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ABSTRACT 
 

On the Web, the most commonly used tool for learning is the search engine [7]. The user 

first submits a query representing the ‘subject of interest’ to a search engine system, 

which finds and returns the related Web pages. He/she then browses through the returned 

results to find those suitable Web pages. Search engines are critically important to help 

users find relevant information on the World Wide Web. In order to best serve the needs 

of users, a search engine must find and filter the most relevant information matching a 

user’s query, and then present that information in a manner that makes the information 

most readily palatable to the user. However, the current search techniques are not 

designed for in-depth learning on the Web. 

 

Contextual search refers to proactively capturing the information need of a user by 

automatically augmenting the user query with information extracted from the search 

context; for example, by using terms from the web page the user is currently browsing or 

a file the user is currently editing. We implement a novel context detection algorithm 

given a user’s query. The aim is to use “Context as a query” and treat the context as a 

background for topic specific search [1]. Thus we try to find a possible solution set for 

the following questions: 

 

1) How to detect the context contained in the user query? 

 

2) How to possibly refine the query at the contextual level? 
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Chapter 1 

  Introduction  

 

In this chapter we introduce the Web Information Retrieval paradigm.  We expound the 

impact of Web and the opportunities, challenges that make it an active area of research. 

The motivation behind the work done & the scope is described.  

1.1 Motivation 

With the explosive growth of the World Wide Web, we are currently facing new 

circumstances in the Web data oceans. Current Web searching engines, mainly based on 

traditional IR technologies, are insufficient to truly meet users’ information needs. We 

foresee that the biggest challenge in the next several decades is how to effectively and 

efficiently dig out the knowledge from huge amounts of the Web data. Web Information 

Retrieval is defined as the application of theories and methodologies from IR to the 

World Wide Web. It is concerned with addressing the technological challenges facing 

Information Retrieval (IR). The characteristics of Web make the task of retrieving 

information from it quite different from the Pre- Web (traditional) information retrieval. 

As a result, there has been a rapid growth in the area of Web information retrieval 

research, which focuses on automatically discovering information and knowledge 

through the analysis of Web contents, Web structure and Web usages. Since the Web is 

huge, heterogeneous and dynamic, Web information retrieval calls for novel technologies 

and tools, which may take advantage of the state-of-the-art technologies from various 

areas, including machine learning, data mining, information retrieval, database and nature 

language processing.  

A recent Forrester Research report showed that 80% of Web surfers discover the 

new sites that they visit through search engines. (Such as Ask, Google, MSN or Yahoo). 

Therefore, search engines have been established as revolutionary working metaphors.  
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Web search engines generally treat search requests in isolation. The results for a 

given query are identical, independent of the user, or the context in which the user made 

the request. Next-generation search engines make increasing use of context information, 

either by using explicit or implicit context information from users, or by implementing 

additional functionality within restricted contexts. Greater use of context in web search 

helps in increasing the competition and diversity on the web. Context-based retrieval 

approaches aim to provide a more complete retrieval process by incorporating contextual 

information into the retrieval process. The use of context in information retrieval is not a 

new idea. Unfortunately none of them proves to become a Silver Bullet, at least so far. 

Moreover, these approaches are often combined to achieve better performance and 

recall/precision of information retrieval. 

 

1.2 Problem statement  
Our aim is to proactively capture the information need of a user by automatically 

augmenting the user query using contextual information. It is further defined with the 

help of the following research goals that are identified for this purpose: 

1) How to detect the context contained in the user query? 

2) How to possibly refine the query at the contextual level? 

1.3 Scope 
The scope of this research is circumscribed to context detection in web queries 

system based on text by the snippet. 

1.4 Organization of the Remainder of Thesis  

This thesis is organized into 5 chapters followed by references and appendices. 

Chapter 2 gives a review of the relevant & related Web Information Retrieval 

literature most related to the aim of this research. It gives an overview of the Web 

Information Retrieval (WebIR) paradigm, its components and reviews a variety of 

techniques, approaches & issues related. It gives a brief introduction to the use of 
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Information Theory in WebIR. The advent of the field of Contextual Retrieval is sketched 

out. 

Chapter 3 presents the framework used and the details of algorithm used. The 

basics of experimental setup and the graphical user interface representation are discussed 

in Chapter 4. Chapter 5 forms the conclusion of this thesis and outlines the direction of 

future research. 

A section listing the references used in this thesis follows chapter 5. Appendix A 

depicting the screen-shots of the system follows. 
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Chapter 2  

Literature Survey 

This chapter details out the related and relevant literature. We explain the Anatomy of 

WebIR, its tasks, tools, components & performance measures. The Basic of Information 

Theory pertinent to WebIR is also reviewed. Finally the era of Contextual Retrieval is 

reviewed.    

2.1 Anatomy of Web Information Retrieval (WebIR) 

Retrieving information from the Web is becoming a common practice for internet 

users. However, the size and heterogeneity of the Web challenge the effectiveness of 

classical information retrieval techniques. For the information retrieval (IR) 

community, the Web now presents a new paradigm, while also generating new 

challenges and attracting growing interest from around the world. Web IR can be 

defined as the application of theories and methodologies from IR to the World Wide 

Web. It is concerned with addressing the technological challenges facing Information 

Retrieval (IR) in the setting of WWW [3]. 

(a) Traditional web IR  

In traditional IR documents have been represented in the so called vector space model. 

Documents are tokenized in words, some terms are possibly filtered against a static 

defined stop–list, and sometimes they are stemmed to extract a canonical form, and 

represented as a vector in Euclidean space. Each canonical token represents an axis in 

this space, and each document is a vector in the space. If the term t appears n(t, d) times 

in document d, then the t–th coordinate of d is just n(t, d). 

Traditional techniques, involve such as Query Expansion [29] and Statistical 

Modeling [43], as well as examining the structure and meta-data of the documents, or 

analyzing the hyperlinks between the documents. 

