
CONTROL FLOW CHECKING USING
SOFTWARE SIGNATURE (CFCSS)

A Dissertation Submitted in partial fulfillment of
the requirements for the award of the degree of

MASTER OF ENGINEERING
(Computer Technology & Applications)

By
Ankur Gupta

College Roll No. 01/CTA/04
Delhi University Roll No. 8503

Under the guidance of
Dr. Goldie Gabrani

Department Of Computer Engineering

Delhi College of Engineering

Bawana Road, Delhi-110042

(University of Delhi)

June 2006

Certificate

This is to certify that the dissertation entitled “Control Flow Checking Using

Software Signature (CFCSS)” submitted by Ankur Gupta in the partial fulfillment

of the requirement for the award of degree of Master of Engineering in

Computer Technology and Application, Delhi College of Engineering is an

account of his work carried out by him.

June, 2006 Dr. Goldie Gabrani

 (Project Guide)

Head of the Department

 Department of Computer Engineering

 Delhi College of Engineering, Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt

gratitude to everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Dr. Goldie Gabrani, Head of

the Department, Department of Computer Engineering for the constant

motivation and support during the duration of this project. It is my privilege and

owner to have worked under his supervision. His invaluable guidance and

helpful discussions in every stage of this project really helped me in

materializing this project. It is indeed difficult to put his contribution in few

words.

I would also like to take this opportunity to present my sincere regards to my

teachers viz. Professor D. Roy Choudhury, Mr. Rajeev Kumar, Dr. S. K. Saxena

and Mrs. Rajni Jindal for their support and encouragement.

I am thankful to my friends and classmates for their unconditional support and

motivation during this project.

Ankur Gupta
M.E. (Computer Technology & Applications)

College Roll No. 01/CTA/04

Delhi University Roll No. 8503

4

Contents

list of figures ...6

Abstract...7

1. Introduction...8

1.1 Problem Statement...8

1.2 Approach..9

1.3 Purpose ...9

1.3.1 Project Perspective...9

1.3.2 Developers Perspective ...10

1.3.3 Others Perspective ..11

1.4 Dissertation Organization ...12

2. Control Flow Checking Using Software Signatures13

2.1 Introduction...13

2.2 Preliminaries..14

2.3 Description Of CFCSS ...15

2.3.1 The run-time signature G...15

2.4 The Run-Time Adjusting Signature D..22

2.5 Algorithm...25

2.6 Aliasing ...27

3. Introduction To The Intel Pentium Processor30

3.1 Modes of Operation..31

3.1.1 Protected Mode ...31

3.1.2 Real-Address Mode (also called "real mode").........................31

3.1.3 System Management Mode..31

3.2 The Pentium Architecture...32

3.3 The Instruction Set...34

3.3.1 The General Instruction Format..34

3.3.2 Instruction Set...34

4. Design ..36

4.1 System Design ..36

5

4.2 Detailed Design...37

4.2.1 Translator ...37

4.2.2 User Interface Design ...40

4.2.3 Output File ...50

4.2.4 Interaction Mechanism..51

5. Results ...52

5.1 The Assembly Code..52

5.2 The Intermediate Files ..55

5.3 Log File..60

Related Works...61

Conclusion...62

References ..63

Appendix A ...65

The ‘C’ Code ..65

CFCSS.c ..65

CFCSSG.c ...70

CFCSSNF.c ..77

Appendix B ...86

Instruction Set ...86

6

list of figures

Figure 1: A sequence of instructions and its graph

Figure 2: Detection of an illegal branch

Figure 3: A basic block with checking instructions

Figure 4: The checking instruction in a correct control flow

Figure 5: The detection of an illegal branch

Figure 6: The detection of a branch illegally jumping to the middle of a basic

block

Figure 7: The detection of a branch illegally jumping to the second instruction

of a basic block

Figure 8: Node V1 and V3 have same signatures

Figure 9: Node V1 and V3 have different signatures

Figure 10: Aliasing causing an undetectable control flow error

Figure 11: The Basic Pentium Architecture

Figure 12: The Functional Block Diagram of the Pentium Architecture

Figure 13: Intel Architecture Instruction Format

Figure 14: File Menu

Figure 15: Edit Menu

Figure 16: View Menu

Figure 17: Set Commands Menu

Figure 18: Project Menu

Figure 19: The node structure and flow of the program

7

Abstract

CFCSS is a pure software method that checks the control flow of a program using

assigned signatures. While special hardware for error checking is required in other

signature monitoring techniques, CFCSS does not need the help of extra hardware for

error detection; this is the advantage of CFCSS.

The distinctive feature of the CFCSS over previous signature monitoring techniques is

that CFCSS needs no dedicated hardware such as a watchdog processor for control

flow checking because it is a pure software method. A watchdog task in multitasking

environment also needs no extra hardware, but the advantage of the CFCSS over it is

that CFCSS can be used even when the operating system does not support

multitasking.

This dissertation is presented to implement the CFCSS algorithm for the 586

architecture, for any fan in value.

The runtime provides a visual basic interface as a text editor in which a person can

write the 586 code. After he finishes writing the code he can run it normally using

MASM or he can run using the CFCSS option, in which the code is passed through

the CFCSS algorithm where the signatures are appended to the code accordingly.

And when the program is run the errors if any are logged.

The length of the code increases due to the presence of signatures on each node but

it accounts for the cost saved in having hardware to solve the purpose.

This dissertation is written in as friendly and explanatory manner as was possible to

make even the people with little or no background understand the project.

8

1. Introduction

1.1 Problem Statement

Control flow errors are long existent but are very rare, and are generally handled with

the help of a hardware known as the watch dog processors. Control flow errors have

to be checked in an environment where we need high accuracy and any error results

in fatal errors like in the case of supercomputers where working needs highly efficient

and accurate systems.

Control flow errors are errors that exist when the program does not behave as It was

intended to do mainly due to the presence of false jumps that is for example a

program may reach a wrong position due to a voltage fluctuation or some other

malfunction. In this case the hardware program terminates abnormally, or may give

false results. To check this condition we can either use hardware or a software

technique.

This project is the software point of view of solving the problem using a signature

based method. The signatures prove to be easy and highly efficient in problem

solving. It is portable as you need only the software and costs less than the existing

hardware.

The CFCSS technique defines a software based technique to solve control flow errors.

It divides the program into parts known as nodes and assigns a signature to each

node if the signature of the node matches the signature to which it was supposed to

9

go, the program proceeds. If the jump is wrong that is the signatures doesn’t match

then the program reports an error and does not end abnormally.

1.2 Approach

The CFCSS algorithm has been implemented for the Pentium 586 architecture that is

the code written for the 586 environment will be handled for control flow errors.

The front end consists of a text editor implemented in Visual Basic. We have made the

use of the C environment to append the signatures to the existing files and get the

appropriate CFCSS version. The code transformation also makes the use of ‘batch

scripts’ to run the ‘C’ code in the Visual Basic environment.

1.3 Purpose

1.3.11.3.11.3.11.3.1 Project PerspectiveProject PerspectiveProject PerspectiveProject Perspective

1.3.1.1 Why CFCSS?

CFCSS has certain advantages over the other techniques used to find control flow

errors.

First and the foremost being a software technique it’s portable, easy to carry from one

machine to the other, which is not generally the case with hardware. It is cheaper than

hardware and is highly cost efficient. The accuracy achieved by CFCSS is also greater

than the accuracy of hardware.

The distinctive feature of the CFCSS over previous signature monitoring techniques is

that CFCSS needs no dedicated hardware such as a watchdog processor for control

flow checking because it is a pure software method. A watchdog task in multitasking

environment also needs no extra hardware, but the advantage of the CFCSS over it is

10

that CFCSS can be used even when the operating system does not support

multitasking.

1.3.21.3.21.3.21.3.2 Developers PerspectiveDevelopers PerspectiveDevelopers PerspectiveDevelopers Perspective

1.3.2.1 Languages Used

Different languages have been used in the project. In the heart of the project lies the

assembly language of 586 for which we are building the project, that is it the code

which is going to be transformed using CFCSS. We need not be fully aware on the

functioning of the 586 assembly code, and all we need to know is, what are the

different jump instructions in 586 instruction set, so that we can write the code

accordingly? A little detailed description of the 586 environment is covered in section

3.

The text editor used to write the code is also custom made in Visual Basic so that we

can have our own environment of writing the code. We can directly compile the code

and run it from the front end developed in Visual Basic.

The use of the C code is mainly to transform the assembly code into the relevant

CFCSS code. The C code first breaks the assembly program into nodes and then

makes a graph of the total control flow in the program. After this it appends the

relevant signatures to each node and then adds on a checking procedure to match the

signatures when the program is run.

The use of batch scripts has also been made, so that we can execute more than one

command directly on the command prompt through the visual basic interface. This

was not otherwise possible.

1.3.2.2 Issues

11

CFCSS is a signature based software technique so the first issue raised is the amount

of code added to each node that is by how much amount the length of code is

increased if this technique is used. Does the code become too big after the

identification of nodes and adding the signatures?

Further is the time taken to do the checking is not too much, that is the code for

signature checking should be fast and efficient, and should not cause the program to

slow up.

The signature checking technique should be fully efficient and address to all the

problems relating to control flow errors.

1.3.31.3.31.3.31.3.3 OthersOthersOthersOthers Perspective Perspective Perspective Perspective

1.3.3.1 Graphs and Errors

Form the point of view of a general person the project helps in finding the errors. In an

intermediate file the project draws up a complete graph depicting the overall flow of

the system, so firstly a person can check whether their program is actually correct or

not, that is flow wise is the system, leading to where it was intended to.

Then the graph can also be used for further error detection as to where an error has

occurred

1.3.3.2 Integration

The system provides an overall integration to different types of working environments,

including the very basic C environment to Visual Basic as the front end, to batch files

to run the commands in the background.

12

1.4 Dissertation Organization

The organization of this dissertation is as follows

Section1 is introduction to the topic with minor details.

Section 2 explains CFCSS, the general approach and the procedure used in the

project.

Section 3 gives an overview of the Intel architecture and the instruction set used.

Section 4 discusses the design of the project dealing with the system design to the

detailed design.

Section 5 deals with the implementation exemplifying how to use CFCSS on any

system.

13

2. Control Flow Checking Using

Software Signatures

2.1 Introduction

Transient or permanent faults introduced in a computer system during runtime can

cause an incorrect sequence of instruction execution in the program and may cause

control flow errors. If the system does not perform some run-time checking, the

erroneous output may not be detected and serious damage may result. Therefore, it is

important to monitor the program to detect any abnormality in the control flow or other

error, and to take appropriate actions to avoid any incorrect output.

This report presents a new assigned signature monitoring technique called Control

Flow Checking by Software Signatures (CFCSS), which monitors assigned signatures

for inter-block control flow checking using instructions without using any special

hardware. The program is divided into basic blocks. A basic block is a branch-free

sequence of instructions: A node in the program graph (explained in detail in following

section) represents each block, and there are no jumps into or out of the block except

for the first and last instruction of the block. All nodes in the program graph are

assigned different arbitrary numbers (signatures), which are embedded into the

program during reprocessing or compile time. During program execution, a run-time

signature G is stored in one of the general purpose registers called the global

signature register (GSR), and compared with the stored signature of the node

whenever control is transferred to a new node. For multiple branching cases, a run-

14

time adjusting signature D is combined with G. The complete algorithm and an

example program are presented in following sections.

