

A
Dissertation

On

Context Detection in Web Queries.

Submitted in Partial fulfilment of the requirements
For the award of Degree of

MASTER OF ENGINEERING

(Computer Technology and Application)
Delhi University, Delhi

Submitted By:
SANDEEP RAI

(University Roll No.12212)

Under the Guidance of:
Mrs. AKSHI KUMAR

Department Of Computer Engineering
Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY
(2008-2009)

Context Detection In Web Queries. Page i

CERTIFICATE

 Date: ___________

It is certified that the work contained in this dissertation titled “CONTEXT DETECTION

IN WEB QUERIES” by SANDEEP RAI is submitted in the partial fulfilment for the

requirements of the degree of Master of Engineering in Computer Technology &

Application at Delhi College of Engineering. This work was completed under my

supervision and guidance during the academic session 2008-2009. He has completed the

work with utmost sincerity and diligence.

The work embodied in this major project has not been submitted for the award of any

other degree to the best of my knowledge.

 Mrs. AKSHI KUMAR

 Lecturer

 Department of Computer Engineering

 Delhi College of Engineering, Delhi-42

DELHI COLLEGE OF ENGINEERING
(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Context Detection In Web Queries. Page ii

ACKNOWLEDGEMENT

I am thankful to my Almighty for the blessings that were bestowed on me to make this
work possible. It is a great pleasure to have the opportunity to extent my heartfelt
gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my
learned supervisor Mrs.Akshi Kumar for her invaluable guidance, encouragement and
patient reviews. Her continuous inspiration has made me complete this dissertation. She
kept on boosting me time and again for putting an extra ounce of effort to realize her
work.

I would also like to take this opportunity to present my sincere regards to my teachers Dr.
Daya Gupta, Mrs. Rajni Jindal, Mr. Manoj Kumar, Mr. Vinod Kumar and Dr. S.K.Saxena
for their support and encouragement. I am thankful to the Computer Centre Head, Mr.
Manoj Sethi and other staff members for providing me unconditional and anytime access
to the resources.

I am grateful to my parents, brother and sister for their continual support and
encouragement prior to the commencement of this work, during and now after.

Above all, I thank my classmates for their unconditional support and motivation during
this work.

SANDEEP RAI

M.E. (Computer Technology and Application)

Department of Computer Engineering

Delhi College of Engineering, Delhi-42

Context Detection In Web Queries. Page iii

ABSTRACT

On the Web, the most commonly used tool for learning is the search engine [7]. The user

first submits a query representing the ‘subject of interest’ to a search engine system,

which finds and returns the related Web pages. He/she then browses through the returned

results to find those suitable Web pages. Search engines are critically important to help

users find relevant information on the World Wide Web. In order to best serve the needs

of users, a search engine must find and filter the most relevant information matching a

user’s query, and then present that information in a manner that makes the information

most readily palatable to the user. However, the current search techniques are not

designed for in-depth learning on the Web.

Contextual search refers to proactively capturing the information need of a user by

automatically augmenting the user query with information extracted from the search

context; for example, by using terms from the web page the user is currently browsing or

a file the user is currently editing. We implement a novel context detection algorithm

given a user’s query. The aim is to use “Context as a query” and treat the context as a

background for topic specific search [1]. Thus we try to find a possible solution set for

the following questions:

1) How to detect the context contained in the user query?

2) How to possibly refine the query at the contextual level?