 

 



 

Context Detection In Web Queries.   Page 5 
 

(b) Modern Web IR 
Modern Web IR is a discipline which has exploited some of the classical results of 

Information Retrieval developing innovative models of information access. A recent 

Forrester Research report showed that 80% of Web surfers discover the new sites that 

they visit through search engines. (Such as Ask, Google, MSN or Yahoo). Therefore, 

search engines have established as a revolutionary working metaphor. If someone needs 

information about a book, an address, a research paper, a flight ticket, or almost any other 

topic, they just make a query on a search engine the interested reader can refer to [10, 11, 

12]. In this paragraph we briefly review the architecture of a typical search engine. 

The goal of a modern WebIR is to retrieve documents considered “relevant” to a 

user query from a given collection. Nowadays, a user query is modeled as a set of 

keywords extracted from a large dictionary of words; a document is typically a Web 

page, pdf, postscript, doc file, or whatever file that can be parsed into a set of tokens. 

Global search engines serve as de facto Internet portals, local search engines are 

embedded in numerous individual Web sites, and browsing is the most common activity 

on the Web, due to the hyper-linked structure that provides access to a large quantity of 

information in a restricted space.  

Thus, WebIR is different from classical IR for two kinds of reasons: concepts and 

technologies [8]. The following characteristics of the Web shape up the nature of Web 

Information Retrieval and are what make it considerably different to traditional retrieval 

challenges [1]: 

 The “Abundance” of Web  With the phenomenal growth of the Web, there is an 

ever increasing volume of data and information published in numerous Web pages. 

According to worldwidewebsize.com, the indexed Web contains at least 21.82 

billion pages (Sunday, 28 June, 2009) 

 Heterogeneity 

• Information /data of almost all types exist on the Web, e.g., structured tables, texts, 

multimedia data, etc. 

• Much of the Web information is semi-structured due to the nested structure of 

HTML code. 

• Much of the Web information is linked 
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• Much of the Web information is redundant 

• The Web is noisy: A Web page typically contains a mixture of many kinds of 

information, e.g., main contents, advertisement, navigational panels, copyright 

notices. 

 Dynamics The freedom for anyone to publish information on the web at anytime 

and anywhere implies that information on the Web is constantly changing. It is a 

dynamic information environment whereas traditional systems are typically 

based on static document collection. 

 Duplication Several studies indicate that nearly 30% of the web's content is 

duplicated, mainly due to mirroring. 

 Users Search Behavior The users have different expectations and goals such as 

Informative, Transactional and Navigational. Often they compose short, ill-

defined queries and impatiently look for the results mainly in the top 10 results. 

 

2.1.1 Tasks 
Web Information Retrieval research is typically organized in tasks with specific goals to 

be achieved. Existing tasks have changed frequently over the years due to the emergence 

of new fields. Below is a summary of the main tasks and also of the new or emerging 

ones [1]. 

 Ad-Hoc Retrieval Rank documents using non-constrained queries in a fixed 

collection. This is the standard retrieval task in Web IR. 

 Filtering Select documents using a fixed query in a dynamic collection. For 

example, “Retrieve all documents related to ‘Research in India’ from a 

continuous feed”. 

 Topic Distillation Find short lists of good entry points to a broad topic. For 

example, “Find relevant pages on the topic of Indian History”. 

 Homepage Finding Find the URL of a named entity. For example, “Find the 

                URL of the Indian High Commission homepage” 

 Adversarial Web IR Develop methods to identify and address the problem of              

web spam, namely link spamming that affect the ranking of results.  

 Summarization Produce a relevant summary of a single or multiple documents. 



 

Context Detection In Web Queries.   Page 7 
 

2.1.2 Tools  
Automated methods for retrieving information on the Web can be broadly classed as 

search tools or search services. 

 
Figure1. Classification of Web IR tools [1] 

 Search Tools 

A Web search engine is a tool designed to search for information on the World Wide 

Web. The search results are usually presented in a list and are commonly called hits. 

The information may consist of web pages, images, information and other types of 

files. Some search engines also mine data available in databases or open directories. 

Unlike Web directories, which are maintained by human editors, search engines 

operate algorithmically or are a mixture of algorithmic and human input. 

The Search tools employ robots for indexing Web documents. They feature a user 

interface for specifying queries and browsing the results. At the heart of a search tool 

is the search engine, which is responsible for searching the index to retrieve 

documents relevant to a user query. Search tools can be distinguished into two 

categories on the transparency of the index to the user. The two class categories are 

depicted along the following dimensions: 
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  Methods for Web navigation, 

  Indexing techniques, 

  Query language or specification scheme 

 for expressing user queries, 

  Strategies for query-document matching, and 

  Methods for presenting the query output. 

  Class1 search tools: General Purpose Search Engine 

These tools completely hide the organization and content of the index 

from the user. Example: AltaVista, Excite, Google, Info seek, Lycos 

 Class 2 search tools: Subject Directories 

These feature a hierarchically organized subject catalog or directory of the 

Web, which is visible to users as they browse and search. Example: 

Yahoo!, WWW Virtual Library and Galaxy. 

 

 Search Services 

The Search services provide users a layer of abstraction over several search tools and 

databases and aim at simplifying the Web search. Search services broadcast user 

queries to several search engines and various other information sources 

simultaneously. Then they merge the results submitted by these sources, check for 

duplicates, and present them to the user as an HTML page with clickable URLs. 

Example: MetaCrawler [1]. 

2.1.3 Components and Their Problems  

The search query and analyze some of the problems arising when doing data processing, 

data indexing and query processing. Based on the data-flow in a standard search engine, 

some common elements are needed to construct a search engine. The working is as 

follows: 
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Figure 2.  Overview of components of a typical Web Information Retrieval System [1] 

 

1. First a WebCrawler is used to download pages from the web and store them in the 

search engine’s database. These pages are defined as documents. 

2. When data is present in the database, a Document Processor parses the documents and 

formats them before indexing can take place. 

3. An Indexing Service takes the parsed and formatted data and creates an index. The 

Indexing Service only indexes items that have been identified as relevant4 thus make the 

data ready to be searched. These items are defined as terms. 

4. Finally, a Query Processor processes the queries from users and searches the database 

for matches and presents the relevant results to the user. 