2.2 Preliminaries

Before we present our approach, we define the terminology that will be used later. A

basic block is a maximal set of ordered instructions in which its execution starts from

the first instruction and terminates at the last instruction. There is no branching

instruction in a basic block except possibly for the last one. A basic block terminates at

either an instruction branching to another basic block or an instruction receiving

transfer of control flow from two or more places in the program. By defining V = {v1, v2,

..., vn} as the set of vertices denoting basic blocks, and E = {brij| brij is a branch from vi

to vj} as the set of edges denoting possible flows of control between the basic blocks,

a program can be represented by a program graph, P = {V, E}. These br(i,j)s are not

necessarily explicit branch instructions. They also represent fall through execution

paths, jumps, subroutine calls and returns. An example is shown in Fig. 3.

Vertex vj is in the set suc(vi) if and only if brij is included in E. Similarly, vertex vi is in

the set pred(vj) if and only if brij is included in E. If a program is represented by its

program graph P = {V, E}, brij (a branch from vi to vj during the execution of P) is illegal

if brij is not included in E [3]. This illegal branch indicates a control flow error, which

can be caused by transient or permanent faults in hardware such as the program

counter, address circuits, or memory system [1].

If a node receives more than two transfers of control flow, it is said to be a branch-fan-

in node, meaning that the number of nodes in pred(v) is greater than one. A 6 branch

insertion occurs when one of the instructions in the node is changed to a branch

instruction as the result of an error. A branch deletion occurs when an error causes

the branch instruction of a node to change to a non-branch instruction. As a result, the

node without the branch instruction merges with the node that is adjacent to it in the

memory address space.

15

The xor-difference of a and b is the result of performing the bitwise XOR operation of a

and b, i.e., xor-difference = a ⊕ b, where a and b are binary numbers.

Figure 1: A sequence of instructions and its graph

2.3 Description Of CFCSS

2.3.12.3.12.3.12.3.1 The runThe runThe runThe run----titititime signature me signature me signature me signature GGGG

Control Flow Checking by Software Signatures (CFCSS) checks the control flow of the

program by using a dedicated register called the global signature register (GSR),

which contains the run-time signature G associated with the current node (the node

that contains the instruction currently executed) in the program flow graph. Every

basic block (represented by a node vi in the program flow graph) is identified and

assigned a unique signature si when the program is compiled. Let Gi be the run-time

value of G when the program flow is in node vi. Under normal execution of the program

(no errors), Gi should be equal to si. If G contains a number different from the

16

signature associated with the current node, it means an error has occurred in the

program.

When control is transferred from one basic block to another, a new run-time signature

G is generated by a signature function f at the destination node of the branch. A

signature function f is a function that updates G for the current node by using two

values: the signature of the previous node (source node of the branch) and the

signature of the current node (destination node of the branch). We use these two

values since the source and destination nodes of the branch uniquely determine each

branch in E.

Suppose that the signature function f is defined as f(G,d i) = G ⊕⊕⊕⊕ d i, and ss and sd are

the signatures of the source node vs and the destination node vd of branch brsd. The

signature difference dd (dd = ss ⊕ ⊕ ⊕ ⊕ sd) is calculated in advance at compile-time and

stored in the destination node vd. Before the branch brsd is taken, G contains Gs (the

signature ss of the source node vs). After the branch is taken, G is updated with a new

value, Gd = f(Gs, dd), based on the previous value Gs and the signature difference dd.

If Gd is equal to the signature sd of the destination node vd, it means there is no control

flow error. On the other hand, if Gd is different from sd, it tells us that a control flow

error has occurred.

We chose the XOR operation as the signature function because the XOR operation is

better than other ALU operations for the purpose of checking or generating signatures.

As AND, OR and XOR operations use fewer gates in the ALU than addition and

multiplication, they have less chance of having an error in the ALU than addition and

multiplication. We want to check the correct control flow in the original program and

minimize the probability of error in the signature function. The fewer gates the

signature function uses, the lower the probability of an error is in calculation of the

signature functions. Furthermore, AND and OR operations may result in aliasing

between one input and output; thus, the second input is not unique. Therefore, the

best candidate for the signature function is the XOR operation.

17

Figure 2: Detection of an illegal branch

For example, in Fig. shown above, the signature function f is defined as

f (G, d i) = G ⊕ ⊕ ⊕ ⊕ d i (1)

and s1 and s2 are the signatures of the source node v1 and destination node v2 of the

branch br12, respectively. Note that nodes are assigned unique numbers as their

signatures. Before a branch is taken, G is equal to G1 that is the same as s1, the

signature of the source node of the branch. After the branch is taken, G is updated

with a new run-time signature G2, G = G2 = f(G1, d2) = G1 ⊕ d2. Since the signature

difference d2 is d2 = s1 ⊕ s2 and G1 was s1, the new run-time signature G2 is G2 = f(G1,

d2) = G1⊕ d2 = s1 ⊕ (s1⊕ s2) = s2, i.e., the updated run-time signature G2 is the same

as the signature s2 of the current node v2; therefore, no error has occurred. On the

other hand, suppose that an illegal branch from node v1 to node v4 is taken. In other

words, the control should have moved from node v1 to node v2, but an error causes an

illegal branch from v1 to v4. Before the illegal branch is taken, G1 is equal to s1 as

18

before. However, after the branch is taken, at node v4, the new updated run-time

signature G4 is different from the signature s4 of the new node v4 because G4 = f(G1,

d4) = G1 ⊕ ⊕ ⊕ ⊕ d4 = G1 ⊕ ⊕ ⊕ ⊕ (s3 ⊕ ⊕ ⊕ ⊕ s4) = s1 ⊕⊕⊕⊕ (s3 ⊕⊕⊕⊕s4) ≠s4, i.e., the control flow error can be

detected by observing that the run-time signature is different from the signature of the

new node.

Before going into the exact algorithm, it will be helpful to describe the outline of the

algorithm adding CFCSS to a program.

All basic blocks (nodes) in the program are identified and numbered. Each basic block

is assigned a unique signature. The signature difference (XOR-difference between the

source and destination node) of all branches is also calculated and stored in the

destination nodes of all the branches. Whenever the control enters a new node, the

runtime signature is updated to a new value Gnew by the signature function f that uses

the previous run-time signature Gprev and the signature difference dnew as the

arguments. If the new run-time signature Gnew is the same as the signature of the new

node, the instructions in the node are executed. If Gnew is different from the signature

of the new 10 node, it means a control flow error has occurred and control is

transferred to the error handling routine.

Now, we can begin the detail of the algorithm. To check the control flow, checking

instructions are located at the top of each basic block, in other words, checking

instructions are executed prior to the execution of the original instructions in the basic

block. In Fig. 4.2, the basic block Bk consists of instructions I1, I2, ..., In and additional

checking instructions located at its beginning. The checking instructions consist of two

parts: the signature function that generates the run-time signature (G = G ⊕ dk), and

the branch instruction, ‘br (G ≠ sk) error’, that compares the run-time signature with the

signature of basic block Bk. In this way, a node vk represents a basic block Bk with the

checking instructions associated with Bk.

19

Figure 3: A basic block with checking instructions

Figure 4: The checking instruction in a correct control flow

Figure shown above shows how the checking instructions work to detect errors. The

control is going to be transferred from node v1 to node v2. G is equal to G1 = s1 =

1011, the signature of the current node v1. After the branch br12 is taken, the signature

20

function f generates the new run-time signature G = G2 = G1 ⊕ d2 = 1011 ⊕ 1001 =

0010, and G is compared with the signature s2 by the ‘br (G ≠ s) error’ instruction. The

conditional branch instruction ‘br (G ⊕ s) error’ branches to the error handler if G and

s2 are different. In contrast, Fig. 4.4 shows the case where an illegal branch is taken

and how it is detected by the checking instructions. Before an illegal branch br14 is

taken, G has the value s1. However, at node v4, the new run-time signature G = G4 is

different from s4 since G is 0101 and s4 is 0110 (G4 = G1 ⊕ d4 = 1011 ⊕ 1110 = 0101 ≠

s4 = 0110). This mismatch causes the following instruction ‘br (G ≠ s) error’ to transfer

the control to the error handling routine.

Figure 5: The detection of an illegal branch

Figure above shows the case where the illegal branch is taken to the location where

the signature function instruction is located, i.e., the first instruction of the node.

Following figures illustrates the case in which an error occurring in the branch

instruction, for example, a bit flip in the destination field, causes an unpredictable jump

to any place in the entire program, i.e., any basic block in the program and any place

in that basic block. G has the value s1 at node v1. The illegal branch from node v1 to

node v4 is taken and the control is transferred to one of the instructions in the basic

block B4, not the checking instructions. As a new run-time signature is not generated

at v4, G is still equal to the previous value G1. G is not updated to s4 although control is

transferred to node v4. After the instructions in node v4 are executed, the branch from

21

node v4 to node v5 is taken. At node v5, G is updated to a new value G5, but it is not

equal to the signature of node v5 because the previous G before the branch br45 was

G1(= s1), not the correct value G4(= s4). Thus an illegal branch to any instruction in the

node will also be caught. The detailed calculation of G is shown in the figure. Figure

shows the case where an illegal branch br14 lands at the second instruction of the

node, i.e., ‘br (G ≠ s) error’. In a similar way, as the new run-time signature is not

generated at v4, G is still equal to the previous value G1 that is not equal to s4.

Therefore, ‘br (G ≠ s) error’ catches this mismatch and the error is detected.

Figure 6: The detection of a branch illegally

 jumping to the middle of a basic block

22

Figure 7: The detection of a branch illegally

jumping to the second instruction of a basic block

2.4 The Run-Time Adjusting Signature D

It was shown that illegal branches violating the control flow can be detected by

assigning unique signatures to each of the nodes in the program graph and adding

signature checking instructions to them. However, there are cases where the same

signature has to be assigned to multiple nodes, for example, a branch-fan-in node. In

figure shown below, the two nodes, v1 and v3 have branches to the same node, a

branch-fan-in node v5. If d5 is the signature difference between nodes v1 and v5 as

stated before (d5 = s1⊕ s5), there is no problem when the branch br15 is taken because

G5 = G1 ⊕⊕⊕⊕ d5 = s1 ⊕⊕⊕⊕ s1 ⊕⊕⊕⊕ s5 = s5, which is the signature of node v5. If the branch br35 is

taken, however, the run-time signature G at node v5 is not equal to s5 as G5 = G3 ⊕⊕⊕⊕ d5

= s3 ⊕⊕⊕⊕ s1 ⊕⊕⊕⊕ s5 ≠ s5, if s 3 ≠ s1.

However, if we use s1 � s3 as the signatures, then an illegal branch from v1 to v4, or

from v3 to v2, will not be detected. In order to solve the problem of assigning the same

signature to multiple predecessors of a branch-fan-in node, a run-time adjusting

23

signature D is introduced. After the run-time signature G is generated by the signature

generation function, G is XORed with D to get the signature of the branch-fan-in node;

thus, at the source node, D has to be set to the value which makes G equal to the

signature of the destination node. Figure below illustrates an example where D is used

in the branch-fan-in node. At node v5, one more checking instruction G5 = G3 ⊕ D is

added. After the signature generation function G = G ⊕ d5, G is XORed with D that

should be determined at the source nodes v1 and v3. Since d5 is initially set to the

XOR-difference between s1 and s5 (d5 = s1 ⊕ s5), when the branch br15 is taken, the

updated run-time signature G is already the same as s5; we do not need to change G,

thus, D is set to zero at v1

G5 = G5 ⊕⊕⊕⊕ D = s5 ⊕ ⊕ ⊕ ⊕ 0000 = s5 (2)

 When the branch br35 is taken, the updated G at the first line of v5 is G5 = G3 ⊕⊕⊕⊕ d5 = s3

⊕ ⊕ ⊕ ⊕ (s1 ⊕ ⊕ ⊕ ⊕ s5). To make G equal to s5, G should be XORed with s1 ⊕ s3 at the second

line, i.e.,

G = G5 ⊕⊕⊕⊕ D = s3 ⊕⊕⊕⊕ (s1 s5) ⊕⊕⊕⊕ (s1 ⊕⊕⊕⊕ s3) = s5 (3)

 Therefore, at the source node v3, D should be set to D = s1 ⊕ s3.