Context Detection In Web Queries. Page iv

Table of Content

List of Tables ……………………………………………………………...vi

List of Figures ………………………………………………………….....vi

Chapter 1 Introduction ………………………………………………......1

1.1 Motivation.

1.2 Problem Statement.

1.3 Scope.

1.4 Organization of Thesis.

Chapter 2 Literature survey…………………………………….…….......4

 2.1 Anatomy of Web Information Retrieval (Web IR).

 2.1.1 Tasks.

 2.1.2 Tools.

 2.1.3 Components and Their Problems.

 2.1.4 Performance Measures.

 2.2 Basics of Information Theory.

 2.2.1 Information Theory.

 2.2.2 Using Web IR.

 2.2.3 Entropy and Co-information.

 2.3 Contextual Retrieval on Web.

Context Detection In Web Queries. Page v

Chapter 3 The Algorithmic Framework …………………….................32

 3.1 Multi Term Query.

 3.2 Using Snippets.

 3.3 Co-information Metric.

 3.4 Context Detection Algorithm.

 Chapter 4 Experimental Setup ..35

 4.1 Implementation Details.

 4.2 An Example

 Chapter 5 Conclusion…......………….…….....…....…..38

 References.………………………………………………….……....…….39

Appendix A……………………………………………………….……….44

Context Detection In Web Queries. Page vi

List of Tables

 Table 1. Punctuation groups

 Table 2. Inverted index

 Table 3. Full inverted index

List of Figures

Figure 1. Classification of Web IR tools

Figure 2. Overview of Components of a Typical Web Information Retrieval System

Figure 3. Document processing.

Figure 4. Cosine Similarity

Figure 5. Graphical user Interface

Context Detection In Web Queries. Page 1

Chapter 1

 Introduction

In this chapter we introduce the Web Information Retrieval paradigm. We expound the

impact of Web and the opportunities, challenges that make it an active area of research.

The motivation behind the work done & the scope is described.

1.1 Motivation

With the explosive growth of the World Wide Web, we are currently facing new

circumstances in the Web data oceans. Current Web searching engines, mainly based on

traditional IR technologies, are insufficient to truly meet users’ information needs. We

foresee that the biggest challenge in the next several decades is how to effectively and

efficiently dig out the knowledge from huge amounts of the Web data. Web Information

Retrieval is defined as the application of theories and methodologies from IR to the

World Wide Web. It is concerned with addressing the technological challenges facing

Information Retrieval (IR). The characteristics of Web make the task of retrieving

information from it quite different from the Pre- Web (traditional) information retrieval.

As a result, there has been a rapid growth in the area of Web information retrieval

research, which focuses on automatically discovering information and knowledge

through the analysis of Web contents, Web structure and Web usages. Since the Web is

huge, heterogeneous and dynamic, Web information retrieval calls for novel technologies

and tools, which may take advantage of the state-of-the-art technologies from various

areas, including machine learning, data mining, information retrieval, database and nature

language processing.

A recent Forrester Research report showed that 80% of Web surfers discover the

new sites that they visit through search engines. (Such as Ask, Google, MSN or Yahoo).

Therefore, search engines have been established as revolutionary working metaphors.

Context Detection In Web Queries. Page 2

Web search engines generally treat search requests in isolation. The results for a

given query are identical, independent of the user, or the context in which the user made

the request. Next-generation search engines make increasing use of context information,

either by using explicit or implicit context information from users, or by implementing

additional functionality within restricted contexts. Greater use of context in web search

helps in increasing the competition and diversity on the web. Context-based retrieval

approaches aim to provide a more complete retrieval process by incorporating contextual

information into the retrieval process. The use of context in information retrieval is not a

new idea. Unfortunately none of them proves to become a Silver Bullet, at least so far.

Moreover, these approaches are often combined to achieve better performance and

recall/precision of information retrieval.

1.2 Problem statement
Our aim is to proactively capture the information need of a user by automatically

augmenting the user query using contextual information. It is further defined with the

help of the following research goals that are identified for this purpose:

1) How to detect the context contained in the user query?

2) How to possibly refine the query at the contextual level?

1.3 Scope
The scope of this research is circumscribed to context detection in web queries

system based on text by the snippet.

1.4 Organization of the Remainder of Thesis

This thesis is organized into 5 chapters followed by references and appendices.

Chapter 2 gives a review of the relevant & related Web Information Retrieval

literature most related to the aim of this research. It gives an overview of the Web

Information Retrieval (WebIR) paradigm, its components and reviews a variety of

techniques, approaches & issues related. It gives a brief introduction to the use of

Context Detection In Web Queries. Page 3

Information Theory in WebIR. The advent of the field of Contextual Retrieval is sketched

out.

Chapter 3 presents the framework used and the details of algorithm used. The

basics of experimental setup and the graphical user interface representation are discussed

in Chapter 4. Chapter 5 forms the conclusion of this thesis and outlines the direction of

future research.