 

Based on the above, the construction of a search engine can be split into three different 

categories: 

• Document Processing 

• Data Indexing 

• Query Processing 

The Document Processing deals with data preprocessing, Data Indexing handles the 

appropriate indexing of the downloaded data and Query Processing submits queries and 

retrieves the results from the search engine. These elements will be discussed in more 

detail in the following sections.  
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(a) Document Processing 
Since text cannot be directly interpreted by a search algorithm, an indexing procedure 

needs to map the text to a proper representation of its content. The document processor 

does exactly that. It prepares, processes, and inputs the documents (web pages or sites) 

that the search engine will add to its index. Many problems arise when processing large 

amounts of data. Even the simplest tasks can become complicated when data is of 

enormous size. Further, the parsing of data is difficult as there is very little (if any) 

structure in the various documents on the Internet. Just about anything goes “out there”.  

When a document processor is implemented, various problems arise regarding 

parsing and identifying index able elements (terms). This section discusses how these 

problems could be addressed. 

How a document processor represents text is a choice of which elements of the 

text it finds meaningful (lexical semantics) and what combinational rules it finds 

meaningful for these elements (compositional semantics). Usually, the compositional 

semantics of text is disregarded [18] and text is represented as a histogram of terms that 

occur in the text, hence only keeping the lexical semantics. To create the term histogram, 

the document processor performs some or all of the following steps 

 

1. Normalizes the document stream to a predefined format. 

2. Breaks the document stream into desired retrievable units. 

3. Identifies potential indexable elements in documents. 

4. Deletes stop words. 

5. Reduces terms to their stems. 

6. Extracts index entries. 

7. Computes term weights.  
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Figure 3. Document processing 
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Figure 4. Important steps in the document processor 
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These steps are very important in the process of creating a search engine as the terms the 

document processor identifies are the terms that later can be v searched for. V Text is 

extremely dynamic and can contain hundreds of thousands of characters, symbols, 

punctuations, digits etc. As a result there are many problems that need to be addressed 

when dealing with such data and trying to identify indexable elements. Besides the 

different parsing rules and handling of data, the document processor needs to ease the 

load of later calculations by only selecting the terms that are important and relevant 

without losing too much valuable information. This trade off is one of the real challenges 

in implementing a good document processor. 

 

 Normalizing and Identifying Indexable Terms 

First of all the text has to broken into terms and the obvious way would be to 

break on white spaces - i.e. define a single word as a term. This approach is called 

bag-of-words as text is seen as a bag of words, thus disregarding compositional 

semantics. Punctuations can divide sentences but are also used in many other 

contexts, e.g. variable names in program code such as ’x.id’ or in 

’510B.C.’Punctuation cannot be removed uncritically from a sentence thus giving 

’xid’ and ’510BC’. One solution could be to create punctuation groups such that 

punctuations would be replaced by special character sequences, e.g. ’<x>’ in the 

index giving ’x<x>id’ and ’510B<x>C’ making searches on ’x:id’, ’x;ix’, ’x.id’ 

etc. mean the same thing. The groups could be refined even further by generating 

several groups as shown in table 2.1, thus minimizing the number of indexed 

terms. 

 
Table1. Punctuation groups 
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To avoid losing too much of the individual words and adding to processing 

complexity it is advised to use white space as delimiters and remove punctuations 

only if a word begins or ends with a punctuation. 

 

When finding indexable terms it is difficult to say when a word or group of words 

is important enough to be indexed. The case of the word says a lot about its 

importance and a decision whether ’PET’ and ’pet’ should mean the same thing has to 

be made. An easy approach is to add more importance to upper case words as they 

tend to be abbreviations of organizations, terms and/or concepts.  

Nouns usually carry most semantic weight and other word groups could be 

removed. In [19] it is suggested that nouns situated side by side could be placed in 

noun groups (or compound term) and not just single terms. For example a sentence 

like ’In computer science we usually...’, ‘computer science’ could be indexed as a 

single compound term. Syntactic distance between nouns, meaning the distance 

between two nouns where they are still considered a compound term, is suggested to 

be at a threshold of three. Only relying on nouns seems to disregard too much 

information and a term histogram of a mix of terms and compound terms is therefore 

preferred. Digits and dates present yet another problem. In some cases it might be 

very useful to be able to search for a given year or date. Some dates and years are 

very important - e.g.: ’9/11’. Dates and years could be normalized and indexed, 

although it would require some parsing as dates can be in many formats. If digits are 

removed, searching for a specific year is not possible, but most of the time that does 

not make a lot of sense anyway as a year normally cannot be connected with a single 

searchable item e.g. search query ’2000’ makes sense. One idea is to treat years as 

nouns and thus include them in the compound terms. If a noun and a year are 

syntactically close, the year may be important - e.g. searching for ’exploration 1492’. 

The danger of including digits is that it could lead to an extremely long term list in 

the index if documents contain a lot of distinct numbers. Spell checking all terms and 

compound terms found is very difficult. Even if it is assumed that names start with a 

capital letter so they can be identified, there are plenty of other character 

constellations that do not fit spelling rules. Again, the program variable ’x.id’ is a 
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good example. No dictionary would allow such a term. Misspellings might be 

removed by their frequency, i.e. that terms which appear less than a given minimum 

threshold are removed (hopefully misspellings are rare). Likewise, very common 

terms could be removed if they appear more than a given maximum threshold. 

 

 Stemming 

Stemming is used to remove word suffixes (and possibly prefixes). This reduces the 

number of unique terms and gives a user’s search query a better recall. If taking the 

classical example from textbooks on stemming, words such as analysis, analyzing, 

analyzer and analyzed all stem to ’analy’. This example shows that stemming 

introduces an artificial increased polysemy. Without stemming the term histogram 

could grow to an unmanageable size. [20] Compares benefits from eight stemming 

projects and finds conflicting results. Therefore, some search engines do not use 

stemming at all. [21] Reports that stemming on average increases performance by 1-

3% compared to no stemming and for some queries even better. Further, it is shown 

overall that prefix removal reduces the result yet specific queries perform better with 

prefix removal. When using stemming, it is not advised to find a word’s ’true’ root. 

