B has an 8-bit data I/O latch / buffer and an –bit data input buffer.

Port C has one 8-bit unlatched input buffer and an 8-bit output latch /

buffer. Port C and be split into two parts and each can be used for

control signal outputs/ inputs for Port A and B in the handshake mode.

Each of the Group A and Group B control block receives control words

from the CPU through the data buffer and internal data bus, accepts

commands from the control logic block, and issues appropriate

commands to the ports associated with it. The Group A control block

 46

controls Port A and PC7-PC4, while the Group B control block controls

Port B and PC0-PC3.

 47

7 PROGRAMMING AND OPERATION

7.1 Operation

A high on the RESET pin causes all 24 lines of the three 8-bit ports to be

in the input mode. All flip-flops are cleared and the interrupts are reset.

This condition is maintained even after the RESET goes low. The port of

the 8255 can then be programmed for any other mode by sending out a

single output instruction to the control register. Also, the current mode

of operation can be changed by writing a single mode word onto the

control register, when required.

Modes for Group A and Group B can be separately defined with Port C

taking on responsibilities as dictated by the mode definitions of Ports A

and B. If Group A is programmed for Mode 0 and Group B programmed

for Mode 1, Port A and PC4-PC7 can be programmed for either input or

output, while Port B can be programmed for input or output with PC0-

PC2 used for handshaking.

The mode definition format and bit set-reset format are as shown in the

figure19A-B on the next page. The control words for both mode definition

and Bit Set-Reset are loaded into the same control register, with bit D7

used for specifying whether the word loaded into the control register is a

mode definition word or Bit Set-Reset word. If D7 is high, the word is

 48

taken as a mode definition world, and if it is low, it s taken as a Bit Set-

Reset word.

 Figure 19A: 8255 PPI MODE DEFINITION FORMAT

 49

 Figure 19 B: 8255 PPI BIT SET/ RESET FORMAT

The appropriate bits are set or reset depending on the type of operation

desired, and loaded into the control register (which is accessed when A1,

A0 both are ‘1’, WR and CS both are ‘0’). It is to be noted that Group B

does not have provision for operation in Mode 2.

The eight possible combinations of the states of bits D1-D3 (B2 B1 B0) in

the Bit Set-Reset format (henceforth referred to as BSR) determine the

particulate bit in PC0-PC7 being set or reset as per the status of bit D0. A

BSR word is to be written for each bit that is to the set or reset. For

example, if bit PC2 is to be set and bit PC7 is to be reset, the appropriate

BSR words that will have to be loaded into the control register will be,

0XXX101 and 0XXX1110, respectively, where X can be either ‘0’ or ‘1’.

The BSR word can also be used for enabling or disabling interrupt

signals generated by Port C when the 8255 is programmed for Mode 1 or

 50

Mode 2 operations. This is done by setting or resetting the associated

bits of the interrupts.

7.2 Programming in Mode 0

The Ports A, B, and C can be configured as simple input or output ports

by writing the appropriate control word in the control word register. In

the control word D7 is set to ‘1’ (to define a mode set operation) and D6,

D5, and D2 are all set to ‘0’ to configure all the ports in Mode 0 operation.

The status of bits D4, D3, D1 and D0 then determine whether the

corresponding ports are to be configured as Input or Output.

7.3 Programming In Mode 1 (Strobed Input / Output)

Both Group A and Group B can be made to operate in Mode 1, either

together, or individually, with each port containing an 8-bit latched Input

to Output data port, and a 4-bit which is used for control and status of

the 8-bit port.

When Port A is to be programmed as an input port, PC3, PC4, and PC5

are used for control. PC6 and PC7 are not used and can be Input or

Output, as programmed by bit D3 of the control word. When Port A is

programmed as an output port, PC3, PC6 and PC7 are used for control

and PC4 and PC5 can be Input or Output, as programmed by bit D3 of the

control word. In Group B, PC0, PC1, and PC2 are all used for control.