Figure 8: Node V1 and V3 have same signatures

24

Figure 9: Node V1 and V3 have different signatures

For the branch br12, D is not necessary as node v2 is not a branch-fan-in node; only

one branch is coming into v2 and d2 is equal to s1 ⊕ s2. Thus, the updated G at node v2

is equal to s2 as in the previous case in figure shown below. In summary, if one source

node has a branch to the branch-fan-in node, the node has to have one extra

instruction for D in the checking instructions to set D to the appropriate value before

branching. If the branch to the branch-fan-in node is taken, D is XORed with G at the

destination node. If not, D is just ignored. In this way, we can assign arbitrary different

numbers to all the nodes in the program graph.

25

2.5 Algorithm

The following is the complete description of Algorithm A that assigns signatures to

each node in a program flow graph when a program is compiled.

Algorithm Algorithm Algorithm Algorithm AAAA

1. Identify all basic blocks, build program flow graph and number all nodes in the

program flow graph.

2. Assign a signature si to node vi in which si ≠ sj if i ≠ j, i, j = 1, 2, ..., N, N is the total

number of nodes in the program.

3. For each node vj, j = 1, 2, ……, N.

3.1 For node vj whose pred (vj) is only one node vi, the signature difference dj is

calculated as dj = si ⊕ sj.

3.2 For node vj whose pred(vj) is a set of nodes vi1,vi2,...,vim therefore, vj is a branch-

fan-in node -- the signature difference is determined by one of the nodes (picked

arbitrarily) as dj = si1 ⊕ sj. For node vim, m = 1,2,… M, insert 17 an instruction Dim =

si1 ⊕ sim into node vim. This instruction should be located after ‘br (G ≠ sj) error’

instruction in vim.

3.3 Insert an instruction G = G ⊕ dj at the beginning of node vj.

3.4 If vj is a branch-fan-in node, insert an instruction G = G ⊕ D after G = G ⊕ dj in

node vj.

3.5 Insert an instruction ‘br (G ≠ sj) error’ after the instructions placed in step 3.3 or 3.4

26

When a branch brij is taken, if the destination node vj is not a branch-fan-in node, the

run-time signature Gj is generated by the signature function f(Gi, dj) = Gi ⊕ dj and

compared with the signature sj of node vj. If they match, it means no control flow error

has occurred in taking branch brij.

In addition, when a branch brij is taken, if the destination node vj is a branch-fan-in

node, the run-time signature Gj is generated by the signature function and D, i.e.,

Gj = f(f(Gi, d j), Dj)

If they match, it means no control flow error has occurred in taking branch brij.

CFCSS will detect the following types of control flow errors. They are presented as

Corollary 1-5 and accompanied by their proofs.

Corollary 1. An illegal branch taken to the signature function instruction -- the first

line of the node -- will be detected.

Proof. Suppose that brij is an illegal branch, thus vi ∉ pred(vj). At node vi, G is equal to

si. After the branch is taken, the new run-time signature is generated, G = Gj = Gi ⊕ dj

= si ⊕ sk ⊕ sj in which sk is the signature of node vk, where vk = pred(vj). Since si, sk,

and sj are all different numbers, G = si ⊕ sk ⊕ sj ≠ sj. Mismatch occurs and the error is

detected.

Corollary 2. An illegal branch taken to the instruction br (G ≠ s) error -- the second

line of the node -- will be detected.

Proof. Suppose that brij is an illegal branch and the branch is taken to the second line

of the node, i.e., skipped the signature function. Since the new G was not generated,

G is still equal to si, not sj. Therefore, ‘br (G≠ s) error’ instruction sees the mismatch

and detects the error.

Corollary 3. An illegal branch to the body of the node where the original basic block

sits will be detected.

27

Proof. Suppose that brij is an illegal branch and the branch is taken to a place where

one of the instructions in the original basic block is located, i.e., skipped the checking

instructions and landed at one of the instructions in the original basic block. Since the

new G is not generated at node vj, G is equal to si, not sj although the control is

transferred to the node vj. After the instructions in node vj are executed, brjk is taken,

where vk = suc(vj). The checking instructions in node vk generate the updated G = Gk

= Gj ⊕ dk = Gi ⊕ (sj ⊕ sk) = si ⊕ sj ⊕ sk. Since si, sk and sj are all different numbers, G =

si ⊕ sk ⊕ sj ≠ sj. Mismatch occurs and the error is detected.

Corollary 4. A branch insertion inside a node will be detected if it is an illegal branch.

Proof. Suppose that brik is inserted at node vi, brik ∉ E (brik is an illegal branch). At

node vi, G is equal to si. After brik is taken to the first instruction of node vk, the new

updated G is G = Gk = Gi ⊕ dk = si ⊕ (sk ⊕ sl) in which sl is the signature of node vl,

where vl = pred(vk). Since si, sk, and sl are all different numbers, G = si ⊕ sk ⊕ sl ⊕ sj

unless aliasing occurs (discussed later). Mismatch occurs and the error is detected.

By Corollary 3, a branch to other instructions of the node will also be detected.

Corollary 5. The deletion of an unconditional branch instruction from the node will be

detected.

Proof. Suppose that the branch instruction brij at node vi is changed to another

instruction; therefore, brij is removed from E and an adjacent node vk is merged into

the node vi. Then, the signature of this node is changed from si to sk in the middle of

the node where vi and vk are merging; thus, the G should be updated to sk. However,

since vi ∉ pred(vk), G will not match with sk. Therefore, the error is detected. This is

similar to the case where an illegal branch brik ∉ E occurs.

2.6 Aliasing

If multiple nodes share multiple branch-fan-in nodes as their destination nodes,

aliasing may occur between legal and illegal branches, and cause an undetectable

control flow error. In Figure below, node v5 is a branch-fan-in node that has three

28

source nodes v1, v2 and v3 (pred(v5) = {v1, v2, v3}). Node v6 is also a branch-fan-in

node but it has only two source nodes v2 and v3, not node v1 (pred(v6) = {v2, v3}).

According the step 3.4 of Algorithm A, first, the signature difference d5 of node v5 is

determined as d5 = s2 ⊕ s5. The runtime signature D2 of node v2 is D2 = s2 ⊕ s2 =

0000, D3 is D3 = s2 ⊕ s3, and D1 is D1 = s2 ⊕ s1. Furthermore, for the branch-fan-in

node v6, the signature difference d6 should also be calculated with node v2 (d6 = s2 ⊕

s6) since {v2, v3} is a subset of both pred(v5) and pred(v6). In other words, d6 can be

either d6 = s2 ⊕ s6 or d6 = s3 ⊕ s6. However, since pred(v5) ={v1, v2, v3} and pred(v6) =

{v2, v3} have the same subset {v2, v3} and d5 of v5 is already calculated with the

signature of v2, d6 of v6 should also be calculated with the signature of v2 ,i.e., d6 = s2

⊕ s6. As a result, both nodes v5 and v6 have the difference signature calculated with

the same s2 (d5 = s2 ⊕ s5, d6 = s2 ⊕ s6).

Figure 10: Aliasing causing an undetectable control flow error

Suppose that an illegal branch br16 occurs and lands at the first line of node v6, where

the instruction of signature function f(Gprev, d6) is located. Gprev is G1 = s1 and updated

G is equal to G = G6 = f(Gprev , d6) ⊕ D = (G1 ⊕ d6) ⊕ (s2 ⊕ s1) = (s1 ⊕ (s2 ⊕ s6)) ⊕ (s2

⊕ s1) = s6. The updated G6 is equal to s6; therefore, this illegal branch is not detected.

This aliasing error is caused by the fact that more than two branch-fan-in nodes have

their signature differences calculated with the signature of the same node, and their

predecessor sets are not equal. More specifically, the condition for aliasing error is:

29

Aliasing error occurs when di = ss ⊕ si, dj = ss ⊕ sj, but pred(vi) ⊕ pred(vj). If pred(vi) -

pred(vj), an illegal branch from a node in pred(vi) - pred(vj) (assuming pred(vj) -

pred(vi)) to node vj is undetectable when that branch is taken to the location of the

instruction for the signature function.

If the illegal branch is taken to any location except for the first line of the node -- the

instruction for the signature function -- the control flow error is detected because the

new run-time signature associated with the destination node is not generated.

In other words, the illegal branch is detected unless it lands at the first line of the

destination node that satisfies the condition described above. With this observation,

we can avoid the undetectable illegal branch if we assign signatures to the nodes in

the following way.

If we assume one bit error, and the Hamming distance between the addresses of the

first instructions in nodes v5 and v6 is greater than one, this undetectable illegal branch

is avoided; one bit error in the destination field of the branch instruction at node v1

cannot cause an illegal branch to the location of the first line of node v6. Similarly, if we

assume m bit error and the addresses of the first instructions of all successor nodes

are different by Hamming distance greater than m, undetectable illegal branches

caused by aliasing will be avoided.

.

30

3. Introduction To The Intel

Pentium Processor

In 1985, Intel introduced the first in a line of 32-bit microprocessors compatible with

the already broad base of existing Intel architecture software. That was the Intel386

microprocessor. The Intel 32-bit architecture has since grown to become the standard

for cost-effective, high performance computing with an installed base of over 40 million

units. Intel has continued to evolve and improve the basic implementation by

incorporating the most advanced computer design and silicon technology. The Intel

Pentium family is the most recent product of that effort.

The Intel Pentium processor, like its predecessor the Intel486 microprocessor, is fully

software compatible with the installed base of over 100 million compatible Intel

architecture systems. In addition, the Intel Pentium processor provides new levels of

performance to new and existing software through a reimplementation of the Intel 32-

bit instruction set architecture using the latest, most advanced, design techniques.

Optimized, dual execution units provide one-clock execution for "core" instructions,

while advanced technology, such as superscalar architecture, branch prediction, and

execution pipelining, enables multiple instructions to execute in parallel with high

efficiency. Separate code and data caches combined with wide 128-bit and 256-bit

internal data paths and a 64-bit, burstable, external bus allow these performance

levels to be sustained in cost-effective systems. The application of this advanced

technology in the Intel Pentium processor brings "state of the art" performance and

31

capability to existing Intel architecture software as well as new and advanced

applications.

3.1 Modes of Operation

The Pentium processor has two primary operating modes and a "system management

mode." The operating mode determines which instructions and architectural features

are accessible. These modes are:

3.1.13.1.13.1.13.1.1 Protected ModeProtected ModeProtected ModeProtected Mode

This is the native state of the microprocessor. In this mode all instructions and

architectural features are available, providing the highest performance and capability.

This is the recommended mode that all new applications and operating systems

should target.

Among the capabilities of protected mode is the ability to directly execute "real-

address mode" 8086 software in a protected, multi-tasking environment. This feature

is known as Virtual-8086 "mode" (or "V86 mode"). Virtual-8086 "mode" however, is not

actually a processor "mode," it is in fact an attribute which can be enabled for any task

(with appropriate software) while in protected mode.

3.1.23.1.23.1.23.1.2 RealRealRealReal----Address Mode (also called "real mode")Address Mode (also called "real mode")Address Mode (also called "real mode")Address Mode (also called "real mode")

This mode provides the programming environment of the Intel 8086 processor, with a

few extensions (such as the ability to break out of this mode). Reset initialization

places the processor in real mode where, with a single instruction, it can switch to

protected mode.