Linguistic stemmers are simply not good enough to make such a stemming efficiently 

at this time. 
. 

 Term Weighting 

The idea of term weighting is to give terms different weights when situated in 

different contexts. For example, if a term is located in a title tag, the term is assigned 

more weight than a term in a paragraph. Another way is simply to use the term 

frequency (how many times does the term appear in a document) or a combination of 

the two. There exist many term weighting algorithms, but the one generally used and 

with consistently good results is the term frequency-inverse document frequency (Tf 

× Idf). Tf × Idf makes three basic assumptions [22]. 

1. Rare terms are no less important than frequent ones 

2. Multiple appearances of a term in a document is no less important than single 

appearances 
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3. Long documents are no more important than short ones 

Together these assumptions constitute normalized Tf ×Idf. Term frequency is 

simply the number of times a given term appears in a document divided by the 

number of terms occurring, and the inverse document frequency is a measure of the 

general importance of a term. 

 

 Web Crawler 

A Web crawler is a computer program that browses the World Wide Web in a 

methodical, automated manner. Other terms for Web crawlers are ants, automatic 

indexers, bots, and worms[1] or Web spider, Web robot, or—especially in the FOAF 

community—Web scutter[2]. 

This process is called Web crawling or spidering. Many sites, in particular search 

engines, use spidering as a means of providing up-to-date data. Web crawlers are 

mainly used to create a copy of all the visited pages for later processing by a search 

engine that will index the downloaded pages to provide fast searches. Crawlers can 

also be used for automating maintenance tasks on a Web site, such as checking links 

or validating HTML code. Also, crawlers can be used to gather specific types of 

information from Web pages, such as harvesting e-mail addresses (usually for spam). 

A Web crawler is one type of bot, or software agent. In general, it starts with a list 

of URLs to visit, called the seeds. As the crawler visits these URLs, it identifies all 

the hyperlinks in the page and adds them to the list of URLs to visit, called the crawl 

frontier. URLs from the frontier are recursively visited according to a set of policies. 

 

(b) Data Indexing 
As search engines’ indexes have grown very fast in the past few years, the Data Indexing 

part is becoming the most important part of the data processing within a search engine. If 

data is not indexed properly, the search engine cannot be expected to yield good results to 

search queries. In the previous section we discussed what steps need to be considered in 

the data preprocessing, prior to the actual indexing and as a result the document 

processing plays a very important role in the data indexing. The results from the 

document processing should have identified which terms are to be indexed, but the data 
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indexer must take the final decision of what should be included and what data can be 

excluded. The naive approach of simply indexing every term that occurs within the 

downloaded documents would require enormous amounts of data storage, and could also 

result in a slow response time to queries due to computational inefficiency. In this section 

we discuss how terms can be indexed in order to get positive results to search queries. 
 

 Traditional Indexing 

A popular way of creating an index for search engines is to add the terms from the 

document processor to the index, sometimes calculate term-proximity within the 

documents and add that information to the index. This way, it is possible to search 

for combinations in the documents, e.g. for a query like ’computer science’, the 

search engine would rank the documents highest that have the two terms side-by-

side. However, this additional information, i.e. the term proximity, makes the index 

larger and might make the search engine inefficient. This is where the concept of an 

inverted file is introduced. Most traditional search engines use this structure to 

represent their index with great results. 

When representing such large amounts of data it is not feasible to list the words 

per document in an index. Instead an inverted index data structure is used which lists 

the documents per word. An inverted index is an index structure storing a mapping 

from words to their locations in a document or a set of documents, allowing full text 

search. This structure also optimizes the speed of the query as the query can look-up 

the word and find the documents containing it. 

An inverted index has many variants but usually contains a reference to documents 

for each word and, possibly, also the position of the word in the document. If we 

have the set of texts 

T = {τ0 = i love you, τ1 = you love i, τ2 = love is blind, τ3 = blind justice}, 
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Table 2.  Inverted table  

When searching for the words love and blind we get the result set {0, 1, 2} ∩ {2, 

3} = {2}. 

A full inverted index can be created from the same text set T by adding the local 

word number giving a full inverted index as seen in Table 

 
Table 3. Full Inverted Table  

When searching for the phrase i love you we get hits for both τ0 and τ1, but if we 

use the positioning we will only get τ0 as seen in bold in Table. 

The index might also include details such as: 

Position of a word 

Position of the starting character 

Term weights 

     Term frequency 

 

 Clustering 

Another possible way of indexing or improving an index, is to arrange documents 

into clusters, or categories. In this way, the documents dealing with similar or the 

same subject would be placed in the same category. Using categorization, it would be 

possible to only index the terms that are descriptive for each category. This would 
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decrease the size of the term histograms and in turn also decrease the size of the 

index. Using a clustered index can hopefully give us a more detailed index, which In 

turn would give more precise and relevant search results. For example, if a query for 

‘computer science’ was submitted, the search engine would try and predict in which 

of the predefined categories the search terms are a part of. Then the search engine 

could search within these categories and return the results categorized and by 

relevance. However, this categorization comes with added computational effort since 

the clustering requires additional information stored in the inverted file structure and 

not to mention the calculation of the clusters themselves. 

Essentially, the clustering could be yet another detail in our inverted file as 

mentioned above. Using steering as additional information in our index, the index 

would be more specific and contain the following details for each indexed term: 

•  List of documents where the term occurs 

•  The term weight 

•  Position within each document 

•  List of categories the word belongs to 

As mentioned above, the indexer has to calculate the context for each document and 

decide which category, or even categories, it belongs to. Also, the categories that 

documents should adhere to must either be pre-calculated, in order to make this 

procedure faster, or they could be calculated in real-time. 

Calculating the categories real-time is computationally expensive. This is because 

if a document is added to the index and does not match any of the already calculated 

categories, a new category is created. When a new category is added, all the already 

indexed documents need to be checked to see if they match the new category. If 

documents have been moved to new categories, all categories need to be recalculated. 

There are ways of doing such add ins more effectively, but it is very complex and still 

time consuming. Therefore, the predefined categories seem like the best way to go. 