 51

Mode 1 Input

The figure 20 shows Port A as in input port (when it operates in Mode 1)

along with the control word and control signals (for handshaking with a

peripheral). When the control word is loaded into the control register,

Group A is configured in Mode 1 with Port A as an input port. Port A can

accept parallel data from a peripheral (like a keyboard) and this data can

be read by the CPU. The peripheral first loads data into

 Figre 20A: 8255 PORT A IN MODE 1 (INPUT)

 52

 Figure20 B: MODE 1 STATUS WORD (INPUT)

Port A by making the ASTB input low. This latches the data placed by the

peripheral on the common data bus into Port A. Port A acknowledges

reception of data by making IBFA (Input Buffer Full) high. IBFA is set

when the ASTB input is made low.

INTRA is an active high output signal which can be used to interrupt the

CPU so that the CPU can suspend its current operation and read the

data written into Port A by the peripheral INTRA can be enabled or

disabled by the INTEA flip-flop which is controlled by Bit Set-Reset

operation of PC4. INTRA is set (if enabled by setting the INTEA flip-flop)

after the ASTB has gone high again, and if IBFA is high.

On receipt of the interrupt, the CPU can be made to read Port A. the

falling edge of the RD input resets IBFA and it goes low. This can be used

to indicate to the peripheral that the input buffer is empty and that can

again be loaded into it. The timing diagram and operation of Port B is

 53

similar to that of Port A except that it uses different bits of Port C for

control. INTEB is controlled by Bit Set/Reset of PC2.

If the CPU is busy with other system operations, it can read data from

the input port when it is interrupted. This is often called Interrupt

Controlled I/O. However, if the CPU is otherwise not busy with other

jobs, it can continuously poll (read) the status word to check for an IBFA.

This is often called Program Controlled I/O. The status word(figure20 B)

is accessed by reading Port C (A1 A0 must be 10, RD and CS must be

low). The status word format as assumed by the bits of Port C when Ports

A and B are input ports in Mode 1, is shown in the figure 20B.

Mode 1 Output

Figure21A shows Port A configured as an output port (when in Mode 1)

along with the control word and control signals (for handshaking with a

peripheral). When the control word as shown in the figure21A, is loaded

into the control register. Group A is configured in Mode 1 with Port A as

an output port. The CPU can send out data to a peripheral (like a display

device) through Port A of the 8255.

The AOBF output (Output Buffer Full) goes low on the rising edge of the

WR signal (when the CPU writes data into the 8255). The AOBF output

from 8255 can be used as a strobe input to the peripheral to latch the

contents of Port A. The peripheral responds to the receipt of data by

 54

making the AACK input of the 8255 low, thus acknowledging that it has

received the data sent out by the CPU through Port A. The AACK low

reset the AOBF signal, which can be polled by the CPU through AOBF of

the status word to load the next data when it is high again.

INTRA is an active high output of the 8255 which is made high (is the

associated INTE flip-flop is set) when AACK is made again by the

 Figure 21A: 8255 PORT A IN MODE 1 (OUTPUT)

 55

 Figure 21B: MODE 1 STATUS WORD (OUTPUT)

peripheral, and when AOBF goes high again. It can be used to interrupt

the CPU whenever the output buffer is empty. It is reset by the falling

edge of WRwhen the CPU writes data onto Port A. It can be enabled or

disabled a ‘1’ or a ‘0’ respectively to PC6 in the BSR mode. The operation

of Port B is similar to the of Port A. INTEB is controlled by writing a ‘1’ or

a ‘0’ to PC2 in the BSR mode. The status word format as assumed by the

bits of Port C when Ports A and B are output ports in Mode 1, is shown

in the figure 21B.

7.4 Programming in Mode 2 (Strobed Bidirectional Bus I/O)

When the 8255 is operated in Mode 2 (by loading the appropriate control

word), Port A can be used as a bidirectional 8-bit I/O bus using PC3-PC7

for handshaking. Port B can be programmed only in Mode 0 (PC0-PC2 as

Input or Output), or in Mode 1 (with PC0-PC2 for handshaking).

 56

Figure 22A shows the control word that would have to be loaded into the

control word register to configure 8255 in Mode 2.