3.1.33.1.33.1.33.1.3 System Management ModeSystem Management ModeSystem Management ModeSystem Management Mode

32

The Pentium microprocessor also provides support for System Management Mode

(SMM). SMM is a standard architectural feature unique to all new Intel

microprocessors, beginning with the Intel386 SL processor, which provides an

operating-system and application independent and transparent mechanism to

implement system power management and OEM differentiation features. SMM is

entered through activation of an external interrupt pin (SMI#), which switches the CPU

to a separate address space while saving the entire context of the CPU. SMM-specific

code may then be executed transparently. The operation is reversed upon returning.

3.2 The Pentium Architecture

Figure 11: The Basic Pentium Architecture

Figure shows a functional block diagram of the Pentium Pro processor micro

architecture. In this diagram, the following blocks make up the four processing units

and the memory subsystem shown in the first figure:

33

• Memory subsystem—System bus, L2 cache, bus interface unit, instruction cache

(L1), data cache unit (L1), memory interface unit, and memory reorder buffer.

• Fetch/decode unit—Instruction fetch unit, branch target buffer, instruction decoder,

microcode sequencer, and register alias table.

• Instruction pool—Reorder buffer

• Dispatch/execute unit—Reservation station, two integer units, two floating-point

units, and two address generation units.

• Retire unit—Retire unit and retirement register file.

Figure 12: The Functional Block Diagram of the Pentium Architecture

34

3.3 The Instruction Set

3.3.13.3.13.3.13.3.1 The General Instruction FormatThe General Instruction FormatThe General Instruction FormatThe General Instruction Format

All Intel Architecture instruction encodings are subsets of the general instruction

format shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any

order), one or two primary opcode bytes, an addressing-form specifier (if required)

consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) byte, a

displacement (if required), and an immediate data field (if required).

Figure 13: Intel Architecture Instruction Format

3.3.23.3.23.3.23.3.2 Instruction SetInstruction SetInstruction SetInstruction Set

There are different types of instruction in the whole instruction set and can be divided

into further categories :-

1. Data Transfer instructions

2. Binary arithmetic instructions

3. Decimal arithmetic instructions

4. Logic instructions

5. Shift and rotate instructions

6. Bit and byte instructions

7. Control and jump instructions

35

8. Flag control instructions

9. Segment register instructions

10. Miscellaneous instructions

Out of these the most important instructions for us are the “Control and jump

instructions”, because these are the only instructions that cause control flow errors.

These are the instructions that have to be checked for dividing the nodes. Apart from

these instructions the nodes are also divided when a label starts. So, these are the

two primary conditions in dividing the code into nodes.

Of the jump instructions there is one such instruction that has to be taken special care

of, it is the unconditional jump statement “JMP”, which does not take any condition as

a parameter so it jumps the whole program to a new location, but the overall fan-in of

the node is just one.

The whole set of instructions of our interest are shown in Appendix B.

36

4. Design

The purpose of the design phase is to plan a solution of the problem specified by the

requirement document. The phase is the first step in moving form the problem domain

to the solution domain. In other words, starting with what is needed; design takes us

toward how to satisfy the needs. The design of a system is perhaps the most critical

factor affecting the quality of the software; it has a major impact on the later phases,

particularly testing and maintenance. The output of this phase is the design document.

This document is similar to blueprint or plan for the solution and is used later during

implementation, testing, and maintenance.

The design activity is often divided into two separate phases:

• System design

• Detailed design

4.1 System Design

System design, which is sometimes also called top-level design, aims to identify the

modules that should be in the system, the specification of these modules, and how

they interact with each other to produce the desired results. Design is a much more

creative process than analysis. It involves working with the unknown new system

37

rather than analyzing the known system. Thus involves working with the unknown new

system rather than analyzing the known system.

The first process in system design will be to divide the whole requirement into major

modules as follows:

1. Translator: This is the main module which will convert the assembly code

to CFCSS equivalent assembly code.

2. IDE: This is the user interaction module. This will help the user to work

easily with the assembler and CFCSS code level. This will help the user to

easily write the code and will help the person to compile it properly.

3. Output File: This will be the one which will give the actual output in a log

file and will help the user to check if actually every thing is gone fine while

executing or not.

4. Interaction Mechanism: This is the one which will help us in

communicating between various code and modules.

4.2 Detailed Design

4.2.14.2.14.2.14.2.1 TranslatorTranslatorTranslatorTranslator

The translator is mainly made up of 3 C files. The first one used to identify all the

nodes along with the line numbers. The second file used to assign signatures to the

nodes, find the difference, the run time adjustment signatures and making the graph.

The third file is used to insert the appropriate code in the assembly code at proper

positions so that the signatures could be matched at runtime, ensuring the proper

functioning of the program.

4.2.1.1 CFCSS.C

38

This file is basically used to identify the nodes in the program, along with the initial and

ending line numbers. These nodes are extracted and given node numbers and stored

in a text file, from where they are further processed.

The intermediate file which will be building after running the program will have the

number of nodes in the first line. The second line will consist of the node’s name,

along with the node’s starting and ending line number. These values will be separated

using a delimiter ‘|’.

Nodes are found with these things considering in mind. Any node will be starting with

line number having some label at beginning of line 0r immediately after the jump

instruction.

End line of any node can be the line number just before the new label starts or the line

which have conditional or unconditional jump.

Node structure made in this file will be something like as follows.

Example: Node name |start line number |end line number

 Start |28 |30

4.2.1.2 CFCSSG.C

The identified nodes from the intermediate file produced in ‘CFCSSC.C’ are read and

signatures are provided to each node.

Each node is provided with a random signature such that no two nodes have the same

signature. Even after providing random signatures the signatures are double checked,

because they should be unique to each node. These values are written to another

intermediate file. This intermediate file also contains the signature difference and the

run time adjustment signature. So the bulk of the processing takes place in this file.

The structure of each line of the intermediate file should be:

Node name | node number | signature | S line no | E line no | difference | RAS count |

comma separated RAS values

39

Example again | 1 | 14344 | 30 | 35 | 17804 | 3 |17804, 20217, 30462

The intermediate file also provides with a graph of the nodes, with the proper flow of

the program, so a programmer can also check the overall flow of the program and can

check for any mistakes which he has made while writing the code. The flow graph is

very helpful in checking the working of the program. It is also useful in finding wrong

jumps and finding areas which can never be reached, thus making the task of the

programmer easier.

The result is an intermediate file containing all the required information about the

node. The node name, its number, signature, difference, fan in of the node and the

different runtime adjustment signatures along with the graph.

4.2.1.3 CFCSSNF.C

This file is used to add the entire extra code to the original file, i.e. it appends the

signature, the difference and the RAS values in the starting of each node in the

program. It also has a routine to check the signatures at runtime. This routine extracts

all the information from the node and checks for the validity of the signature before

moving in to the next node.

The file first extracts all the information from the intermediate file created by

CFCSSG.C and stores them in a structure which is the data structure used for storing

the nodes information.

The code adds in a function prototype just above the data section for the function

which will be used to check for the signatures at run time. The data section is

introduced with a lot of variables; it has the signature to the first node and its

difference. There is a RAS array for each node having the RAS values stored for each

of its node.

40

Then the main changes come in the code section, the code section starts with calling

the function for the first node checking for the signatures and putting the result of a

match in the log file which will tell about the correct or wrong execution. Each node is

assigned with its signature, difference and the count of RAS for that node.

4.2.24.2.24.2.24.2.2 User Interface Design User Interface Design User Interface Design User Interface Design

VB is used as Interface between User and Assembler . In VB the IDE for assembly

code is developed which has the following attributes:

a. File Menu

b. Edit Menu

c. View Menu

d. Tools Menu

e. Project Menu

f. Widow Menu

g. Help

These all Menus further have options in it.

Following are the detailed description over all these Menus.

4.2.2.1 File Menu

File Menu contains the following options:

1. New

2. Open

3. Save

4. Save As

5. Close

6. Save & Close All

7. Command Prompt

8. Set Current Directory

9. Exit

41

Figure 14: File Menu

New

The New option is present here for making of New File of Assembly i.e. here instead

of opening a file present at any other location we can make our own file also.

Open

Open option is there in case we already have a program made in Assembly and we

need to pick up its code from that location.

Save

Save option is present for saving any of the changes made in any program or to save

any new file.

42

Save As

Save As option is provided in case we want to save any particular program with any

other name.

Close

Close option exists in case we want to close any particular file opened.

Save & Close All

This option closes all the opened files after saving them with their respective names.

Command Prompt

There may be need at times when we want to manually work with assembler, here this

command prompt helps us indirectly by providing a link with shell.

Set Current Directory

Set Current Directory is there for setting the directory where we want to work i.e.

where we want to save our all files etc.

Exit

Exit options as name suggests is for getting out of IDE.

4.2.2.2 Edit Menu

43

Figure 15: Edit Menu

The Edit Menu consists of following sub Menus or Items:

1. Cut

2. Copy

3. Paste

4. Delete

5. Select All

6. Find

7. Find and Replace

Cut

Cut option is provided for cutting some text from a particular position and inserting it

into any other location with the help of paste command.

Copy

44

Sometimes we need to copy some particular text from one location to another in that

case copy command comes into play. Copy is provided for copying the contents from

one location to another.

Paste

Paste command is used in conjunction with copy/cut. With the help of cut and copy

we can only cut or copy the contents from that location but we can’t insert it to our

required location. Insertion of text to required location is done with the help of Paste

Command.

Delete

Sometimes some unwanted or erroneous data is entered by mistake, and we want to

delete it from our file. In that case Delete command is used. It is there for deleting the

selected text contents.

Select All

Select All is used for selecting all the contents of opened file.

Find

Find is used for searching first location of some particular text in file. Next is used for

finding the next location of that text location. It may/may not be case sensitive.

Find and Replace

Find and Replace is similar to Find Command. It actually replaces the text found by

the find command.

45

4.2.2.3 View Menu :

Figure 16: View Menu

The View Menu comprises of following options:

1. Tool Bar

2. Status Bar

3. Draw Control Flow Graph

4. CFCSS Code

Tool Bar

Tool Bar is option which is either enabled or disabled. If it is enabled then the toolbar

is visible to us otherwise not. The toolbar is shown below:

46

Status Bar

Status Bar is used for showing the current position of cursor in terms of line & column

number.

CFCSS Code

This option is available for the user if he wants to see the code which is to be finally

executed by the assembler. It contains all the codes entered by the programmer in the

assembly coding.

4.2.2.3 Tools Menu

Figure 17: Set Commands Menu

The tools menu consists of further options which internally contains:

1. Set Commands

2. Set Directories

3. Customizing Options

Set Commands

47

It contains the options for changing the commands for compiling, linking and running

as per the requirements of assembler. These commands are based on Assembler

used. e.g. The commands for compiling, linking and running shown above refer to

MASM32 assembler.

Set Directories

It helps us in setting various directories required for running our assembly code. These

options include:

1. Set Lib Directory

2. Set Macro Directory

3. Set Bin Directory

These are required for linking, compiling and running of our program.

Customizing Options

48

These options include:

1. Different file Patterns (which can be opened and saved)

2. Current Working Directory

3. Tab Width

Here file patterns chosen for saving and opening of file is *.asm which is actually the

extension of Assembly program.

Current Working Directory is there which is default for opening and saving files. i.e.

whenever we want to open a file or save it this particular folder will be opened.

And last of all is Tab Width. This is for setting the tab size.

