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Chapter 1. Introduction
Computer networks have become a part our lives. The presence of these networks can be felt in every aspect of communication; commerce, industry, education, homes, banks and what not. Computer networks were basically meant for communication, connectedness and collaboration. The openness of the networked environment however, does not address the security aspects . Besides software solutions, the  cryptography and network security provides concrete foundations to this active research area. Security has now become everyone’s need, directly or indirectly related with network environment. This work attempts to integrate network security with another emerging technology, data hiding; primarily associated with oblivious communication or more recently protecting copyright in digital media appearing on the Internet. One of the subdisciplines of this broad concept is Covert Channels  that is tied with security aspects of computer networks.

This thesis explores Covert Channel in TCP/IP Protocol suite. A survey of Covert Channel in network protocol is also presentd. We tried to identify the possibilities of Covert Channel in each TCP/IP protocol layer.
We also attempt to identify the various carrier of the Covert Data in TCP/IP header. A general analysis of detection of Covert Channels is also performed on both TCP and IP header fields. Furthermore, an implementation of Covert Channel in TCP/IP suite is also presented.
1.1 Covert Channels
Lampson introduced Covert Channels in 1973 in the context of monolithic systems as a mechanism by which a process at a high security level leaks information to a process at a low security level that would otherwise not have access to it [1]. 
A Covert Channel is described by US Department of Defense (US DoD).in [2] as a communication link between two parties that allows one party to transfer information to the other in a manner that violates the system’s security policy.

Figure 1, below shows the conceptual existence of the Covert Channel. An overt channel can be utilized to act as a Covert Channel by having embedding and detection processes incorporated at the source and the receiver, respectively. By definition, the existence of Covert Channels must be non-detectable.        
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                                    Figure 1: Overt and Covert Channels
Covert Channels can be regarded as one of the main sub-disciplines of data hiding. In data hiding, the two communicating parties are allowed to communicate with each other based on the security policy of the system while exploiting the features as associated with Covert Channel definition; there is piggy-backing of undetectable data on the legitimate content. This led to an emerging discipline, steganography, which is the Greek for covered writing. Steganography is therefore about concealing the existence of the message when secret information is hidden into an innocent cover data.
The simplest example usually referred to, is the usage of the low order two or three bits of each pixel in a digital image for the secret data to be communicated. The last two or three bits are less likely to affect the content of the cover image and will conceal the existence of the secret content. This scenario would, therefore, facilitate the smuggling of information from one point to another. The science of  steganography thus avails Covert Channels in order to have secret  information transfer.
The huge amount of data and vast number of different protocols in the Internet makes it ideal as a high-bandwidth vehicle for covert communications. The capacity of Covert Channels in computer networks has greatly increased because of new high-speed network technologies, and this trend is likely to continue. Even if only one bit per packet can be covertly transmitted, a large Internet site could lose 26GB of data annually [3]. 

Covert Channels in computer network protocols are similar to techniques for hiding information in audio, visual or textual content (steganography). While steganography requires some form of content as cover, Covert Channels require some network protocol as carrier.

The ubiquitous presence of a small number of network protocols suitable as carriers (e.g. the Internet Protocol [4]) make Covert Channels widely available. They are usable even in situations where steganography cannot be applied. For example, the web-based techniques encode information sent from client to server as a Covert Channel, because normally web clients do not include any content in their requests.

1.2 Motivation

Many applications of Covert Channels are of a malicious or unwanted nature, and therefore pose a serious threat to network security. Furthermore, we think that because of increased measures against open channels, such as the free transfer of memory sticks in and out of organisations as described in [5], the use of Covert Channels in computer networks will increase. Understanding existing Covert Channel techniques is crucial in developing countermeasures. The detection, elimination, and capacity limitation of Covert Channels are challenging but need to be addressed to secure future computer networks.
1.3 Application Scenario
Clearly, government agencies, criminals, or terrorist organizations have an interest to keep their communication secret. However, simply using encryption does not prevent adversaries from detecting communication patterns. Often only the evidence that communication takes place is sufficient to detect the onset of activity, discover organisational structures or justify obtaining police warrants.

Once spies or hackers have compromised computer systems they usually ex-filtrate data or instrument the systems for malicious purposes, including communication with installed Trojan horses (malicious programs disguised as or embedded within legitimate software) or tools for launching denial of service attacks. Such activities generate network traffic that — if not covert — would immediately alert system administrators, who then would discover the compromised systems. Exfiltrating sensitive data over Covert Channels does not even require compromised computers. It is sufficient if the attacker can compromise an input device such as a keyboard [6], or a software package such as a web browser [7].

It should be emphasized that often even ordinary employees may want to use Covert Channels to bypass their company firewalls in order to access Internet resources. Furthermore, recent attempts by some governments to limit the freedom of speech in the Internet have led to proposals for using Covert Channels to circumvent these measures [8, 9]. In countries that forbid (strong) encryption of data, Covert Channels can be used to secure the information transport (although this is not strong security in the cryptographic sense). 

Network administrators can use Covert Channels to secure network management related communication by hiding it from hackers [10]. Again this is not strong security in the cryptographic sense. Honeypots, which are computer systems set up as trap for hackers, can also use Covert Channels to export logged data in real-time hidden from the attacker [11].

Computer viruses or worms can use Covert Channels to spread themselves undetected or for covertly exchanging information necessary for distributed processing (e.g. execute brute-force attacks on cryptosystems [12]).

Covert Channels can also be used for transmitting authentication data. A number of techniques have been developed for allowing authorised external users to access open firewall ports while presenting these ports as closed to all other users. One particular technique, called port knocking, uses Covert Channels for sending the authentication information [13]. Mazurczyk et al. proposed using Covert Channels and steganography to link control information, including authentication data, to the actual data flows [14, 15].

A number of researchers have developed packet traceback techniques using Covert Channels [16, 17]. Traceback techniques provide downstream nodes with information about the path of incoming packets. This is important in case of denial of service attacks, because it allows filtering the attack traffic at upstream nodes or even isolating the attacker(s).
Chapter 2. Terminology and Communication Model

Different terms have been used for describing the process of hiding information in network protocols. Whereas many researchers referred to Covert Channels some also used the terms steganography or information hiding.

Throughout this thesis we use the term Covert Channel when we refer to the hiding of information in network protocols and refer to the information transmitted across the Covert Channel as hidden or covert information. Traditionally Covert Channels were classified into storage and timing channels even though there is no fundamental distinction between them [18]:

• Storage channels involve the direct/indirect writing of object values by the sender and the direct/indirect reading of the object values by the receiver.