A section listing the references used in this thesis follows chapter 5. Appendix A

depicting the screen-shots of the system follows.

Context Detection In Web Queries. Page 4

Chapter 2

Literature Survey

This chapter details out the related and relevant literature. We explain the Anatomy of

WebIR, its tasks, tools, components & performance measures. The Basic of Information

Theory pertinent to WebIR is also reviewed. Finally the era of Contextual Retrieval is

reviewed.

2.1 Anatomy of Web Information Retrieval (WebIR)

Retrieving information from the Web is becoming a common practice for internet

users. However, the size and heterogeneity of the Web challenge the effectiveness of

classical information retrieval techniques. For the information retrieval (IR)

community, the Web now presents a new paradigm, while also generating new

challenges and attracting growing interest from around the world. Web IR can be

defined as the application of theories and methodologies from IR to the World Wide

Web. It is concerned with addressing the technological challenges facing Information

Retrieval (IR) in the setting of WWW [3].

(a) Traditional web IR

In traditional IR documents have been represented in the so called vector space model.

Documents are tokenized in words, some terms are possibly filtered against a static

defined stop–list, and sometimes they are stemmed to extract a canonical form, and

represented as a vector in Euclidean space. Each canonical token represents an axis in

this space, and each document is a vector in the space. If the term t appears n(t, d) times

in document d, then the t–th coordinate of d is just n(t, d).

Traditional techniques, involve such as Query Expansion [29] and Statistical

Modeling [43], as well as examining the structure and meta-data of the documents, or

analyzing the hyperlinks between the documents.

Context Detection In Web Queries. Page 5

(b) Modern Web IR
Modern Web IR is a discipline which has exploited some of the classical results of

Information Retrieval developing innovative models of information access. A recent

Forrester Research report showed that 80% of Web surfers discover the new sites that

they visit through search engines. (Such as Ask, Google, MSN or Yahoo). Therefore,

search engines have established as a revolutionary working metaphor. If someone needs

information about a book, an address, a research paper, a flight ticket, or almost any other

topic, they just make a query on a search engine the interested reader can refer to [10, 11,

12]. In this paragraph we briefly review the architecture of a typical search engine.

The goal of a modern WebIR is to retrieve documents considered “relevant” to a

user query from a given collection. Nowadays, a user query is modeled as a set of

keywords extracted from a large dictionary of words; a document is typically a Web

page, pdf, postscript, doc file, or whatever file that can be parsed into a set of tokens.

Global search engines serve as de facto Internet portals, local search engines are

embedded in numerous individual Web sites, and browsing is the most common activity

on the Web, due to the hyper-linked structure that provides access to a large quantity of

information in a restricted space.

Thus, WebIR is different from classical IR for two kinds of reasons: concepts and

technologies [8]. The following characteristics of the Web shape up the nature of Web

Information Retrieval and are what make it considerably different to traditional retrieval

challenges [1]:

 The “Abundance” of Web With the phenomenal growth of the Web, there is an

ever increasing volume of data and information published in numerous Web pages.

According to worldwidewebsize.com, the indexed Web contains at least 21.82

billion pages (Sunday, 28 June, 2009)

 Heterogeneity

• Information /data of almost all types exist on the Web, e.g., structured tables, texts,

multimedia data, etc.

• Much of the Web information is semi-structured due to the nested structure of

HTML code.

• Much of the Web information is linked

Context Detection In Web Queries. Page 6

• Much of the Web information is redundant

• The Web is noisy: A Web page typically contains a mixture of many kinds of

information, e.g., main contents, advertisement, navigational panels, copyright

notices.

 Dynamics The freedom for anyone to publish information on the web at anytime

and anywhere implies that information on the Web is constantly changing. It is a

dynamic information environment whereas traditional systems are typically

based on static document collection.

 Duplication Several studies indicate that nearly 30% of the web's content is

duplicated, mainly due to mirroring.

 Users Search Behavior The users have different expectations and goals such as

Informative, Transactional and Navigational. Often they compose short, ill-

defined queries and impatiently look for the results mainly in the top 10 results.