However, this also comes at a price. 

In order to predefine the categories, the indexer must be given a training-set to use 

for its categorization this training-set must be descriptive enough to be able to define 
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all the categories of the downloaded documents. Such datasets are hard to come by, 

and even harder to create so this is not an easy task. 

 

Clustering Algorithms 

Several algorithms have been developed and used to categorize text documents, some 

of which are listed below: 

• Latent Semantic Indexing (LSI) 

• Independent Component Analysis (ICA) 

• Probabilistic Latent Semantic Indexing (PLSI) 

• Bisecting k-means 

• Spherical k-means 

• K-Nearest Neighbor (kNN) 

• Bayes-Classifier 

• Principal Component Analysis (PCA) 

• Artificial Neural Network 

• Non-negative Matric Factorization (NMF) 

Also, we found another algorithm, Frequent Term-based Clustering (FTC), promising 

but not many articles discuss its effectiveness or performance. The most common 

algorithms are probably LSI, PLSI, ICA and Bisecting k-means. 

 

(c) Ranking  

Whenever a user submits a query to a search engine, the engine returns a sorted list of 

results. This list is what the ranking algorithm in the search engine sees as the most 

relevant results, the first result being the most relevant one etc. In today’s search engines 

these ranking algorithms can differ very much in design and performance. Any user 

familiar with the use of search engines knows that the results to a given query are rarely 

the same for the most popular search engines. In fact, these lists can be very different. 

This is in part due to which pages the search engines have indexed, but also due to the 

different underlying ranking algorithms. 
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Generally, ranking a web page is not as easy as it seems. For example, if a 

ranking algorithm is based solely on word matching and a user submits a query using 

very common keywords such as sports or movies, the algorithm ranks all pages 

containing these keywords equally and thus, possibly, gives the user a lot of useless 

results in random order. A more sophisticated algorithm would try and determine the 

relevance of the pages containing the keywords and rank them accordingly. As the 

number of web pages and other data on the Internet increases, returning relevant results 

to search queries becomes more difficult. Much effort has been put into the development 

of ranking algorithms in order to return more relevant results to the user. 

 The number of documents in the indices has been increasing by many orders of 

magnitude, but the user’s ability to look at documents has not. People are still only 

willing to look at the first few tens of results. 

A user is less likely to continue using a search engine which returns few relevant 

results within the first tens of the results. There are mainly three strategies in practice 

today when it comes to ranking search results. Namely, Link Analysis, Vector Space 

Model and Relevance Feedback. In the following subsection these strategies will be 

briefly introduced. 

 Link Analysis 

Link analysis in general is used to try and find a link between two subjects. For 

example, link analysis is used in law enforcement when a criminal’s bank records, 

telephone calls etc. are investigated to try and find evidence of his or her crime. 

Banks and insurance companies also use this kind of link analysis to try and detect 

fraud. Within the field of search engines, the link analysis strategy to ranking is 

based on how the pages on the Internet link to each other. The assumption is that 

pages regarding a specific subject will, with good probability, link to other pages on 

similar or the same subject. This seems like a very reasonable assumption and has 

worked quite well in practice, e.g. Google uses this approach. 

An example of ranking algorithm based on link analysis is Google’s own Page 

Rank algorithm [23]... The following quote taken from Google’s Technology 

Web page explains the essence of the Page Rank algorithm: 
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Page Rank relies on the uniquely democratic nature of the web by using its vast 

link structure as an indicator of an individual page’s value. In essence, Google 

interprets a link from page A to page B as a vote, by page A, for page B. But, Google 

looks at more than the sheer volume of votes, or links a page receives; it also 

analyzes the page that casts the vote. Votes cast by pages that are themselves 

”important” weigh more heavily and help to make other pages ”important”. 

So basically, a page’s rank in Google’s search results is higher if many, preferably 

important, pages link to that page. The higher the Page Rank, the more relevant the 

page is (according to Google). The mathematics behind the Page Rank algorithm is 

quite impressive but will not be explained here. For a good explanation of the 

mathematics and other design issues of the algorithm see [24]. 

Another example of a ranking algorithm using link analysis is the HITS 

algorithm. The HITS algorithm utilizes the link structure of the Internet like the Page 

Rank algorithm. The HITS algorithm is based on hubs and authorities, i.e. the 

algorithm calculates two values for each query, a hub value and an authority value. 

The authority value estimates the content of the page while the hub value estimates 

the value of its links to other pages.  

  

 Vector Space Model 

Ranking using Vector Space Model (VSM) is very simple. Basically, each document 

in VSM is represented as a column in a term-document matrix. Each row in the term-

document matrix represents a term. The value at index tdi,j says how many times term 

i occurs in document j. For example:  
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Where the column vector di is called the term-vector for document i. The 

term-vectors are often in very high dimensions as each term represents a single 

dimension, i.e. the richer the vocabulary, the higher the term-vector dimensions. 

When ranking documents using VSM, the Cosine Similarity Measure 

calculates the angle between two vectors in the above matrix. The closer the angle 

is to zero, the more similar the two documents are. Therefore, when a query is 

submitted to a search engine, a term vector is constructed for that query in a 

similar way as it is done for documents. The best matches for that query are the 

documents with the highest similarity to the query vector. 

Measuring similarity between two term-vectors is frequently done using 

the Cosine Similarity Measure. The cosine similarity measure between vector a 

and b is defined as the angle between the two vectors: 

 
Where a • b is the dot product between the two vectors and |k| refers to the 

length of the vector. The similarity is found by looking at the angle between the 

two vectors. The smaller the angle, the greater the similarity between the vectors. 

Looking at figure, it is easy to see that the smaller the angle θ, the more similar 

the vectors |a| and |b| are. When θ = 0 the vectors are identical.  