• Timing channels involve the sender signaling information by modulating the use of resources (e.g. CPU usage) over time such that the receiver can observe it and decode the information.
2.1 The prisoner Problem

The prisoner problem was first posed by Simmons and is the de-facto model for Covert Channel communication [19]. Two people, Alice and Bob, are thrown into prison and intend to escape. To agree on an escape plan they need to communicate but Wendy the warden monitors all their messages. If Wendy finds any signs of suspicious messages she will place Alice and Bob into solitary confinement — making it impossible for them to escape. Alice and Bob must exchange innocuous messages containing hidden information that (hopefully) Wendy will not notice. Craver describes the different types of wardens [20]:

• A passive warden can only spy on the channel but cannot alter any messages.

• An active warden is able to slightly modify the messages, but without altering the semantic context.

• A malicious warden may alter the messages without impunity, but in reality malicious wardens are rare [20].

Handel et al. extended this scenario towards computer networks, where Alice and Bob use two networked computers for communication [21]. They run an innocuous looking overt communication channel between their computers, containing a hidden Covert Channel. Alice and Bob share a secret, which is useful for determining Covert Channel encoding parameters and encrypting / authenticating the hidden messages. For practical purposes Alice and Bob may well be the same person, for example a hacker ex-filtrating restricted information. Wendy manages the network and can monitor the passing traffic for Covert Channels or alter the passing traffic to eliminate or disrupt Covert Channels. Figure 2 depicts the model (Alice sending to Bob).

 In the prisoner model Alice communicates with Bob, but in general Covert Channels are not restricted to unicast (oneto- one) channels. Alice could also send hidden information to Bob, Carol and Dave at the same time if the channel allows multicast (one-to-many) communication.
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 Figure 2. The prisoner problem – the de-facto model for Covert Channel communication
2.2 Communication Scenario
There are a number of different scenarios for covert communication depending on whether Alice and Bob are the sender and receiver of the overt channel, or if they act as middlemen and manipulate an overt channel between innocent users [22].

If the sender of the Covert Channel is also the sender of the overt channel, it can manipulate the overt channel as desired (e.g. to maximise the Covert Channel capacity or its stealth). However, sometimes the covert sender may not be able to create overt channels or may choose not to do so for increased stealth. In this case the sender can act as middleman embedding a Covert Channel into an existing overt channel. Obviously, then the covert sender has no control of the overt channel, and the maximum capacity of the Covert Channel depends on the existing overt channel.

The covert receiver can be the receiver of the overt channel, but to increase stealth the receiver can also be a middleman extracting the hidden information from an overt communication destined for an innocent receiver. Then the covert receiver should (if possible) remove the Covert Channel preventing possible detection by the receiver or any other intermediate nodes.

Being a middleman does not necessarily mean the covert sender/receiver has to be physically separated from the overt sender/receiver. Covert sender and receiver could be located on routers/gateways between the overt sender and receiver, but they could also be on the same physical device located in lower levels of the network protocol stack.

Figure 3 illustrates the possible combinations of covert sender and receiver locations. The actual communication scenario depends on the application of the Covert Channel. For example, if the Covert Channel is used to circumvent censorship covert and overt sender/receiver would likely be identical, whereas if it is used by a hacker for ex-filtrating data the covert sender and receiver would likely be middlemen (e.g. the sender could be inside the network protocol stack of the compromised machine and the receiver could be on a router close to the edge of the compromised network).
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            Figure 3. Possible combinations of different covert sender/receiver locations.
Chapter 3. Foundation of Covert Channel
This survey is based on the analysis of a selection of papers relevant to the use of Covert Channels in Internet protocols. Although the first three papers are not directly related to the TCP/IP protocols, they have been included due to their general relevance. 
3.1 A Guide to Understanding Covert Channel Analysis of Trusted Systems [23] 
This guide has been written to help the vendor and evaluator communities understand the requirements for Covert Channel analysis as described in the US Department of Defense Trusted Computer System Evaluation Criteria (TCSEC). The guide defines a set of baseline requirements and recommendations for the analysis and evaluation of Covert Channels. It includes sections focused on the definition and classification of Covert Channels, identification, bandwidth estimation, Covert Channel handling, testing and so on. 

Covert Channels that can only be exploited by security administrators or operators using privileged (i.e. trusted) software are not considered

3.2 Covert Channel- Here to Stay ? [24] 

This paper discusses the difficulties of satisfying high assurance system requirements without sacrificing system capabilities. It also clarifies certain concepts in the theory of Covert Channels. Traditionally a Covert Channel's vulnerability was measured by its capacity. It is shown why a capacity analysis alone is not sufficient to evaluate the vulnerability and introduces a new metric referred to as the “small message criterion”. 
An overview of Covert Channel theory is given with examples, and a hypothesis is advanced that Covert Channels can never be totally eliminated in many "practical" high assurance systems. The paper is organized as follows: 

• How reliability and performance requirements can undermine efforts at thwarting Covert Channels. 

• Covert Channels in terms of information theory; clarification of certain concepts. 

• Capacity analysis alone does not suffice when dealing with Covert Channels; a new metric referred to as the "small message criterion". 

• The trade-offs between Covert Channel degradation and performance. 

• How a middleware buffer reduces the Covert Channel threat without degrading performance. 

3.3  Covert Channel Analysis: A Chapter of the Handbook for the Computer Security Certification of Trusted Systems [25] 

This document provides an overview of Covert Channel analysis, beginning with a definition of Covert Channels and a discussion of the nature of the issues concerning them that affect the various readers of this handbook. Since Covert Channels involve (often complex) coding and signalling mechanisms, these are also discussed. The document includes a characterization of Covert Channels and how the analysis should be performed on system descriptions ranging from abstract models to machine code. Other sections contain issues of system representation and the suitability of various representation paradigms for Covert Channel analysis. Since Covert Channels are built from information flows within a trusted computing system, one of the first steps in performing an analysis is the abstraction of potential information flows from a description of the system. 

3.4 Covert Channels in the TCP/IP Protocol Suite [9] 

Within protocol headers there are many fields that are not used for normal transmission or are "optional", to be set as needed by the sender. This paper illustrates these weaknesses in both theoretical and practical examples. They are about encoding and decoding the following: 

• The IP packet identification field. 

• The TCP initial sequence number field. 

• The TCP acknowledged sequence number field 
3.5 Project Loki [26]

Ping traffic is ubiquitous to almost every TCP/IP based network and subnet. It has a standard packet format recognized by every IP router and is used universally for network management, testing, and measurement. As such, many firewalls and networks consider ping traffic to be benign and will allow it to pass through. 