2.1.1 Tasks
Web Information Retrieval research is typically organized in tasks with specific goals to

be achieved. Existing tasks have changed frequently over the years due to the emergence

of new fields. Below is a summary of the main tasks and also of the new or emerging

ones [1].

 Ad-Hoc Retrieval Rank documents using non-constrained queries in a fixed

collection. This is the standard retrieval task in Web IR.

 Filtering Select documents using a fixed query in a dynamic collection. For

example, “Retrieve all documents related to ‘Research in India’ from a

continuous feed”.

 Topic Distillation Find short lists of good entry points to a broad topic. For

example, “Find relevant pages on the topic of Indian History”.

 Homepage Finding Find the URL of a named entity. For example, “Find the

 URL of the Indian High Commission homepage”

 Adversarial Web IR Develop methods to identify and address the problem of

web spam, namely link spamming that affect the ranking of results.

 Summarization Produce a relevant summary of a single or multiple documents.

Context Detection In Web Queries. Page 7

2.1.2 Tools
Automated methods for retrieving information on the Web can be broadly classed as

search tools or search services.

Figure1. Classification of Web IR tools [1]

 Search Tools

A Web search engine is a tool designed to search for information on the World Wide

Web. The search results are usually presented in a list and are commonly called hits.

The information may consist of web pages, images, information and other types of

files. Some search engines also mine data available in databases or open directories.

Unlike Web directories, which are maintained by human editors, search engines

operate algorithmically or are a mixture of algorithmic and human input.

The Search tools employ robots for indexing Web documents. They feature a user

interface for specifying queries and browsing the results. At the heart of a search tool

is the search engine, which is responsible for searching the index to retrieve

documents relevant to a user query. Search tools can be distinguished into two

categories on the transparency of the index to the user. The two class categories are

depicted along the following dimensions:

Context Detection In Web Queries. Page 8

 Methods for Web navigation,

 Indexing techniques,

 Query language or specification scheme

 for expressing user queries,

 Strategies for query-document matching, and

 Methods for presenting the query output.

 Class1 search tools: General Purpose Search Engine

These tools completely hide the organization and content of the index

from the user. Example: AltaVista, Excite, Google, Info seek, Lycos

 Class 2 search tools: Subject Directories

These feature a hierarchically organized subject catalog or directory of the

Web, which is visible to users as they browse and search. Example:

Yahoo!, WWW Virtual Library and Galaxy.

 Search Services

The Search services provide users a layer of abstraction over several search tools and

databases and aim at simplifying the Web search. Search services broadcast user

queries to several search engines and various other information sources

simultaneously. Then they merge the results submitted by these sources, check for

duplicates, and present them to the user as an HTML page with clickable URLs.

Example: MetaCrawler [1].

2.1.3 Components and Their Problems

The search query and analyze some of the problems arising when doing data processing,

data indexing and query processing. Based on the data-flow in a standard search engine,

some common elements are needed to construct a search engine. The working is as

follows:

Context Detection In Web Queries. Page 9

Figure 2. Overview of components of a typical Web Information Retrieval System [1]

1. First a WebCrawler is used to download pages from the web and store them in the

search engine’s database. These pages are defined as documents.

2. When data is present in the database, a Document Processor parses the documents and

formats them before indexing can take place.

3. An Indexing Service takes the parsed and formatted data and creates an index. The

Indexing Service only indexes items that have been identified as relevant4 thus make the

data ready to be searched. These items are defined as terms.

4. Finally, a Query Processor processes the queries from users and searches the database

for matches and presents the relevant results to the user.

Based on the above, the construction of a search engine can be split into three different

categories:

• Document Processing

• Data Indexing

• Query Processing

The Document Processing deals with data preprocessing, Data Indexing handles the

appropriate indexing of the downloaded data and Query Processing submits queries and

retrieves the results from the search engine. These elements will be discussed in more

detail in the following sections.