 
Fig no .5 Cosine similarity 

The Vector Space Model and the calculation and usage of the Cosine Similarity 

Measure along with other similarity measures. 
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 Relevance Feedback 

Relevance feedback is used to try and improve the relevance of the results returned 

by a search engine, where the search engine’s original ranking usually follows one of 

the above mentioned schemes. The idea is that the search engine can learn which 

results are relevant for a given query. However, the machine has to get some 

feedback data in order to improve its results. Feedback information is used to either 

adjust the weights in a given query and/or add terms to the query to make it more 

specific. There are mainly two types of relevance feedback used, namely, explicit 

feedback and implicit feedback. Explicit feedback is where a user tells the search 

engine explicitly what results is relevant and which are not. Implicit feedback is 

where the search engine “monitors” which links a user follows for the given query. 

The search engine then makes the assumption that the links followed are more 

relevant than the others and in that way adjusts that page’s rank in subsequent, 

similar queries. 

It is intuitively clear that explicit feedback can be very useful to improve ranking 

results, given that the users are honest and consistent in their evaluations. In [25], 

Patil et. al. introduce a tool that can be used to get explicit feedback from users. 

Implicit feedback is not so intuitive since one can visit 10 search results before 

finding any useful result and therefore the other nine results should not get a higher 

ranking for the query. However, in [26], Jung et. al. found that considering all ”click-

data” in a search session has the potential to increase recall and precision of the 

queries. Also, in [27] Rohini and Ambati found that using implicit relevance 

feedback based on search engine logs and user profiles gave improved precision 

results. 
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2.1.4 Performance Measures 

 (a) Precision 
 The proportion of retrieved and relevant documents to all the documents retrieved: 

 

                                      Total Number of Relevant Retrieved Documents 

 

Total Number of Retrieved Documents 

 

A perfect Precision score of 1.0 means that every result retrieved by a search was 

relevant (but says nothing about whether all relevant documents were retrieved) 

 

(b) Recall 
The proportion of relevant documents that are retrieved, out of all relevant documents 

available: 

 

Total Number of Relevant Retrieved Documents 

 

Total Number of Relevant Documents 

 

A perfect Recall score of 1.0 means that all relevant documents were retrieved by the 

search (but says nothing about how many irrelevant documents were also retrieved). 

Both the measures are used to measure the accuracy of a system’s ability to retrieve 

documents with respect to a given query. Ideally, you would like to achieve both high 

recall and high precision. In reality, you must strike a compromise. Indexing terms that 

are specific yields higher precision at the expense of recall. Indexing terms that are broad 

yields higher recall at the cost of precision. For this reason, an IR system’s effectiveness 

is measured by the precision parameter at various recall levels. 
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(c) Some Other Measures 
There are a number of more advanced and specific types of precision and recall measures 

that are used as modern evaluation measures. [9] 

 Fallout is a measure of how quickly precision drops as recall is increased. Fallout 

is defined as the probability to find an irrelevant among the retrieved documents: 

Total Number of Irrelevant Retrieved Documents 

 

Total Number of Retrieved Documents 

 R-precision is the precision at R where R is the number of relevant documents in 

the collection for the query. It is the precision after R retrieved documents, where 

R is the number of relevant documents that exists for that query. An R-precision 

of 1.0 is equivalent to perfect relevance ranking and perfect recall. However, a 

typical value of R-precision which is far below 1.0 does not indicate the actual 

value of 

 Recall (since some of the relevant documents may be present in the hit-list 

beyond point R). 

 Initial precision is the precision at recall 0% in the interpolated precision-recall 

graph. It is an indication of relevance ranking of the top few hits. Similarly, one 

can define a final precision that is the precision at 100% recall. Final precision 

indicates how far down one need to go in the hit-list to find all relevant 

documents. 

 Precision at 0.5 Recall is the precision after half the relevant documents have 

been retrieved. 

 Average Precision is the average of precision scores at every relevant document 

in the retrieved set. 

 Recall (1000) is the recall after 1000 retrieved documents. This is more practical 

than true recall over all documents since modern systems can return a huge 

number of results 
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2.2 Basics of Information Theory 
2.2.1 Information Theory  
Information theory is a branch of applied mathematics and electrical engineering 

involving the quantification of information. Historically, information theory was 

developed by Claude E. Shannon to find fundamental limits on compressing and reliably 

storing and communicating data. Since its inception it has broadened to find applications 

in many other areas, including statistical inference, natural language processing, 

cryptography generally, networks other than communication networks — as in 

neurobiology[1] the evolution[2] and function[3] of molecular codes, model selection[4] 

in ecology, thermal physics,[5] quantum computing, plagiarism detection[6] and other 

forms of data analysis.[7] 

A key measure of information in the theory is known as entropy, which is usually 

expressed by the average number of bits needed for storage or communication. 

Intuitively, entropy quantifies the uncertainty involved when encountering a random 

variable. For example, a fair coin flip (2 equally likely outcomes) will have less entropy 

than a roll of a die (6 equally likely outcomes). 

Applications of fundamental topics of information theory include lossless data 

compression (e.g. ZIP files), loss data compression (e.g. MP3s), and channel coding (e.g. 

for DSL lines). The field is at the intersection of mathematics, statistics, computer 

science, physics, neurobiology, and electrical engineering. Its impact has been crucial to 

the success of the Voyager missions to deep space, the invention of the compact disc, the 

feasibility of mobile phones, the development of the Internet, the study of linguistics and 

of human perception, the understanding of black holes, and numerous other fields 

[citation needed]. Important sub-fields of information theory are source coding, channel 

coding, algorithmic complexity theory, algorithmic information theory, and measures of 

information. 

 Shannon–Hartley Theorem 

In information theory, the Shannon–Hartley theorem is an application of the 

noisy channel coding theorem to the archetypal case of a continuous-time analog 

communications channel subject to Gaussian noise. The theorem establishes 

Shannon's channel capacity for such a communication link, a bound on the 
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maximum amount of error-free digital data (that is, information) that can be 

transmitted with a specified bandwidth in the presence of the noise interference, 

under the assumption that the signal power is bounded and the Gaussian noise 

process is characterized by a known power or power spectral density. The law is 

named after Claude Shannon and Ralph Hartley. 