This short but interesting paper explores why that practice can be insecure. Ignoring the obvious threat of the done-to-death denial of service attack, use of ping traffic can open up Covert Channels through the networks in which it is allowed. This document is intended as a complete description of the Covert Channels that can exist in networks that allow ICMP_ECHO traffic, to pass. It is a good example of how easily a Covert Channel can be created based on a very common protocol. 

3.6 Ambiguities in TCP/IP [27]
This paper explores the way that ambiguities in the implementation of the TCP/IP suite for various operating systems affect security and Covert Channels. Although a similar approach has been used for a long time for “OS fingerprinting”, no real attempt has been made yet to identify the security impact of the differences in the TCP/IP semantics. 

The paper includes basic research on the TCP “connection open” semantics which is of course very important for security of networked systems. The flaws detected impact on the design of firewalls and packet filters since an improper implementation can easily lead to serious security problems.

3.7  Covert Channel Analysis and Data Hiding in TCP/IP [28] 
This thesis investigates the existence of Covert Channels in computer networks by analyzing the transport and the Internet layers of the TCP/IP protocol suite. Two approaches for data hiding are identified:

packet header manipulation and packet sorting. Each scenario facilitates the interaction of steganographic principles with the existing network security environment. Specifically, it is shown how associating additional information with IPv4 headers can relax security mechanisms in network nodes such as routers, firewalls, and for services such as authentication, audit, and billing. 

Furthermore, the use of packet sorting within the IP Sec framework results in an enhanced network security architecture. While bridging the areas of data hiding, network protocols and network security, both techniques have potential for practical data hiding at the transport and network layers. 

3.8 Covert Messaging Through TCP Timestamps [29] 
This paper describes a potential Covert Channel that can be created by manipulating the TCP Timestamp field. By imposing slight delays on the processing of selected TCP packets, the low order bits of their timestamps can be modified. The low bit of the TCP timestamp, when modified in this way, provides a Covert Channel. 

The low bit is effectively random on most connections. Because TCP timestamps are based purely on internal timings of the host, on a slow connection their low bits are randomly distributed. By rewriting the timestamp and varying the timing within the kernel, the value of the low bit can be chosen. As long as values are chosen with a statistically random distribution, they will be indistinguishable from the unaltered values. 

Rewriting TCP timestamps presents some additional challenges over and above a standard implementation of the protocol: 

• Timestamps must be monotonically increasing 

• Timestamps must reflect a reasonable progression of time 

• When timestamps are rewritten, it can cause the nonce in the rest of the packet to change 

3.9 IP Checksum Covert Channels and Selected Hash Collision [30] 
A fundamental flaw in the design of the Internet checksum, the primary data checksum facility for network data, can allow a malicious user to embed Covert Channel data in the checksum field itself using a hash collision. What is demonstrated in this paper is the two-way nature of this facility and a Covert Channel scheme for sending data through the Internet checksum. This method can be used for any protocol that uses the Internet checksum, including ICMP, UDP, TCP, as well as many others. 

It is concluded that the internet checksum is not a secure method for validating data integrity because of the ability of a user to arbitrarily create a selected collision in the hashing mechanism in a trivial period of time.

3.10 Malicious ICMP Tunnelling: Defense Against the Vulnerability [31] 

ICMP is a required part of any standards compliant IP node. The paper is organized as follows: 

• An introduction to the ICMP tunneling vulnerability 

• Standard solutions that can be used to prevent ICMP tunneling 

• Results of a modified application using ICMP tunneling 

• A proposed solution and its performance impact on routers and on end hosts. 

This paper offers some results about one of the most complex areas within the Covert Channels, which is the real-time manipulation of network packets in order to prevent covert communications through Internet protocols. 

3.11 Messaging over IPv6 Destination Options [32] 
This paper is about instant messaging over the IPv6 destination options extension header using the Advanced Sockets API for IPv6 [RFC 2292]. The first 16-bits of each extension header are reserved for the Next Header type that follows, and 8-bits for the header length. The options data can have variable length but must be TLV encoded and aligned to a multiple of 8 octets (IPv6 uses a common format called the Type-Length-Value - TLV - format for variable length fields which are found in the Hop-by-Hop and End-to-End option headers). 

The highest-order 2 bits of the Option Type specify the action that must be taken if the option type is not recognized: 

• 00 - skip over this option and continue processing the header. 

• 01 - discard the packet. 

So, all that needs to be done is generate a destination options extension header, TLV encode the message, set the highest-order 2 bits of the option type to 00 and choose an option type value not taken yet. 

This is a short but excellent practical paper with an example of code in C about an implementation of Covert Channels in IPv6. 

3.12 Exploitation of data streams authorized by a network access control system for arbitrary data transfers: tunneling and Covert Channels over the HTTP protocol [33] 
This paper is about hiding data in the Hypertext Transfer Protocol (HTTP) header and/or body. It is widely known in the security community that the HTTP protocol suffers from a lot of flaws related to the possible use of Covert Channels. This is understandable as the HTTP protocol was not designed torestrict/protect what researchers wish to present to the community. 

This paper also presents an approach to possible scenarios to be taken into account before creating a client/server Covert Channel tool. They depend on server models, modes and so on. There are interesting sections about using http methods (data containers restrictions, methods with/without message body, the http proxy connect method and so on) and one related to security aspects (authentication, authorization, data stream ciphering, data stream integrity, replay protection and so on).

3.13 RECENT WORKS AND IMPLEMENTATIONS 
3.13.1 Covert Channel Analysis and Data Hiding in TCP/IP with HTTP Reverse Proxy Servers using Microsoft Windows [34] 
An HTTP forward proxy typically provides Internet access to internal clients that are otherwise restricted by a firewall, and can use caching to reduce network usage. A reverse proxy, by contrast, appears to the client just like an ordinary WWW server, where no special configuration on the client is necessary. The client thus makes ordinary requests for content in the name-space of the reverse proxy. The proxy then decides where to send these requests, and returns the content as if it was the originator. 

This paper is about the implementation of Covert Channels at IP level using HTTP reverse proxy servers, as a transparent element and a middleware component, in order to make detection difficult. 

An implementation of Covert Channels under Microsoft Windows platforms is described In all the Windows operating systems, the TCP/IP protocol implementation is proprietary, and its source code is not accessible which means that the manipulation of the packets is not possible from levels above the TCP/IP driver layer. This makes the use of these techniques in a Windows platform more complex. 

A list of network traffic filtering technologies for Windows (user and kernel modes) is also provided. Those technologies affect the possible Covert Channels that can be created in Internet protocols under this platform.