4.2.2.1 Project Menu

Project Menu contains the following options:

1. Compile

2. Compile and Run

3. Build All

4. CFCSS compile

5. CFCSS compile and run

6. CFCSS build all

49

Figure 18: Project Menu

Compile

This option is used to directly compiler the program with the help of MASM. It

traditionally compiles the code.

Compile and Run

This is also the traditional command used to directly compile and run the program

immediately after compilation.

Build all

This command is used to build the current assembly code.

CFCSS Compile

50

This option is used to compile the code using CFCSS that is it applies the translator

code and converts the existing code into CFCSS code that will be able to check for

errors.

CFCSS Compile and Run

This option is used to compile the program using CFCSS and run directly after the

compilation.

CFCSS Build All

This command is used to build the program with the CFFCSS code.

4.2.34.2.34.2.34.2.3 Output FileOutput FileOutput FileOutput File

The output file is a log file that is achieved after the program has executed. The log file

contains the whole path traveled by the program, checking signatures for each node

and explaining whether the jump was valid or not.

The log file has three types of entries

1. In the first type it just prints the signature of the source node followed by the

signature of the destination node telling whether the signatures matched. If the

signatures are matched it gives ‘s+ d fine ’ as output.

2. In the second type, the signatures may also be checked with the RAS values.

So the checking goes on one step further checking the RAS values along with

the signature and the difference. If the signature matches then it gives the

output as ‘s + d + r fine ’

3. The third type of entry is when the signatures don’t match and the jump is

illegal. This implies that the control flow error has occurred and the program

51

has terminated. It gives the output as a message along with the signatures ‘not

a legal jump ’.

4.2.44.2.44.2.44.2.4 Interaction MechanismInteraction MechanismInteraction MechanismInteraction Mechanism

The interaction mechanism consists of the visual basic platform interacting with the C

code. The main thing responsible for the interaction here is the use of batch files

which are used to run a number of C files synchronously through visual basic.

The procedure taken to build batch files is as follows.

Depending on the source file the currents code as placed at a proper location. Then

the batch file starts its work. First of all it runs the three translator file one by one and

generates the proper CFCSS translated code. Then this code is fed to assembler and

then the assembler takes the command.

The work of assembler is to build the object file and then link it to have an executable

files. This executable file is then calls from VB interface itself to run the code. This

whole procedure is done as a batch process. This means with the help of VB only one

batch file is made at runtime. Then the rest of work is done by this batch file itself. It

have all the options of copying one file from one directory to another and then to

compile all the code.

52

5. Results

Here an example is provided to show the proper working of the project. Firstly a

sample assembly code is taken. Then the intermediate files are displayed and finally

the file with the additional CFCSS code is shown. The output of the program with a

sample run is also presented.

5.1 The Assembly Code

A sample assembly code is presented on which the CFCSS algorithm will be tested.

Assembly Code

.586

.model flat,stdcall
option casemap:none

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\masm32.inc
include \masm32\macros\macros.asm

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\masm32.lib

.data

 var1 dd ?

53

 var2 dd ?
.code
start:

 mov eax,0
lbl1: mov var1,0

mov var1, sval(input("Enter a number "))

cmp var1, 1 ; compare the variable to the immediate number 100
je lblis1 ; jump if var1 is equal to 100 to "equal"

jmp lblis2

lblis1:
 print chr$("The number you entered is 1",13,10)
 jmp lbl1

lblis2:

print chr$("The number you entered is 2",13,10)
mov var2,0

mov var2, sval(input("do you want to exit 1 for yes and 2 for no "))
cmp var2, 1

je goout
print chr$("You still want to wrork",13,10)

jmp lbl1

goout:

exit

end start

This file has all the essential code from the declarations to the end but the part of the

program that is of interest is between ‘.code’ and ‘end start’.

We divide the code into different nodes and show the proper flow of the program.

54

Figure 19: The node structure and flow of the program

start:
mov eax,0

lbl1:
mov var1,0
mov var1, sval(input("Enter a number "))
cmp var1, 1
je lblis1

jmp lblis2

lblis1:
print chr$("The number you entered is 1",13,10)
jmp lbl1

print chr$("You still want to wrork",13,10)
jmp lbl1

lblis2:
print chr$("The number you entered is 2",13,10)
mov var2,0
mov var2, sval(input("do you want to exit 1 for yes

and 2 for no "))
cmp var2, 1
je goout

goout:
exit

Node 1

Node 7

Node 5

Node 4

Node 3

Node 2

Node 6

55

5.2 The Intermediate Files

When we compile the program through CFCSS the following tasks take place.

Firstly the CFCSS.C file is run which makes an intermediate file named ‘CFCSS3.txt’

giving the following output

CFCSS3.txt

7
start|1|20|22
lbl1|2|23|27
jmp|3|28|28
lblis1|4|32|34
lblis2|5|36|40
print|6|43|44
goout|7|46|54

This file simply identifies the number of nodes their name, their node number and their

starting and ending line numbers.

Next the CFCSSG.c file is run which makes an intermediate file named ‘CFCSS4.txt’

having these values.

CFCSS4.txt

7
start|1|15280|20|22|0|0|
lbl1|2|15650|23|27|1682|2|29752,6442
jmp|3|18195|28|28|31281|0|
lblis1|4|20360|32|34|29354|0|
lblis2|5|21112|36|40|5483|0|
print|6|8858|43|44|28898|0|
goout|7|14972|46|46|26628|0|

0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

56

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

This file gives as output a matrix which shows the complete flow of the graph. It does

some specific work of assigning the signatures to the nodes, calculating the

differences and the most specific task of assigning run time signatures.

The fan in of each node is calculated and the corresponding ras values are calculated

along with the count of ras values.

Finally, CFCSSNF.c file is run which gives CFCSS6.txt as the output. This file

contains the complete assembly code, along with the modifications i.e. all the

additional code added to the file to check for signatures at runtime.

CFCSS6.txt

.586

.model flat,stdcall
option casemap:none

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\masm32.inc
include \masm32\macros\macros.asm

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\masm32.lib

 cfcssrtfunc PROTO :dword,:dword,:dword,:dword

.data

 cfcsssig dd 15280

57

 cfcssdiff dd 0
 cfcssras dd 0
 cfcsshndl dd ?
 cfcssrtf db "cfcss7.log"
 cfcsssizef dd ?
 cfcssbw dd ?
 cfcssras1 dd 0
 cfcssras2 dd 29752,6442
 cfcssras3 dd 0
 cfcssras4 dd 0
 cfcssras5 dd 0
 cfcssras6 dd 0
 cfcssras7 dd 0

 var1 dd ?
 var2 dd ?
.code
start:
 invoke CreateFile,addr cfcssrtf,GENERIC_WRITE,NULL,NULL,
CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL
 mov cfcsshndl, eax

 pusha
 pushf
 mov eax , 15280
 mov ebx , 0
 mov ecx , 0
 mov edx , offset cfcssras1
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa

 mov eax,0
 lbl1:
 pusha
 pushf
 mov eax , 15650
 mov ebx , 1682
 mov ecx , 2
 mov edx , offset cfcssras2
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa
 mov var1,0
 mov var1, sval(input("Enter a number "))

 cmp var1, 1 ; compare the variable to the immediate number 100

58

 je lblis1 ; jump if var1 is equal to 100 to "equal"

 pusha
 pushf
 mov eax , 18195
 mov ebx , 31281
 mov ecx , 0
 mov edx , offset cfcssras3
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa
 jmp lblis2

 lblis1:
 pusha
 pushf
 mov eax , 20360
 mov ebx , 29354
 mov ecx , 0
 mov edx , offset cfcssras4
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa

 print chr$("The number you entered is 1",13,10)
 jmp lbl1

 lblis2:
 pusha
 pushf
 mov eax , 21112
 mov ebx , 5483
 mov ecx , 0
 mov edx , offset cfcssras5
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa
 print chr$("The number you entered is 2",13,10)
 mov var2,0
 mov var2, sval(input("do you want to exit 1 for yes and 2 for no "))
 cmp var2, 1
 je goout

 pusha

59

 pushf
 mov eax , 8858
 mov ebx , 28898
 mov ecx , 0
 mov edx , offset cfcssras6
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa
 print chr$("You still want to wrork",13,10)
 jmp lbl1

 goout:
 pusha
 pushf
 mov eax , 14972
 mov ebx , 26628
 mov ecx , 0
 mov edx , offset cfcssras7
 invoke cfcssrtfunc, eax, ebx, ecx, edx
 popf
 popa

 exit

 cfcssrtfunc proc sig:DWORD,diff:DWORD,rascount:dword,ras:dword
 local cfcsststr:dword
 local tempras:dword
 local tempcheck:dword
 mov cfcsststr,alloc(100)
 mov ecx,cfcsssig
 xor ecx,diff
 .if ecx==sig
 strcat
cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(" s+d fine "),chr$(13),chr$(10)
 mov cfcsssizef,len(cfcsststr)
 invoke WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR
cfcssbw,NULL
 .else
 mov tempras,ecx
 mov edx,0
 mov tempcheck,0
 .while edx < rascount
 mov ecx,tempras
 xor ecx,[cfcssras+edx*4]
 .if ecx==sig
 mov tempcheck,1
 .break;

60

 .endif
 inc edx
 .endw
 .if tempcheck==1
 strcat
cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(" s+d+r fine "),chr$(13),chr$(10)
 mov cfcsssizef,len(cfcsststr)
 invoke
WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR cfcssbw,NULL
 .else
 strcat
cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(" not a legal jump
"),chr$(13),chr$(10)
 mov cfcsssizef,len(cfcsststr)
 invoke
WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR cfcssbw,NULL
 .endif
 .endif
 mov eax,sig
 mov cfcsssig,eax
 mov eax,ras
 mov cfcssras,eax
 free cfcsststr
 ret
 cfcssrtfunc endp
end start

5.3 Log File

After the file is run with the additional code a log file ‘CFCSS7.txt’ is created to

check whether the jumps were taken according to the signatures or not.

CFCSS7.txt

15280 15280 s+d fine
15280 15650 s+d fine
15650 20360 s+d fine
20360 15650 s+d+r fine
15650 18195 s+d fine
18195 21112 s+d fine
21112 14972 s+d fine

61

Related Works

While special hardware for error checking is required in other signature monitoring

techniques, CFCSS does not need the help of extra hardware for error detection; this

is the advantage of CFCSS. The distinctive feature of the CFCSS over previous

signature monitoring techniques is that CFCSS needs no dedicated hardware such as

a watchdog processor for control flow checking because it is a pure software method.

A watchdog task in multitasking environment also needs no extra hardware, but the

advantage of the CFCSS over it is that CFCSS can be used even when the operating

system does not support multitasking.

CFCSS uses an assigned signature technique similar to Structural Integrity Checking

(SIC), but does not need to send check-labels to a watchdog processor since it checks

the signatures using instructions. Block Signature Self-Checking (BSSC) is also an

assigned signature technique that uses a subroutine to replace the watchdog

processor. However, its drawback is that the code depends on the location of the code

because the signature consists of an absolute address. The control flow checking

scheme presented in is a pure software method but it constructs a database

containing information about concurrent control flow checking, thus it may require

significant memory overhead.

62

Conclusion

Merits

The CFCSS technique to check the control flow of the program is cheaper and faster

than the traditional hardware which is being used to solve the problems of the control

flow.

With the log being maintained we can actually check the flow and check where the

jump went wrong and the code does not terminate abnormally.

The code goes to the basic commands currently just checking for the jumps and the

labels.

Another advantage we add with the signatures and not just using labels is that we can

match the constructs faster and more efficiently

Demerits

The main problem with this technique is that the code after the compilation becomes

big and we have to call the checking function each time we find a node.