Considering all possible multi-level and multi-phase encoding techniques, 

the Shannon–Hartley theorem states that the channel capacity C, meaning the 

theoretical tightest upper bound on the information rate (excluding error 

correcting codes) of clean (or arbitrarily low bit error rate) data that can be sent 

with a given average signal power S through an analog communication channel 

subject to additive white Gaussian noise of power N, is: 

 

 
 

   Where 

    C is the channel capacity in bits per second; 

    B is the bandwidth of the channel in hertz (pass band bandwidth in case of a modulated 

signal); 

    S is the total received signal power over the bandwidth (in case of a modulated signal, 

often denoted C, i.e. modulated carrier), measured in watt or volt2; 

    N is the total noise or interference power over the bandwidth, measured in watt or 

volt2; and 

    S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the 

communication signal to the Gaussian noise interference expressed as a linear power ratio 

(not as logarithmic decibels 

 

2.2.2 Entropy and Co-information  

 Entropy  

The entropy, H, of a discrete random variable X is a measure of the amount of 

uncertainty associated with the value of X. 
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Suppose one transmits 1000 bits (0s and 1s). If these bits are known ahead 

of transmission (to be a certain value with absolute probability), logic dictates that 

no information has been transmitted. If, however, each is equally and 

independently likely to be 0 or 1, 1000 bits (in the information theoretic sense) 

have been transmitted. Between these two extremes, information can be 

quantified as follows. If {X}, is the set of all messages x that X could be, and p(x) 

is the probability of X given x, then the entropy of X is defined 

 

 
Here, I(x) is the self-information, which is the entropy contribution of an 

individual message, and {E}{X} is the expected value.) An important property of 

entropy is that it is maximized when all the messages in the message space are 

equiprobable p(x) = 1 / n,—i.e., most unpredictable—in which case H(X) = logn. 

The special case of information entropy for a random variable with two outcomes 

is the binary entropy function: 

 
 

 Co-information  

The concept of co-information is a natural one to use in attempting to 

build a theory of machine learning, just as the concept of ‘grouping of the 

variables’ the co- information theory define as a part of probalistic method, 

entropy and mutual information. Both represent degrees of “hanging 

togetherness” amongst elements. We argue that the two concepts are the same. 

They arise from intuitions (both from mathematics and from neuroscience) those 

patterns (regularities, symmetries, dependencies, redundancies) in the world, can 

be captured in structured groupings of variables. In this context, the memories 

embedded in a group of variables are the patterns that are statistically more likely 

to appear in this group. The overall propensity of a group to produce patterns 

together is what we mean by the co-information: it is a measure of ‘groupness’ 

[3]. 
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2.3 Contextual Retrieval on Web 
Contextual retrieval is one of the major long term challenges in information 

retrieval. Contextual retrieval is defined as combine search technologies and 

knowledge about query and user context into a single framework in order to 

provide the most ‘appropriate’ answer for a user's information needs”. The use of 

context in information retrieval is not a new idea. Jing et al. [33] use context as a 

basis of measuring the semantic distances between words. During indexing, the 

context of terms in documents is generated and stored in vector form. During 

retrieval, the context of a term in a query is generated and is used to measure the 

semantic distance between itself and candidate morphological variants in 

documents. Mutual information of terms is used to match related terms during the 

calculation of context distance. Billhardt et al. [34] propose a context-based 

vector space model for information retrieval. After the term-document matrix has 

been constructed, it is used is a basis for generating a term context matrix where 

each column is considered a semantic description of a term. This term context 

matrix is then combined with the document vectors from the term-document 

matrix to transform it into the final document context vector used for retrieval. 

The WEBSOM [35] system is an example of another way in which context has 

been used for information retrieval. It uses a two level Kohonen’s self-organizing 

map approach to group words and documents of contextual similarity. Context in 

WEBSOM is limited to the terms that occur direct either sides of the term in 

question. IntelliZap [36] is a context-based web search engine that requires the 

user to select a key word in the context of some text. The approach makes 

effective use of the contextual information in the immediate vicinity of the 

keywords selected, so that retrieval precision can be improved. Inquires [37, 38] 

is another web search engine that uses contextual information to improve search 

results. A user must specify some contextual information, considered as 

preferences, pertaining to the query. This context (preferences) provides a high-

level description of the users information need and ultimately control the search 

strategy used by the system. Hyperlink information can be a very valuable source 
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of evidence for web information retrieval and it is either based on a set of 

retrieved documents during retrieval or on a global analysis of the entire 

document collection during indexing. Kleinberg [39] illustrates how hyperlink 

information in web pages can be used for web search when using a set of 

retrieved documents. An approach that also uses the characteristics of link 

information from a set of retrieved documents for topic distillation is presented by 

Amitay et al. [40]. PageRank, as proposed by Brin et al. [41], is hyperlink-based 

retrieval algorithm that calculates document scores by considering the entire 

hyperlink connected graph represented by all the links in the entire document 

collection. It uses link information to model user behavior by calculating the 

probability that a user will eventually visit a certain page. This probability or Page 

Rank of a page is used to prioritize its ranking during retrieval.  

The model with the most similar form of ours is [44], though it uses 

traditional query expansion to determine context of query. Another closely related 

work [43], implicitly deduce context using three different algorithms. Finally 

[42], offers Term context model as a new tool for accessing term presence in a 

document. 
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Chapter 3 
The Algorithmic Framework 

 

 
In this chapter we give the details of the Context Detection Algorithm designed to extract 

contextual evidence from the user query. The algorithm is based on an information-

theoretic measure: the co-information and is used to generate a context coverage list 

given a multi-term query. 

 

3.1 Multi-term Query 
Multi term query of keywords plays a quintessential role in the Web search paradigm. 

Recent studies claim that queries involving one or two keywords are most common in 

Web searches. While most Web Search engines perform very well for a single-keyword 

query, their precision is not good for query involving two or more keywords because the 

search results usually contain a large number of pages with weak relevance. Also, the 

users have a well-defined query re-formulation behavior, i.e., most multiple term queries 

include more than one context and users usually reformulate their queries by context 

instead of terms. A context is usually included as a sub-query in a user’s query and it has 

strong impacts on the quality of search results. 