3.13.2 IP Covert Timing Channels: Design and Detection [35] 
In this paper, an implementation of a covert network timing channel is described, the subtle issues that arose in its design are discussed, and performance data for the channel is presented. 
The implementation is used as the basis for some experiments in its detection. It is shown that the regularity of a timing channel can be used to differentiate it from other traffic. Two methods of doing so and measures of their efficiency are described. Mechanisms that attackers might use to disrupt the regularity of the timing channel are investigated, andmethods of detection that are effective against them are demonstrated (simple timing channel, varying the timing interval, injecting noise). 
This paper is an excellent example of covert timing channels, which are usually more complex types than the ones based on storage.

3.13.3 Embedding Covert Channels into TCP/IP [36] 
It is commonly believed that steganography within TCP/IP is easily achieved by embedding data in header fields seemingly filled with “random” data, such as the IP identifier, TCP initial sequence number or the least significant bit of the TCP timestamp. 

The authors of this paper show that this is not the case; these fields naturally exhibit sufficient structure and non-uniformity to be efficiently and reliably differentiated from unmodified cipher text. Previous work on TCP/IP steganography does not take this into account and, by examining TCP/IP specifications and open source implementations, the authors have developed tests to detect the use of these embedding techniques. 

A detailed description of the TCP Initial Sequence Number (ISN) and IP identifier generation schemes in Linux and OpenBSD is presented, and a number of previously proposed schemes for TCP/IP-based steganography are described. It is shown that a passive warden can detect the use of these schemes because the modified headers that they produce can be distinguished from those generated by a genuine TCP/IP stack. Finally, two schemes are outlined for encoding data with ISNs generated by OpenBSD and Linux. Both schemes generate ISNs that are indistinguishable from those generated by a genuine TCP stack, except by those with knowledge of a shared secret key.

Chapter 4. Covert Channel Analysis in TCP/IP Layers
4.1 Introduction

TCP/IP is a set of network protocols developed for the Internet from the 1970s. As a protocol suite based on layers, TCP/IP has a number of weaknesses that allow an attacker to leverage techniques in the form of Covert Channels to surreptitiously pass data in otherwise ordinary packets [37]. Many techniques are based on encoding data in the protocol header .
The appropriateness of protocol layers for Covert Channels are evaluated with respect to three criteria, which we name, technical difficulty, generality and reachability. 

• Technical Difficulty: What are the technical barriers required to establish and read a Covert Channel? Does it require special hardware, alteration of the operating  system or low level programming, programming in the application space or simple system configuration? 

• Generality: Once the technical barriers for a Covert Channel have been overcome how widely can they be applied? Is all Internet traffic susceptible or only some subset thereof? 

• Reachability: If a Covert Channel is established how far can it reach through the Internet? For example, is it likely to be confined within an institution or be on a global scale? 

4.2 TCP/IP Protocol layers

In this section a high level description of each layer of the TCP/IP protocol stack is presented. The characteristics and potential for Covert Channels of each layer is briefly discussed .In the protocol stack each layer is implemented by one or more protocols (horizontal) and one or more interfaces (vertical), as outlined in Figure 4.
           [image: image4.emf]

       Figure 4: The TCP/IP 5-Layer Model
4.2.1 Physical Layer

The Physical Layer is concerned with the physical media used to directly connect adjacent nodes. The physical layer’s job is to transfer signals from one node to the next. The protocols in this layer depend on the actual transmission medium used. 

There are a number of barriers that make this layer a difficult environment for the establishment of Covert Channels. There would be a significant overhead in designing the mechanisms for encoding and decoding the Covert Channel. This would probably require specialist hardware to be installed. What is more, the diversity of protocols and media mean that different technologies would have to be developed for each type of network, severely limiting generality. Furthermore, the reachability of the Covert Channel would be limited to adjacent nodes with some limited extension possible where repeaters are in use. Reachability would often be confined within an institution or some subset thereof. 

4.2.2 Link layer

The link layer is responsible for the delivery of frames between adjacent nodes on a network. It provides delineators for the start and end of a frame, a link layer address, and usually some reliability bits which enable corruption to be detected. The link layer also includes the Media Access Control, (MAC) sub-layer, which allows contention between nodes competing for access to the medium to be resolved. 

There are a number of technical barriers that would need to be overcome to establish Covert Channels at this level. Specialist hardware or low level device driver programming are likely to be necessary. Different types of network have different Link Layer protocols. For example, Ethernet, ATM and Token Ring. The reachability available to Covert Channels at this layer will often be limited to the networks within an institution as there are logical and physical limits on simply extending LANs such as Ethernet, and eventually a level-3 network router is used. 

Two potential ways in which the link layer may be used for Covert Channels are given next [21]. Firstly, the collision detection system (Carrier Sense Multiple Access / Collision Detection CSMA/CD) in the traditional Ethernet link layer can be modified to transmit hidden data by adjusting the collision control mechanism. Secondly, unused portions of the frame can be used to store covert data. Covert data can be stored in the buffer, beginning at the end and working toward the valid data. When the packet is transmitted, the entire buffer is exported, including the covert data. 

4.2.3 Network Layer
The network layer is responsible for routing datagrams from the source to the destination host. It provides network addressing and data routing. The IP protocol defines the addressing system and how intermediary nodes should treat datagrams. Each packet can be independently routed from source to destination. It provides a best effort service to higher layers. There are no guarantees that a datagram will be delivered, that a sequence of datagrams will be delivered in order, how long delivery will take or about the variation of delay that can be expected between datagrams. The IP protocol is fundamental to the Internet, every host attached to the Internet must have an implementation. In fact the Internet can be defined as the sum of hosts that are globally reachable through IP. The network layer also contains control and routing protocols. 

Covert Channels can be created solely in software at the Network layer, however this is likely to require some device driver programming or alteration of operating system code. Developing a single technology to establish Covert Channels in the IP layer, would yield a high degree of generality. Similarly IP level Covert Channels offer global reachability. The opportunity for discovery of IP level Covert Channels are enhanced by the simplicity of the IP header and options. 

Analysis of the IP header shows the existence of bits that are either unused or optional. Consequently, fields from the IP header can be manipulated to store covert data. 
4.2.4 Transport Layer

Transport protocols are the lowest true “End to End” protocols. They facilitate the delivery of data from the sending process on one computer to the receiving process on another computer. On the Internet they build upon the best effort service provided by IP. There are two main Internet transport protocols the Universal Datagram Protocol (UDP) and the Transmission Control Protocol (TCP). Both protocols contain port numbers, which enable multiple channels of communication to be distinguished between the same two hosts. TCP builds upon IP to provide a reliable, point-to-point, duplex, stream based virtual connection. TCP establishes and terminates connections between hosts and uses a system of acknowledgements and retransmissions [38] . TCP also provides flow control and congestion control for the connection thereby ensuring the destination can keep up with the source and that network resources are fairly shared between multiple hosts. UDP provides an unreliable best effort service and acts as a placeholder which facilitates the development of higher level transport protocols such as the Real Time Protocol (RTP). 