The constructs currently dealt with the system are simple and we can further enhance

the system using the programming language constructs.

63

References

[1] Lu, D. J., “Watchdog Processor and Structural Integrity Checking”, IEEE

Transactions on Computers, vol. C-31, No. 7, pp. 681-685, July 1982.

[2] Yau, S. S. and Fu-Chung Chen, “An Approach to Concurrent Control Flow

Checking,” IEEE Trans. on Software Engineering, Vol. SE-6, No. 2, March 1980

[3] Ersoz, A., D. M. Andrews, and E. J. McCluskey, “The Watchdog Task:

Concurrent Error Detection Using Assertions,” Stanford University, Center for

Reliable Computing, TR 85-8.

[4] Eifert, J. B. and J. P. Shen, “Processor Monitoring Using Asynchronous

Signatured Instruction Streams,” Digest of Papers, 14th Annual IntÕl Conf. on

Fault-Tolerant Computing, pp. 394-399, June 1984.

[5] Wilken, K., and J.P. Shen, “Concurrent Error Detection Using Signature

Monitoring and Encryption: Low-Cost Concurrent-Detection of Processor Control

Errors,” Dependable Computing for Critical Applications, Springer-Verlag, A.

Avizienis, J.C. Laprie (eds), Vol. 4, pp. 365-384, 1989.

[6] Wilken, K. and J. P. Shen, “Continuous Signature Monitoring: Low-Cost

Concurrent- Detection of Processor Control Errors,” IEEE Trans. on Computer

Aided Design, Vol. 9, No. 6, pp. 629-641, June 1990.

[7] Saxena, N. R., and E. J. McCluskey, “Control-Flow Checking Using Watchdog

Assists and Extended-Precision Checksums,Ó IEEE Trans. on Computers, Vol.

39, No. 4, pp. 554-559, April 1990.

[8] J. Ohlsson and M Rimen, “Implicit Signature Checking,” Digest of Papers,

Twenty-Fifth International symposium on Fault-Tolerant Computing, pp. 218-227,

June 1995. 30

64

[9] Shirvani, P.P. and E.J.McCluskey, “Fault-Tolerant Systems in a Space

Environment: The CRC ARGOS Project,Ó CRC-TR 98-2, Stanford University,

Dec. 1998

[10] Lu, D. J., “Watchdog Processors and VLSI,Ó Proceedings of the National

Electronics conference, Vol. 34, pp. 240-245, Chicago, Illinois, October 27-28,

June 1980.

[11] Mahmood, Aamer and E. J. McCluskey, “Watchdog Processor: Error

Coverage and Overhead,” Digest, The Fifteenth Annual IntÕl Symposium on

Fault-Tolerant Computing (FTCS-15), pp. 214-219, Ann Arbor, Michigan, June

19-21, 1985.

[12] Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Second edition, 1996.

[13] C. H. Tung and C. W. McCarron, ÒConcurrent Control Flow Checking in

Sequential and Parallel Program,Ó Twenty-Fourth Asilomar Conference on

Signals, Systems and Computers, Maple Press, Vol. 2, pp. 851-855, Nov. 1990.

[14] Furtado, P., H. Madeira, ÒFault Injection Evaluation of Assigned Signatures

in RISC Processors,Ó Proc., Second European Dependable Computing

Conference, Taormina, Italy, pp. 55-72, October 1996.

65

Appendix A

The ‘C’ Code

CFCSS.cCFCSS.cCFCSS.cCFCSS.c

#include "stdio.h"

#include "conio.h"
#include "stdlib.h"

#include "string.h"
#include "ctype.h"

#define DELIMITER '|'
FILE *fp,*cmd,*ft,*fln;

void showfile(); // to print whole of the file
char *token(FILE *,char *); // to get next token in a file and character which breaks it

void shownode();
int checklabel(char *);

int checkjump(char *);

void main()
{

 int i;
 fp=fopen("cfcss1.txt","r");

 if(fp==NULL)

 {
 printf("file cant be opened:sort");

 getch();
 exit(0);

 }
 cmd=fopen("cfcss2.txt","r");
 if(cmd==NULL)

 {
 printf("file cant be opened:command");

 getch();
 exit(0);

 }
 ft=fopen("cfcss3.txt","w");

 if(ft==NULL)
 {

 printf("file cant be opened:Sample");
 getch();
 exit(0);

 }
 fputs(" \n",ft);

 clrscr();

 shownode();
 fclose(fp);

 fclose(cmd);

66

 fclose(ft);

}

void showfile()
{

 char str[30],ch;
 while(!feof(fp))

 {
 strcpy(str,token(fp,&ch));

 printf("%s",str);
 if (ch!=EOF)
 printf("%c",ch);

 //getch();
 }

}
char *token(FILE *src,char *retch)

{
 char temp[30],temp1[30],ch;

 int i=0,j=0;
 while (1)
 {

 ch=fgetc(src);
 if (ch=='\n'||ch=='\t'||ch==' '||ch==':'||ch==';'||ch=='+'||ch=='-

'||ch=='['||ch==']'||ch==','||ch=='.'||ch==EOF)
 {

 *retch=ch;
 temp[i]='\0';

 return (temp);
 }

 else
 {
 temp[i]=ch;

 }
 i++;

 }
}

void shownode()
{

 //skipping all the code till .code prefix
 char temp[30],temp1[30],ch,node_no[5],ch1;

 int lastno,pline=0,lineno=1,start=0,chk1=0, chk2=0,bline=0,chk3=0,nodestart=0; //pline points to the
lastnon-empty line.
 int nodeno=0;

 rewind(fp);
 while(!feof(fp)) //searching till .code comes

 {
 strcpy(temp,token(fp,&ch));

 if (ch=='\n')
 {

 lineno++;
 }
 else if (ch=='.')

 {
 strcpy(temp,token(fp,&ch));

 if(!strcmp(temp,"code"))
 {

 if (ch=='\n')
 lineno++;

67

 break;
 }

 pline=lineno;
 if (ch=='\n')

 lineno++;

 }
 if (ch==';')

 {
 while(ch!='\n')

 strcpy(temp,token(fp,&ch));
 lineno++;
 }

 } //// end of .code search
 // now finding nodes

 while (!feof(fp))

 {
 strcpy(temp,token(fp,&ch));

 if (temp[0]!='\0'&&chk1==1&&chk2==1)
 {
 chk1=0;

 chk2=0;
 nodeno++;

 fputs(temp,ft);
 fputc(DELIMITER,ft);

 itoa(nodeno,node_no,10);
 fputs(node_no,ft);

 fputc(DELIMITER,ft);
 nodestart=lineno;

 itoa(lineno,node_no,10);
 fputs(node_no,ft);
 fputc(DELIMITER,ft);

 pline=lineno;
 }

 if (ch==';')
 {

 while(ch!='\n')
 strcpy(temp,token(fp,&ch));

 if (chk1==1)
 chk2=1;

 }

 if(ch=='\n')

 {
 if (chk3==1)

 bline++;
 lineno++;

 chk3=1;

 if (chk1==1)
 chk2=1;
 }

 if(ch==':')
 {

 if (checklabel(temp))
 {

 if(start==1)
 {

 if((pline-1)<nodestart)

68

 continue;
 itoa(pline-1,node_no,10);

 fputs(node_no,ft);
 fputs("\n",ft);

 start=0;
 }

 start=1;
 //code to insert into the sample file.

 nodeno++;
 fputs(temp,ft);

 fputc(DELIMITER,ft);
 itoa(nodeno,node_no,10);
 fputs(node_no,ft);

 fputc(DELIMITER,ft);
 itoa(lineno,node_no,10);

 nodestart=lineno;
 fputs(node_no,ft);

 fputc(DELIMITER,ft);
 //code ends

 }
 pline=lineno;
 }

 if (temp[0]!='\0'&& checkjump(temp))
 {

 itoa(lineno-bline,node_no,10);
 fputs(node_no,ft);

 fputc('\n',ft);
 chk1=1;

 }
 if(temp[0]!='\0')

 {
 chk3=0;
 bline=0;

 pline=lineno;
 }

 }

 itoa(lineno-1,node_no,10);
 fputs(node_no,ft);

 rewind(ft);
 itoa(nodeno,node_no,10);

 fputs(node_no,ft);
 fclose(ft);

}

checklabel(char *str)
{

 if(!strcmp(str,"ss"))
 return(0);

 if(!strcmp(str,"cs"))
 return(0);
 if(!strcmp(str,"ds"))

 return(0);
 if(!strcmp(str,"es"))

 return(0);
 if(!strcmp(str,"fs"))

 return(0);
 if(!strcmp(str,"gs"))

 return(0);

69

 return(1);
}

checkjump(char *str)
{

 char str1[30],ch;
 int chk=0;

 rewind(cmd);
// puts("hi");

 while(!feof(cmd))
 {

 strcpy(str1,token(cmd,&ch));
 if(!strcmpi(str,str1))
 chk=1;

 }
 if(chk==1)

 return 1;
 else

 return 0;
}

70

CFCSSG.cCFCSSG.cCFCSSG.cCFCSSG.c

#include "stdio.h"

#include "conio.h"
#include "math.h"

#include "stdlib.h"
#include "alloc.h"
#include "string.h"

#include "ctype.h"
#include "time.h"

#define DELIMITER '|'
#define MAX_NODES 200

void getNewSignature(); //to get random signatures

int checkSignature(int signToCheck); //to check whether the random signatures donot match previous signatures

int signatures[MAX_NODES];

int usedSignature=0;

FILE *fp,*cmd,*ft,*op,*ftab;

void showfile(); // to print whole of the file
char * token(FILE *,char *); // to get next token in a file and character which breaks it

int checkjump(char *);
void graph();

void getftom(int);
char* gotoline(int);

struct sampl
{

 char nodename[MAX_NODES];
 int nodeno;

 int sign;
 int strt;

 int last;
 double diff;

 int ras[MAX_NODES];
}link[20];

void main()
{

 int i;
 fp=fopen("cfcss1.txt","r");

 if(fp==NULL)
 {

 printf("file cant be opened:sort");
 getch();

 exit(0);
 }

 ftab=fopen("cfcss4.txt","w+");

 if(ftab==NULL)
 {

 printf("file cant be opened:table");
 getch();

 exit(0);

71

 }

 cmd=fopen("cfcss2.txt","r");
 if(cmd==NULL)

 {
 printf("file cant be opened:command");

 getch();
 exit(0);

 }
 ft=fopen("cfcss3.txt","r");

 if(ft==NULL)
 {
 printf("file cant be opened:Sample");

 getch();
 exit(0);

 }
 op=fopen("cfcss5.txt","w+");

 if(op==NULL)
 {

 printf("file cant be opened:Sample1");
 getch();
 exit(0);

 }

 clrscr();
 graph();

 fclose(op);

 fclose(fp);
 fclose(cmd);

 fclose(ftab);

}

void graph()
{

 char tabl[30][30],tabl1[30][30],jmp1,ch,str1[512];
 int lineno,node,i,j,k,l,snode,lnode;

 strcpy(str1,token(ft,&ch));

 node=atoi(str1);

 while(ch!='\n')
 strcpy(str1,token(ft,&ch));

 getftom(node);
 fclose(ft);

 for(i=0;i<node+1;i++)
 for(j=0;j<node+1;j++)

 {
 if(j==i+1)
 {

 tabl[i][j]='1';
 link[j].diff=link[i].sign^link[j].sign;

 }
 else

 tabl[i][j]='0';
 }

72

 for(i=0;i<node;i++)
 {

 rewind(fp);
 fputs("\n",ftab);

 itoa(link[i].last-1,str1,10);
 fputs(str1,ftab); // to input line no in the file.