Context Detection In Web Queries. Page 10

(a) Document Processing
Since text cannot be directly interpreted by a search algorithm, an indexing procedure

needs to map the text to a proper representation of its content. The document processor

does exactly that. It prepares, processes, and inputs the documents (web pages or sites)

that the search engine will add to its index. Many problems arise when processing large

amounts of data. Even the simplest tasks can become complicated when data is of

enormous size. Further, the parsing of data is difficult as there is very little (if any)

structure in the various documents on the Internet. Just about anything goes “out there”.

When a document processor is implemented, various problems arise regarding

parsing and identifying index able elements (terms). This section discusses how these

problems could be addressed.

How a document processor represents text is a choice of which elements of the

text it finds meaningful (lexical semantics) and what combinational rules it finds

meaningful for these elements (compositional semantics). Usually, the compositional

semantics of text is disregarded [18] and text is represented as a histogram of terms that

occur in the text, hence only keeping the lexical semantics. To create the term histogram,

the document processor performs some or all of the following steps

1. Normalizes the document stream to a predefined format.

2. Breaks the document stream into desired retrievable units.

3. Identifies potential indexable elements in documents.

4. Deletes stop words.

5. Reduces terms to their stems.

6. Extracts index entries.

7. Computes term weights.

Context Detection In Web Queries. Page 11

Figure 3. Document processing

Context Detection In Web Queries. Page 12

Figure 4. Important steps in the document processor

Context Detection In Web Queries. Page 13

These steps are very important in the process of creating a search engine as the terms the

document processor identifies are the terms that later can be v searched for. V Text is

extremely dynamic and can contain hundreds of thousands of characters, symbols,

punctuations, digits etc. As a result there are many problems that need to be addressed

when dealing with such data and trying to identify indexable elements. Besides the

different parsing rules and handling of data, the document processor needs to ease the

load of later calculations by only selecting the terms that are important and relevant

without losing too much valuable information. This trade off is one of the real challenges

in implementing a good document processor.

 Normalizing and Identifying Indexable Terms

First of all the text has to broken into terms and the obvious way would be to

break on white spaces - i.e. define a single word as a term. This approach is called

bag-of-words as text is seen as a bag of words, thus disregarding compositional

semantics. Punctuations can divide sentences but are also used in many other

contexts, e.g. variable names in program code such as ’x.id’ or in

’510B.C.’Punctuation cannot be removed uncritically from a sentence thus giving

’xid’ and ’510BC’. One solution could be to create punctuation groups such that

punctuations would be replaced by special character sequences, e.g. ’<x>’ in the

index giving ’x<x>id’ and ’510B<x>C’ making searches on ’x:id’, ’x;ix’, ’x.id’

etc. mean the same thing. The groups could be refined even further by generating

several groups as shown in table 2.1, thus minimizing the number of indexed

terms.

Table1. Punctuation groups

Context Detection In Web Queries. Page 14

To avoid losing too much of the individual words and adding to processing

complexity it is advised to use white space as delimiters and remove punctuations

only if a word begins or ends with a punctuation.

When finding indexable terms it is difficult to say when a word or group of words

is important enough to be indexed. The case of the word says a lot about its

importance and a decision whether ’PET’ and ’pet’ should mean the same thing has to

be made. An easy approach is to add more importance to upper case words as they

tend to be abbreviations of organizations, terms and/or concepts.

Nouns usually carry most semantic weight and other word groups could be

removed. In [19] it is suggested that nouns situated side by side could be placed in

noun groups (or compound term) and not just single terms. For example a sentence

like ’In computer science we usually...’, ‘computer science’ could be indexed as a

single compound term. Syntactic distance between nouns, meaning the distance

between two nouns where they are still considered a compound term, is suggested to

be at a threshold of three. Only relying on nouns seems to disregard too much

information and a term histogram of a mix of terms and compound terms is therefore

preferred. Digits and dates present yet another problem. In some cases it might be

very useful to be able to search for a given year or date. Some dates and years are

very important - e.g.: ’9/11’. Dates and years could be normalized and indexed,

although it would require some parsing as dates can be in many formats. If digits are

removed, searching for a specific year is not possible, but most of the time that does

not make a lot of sense anyway as a year normally cannot be connected with a single

searchable item e.g. search query ’2000’ makes sense. One idea is to treat years as

nouns and thus include them in the compound terms. If a noun and a year are

syntactically close, the year may be important - e.g. searching for ’exploration 1492’.