The location of transport protocol implementations within the operating system, make the technical difficulties in creating Covert Channels similar to the Internet layer. The creation of bespoke device drivers or the modification of operating system source code is likely to be necessary. It is variously estimated that over 80% all Internet traffic [39] is carried by TCP therefore establishing a Covert Channel within TCP provides a high level of generality. The fact that TCP is an end-to-end protocol gives it global reachability. In addition, the TCP header is more complex than IP and has a significant array of options, which means there is more potential for the creation of such channels.

4.2.5 Application Layer
This layer handles issues like network transparency, resource allocation and problem partitioning. The application layer is concerned with the user’s view of the network, such as formatting electronic mail messages [38]. The Application Layer contains a diverse range of protocols for applications such as email, remote administration, World Wide Web (WWW) and Peer to Peer content distribution. An important application is DNS (Domain Name System) which translates host names into IP addresses.

 The technical difficulties in creating Covert Channels are easiest to overcome at the application layer, limited or no programming skills may be required. The diversity of protocols make the generality of a technical solution limited, however most networked computers can be expected to support common protocols such HTTP and SNMP. Reachability will be global. 

The application layer is nearest the user. Users create applications utilising system resources, including the network. Many of the classical steganographic approaches can be used at the application level. What would originally be done with a pencil and paper can be done here. For example, a covert messaging system can be devised using word substitution in an email system.
4.3 Summary
Opportunities for the creation of Covert Channels exist at all layers in the TCP/IP protocol stack. 

The technical difficulties to overcome are highest at the physical and link layers and may require specialist hardware. At the Network and Transport Layers, access to and the ability to modify device drivers or operating system support code is required. At the application layer, special access privileges and programming skills are unlikely to be required. The higher the layer, the easier the access and the less skills required. Due to the nature of layered network models access at a lower layer can be used to introduce a Covert Channel at an arbitrary higher layer. 

Internet protocol diversity can be visualised as a bell shaped structure. There is much diversity at low and high levels. There is only a single protocol at the network level and two protocols at the transport layer. The implication for generality is that establishing a Covert Channel at the network or transport layer will achieve the highest level of general coverage. 

The level of reachability increases as one travels up the network stack. Covert Channels at the physical and link layers will achieve limited reachability. Those at the network layer and above will potentially achieve global reachability. 

The above considerations lead us to focus on Covert Channels in the network layers and above. Reasons of tractability lead us to focus on the Network and Transport layers in the rest of this thesis.
Chapter 5. Covert Data Carriers in TCP/IP Header

The TCP/IP header can serve as a carrier for a steganographic Covert Channel if a header field can take one of a set of values, each of which appears plausible to our passive warden. The warden should not be able to distinguish whether the header was generated by an unmodified TCP/IP stack or by a steganographic encoding mechanism. In this section we examine which header fields have more than one plausible value, and look at the amount of entropy available in each of them for use by a steganographic coding scheme.

Figure 5 illustrates the base TCP/IP headers. The fields shown in italics are those that may be used to embed steganographic data. We now consider each of these fields in turn, assessing their potential for use as steganographic carriers.
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                                             Fig. 5. Basic TCP/IP header structure

5.1 Type of Service 
The eight Type of Service (ToS) bits in the IP header are used to indicate quality of service parameters to routers on a packet's path. They are now rarely used with their original semantics (as defined in [4]); they have been reused in, for example, the implementation of DiffServ. There is potential for using the bits in this field as a steganographic carrier, as described in [21], because many networks never use them. However, this would be easily detected, as the field is set to zero in almost all default operating system configurations. 

5.2 IP Identification (IP ID) 
As described in [4], the IP Identification field (IP ID) is “an identifying value assigned by the sender to aid in assembling the fragments of a datagram”, and is allocated 16 bits of the IP header. Because the IP ID is used to distinguish fragments making up one packet from fragments making up another, the only constraints on its value are uniqueness over the length of time that fragments of a packet might reasonably remain in a network, and unpredictability.

IP IDs that are unique within a given time window are necessary to ensure that fragments of different packets are not reassembled into one packet on the receiving host. Unpredictability prevents `idle scanning' [40], whereby an attacker can port scan a host without ever sending a packet directly to it. A scheme for embedding data in this field is described in [41]. It uses a pseudorandom sequence, generated by a Toral Automorphism System, to ensure that the modified field is random. However this can be detected since IP ID fields are not random.
5.3 IP Flags 
IP packets include two flags, Do Not Fragment (DF), indicating that the packet should be discarded if it cannot be sent without fragmentation, and More Fragments (MF) which is 0 if the packet contains the last fragment, or if a packet has not been fragmented. In [41] the use of the DF bit for steganographic signaling is proposed. If this is used on packets smaller than the maximum segment size the DF flag has no effect on the packets' behavior. However, the normal state of DF can be predicted from the packet's context, so one can detect the use of this technique.

5.4 IP Fragment Offset
When IP packets are fragmented, the individual fragments contain an offset field; this allows the receiving host to reconstruct the fragments in the correct positions in its receive buffers. Information can be transmitted covertly by modulating the size of the fragments originated by a host, and thus the fragment offsets. As with the IP identification and ToS fields, this method of steganographic encoding is easily detected. In environments where path MTU discovery [42] is routinely used, fragmented packets are unusual.

5.5 IP Option  and TCP Sequence Number
IP packets very rarely contain `options', so their steganographic potential is limited. In [21] the use of the IP Timestamp option is described (not to be confused with the TCP Timestamp), but in addition to being easily detectable, packets with this option present can travel at most 20 hops, so it is of little use in the open Internet.

 TCP sequence numbers support the reliability features provided by TCP (and to some extent, the flow control features). Each octet of data transmitted over a TCP stream is assigned a sequence number. In TCP, a connection (defined by a pair of sockets) can be reused, and hence the host must be able to detect whether a segment is from a current or previous incarnation of a connection.

When a connection is established, both hosts must choose an initial sequence number (ISN). Careful design of the algorithm for generating these initial sequence numbers ensures that overlap in sequence number space between different incarnations of a connection is prevented.

There are other properties required of the algorithm used for initial sequence number generation. For a given connection, the ISNs used must be hard to guess for those not involved in the connection [43]. To allow a connection in the TIME WAIT state to be restarted, the sequence numbers for a given socket pair should also be monotonically increasing.