 fputc('|',ftab);

 for(k=0;k<link[i].last-1;k++)
 {

 ch='a';
 while(ch!='\n')
 strcpy(str1,token(fp,&ch));

 }

 strcpy(str1,token(fp,&ch));
 while(str1[0]=='\0')

 strcpy(str1,token(fp,&ch));

 fputs(str1,ftab);
 if(!strcmpi(str1,"EXIT"))
 tabl[i][node]='1';

 if(checkjump(str1))

 {

 if(!strcmpi(str1,"JMP"))
 tabl[i][i+1]='0';

 strcpy(str1,token(fp,&ch));

 while(str1[0]=='\0')
 strcpy(str1,token(fp,&ch));

 for(j=0;j<node;j++)

 if(!strcmpi(link[j].nodename,str1))
 {

 tabl[i][j]='1';
 //link[i].ras=link[i].sign^link[j-1].sign;

 }
 }

 }
 for (i=0;i<node;i++)
 for (j=0;j<node;j++)

 tabl1[i][j]=tabl[j][i];

 //getting RAS values
 for (i=0;i<node;i++)

 {
 k=1;

 link[i].ras[0]=0;

 for (j=0;j<node;j++)

 {
 if(tabl1[i][j]=='1')

 {

 link[j].diff=link[i].sign^link[j].sign;
 l=j;

 j++;

73

 break;
 }

 }
 for(j;j<node;j++)

 {
 if (tabl1[i][j]=='1')

 {
 link[i].ras[0]+=1;

 link[i].ras[k++]=link[l].sign^link[j].sign;
 }

 }

 }

 fputc('\n',ftab);
 for(i=0;i<node+1;i++)

 {
 for(j=0;j<node+1;j++)

 {
 fputc(tabl[i][j],ftab);
 if(j!=node)

 fputc(' ',ftab);
 }

 fputc('\n',ftab);
 }

 //To write into the Sample1 file.

 itoa(node,str1,10);
 fputs(str1,op);

 fputc('\n',op);
 for(i=0;i<node;i++)
 {

 fputs(link[i].nodename,op);
 fputc(DELIMITER,op);

 itoa(link[i].nodeno,str1,10);

 fputs(str1,op);
 fputc(DELIMITER,op);

 itoa(link[i].sign,str1,10);

 fputs(str1,op);
 fputc(DELIMITER,op);

 itoa(link[i].strt,str1,10);
 fputs(str1,op);

 fputc(DELIMITER,op);

 itoa(link[i].last,str1,10);
 fputs(str1,op);

 fputc(DELIMITER,op);

 itoa(link[i].diff,str1,10);

 fputs(str1,op);
 fputc(DELIMITER,op);

 itoa(link[i].ras[0],str1,10);

 fputs(str1,op);
 fputc(DELIMITER,op);

74

 for (j=1;j<=link[i].ras[0];j++)
 {

 itoa(link[i].ras[j],str1,10);
 fputs(str1,op);

 if(j!=link[i].ras[0])
 fputs(",",op);

 }
 fputs("\n",op);

 }

 //to write table into the sample1...
 //required code BHUPESH
 for(i=0;i<node+1;i++)

 {
 for(j=0;j<node+1;j++)

 {
 fputc(tabl[i][j],op);

 fputc(' ',op);
 }

 fputc('\n',op);
 }
}

void getftom(int node)

{
 float lineno,i;

 char ch,str[30];
 randomize();

 for(i=0;i<node;i++)
 {

 strcpy(str,token(ft,&ch));
 strcpy(link[i].nodename,str);//TO put label

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].nodeno=lineno;//to put node no

 getNewSignature();
 link[i].sign=signatures[i];

 strcpy(str,token(ft,&ch));

 lineno=atoi(str);
 link[i].strt=lineno;//to put start line no.

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].last=lineno;//to put end line no.
 link[i].diff=link[i].ras[0]=0;

 }
 link[i-1].last=link[i-1].strt;

}

char *token(FILE *src,char *retch)

{
 char temp[30],temp1[30],ch;

 int i=0;
 while (1)

 {
 ch=fgetc(src);

75

 if (ch=='\n'||ch==' '||ch==':'||ch==';'||ch=='+'||ch=='-
'||ch=='['||ch==']'||ch==','||ch=='.'||ch==EOF||ch=='|'||ch=='\t')

 {
 *retch=ch;

 temp[i]='\0';
 return (temp);

 }
 else

 temp[i]=ch;
 i++;

 }
}

checklabel(char str[])
{

 if((!strcmpi(str,"ss")) ||(!strcmpi(str,"SS")))
 return(0);

 if((!strcmpi(str,"cs")) ||(!strcmpi(str,"CS")))
 return(0);

 if((!strcmpi(str,"ds")) ||(!strcmpi(str,"DS")))
 return(0);
 if((!strcmpi(str,"es")) ||(!strcmpi(str,"ES")))

 return(0);
 if((!strcmpi(str,"fs")) ||(!strcmpi(str,"FS")))

 return(0);
 if((!strcmpi(str,"gs")) ||(!strcmpi(str,"GS")))

 return(0);

 return(1);
}

checkjump(char str[])
{
 char str1[30],ch;

 int chk=0;
 rewind(cmd);

 while(!feof(cmd))
 {

 strcpy(str1,token(cmd,&ch));
 if(!strcmpi(str,str1))

 chk=1;
 }

 if(chk==1)
 return 1;
 else

 return 0;
}

void getNewSignature()

{
 int newSign=rand();

 while(1)
 {
 if(checkSignature(newSign))

 {
 break;

 }
 newSign=rand();

 }
 signatures[usedSignature++]=newSign;

}

76

int checkSignature(int signToCheck)
{

 int i=0;
 for(i=0;i<usedSignature;i++)

 {
 if(signatures[i]==signToCheck)

 {
 return 0;

 }
 }
 return 1;

}

77

CFCSSNF.cCFCSSNF.cCFCSSNF.cCFCSSNF.c

#include "stdio.h"

#include "conio.h"
#include "stdlib.h"
#include "string.h"

#include "ctype.h"
#define DELIMITER '|'

#define MAX_NODES 200
FILE *fp,*ft,*nf,*cmd;

void showfile(); // to print whole of the file

char * token(FILE *,char *); // to get next token in a file and character which breaks it
int checklabel(char *);

int checkjump(char *);
void getftom(int a);
void graph();

void newfile();
void printNode(int);

struct sampl

{
 char nodename[20];

 int nodeno;
 int sign;
 int strt;

 int last;
 int diff;

 int ras[MAX_NODES];
}link[20];

void main()
{

 clrscr();
 fp=fopen("cfcss1.txt","r");

 if(fp==NULL)

 {
 printf("file cant be opened:sort");

 getch();
 exit(0);

 }
 ft=fopen("cfcss5.txt","r");
 if(ft==NULL)

 {
 printf("file cant be opened:Sample1");

 getch();
 exit(0);

 }

 nf=fopen("cfcss6.txt","w");
 if(nf==NULL)

 {
 printf("file cant be opened:table");

78

 getch();
 exit(0);

 }
 cmd=fopen("cfcss2.txt","r");

 if(cmd==NULL)
 {

 printf("file cant be opened:command ");
 getch();

 exit(0);
 }

 newfile();

 fclose(fp);
// fclose(ft);

 fclose(nf);
 fclose(cmd);

}

char *token(FILE *src,char *retch)
{
 char temp[30],temp1[30],ch;

 int i=0;
 while (1)

 {
 ch=fgetc(src);

 if (ch=='\n'||ch==' '||ch==':'||ch==';'||ch=='+'||ch=='-
'||ch=='['||ch==']'||ch==','||ch=='.'||ch==EOF||ch==DELIMITER)

 {
 *retch=ch;

 temp[i]='\0';
 return (temp);
 }

 else
 temp[i]=ch;

 i++;

 }
}

checklabel(char str[])
{

 if((!strcmpi(str,"ss")) ||(!strcmpi(str,"SS")))
 return(0);
 if((!strcmpi(str,"cs")) ||(!strcmpi(str,"CS")))

 return(0);
 if((!strcmpi(str,"ds")) ||(!strcmpi(str,"DS")))

 return(0);
 if((!strcmpi(str,"es")) ||(!strcmpi(str,"ES")))

 return(0);
 if((!strcmpi(str,"fs")) ||(!strcmpi(str,"FS")))

 return(0);
 if((!strcmpi(str,"gs")) ||(!strcmpi(str,"GS")))
 return(0);

 return(1);

}
checkjump(char str[])

{
 char str1[30],ch;

 int chk=0;

79

 rewind(cmd);
 while(!feof(cmd))

 {
 strcpy(str1,token(cmd,&ch));

 if(!strcmpi(str,str1))
 chk=1;

 }
 if(chk==1)

 return 1;
 else

 return 0;
}

void getftom(int node)
{

 int lineno,i,j;
 char ch,str[30];

 for(i=0;i<node;i++)
 {

 strcpy(str,token(ft,&ch));
 strcpy(link[i].nodename,str);//TO put label

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].nodeno=lineno;//to put node no

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].sign=lineno;//to put signatue no

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);
 link[i].strt=lineno;//to put start line no.

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].last=lineno;//to put end line no.

 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].diff=lineno;//to put end line no.

 strcpy(str,token(ft,&ch));

 lineno=atoi(str);
 link[i].ras[0]=lineno; //to put end line no.

 if(link[i].ras[0]!=0)

 {
 for(j=0;j<link[i].ras[0];j++)

 {
 strcpy(str,token(ft,&ch));
 lineno=atoi(str);

 link[i].ras[j+1]=lineno; //to put end line no
 }

 }
 else

 {
 strcpy(str,token(ft,&ch));

 }

80

 }
}

void newfile()
{

 char str[30],str1[30],ch,str2[30],str3[20],temp[30],temp1[10];
 int i,j,chk=0,node,sign,strt,last,lineno=1,diff,ras,nodeno;

 //to extract sample.txt in a structure.

 strcpy(str,token(ft,&ch));
 node=atoi(str);
 while(ch!='\n')

 strcpy(str,token(ft,&ch));

 getftom(node);
 printNode(node);

 fclose(ft);

 while(!feof(fp)) //searching till .data comes
 {

 strcpy(temp,token(fp,&ch));
 if (ch=='\n')

 {
 lineno++;

 }
 else if (ch=='.')