 Figure 22A: 8255 MODE 2 CONTROL WORD

 Figure22B: MODE 2 OPERATION

 57

 ��� (OUTPUT BUFFER FULL)

This is an active low output which indicates that the CPU has written

data into Port A. ��� (ACKNOWLEDGE)

This is an active low input signal (generated by the peripheral) which

enables the tri-state output buffer or Port A and makes Port A data

available to the peripheral. In Mode 2, Port A outputs e in tri-state until

enabled.

INTE 1

This is the flip-flop associated with Output Buffer Full. INTE 1 can be

used to enable or disable the interrupt by setting resetting PC6 in the

BSR Mode.

INPUT CONTROL SIGNALS ��� (STORBE INPUT)

This is an active low input signal which enables Port A to latch the data

available at its input.

 58

IBF (Input Buffer Full Flip-Flop)

This is an active high output which indicates that data has been loaded

into the input latch of Port A.

INTE 2

This is in Interrupt enable flip-flop associated with Input Buffer Full. It

can be controlled by setting or resetting PC4 in the BSR Mode.

STATUS WORD IN MODE 2

The status word for Mode 2 (accessed by reading Port C) is shown in the

figure22C .The status word carry information about AOBF , INTE1, IBFA,

INTE2, and INTRA. The status of the bits D2-D0 depend on the mode

setting of Group B. If B is programmed in Mode 0, D2 –D0 are the same

as PC2-PC0 (simple I/O); however is B is in Mode 1, D2 –D0 carry

information about the control signals for B depending upon whether B is

an Input port or Output port respectively.

 Figure 22C: STATUS WORD FOR MODE 2

 59

8 SIMULATION RESULTS

 60

 61

 62

 63

 64

 65

 66

9 CONCLUSION

Simulation results confirm the successful implementation of the 8255

Programmable Peripheral Interface. With the help of VHDL programming

coding and downloading on a CPLD integrated circuit, the usage of the

semi-custom chip was enhanced to a high degree, making it suitable

even for a 8255 PPI and its related applications.

 67

10 DISCUSSION AND FURTHER WORK

CPLD’ s provide designer flexibility to maintain, modify, and upgrade a

design from time to time because of it’s in system programmability.

VHDL being technology independent provides the designer the ease to

port his design to different technologies .These two features make the

digital system design more simplified. Every implementation has its

strengths and weakness. Full Custom ; Application specific integrated

circuit (ASIC) implementation is very good in terms of chip area , speed

and power consumption but it takes a lot of time to complete a design.

On the other hand using the semi-custom approach (CPLD) the designer

can tailor the general algorithm of the design according to the need on

the fly ; the price paid is in terms of chip area , speed and power

consumption. But this price is very less when when we see from the

angle of time to market and flexibility of design. The current trends in the

CPLDS design show shrinking area more logic density higher speeds and

lower power consumption. So we can say that programmability feature of

CPLDS weighs more in favour of the designer.

10.2 Further work

I have made only the ports available with 8255 With its respective

functionality .It can be integrated with a signal processing unit. The

 68

signal processing unit can be implemented on the same CPLD on which

8255PPI was implemented. The logic density of the CPLD are increasing

with every new release. In time to come we can have CPLD with enough

Logic density to accommodate Digital to Analog converter and Analog to

Digital converter and signal processing unit on the same CPLD.

 69

BIBLIOGRAPHY

1.Vhdl” by Douglas L.Perry , McGraw-Hill Publication

2. “Vhdl for Designers” by Lennart Lindh ,Prentice Hall Publication

3. “Vhdl Analysis and Modelling Of Digital Systems” by Z.Navabi ,
 MacGraw Hill Publication

4. “Vhdl Coding Styles and Methodologies” – Ben Cohen ,
 Springer Publication.

5. “A Designers guide to Vhdl” – Peter J Ashenden ,
 Morgan Kaufmann Publication

6. “Vhdl Primer” - J.Bhaskar, Prentice Hall Publication

7. “ A Vhdl Synthesis Primer” - J.Bhaskar, Star Galaxy Publication

8. “Vhdl for Programmable Logic” – Kevin Skahill , Addison-Wesley
 Publication

9. Intel Manual of 8255 PPI.

10. www.xilinx .com/product/coolpld/