A prototype implementation of steganography using TCP ISNs (and also the IP ID), Covert TCP, is described in [9]. It simply replaces the chosen field with the data to be sent, so can be detected either by observing that the field does not meet the required overlap and uniqueness constraints, or by comparing the data observed with statistical patterns of suspected plaintext.

A passive warden using a Support Vector Machine (SVM) is presented in [44]. It is designed to detect the use of Covert TCP within the IP ID and TCP ISN. A SVM is a machine learning technique that is suitable for automatically identifying features which are not well understood. In the case of IP IDs and ISNs, the algorithm for generating them is well understood and precisely described in source code, so it is not necessary to use a machine learning technique. The SVM can only identify simple features, so it cannot detect the complex structure present in these fields and their interdependencies. 

The design and implementation of Nushu, an improvement to Covert TCP for Linux 2.4, is described in [45]. Nushu uses TCP ISNs for encoding information and encrypts outgoing ISNs to hide the use of steganography, however it still may be detected. Firstly, the output will not exhibit the structure of TCP ISNs expected from Linux. Secondly, a flaw in the use of DES for encryption allows the recovery of statistical information on the plaintext.
5.6 TCP Timestamps

The TCP timestamp option allows a host to accurately measure the round trip time of a path, and also mitigates problems associated with sequence number wrap-around in networks with large bandwidth  delay products. For our purposes, it is only necessary to understand the constraints on the values of TCP timestamps; more details about the features based on them can be found in [46].

The timestamp option consists of two 32 bit fields, TS Value and TS Echo Reply. The TS Value field is set based on the `timestamp clock' of the sender, and it is into this field that hidden data can be embedded. The only constraints on the timestamp clock are that its tick frequency be between 1 Hz and 1 kHz, and that it be strictly monotonic. 

A Covert Channel based on modulating the least significant bit of the TCP timestamps transmitted by a host, devcc, is described in [29]. The scheme works by incrementing the timestamp associated with a packet (and delaying it accordingly) in order to transmit a `1' bit of ciphertext. The use of TCP timestamps is not universal, but it is deployed as standard on newer versions of Linux and other Unix-like operating systems, so the observation of timestamps from an operating system which does not support them would be suspicious.
Chapter 6. Mechanisms For Detecting Covert Channels

It is generally admitted that Covert Channels can not be completely eliminated [1, 9]. Although it could be appreciably reduced by design and careful analyzes. In this paper, we propose mechanisms for detecting the hidden channels that might used the following fields:

Type of Service, IP Identification, IP options( Strict source routing, Loose source routing, IP Timestamp and Record route are options chosen to embed hidden information. ), TCP initial sequence number (ISN), Urgent pointer.. The proposed mechanisms exploit mainly the characteristics of these channels and their weak points in order to be able to detect them.
6.1 IP Covert Channel Detection
6.1.1 Covert Channel Using the “Type of Service” Field

This field is rarely used, thus the use of this field would be suspicious when it is set to a non null value. We should also mention that the bits 6 and 7 in this field are specified to be set to 0 [30]. So to detect a non legitimate use of this field, we should check the value of these fields.

6.1.2 Covert Channel Using the “IP Identification” Field
The values of this field are generated  randomly, by the TCP/IP stack. But for packets belonging to the same connection and the same flow, the “IP identification” field is incremented by 1. Thus, the detection of this particular hidden channel could be made by saving packets of various connections, calculating the difference between the IP IDs values of consecutive packets of each connection and test if it is equal to 1.

6.1.3 Covert Channels using the following IP options: “Strict source routing”, “Loose source routing”, “Strict source routing” and “Record route”

First of all, these IP options require contents of IP addresses. So to detect Covert Channels using the IP options, we need to check the validity of the inserted IP addresses in the IP options. In addition, the use of the “Record route” option as Covert Channel could also be detected using another technique. That is, for consecutive packets, normally their network path will not change. So we should find the same list of IP addresses in the “Record route” option for consecutive packets.

6.1.4 Covert Channel Using the “Timestamp IP Option”

The values of the timestamps should increase from a jump to another. To detect a hidden channel exploiting the "Timestamp" option, we should check if the timestamps values are increasing or not.

6.2 TCP Covert Channels Detection

6.2.1 Covert Channel Using the “ISN Field”

This channel exploits the ISN field. In this case of hidden channels, the 3rd packet of the TCP three-way-handshake packets is ignored. Thus, a method to detect this type of Covert Channel consists into detecting any non accomplished TCP connection. 

6.2.2 Covert Channel Using the “Urgent Pointer Field”

The “Urgent Pointer” field is interpreted only if the URG bit is set. Thus, if this bit is not set, the "Urgent Pointer" field would have null content. On the other hand, if the URG bit is not set and this urgent pointer field contains a non null value, we could mention the detection of a Covert Channel.
Chapter 7. Implementation of Covert Channel in TCP/IP Protocol Suite

7.1 Intoduction

In the case of TCP/IP, there are a number of methods available whereby Covert Channels can be established and data can be surreptitiously passed between hosts. These methods can be used in a variety of areas such as the following:

- Bypassing packet filters, network sniffers, and "dirty word" search engines. - Encapsulating encrypted or non-encrypted information within otherwise normal packets of information for secret transmission through networks that prohibit such activity ("TCP/IP Steganography"). - Concealing locations of transmitted data by "bouncing" forged packets with encapsulated information off innocuous Internet sites.

TCP/IP is comprised of two basic protocol types: TCP and UDP. These protocols have the fundamentally similar function of passing user data, however they differ significantly in how the initial connection between hosts are established.

For our purposes, it is important to realize that TCP is a "connection oriented" or "reliable" protocol. Simply put, TCP has certain features that ensure data arrives at the remote host in a (usually) intact manner. The basic operation of this relies in the initial TCP "three way handshake" which is described in the three steps below.

Step One: Send a synchronize (SYN) packet and Initial Sequence Number (ISN)

Host A wishes to establish a connection to Host B. Host A sends a solitary packet to Host B with the synchronize bit (SYN) set announcing the new connection and an Initial Sequence Number(ISN) which will allow tracking of packets sent between hosts:

Host A ------ SYN(ISN) ------> Host B
Step Two: Allow remote host to respond with an acknowledgment (ACK)

Host B responds to the request by sending a packet with the synchronize bit set (SYN) and ACK (acknowledgment) bit set in the packet back to the calling host. This packet contains not only the responding clients' own sequence number, but the Initial Sequence Number plus one (ISN+1) to indicate the remote packet was correctly received as part of the acknowledgment and is awaiting the next transmission:

Host A <------ SYN(ISN+1)/ACK ------ Host B
Step Three: Complete negotiation by sending a final acknowledgment to the remote host.