 {
 fputs(temp,nf);

 strcpy(temp,token(fp,&ch));
 if(!strcmpi(temp,"data"))
 {

 fputs("\n\t\tcfcssrtfunc PROTO :dword,:dword,:dword,:dword\n",nf);
 fputs("\n.data\n",nf);

 fputs("\n\t\tcfcsssig dd ",nf);
 itoa(link[1].sign,temp1,10);

 fputs(temp1,nf);
 fputs("\n\t\tcfcssdiff dd 0",nf);

 fputs("\n\t\tcfcssras dd 0",nf);
 fputs("\n\t\tcfcsshndl dd ?",nf);

 fputs("\n\t\tcfcssrtf db \"cfcss7.log\"",nf);
 fputs("\n\t\tcfcsssizef dd ?",nf);
 fputs("\n\t\tcfcssbw dd ?\n",nf);

 for (i=1;i<=node;i++)

 {
 fputs("\t\tcfcssras",nf);

 itoa(i,temp1,10);
 fputs(temp1,nf);

 fputs("\tdd\t",nf);
 if(link[i-1].ras[0]==0)
 {

 fputs("0\n",nf);
 }

 else
 {

 for(j=1;j<=link[i-1].ras[0];j++)
 {

 itoa(link[i-1].ras[j],temp1,10);

81

 fputs(temp1,nf);
 if(j!=link[i-1].ras[0])

 {
 fputs(",",nf);

 }
 else

 {
 fputs("\n",nf);

 }
 }

 }
 }

 if (ch=='\n')
 lineno++;

 break;
 }

 else
 {

 fputc('.',nf);
 }
 if (ch=='\n')

 lineno++;

 }

 fputs(temp,nf);
 fputc(ch,nf);

 if (ch==';')
 {

 while(ch!='\n')
 {
 strcpy(temp,token(fp,&ch));

 fputs(temp,nf);
 fputc(ch,nf);

 }
 lineno++;

 }

 } //// end of .data search
 // now finding nodes

 //upto .CODE part
 strt=link[0].strt;

 while(lineno<strt)
 {

 strcpy(temp,token(fp,&ch));
 if(ch=='\n')

 lineno++;
 //if(temp[0]!='\0')

 fputs(temp,nf);
 fputc(ch,nf);
 }

 //printf("lno=%d",lineno);
 for(i=0;i<node;i++)

 {
 strcpy(str,link[i].nodename);

 sign=link[i].sign;

82

 strt=link[i].strt;
 last=link[i].last;

 diff=link[i].diff;
 ras=link[i].ras[0];

 nodeno=link[i].nodeno;

 chk=0;
 if(!feof(fp))

 { //go to the strt line no.
 ch='a';

 while(lineno<strt)
 {
 strcpy(str1,token(fp,&ch));

 fputs(str1,nf);
 fputc(ch,nf);

 if(ch=='\n')
 lineno++;

 }
 strcpy(str1,token(fp,&ch));

 while(str1[0]=='\0')
 {

 fputs(str1,nf);
 fputc(ch,nf);

 strcpy(str1,token(fp,&ch));
 }

 if(ch!=':')
 {

 fputs("\n\t\tpusha",nf);
 fputs("\n\t\tpushf",nf);

 fputs("\n\t\tmov eax , ",nf);
 itoa(sign,temp,10);
 fputs(temp,nf);

 fputs("\n\t\tmov ebx , ",nf);
 itoa(diff,temp,10);

 fputs(temp,nf);
 fputs("\n\t\tmov ecx , ",nf);

 itoa(ras,temp,10);
 fputs(temp,nf);

 fputs("\n\t\tmov edx , offset cfcssras",nf);
 itoa(nodeno,temp,10);

 fputs(temp,nf);
 fputs("\n\t\tinvoke cfcssrtfunc, eax, ebx, ecx, edx",nf);
 fputs("\n\t\tpopf",nf);

 fputs("\n\t\tpopa\n\t\t",nf);
 if(atoi(str1)==ras)

 fputs(link[i].nodename,nf);
 else

 fputs(str1,nf);
 fputc(ch,nf);

 }
 else
 {

 fputs(str1,nf);

 if(!strcmpi(str1,"START"))
 {

 if(str1==NULL)
 { fputs(link[i].nodename,nf);

 fputc(':',nf);

83

 if(!strcmpi(link[i].nodename,"START"))
 {

 fputs("\n\tinvoke CreateFile,addr
cfcssrtf,GENERIC_WRITE,NULL,NULL, CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL",nf);

 fputs("\n\tmov cfcsshndl, eax\n",nf);
 }

 }
 else

 fputc(ch,nf);
 if(!strcmpi(str1,"START"))

 {
 fputs("\n\tinvoke CreateFile,addr
cfcssrtf,GENERIC_WRITE,NULL,NULL, CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL",nf);

 fputs("\n\tmov cfcsshndl, eax\n",nf);
 }

 }
 else

 fputc(ch,nf);
 fputs("\n\t\tpusha",nf);

 fputs("\n\t\tpushf",nf);
 fputs("\n\t\tmov eax , ",nf);
 itoa(sign,temp,10);

 fputs(temp,nf);
 fputs("\n\t\tmov ebx , ",nf);

 itoa(diff,temp,10);
 fputs(temp,nf);

 fputs("\n\t\tmov ecx , ",nf);
 itoa(ras,temp,10);

 fputs(temp,nf);
 fputs("\n\t\tmov edx , offset cfcssras",nf);

 itoa(nodeno,temp,10);
 fputs(temp,nf);
 fputs("\n\t\tinvoke cfcssrtfunc, eax, ebx, ecx, edx",nf);

 fputs("\n\t\tpopf",nf);
 fputs("\n\t\tpopa\n\t\t",nf);

 }

 }//end if.
 }//end of for(node)

 while(!feof(fp))
 {

 strcpy(str,token(fp,&ch));
 strcpy(str3,str);
 if (!strcmpi(str,"END"))

 {

 fputs("\n\tcfcssrtfunc proc sig:DWORD,diff:DWORD,rascount:dword,ras:dword
",nf);

 fputs("\n\t local cfcsststr:dword ",nf);
 fputs("\n\t local tempras:dword ",nf);

 fputs("\n\t local tempcheck:dword ",nf);
 fputs("\n\t mov cfcsststr,alloc(100) ",nf);
 fputs("\n\t mov ecx,cfcsssig ",nf);

 fputs("\n\t xor ecx,diff ",nf);
 fputs("\n\t .if ecx==sig ",nf);

 fputs("\n\t strcat
cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(\" s+d fine \"),chr$(13),chr$(10) ",nf);

 fputs("\n\t mov cfcsssizef,len(cfcsststr) ",nf);
 fputs("\n\t invoke

WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR cfcssbw,NULL ",nf);

84

 fputs("\n\t .else ",nf);
 fputs("\n\t mov tempras,ecx ",nf);

 fputs("\n\t mov edx,0 ",nf);
 fputs("\n\t mov tempcheck,0 ",nf);

 fputs("\n\t .while edx < rascount ",nf);
 fputs("\n\t mov ecx,tempras ",nf);

 fputs("\n\t xor ecx,[cfcssras+edx*4]
",nf);

 fputs("\n\t .if ecx==sig ",nf);
 fputs("\n\t mov tempcheck,1

",nf);
 fputs("\n\t .break; ",nf);
 fputs("\n\t .endif ",nf);

 fputs("\n\t inc edx ",nf);
 fputs("\n\t .endw ",nf);

 fputs("\n\t .if tempcheck==1 ",nf);
 fputs("\n\t strcat

cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(\" s+d+r fine \"),chr$(13),chr$(10) ",nf);
 fputs("\n\t mov

cfcsssizef,len(cfcsststr) ",nf);
 fputs("\n\t invoke
WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR cfcssbw,NULL ",nf);

 fputs("\n\t .else ",nf);
 fputs("\n\t strcat

cfcsststr,ustr$(cfcsssig),chr$(9),ustr$(sig),chr$(9),chr$(\" not a legal jump \"),chr$(13),chr$(10) ",nf);
 fputs("\n\t mov

cfcsssizef,len(cfcsststr) ",nf);
 fputs("\n\t invoke

WriteFile,cfcsshndl,cfcsststr,cfcsssizef,ADDR cfcssbw,NULL ",nf);
 fputs("\n\t .endif ",nf);

 fputs("\n\t .endif ",nf);
 fputs("\n\t mov eax,sig ",nf);
 fputs("\n\t mov cfcsssig,eax ",nf);

 fputs("\n\t mov eax,ras ",nf);
 fputs("\n\t mov cfcssras,eax ",nf);

 fputs("\n\t free cfcsststr ",nf);
 fputs("\n\t ret ",nf);

 fputs("\n\t cfcssrtfunc endp \n",nf);
 }

 fputs(str3,nf);
 if(ch!=EOF)

 fputc(ch,nf);

 }

}//end new file().

void printNode(int node)
{

 int j,i;
 //strcpy(str,token(ft,&ch));

 //node=atoi(str);

 for(i=0;i<node;i++)

 {
 printf("%s\t",link[i].nodename);

 printf("%d\t",link[i].nodeno);
 printf("%d\t",link[i].sign);

 printf("%d\t",link[i].strt);
 printf("%d\t",link[i].last);

 printf("%d\t",link[i].diff);

85

 printf("%d\t",link[i].ras[0]);
 for(j=0;j<link[i].ras[0];j++)

 {
 printf("%d\t",link[i].ras[j+1]);

 }

 printf("\n");
 }

 getch();
}

86

Appendix B

Instruction Set

Instruction Description

JA rel8 Jump short if above (CF=0 and ZF=0)

JAE rel8 Jump short if above or equal (CF=0)

JB rel8 Jump short if below (CF=1)

JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

JC rel8 Jump short if carry (CF=1)

JCXZ rel8 Jump short if CX register is 0

JECXZ rel8 Jump short if ECX register is 0

JE rel8 Jump short if equal (ZF=1)

JG rel8 Jump short if greater (ZF=0 and SF=OF)

JGE rel8 Jump short if greater or equal (SF=OF)

JL rel8 Jump short if less (SF<>OF)

JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

JNA rel8 Jump short if not above (CF=1 or ZF=1)

JNAE rel8 Jump short if not above or equal (CF=1)

JNB rel8 Jump short if not below (CF=0)

JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

JNC rel8 Jump short if not carry (CF=0)

JNE rel8 Jump short if not equal (ZF=0)

JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

JNGE rel8 Jump short if not greater or equal (SF<>OF)

JNL rel8 Jump short if not less (SF=OF)

JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

JNO rel8 Jump short if not overflow (OF=0)

JNP rel8 Jump short if not parity (PF=0)

JNS rel8 Jump short if not sign (SF=0)

JNZ rel8 Jump short if not zero (ZF=0)

87

JO rel8 Jump short if overflow (OF=1)

JP rel8 Jump short if parity (PF=1)

JPE rel8 Jump short if parity even (PF=1)

JPO rel8 Jump short if parity odd (PF=0)

JS rel8 Jump short if sign (SF=1)

JZ rel8 Jump short if zero (ZF = 1)

JA rel16/32 Jump near if above (CF=0 and ZF=0)

JAE rel16/32 Jump near if above or equal (CF=0)

JB rel16/32 Jump near if below (CF=1)

JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

JC rel16/32 Jump near if carry (CF=1)

JE rel16/32 Jump near if equal (ZF=1)

JZ rel16/32 Jump near if 0 (ZF=1)

JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

JGE rel16/32 Jump near if greater or equal (SF=OF)

JL rel16/32 Jump near if less (SF<>OF)

JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

JNAE rel16/32 Jump near if not above or equal (CF=1)

JNB rel16/32 Jump near if not below (CF=0)

JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

JNC rel16/32 Jump near if not carry (CF=0)

JNE rel16/32 Jump near if not equal (ZF=0)

JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

JNL rel16/32 Jump near if not less (SF=OF)

JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

JNO rel16/32 Jump near if not overflow (OF=0)

JNP rel16/32 Jump near if not parity (PF=0)

JNS rel16/32 Jump near if not sign (SF=0)

JNZ rel16/32 Jump near if not zero (ZF=0)

JO rel16/32 Jump near if overflow (OF=1)

88

JP rel16/32 Jump near if parity (PF=1)

JPE rel16/32 Jump near if parity even (PF=1)

JPO rel16/32 Jump near if parity odd (PF=0)

JS rel16/32 Jump near if sign (SF=1)

JZ rel16/32 Jump near if 0 (ZF=1)

LOOP Decrement count; jump short if count ≠ 0

LOOPZ Decrement count; jump short if count ≠ 0 and ZF=1

LOOPE Decrement count; jump short if count ≠ 0 and ZF=1

LOOPNZ Decrement count; jump short if count ≠ 0 and ZF=0

LOOPNE Decrement count; jump short if count ≠ 0 and ZF=0

JMP rel16/32 Unconditional Jump, to a label