 

3.2 Using Snippets  
A query typically contains only a few terms, which provide limited information. One 

straightforward method is to submit a query to a search engine to get the top ranked 

search pages. Those retrieved results provide some richer information about the query. In 

other words, we call the retrieved results of query as the local information of this query. 

Meanwhile, a query has its global information, based on the whole corpus, to provide 

more information. However, the global based approach can cause high computational 

complexity and it was shown in [3] that a local based approach outperforms the global 



 

Context Detection In Web Queries.   Page 33 
 

based approach. So in this research, the top ranked search results are utilized to enrich the 

query. 

In the local analysis, we select significant characteristics from each (retrieved and 

relevant) document and name them ‘features’, i.e., given the search results for a query, 

we need to decide what features should be extracted from the search engine to construct 

the enrichment. Generally, three kinds of features are considered: the title of a page, the 

snippet generated by the search engine, and the full plain text of a page. We use the top N 

ranked snippet retrieved by search engine as the local search result of query. A Snippet is 

a short fragment of text extracted from the document content [18]. 

 

3.3 Co-information metric 
Co-information measures the information that two discrete random variables share: it 

measures how much knowing one of these variables reduces our uncertainty about the 

other. As for a sub-query generated by the original query, the Co-Information between its 

terms can be used to measure the information bound up in those terms. The more 

information bound up one sub-query has, the higher possibility to be a topic it has. 

Mathematically this information-theoretic measure is defined as [3] 

 
 

where v’ = (x1i; x2j; …; xnl) and T ’ is any subset of v’. v' means the number of elements 

in v’, and the same with T' . In this way, for n events x1i, x2j, …, xnl, we define the co-

information, CI, between them I (x1i ; x2j ; …; xnl) by 

 
 

We utilize the Co-Information metric to measure the degree of one sub-query being a 

topic. In our approach, the probability space of one query is built based on the local 
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results of all sub-queries. Given a query Q = t1 t2 …tn, where ti (1<= i <=n) is the ith term 

of Q, we obtain the context coverage list as described in the following algorithm: 

 

3.4 Context Detection Algorithm 
Given a query Q = t1 t2 …tn, where ti (1<= i <=n) is the ith term of Q, the context coverage 

list is obtained as described in the following algorithm [3]: 

 

Step 1: Get the set of all sub-queries, SQ = {sqk}, 1<=k<=2n+1-2, where 1<=k<=2n+1-2 

is the number of all sub-queries and 2n-2 = S1 n +S2 n +…+Sn-1 n 

Step 2: Enrich each sub-query by submitting it into search engine and get the top N 

ranked snippets. In this way, we can get (2n-2). N* snippets for query q. The snippet set is 

defined as S(Q) = {sni}, 1<=i<=(2n-2). N*, where sni is the ith snippet. N* = min(N, N’), 

where N’ is the actual number of retrieved snippets by search engine for each query. 

Step 3: The probability of sub-query in S (Q) is defined as 

 
p (sqk ) is the probability of occurrence of sqk in collection. 

Step 4: As for sqk, we get its sub-query set, defined as SQk = { sqk1..sqk2,….sqk2 k -2}. 

              
Step 5: Order all sub-queries in a descendant value of Co-information and split it into two 

parts by the threshold of zero. In other words, the first part includes the sub queries with 

positive CI and the last part includes the sub-queries with negative CI. 

Step 6: Finally, the list of context words we detected from SQ is defined as: Context 

Coverage List, CL = { C1, C2, …., Ci,…CM }, where Ci is one sub-query which has 

positive CI and M is the total number, and I(Ci) >= 0, I(Ci)>=I(C i-1), 1<= i<=M. 
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     Chapter 4. 

Experimental Setup and Analysis 
 

In this chapter we give the details of implementation. An application is built that gives 

the context coverage list as output which can be used for query enrichment to yield 

remarkable improvement in the performance. 

  

4 .1 Implementation Detail 
We developed our application in C# which is a high performance language for technical 

computing and programming in an easy to use environment where problems and solution 

are expressed in familiar mathematical notation.  

The create graphical user interface in C#  which provides user a interface by 

which put own query and find the related document from the database and find the 

context of the related to user query and provide the coverage list from the database . 

The data is use a static database because the corpus data base is very difficult to 

fetch without purchasing but we have try to fetch with the help of Google API, yahoo 

API and that is not feasible. So we have created the data base and store the document. So 

this application is a prototype.  
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The Graphical User Interface  

 
Figure 5. Graphical user interface 

 

 User insert file type in the option field and put own query in query field.  

 

4.2 Sample Snippets  

To detect the context we have considered some queries and snippets generated specific to 

the query are as follows: 

Example Queries: 

(a) What is bank loan? 

(b) Bank mortgage? 

(c) Borrower and finance? 
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Sample Snippet 1  

 
 

 

 

Sample Snippet 2 

 

 

 

 

Sample Snippet 3  

) 

 

 

 

 

 

 

 

 

 

 

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all 

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from 

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly 

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available. 

The UK mortgage (2) market is one of the most innovative and competitive in the world…………finance 
against various assets………….. proprietary lenders (typically banks (14)). …can obtain loan (24) which is 
secured against mortgage (28)……..property (42)…..Since 1982, when the market was substantially……. 
deregulated, ………… mortgage (74) types.  

A new mortgage (2) is a loan (6) from bank (8) secured by real property (12) through the use of a legal 
instrument mortgage (18)……………., is most often used to mean loan (35). A home buyer or builder can 
obtain financing …………………………….financial institution, such as a bank (61), either directly or 
indirectly through intermediaries……... and other characteristics can vary considerably…..bank (98) 

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all 

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from 

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly 

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available. 

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all 

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from 

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly 

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available. 
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Chapter 5 

Conclusion  

 

Conclusion 

We implemented a novel context detection algorithm given a user’s query. The aim was 

to use “Context as a query” and treat the context as a background for possible refinement 

of query.  

Possible future directions can be towards making this technique easily pluggable 

into existing systems and also finding alternatives other than Co-information metric for 

the detection of context. 
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Appendix A: Screen-Shots 
Q.1Taking Bank Loan 
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Q.2 About Bollywood Music  
 

 