At this point Host A sends back a final ACK packet and sequence number to indicate successful reception and the connection is complete and data can now flow:

Host A ------ ACK ------> Host B

The entire connection process happens in a matter of milliseconds and each packet from this point on is independently acknowledged by both sides. This handshake method ensures a "reliable" connection between hosts and is why TCP is considered a "connection oriented" protocol. It should be noted that only TCP packets exhibit this negotiation process. This is not so with UDP packets which are considered "unreliable" and do not attempt to correct errors nor negotiate a connection before sending to a remote host. This section deals with TCP protocol primarily to exploit the acknowledgment feature which will be described below. The thrust of these methods however, could be easily supported on the UDP protocol type.
7.2 Encoding Information in a TCP/IP Header

The TCP/IP header contains a number of areas where information can be stored and sent to a remote host in a covert manner. Figure 6 and 7 [48] represents are textual representations of the IP and TCP headers respectively:

       [image: image6.emf]
                                                          Fig 6. IPv4 header
[image: image7.emf]
                                                        Fig 7. TCP header
Within each header there are multitude of areas that are not used for normal transmission or are "optional" fields to be set as needed by the sender of the datagrams. An analysis of the areas of a typical IP header that are either unused or optional reveals many possibilities where data can be stored and transmitted. For our purposes, we will focus on encapsulation of data in the more mandatory fields. This is not because they are any better than the other optional areas. Rather these fields are not as likely to be altered in transit than say the IP or TCP options fields which are sometimes changed or stripped off by packet filtering mechanisms or through fragment re-assembly.
Therefore we will encode and decode the following:

- The IP packet identification field. 
- The TCP initial sequence number field.
- The TCP acknowledged sequence number field.
The basis of the exploitation relies in encoding ASCII values of the range 0-255 into the above areas. Using this method it is possible to pass data between hosts in packets that appear to be initial connection requests, established data streams, or other intermediate steps. These packets can contain no actual data, or can contain data designed to look innocent. These packets can also contain forged source and destination IP addresses as well as forged source and destination ports. This can be useful for tunneling information past some types of packet filters. Additionally, forged packets can be used to initiate an anonymous TCP/IP "bounced packet network" whereby packets between systems can be relayed off legitimate sites to thwart tracking by sniffers and other network monitoring devices. These techniques will be described below.
7.2.1 Method I : Manipulation of the IP Identification Field


The identification field of the IP protocol helps with re-assembly of packet data by remote routers and host systems. It's purpose is to give a unique value to packets so if fragmentation occurs along a route, they can be accurately re- assembled [48]. The first encoding method simply replaces the IP identification field with the numerical ASCII representation of the character to be encoded. This allows for easy transmission to a remote host which simply reads the IP identification field and translates the encoded ASCII value to its printable counterpart. The lines below show a tcpdump(8) representation of the packets on a network between two hosts "nemesis.psionic.com" and "blast.psionic.com." A coded message consisting of the letters "HELLO" was sent between the two hosts in packets appearing to be destined for the WWW server on blast.psionic.com. The actual packet data does not matter.

The field in question is the IP portion of the packet called the "id" field located in the parenthesis. Note that the ID field is represented by an unsigned integer during the packet generation process of the included program. This program does not perform any type of byte ordering functions normally used in this process, therefore packet data is converted to the ASCII equivalent by dividing by 256.
Packet One:

18:50:13.551117 nemesis.psionic.com.7180 > blast.psionic.com.www: S 537657344:537657344(0) win 512 (ttl 64, id 18432)
Decoding:...(ttl 64, id 18432/256) [ASCII: 72(H)]
Packet Two:

18:50:14.551117 nemesis.psionic.com.51727 > blast.psionic.com.www: S1393295360:1393295360(0) win 512 (ttl 64, id 17664)
Decoding:...(ttl 64, id 17664/256) [ASCII: 69(E)]
Packet Three:

18:50:15.551117 nemesis.psionic.com.9473 > blast.psionic.com.www: S 3994419200:3994419200(0) win 512 (ttl 64, id 19456)
Decoding:...(ttl 64, id 19456/256) [ASCII: 76(L)]
Packet Four:

18:50:16.551117 nemesis.psionic.com.56855 > blast.psionic.com.www: S3676635136:3676635136(0) win 512 (ttl 64, id 19456)
Decoding:...(ttl 64, id 19456/256) [ASCII: 76(L)]
Packet Five:

18:50:17.551117 nemesis.psionic.com.1280 > blast.psionic.com.www: S 774242304:774242304(0) win 512 (ttl 64, id 20224)
Decoding:...(ttl 64, id 20224/256) [ASCII: 79(O)]
Packet Six:

18:50:18.551117 nemesis.psionic.com.21004 > blast.psionic.com.www: S3843751936:3843751936(0) win 512 (ttl 64, id 2560)
Decoding:...(ttl 64, id 2560/256) [ASCII: 10(Carriage Return)]

This method is used by having the client host construct a packet with the appropriate destination host and source host information and encoded IP ID field. This packet is sent to the remote host which is listening on a passive socket which decodes the data

7.2.2 Method II : Initial Sequence Number Field

The Initial Sequence Number field (ISN) of the TCP/IP protocol suite enables a client to establish a reliable protocol negotiation with a remote server. As part of the negotiation process for TCP/IP, several steps are taken in what is commonly called a "three way handshake" as was described earlier. For our purposes the sequence number field serves as a perfect medium for transmitting clandestine data because of it's size (a 32 bit number). In this light, there are a number of possible methods to use. The simplest is to generate the sequence number from our actual ASCII character we wish to have encoded.. 

Again our message of HELLO is being sent:

Packet One:

18:50:29.071117 nemesis.psionic.com.45321 > blast.psionic.com.www: S 1207959552:1207959552(0) win 512 (ttl 64, id 49408)
Decoding:... S 1207959552/16777216 [ASCII: 72(H)]
Packet Two:

18:50:30.071117 nemesis.psionic.com.65292 > blast.psionic.com.www: S 1157627904:1157627904(0) win 512 (ttl 64, id 47616)
Decoding:... S 1157627904/16777216 [ASCII: 69(E)]
Packet Three:

18:50:31.071117 nemesis.psionic.com.25120 > blast.psionic.com.www: S 1275068416:1275068416(0) win 512 (ttl 64, id 41984)
Decoding:... S 1275068416/16777216 [ASCII: 76(L)]
Packet Four:

18:50:32.071117 nemesis.psionic.com.13603 > blast.psionic.com.www: S 1275068416:1275068416(0) win 512 (ttl 64, id 7936)
Decoding:... S 1275068416/16777216 [ASCII: 76(L)]
Packet Five:

18:50:33.071117 nemesis.psionic.com.45830 > blast.psionic.com.www: S 1325400064:1325400064(0) win 512 (ttl 64, id 3072)
Decoding:... S 1325400064/16777216 [ASCII: 79(O)]
Packet Six:

18:50:34.071117 nemesis.psionic.com.64535 > blast.psionic.com.www: S 167772160:167772160(0) win 512 (ttl 64, id 54528)
Decoding:... S 167772160/16777216 [ASCII: 10(Carriage Return)]
Using this method, the packet is constructed with the appropriate data in the SYN field and sent to the destination host. The destination host, expecting to receive information from the client, simply grabs the SYN field of each incoming packet to reconstruct the encoded data. This is done with a passive listening socket on the remote end as described earlier.

Because of the sheer amount of information one can represent in a 32 bit address space (4,294,967,296 numbers), the sequence number makes an ideal location for storing data. Aside from the obvious example given above, one can use a number of other techniques to store information in either a byte fashion, or as bits of information represented through careful manipulation of the sequence number. 

7.2.3 Method III : The TCP Acknowledge Sequence Number Field "Bounce"

This method relies upon basic spoofing of IP addresses to enable a sending machine to "bounce" a packet of information off of a remote site and have that site return the packet to the real destination address. This has the benefit of concealing the sender of the packet as it appears to come from the "bounce" host. This method could be used to set up an anonymous one-way communication network that would be difficult to detect especially if the bounce server is very busy. 

This method relies on the characteristic of TCP/IP where the destination server responds to an initial connect request (SYN packet) with a SYN/ACK packet containing the original initial sequence number plus one (ISN+1). In this method, the sender constructs a packet that contains the following information:
- Forged SOURCE IP address.
- Forged SOURCE port.
- Forged DESTINATION IP address.
- Forged DESTINATION port.
- TCP SYN number with encoded data.

The source and destination ports chosen do not matter (except if you want to conceal the traffic as a well known service such as HTTP and/or you are having the receiving server listening for data on a pre-determined port, in which case you will want to forge the source port as well). The DESTINATION IP address should be the server you wish to BOUNCE information off of and the SOURCE IP should be the address of the server you wish to communicate WITH. 

The packet is sent from the client's computer system and routed to the forged destination IP address in the header ("bounce server"). The bounce server receives the packet and sends either a SYN/ACK or a SYN/RST depending on the state of the port the packet was destined for on the bounce server. The return packet is sent to the forged source address with the ISN number plus one. The listening destination server takes this incoming packet and decodes the information by transforming the returned sequence number minus one back into the ASCII equivalent. 

A step-by-step representation of the bounce method:

- Sending Client: A
- Bounce Server: B
- Receiving Server: C

Step One: Client A sends a forged packet with encoded information to bounce server B. This packet has the address of receiving server C.

Step Two: Bounce server B receives the packet and returns an appropriate SYN/ACK or SYN/RST packet based on the status of the port. Since bounce server B thinks the packet came from receiving server C, the packet is sent to address of receiving server C. The acknowledgment sequence number (which is the encoded sequence number plus one) is sent to server C as well.

Step Three: Server C, expecting to receive a packet from the bounce server B (or a pre-determined port) decodes the data and writes it out to disk.

This method is essentially tricking the remote server into sending the packet and encapsulated data back to the forged source IP address, which it rightfully thinks is legitimate. From the receiving end, the packet appears to originate from the bounced server, and indeed it does. As a side note, if the receiving system is behind a packet filter that only allows communication to certain sites, this method can be used to bounce packets off of the trusted sites which will then relay them to the system behind the packet filter with a legitimate source address. This could be vital in communicating with receiving servers in heavily protected or scrutinized networks. 

Bouncing a packet off of a well known Internet site (.mil, .gov, .com, etc.) is also a useful technique for concealing operations in ordinary traffic. Be sure the bounce site is not using round-robin DNS (stable IP address) or if it is, that the receiving server is passively listening on a pre-determined port to decode the transmissions from multiple sites (i.e. send out a forged source address and source port of 1234 so the bounce server returns the packet to the listening server on port 1234). Using this technique, the sending client can bounce packets off of hundreds of Internet hosts while the receiving server listens and writes out any data destined for the pre-defined port number regardless of IP address. 

If  network site has a correctly configured router, it may not allow a forged packet with a network number that is not from it's network to traverse outbound. Alas, many routers are not configured with this protection in mind and will happily pass the data so we can generally expect this technique to work.
Chapter 8. Conclusion and Future Work

In this thesis we have given an overview of Covert Channels in computer network protocols. We have introduced the idea and communication model of Covert Channels and explained the different application scenarios in which they can be used, many posing serious security threats. 

The survey contributes to the reflection that the combination of steganography techniques and Covert Channels constitute a more complex scenario to be taken into account in the future, as Internet protocols continue to evolve in response to their increasingly widespread usage. 

We have presented an analysis of the potential for Covert Channels in each layer of the TCP/IP protocol stack. The conclusion of the analysis was that the Network and Transport layers are the most vulnerable to the creation of Covert Channels. This paper has focused on issues relevant to the IPv4 and TCP protocols.

 An overview of the opportunities for using TCP/IP header fields as a carrier for a steganographic Covert Channel has provided and we proposed mechanisms for detecting Covert Channels that use TCP/IP headers to hide information. Finally the implementation of the Covert Channel in TCP/IP protocol has been given.

Covert Channel  theory is a more consolidated aspect than practice. This can be due to the fact that there are multiple implementations of the TCP/IP suite of protocols, and it is not always clear how a Covert Channel will work within a particular scenario and if those results will be able to be extrapolated.
This work introduces a new dimension of network security analysis by investigating the TCP/IP protocol suite for the existence of hidden communication channels. As explained, these Covert Channels find interesting applications in network security and in facilitating various network processes which are inline with modern concepts. The Covert Channel exploration in TCP/IP suite therefore has much potential in network environment. This exploratory research is not complete in the sense that all protocols are not evaluated. The analysis does not cover IPv6 which can be another potential avenue. Similarly, UDP (user  datagram protocol) has also not been covered. These potential issues could be another avenue for further research and study.

Connected to Covert Channels, further research in the area of network communication requires identification of processes which need to be refined either in terms of their security aspects or for having some added functionalities. The use of Covert Channels provides an effective mechanism as the hidden bandwidth would be utilized. In some cases, it might avoid additional hardware/software routines in order to achieve the same objective.
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