The danger of including digits is that it could lead to an extremely long term list in

the index if documents contain a lot of distinct numbers. Spell checking all terms and

compound terms found is very difficult. Even if it is assumed that names start with a

capital letter so they can be identified, there are plenty of other character

constellations that do not fit spelling rules. Again, the program variable ’x.id’ is a

Context Detection In Web Queries. Page 15

good example. No dictionary would allow such a term. Misspellings might be

removed by their frequency, i.e. that terms which appear less than a given minimum

threshold are removed (hopefully misspellings are rare). Likewise, very common

terms could be removed if they appear more than a given maximum threshold.

 Stemming

Stemming is used to remove word suffixes (and possibly prefixes). This reduces the

number of unique terms and gives a user’s search query a better recall. If taking the

classical example from textbooks on stemming, words such as analysis, analyzing,

analyzer and analyzed all stem to ’analy’. This example shows that stemming

introduces an artificial increased polysemy. Without stemming the term histogram

could grow to an unmanageable size. [20] Compares benefits from eight stemming

projects and finds conflicting results. Therefore, some search engines do not use

stemming at all. [21] Reports that stemming on average increases performance by 1-

3% compared to no stemming and for some queries even better. Further, it is shown

overall that prefix removal reduces the result yet specific queries perform better with

prefix removal. When using stemming, it is not advised to find a word’s ’true’ root.

Linguistic stemmers are simply not good enough to make such a stemming efficiently

at this time.
.

 Term Weighting

The idea of term weighting is to give terms different weights when situated in

different contexts. For example, if a term is located in a title tag, the term is assigned

more weight than a term in a paragraph. Another way is simply to use the term

frequency (how many times does the term appear in a document) or a combination of

the two. There exist many term weighting algorithms, but the one generally used and

with consistently good results is the term frequency-inverse document frequency (Tf

× Idf). Tf × Idf makes three basic assumptions [22].

1. Rare terms are no less important than frequent ones

2. Multiple appearances of a term in a document is no less important than single

appearances

Context Detection In Web Queries. Page 16

3. Long documents are no more important than short ones

Together these assumptions constitute normalized Tf ×Idf. Term frequency is

simply the number of times a given term appears in a document divided by the

number of terms occurring, and the inverse document frequency is a measure of the

general importance of a term.

 Web Crawler

A Web crawler is a computer program that browses the World Wide Web in a

methodical, automated manner. Other terms for Web crawlers are ants, automatic

indexers, bots, and worms[1] or Web spider, Web robot, or—especially in the FOAF

community—Web scutter[2].

This process is called Web crawling or spidering. Many sites, in particular search

engines, use spidering as a means of providing up-to-date data. Web crawlers are

mainly used to create a copy of all the visited pages for later processing by a search

engine that will index the downloaded pages to provide fast searches. Crawlers can

also be used for automating maintenance tasks on a Web site, such as checking links

or validating HTML code. Also, crawlers can be used to gather specific types of

information from Web pages, such as harvesting e-mail addresses (usually for spam).

A Web crawler is one type of bot, or software agent. In general, it starts with a list

of URLs to visit, called the seeds. As the crawler visits these URLs, it identifies all

the hyperlinks in the page and adds them to the list of URLs to visit, called the crawl

frontier. URLs from the frontier are recursively visited according to a set of policies.

(b) Data Indexing
As search engines’ indexes have grown very fast in the past few years, the Data Indexing

part is becoming the most important part of the data processing within a search engine. If

data is not indexed properly, the search engine cannot be expected to yield good results to

search queries. In the previous section we discussed what steps need to be considered in

the data preprocessing, prior to the actual indexing and as a result the document

processing plays a very important role in the data indexing. The results from the

document processing should have identified which terms are to be indexed, but the data

Context Detection In Web Queries. Page 17

indexer must take the final decision of what should be included and what data can be

excluded. The naive approach of simply indexing every term that occurs within the

downloaded documents would require enormous amounts of data storage, and could also

result in a slow response time to queries due to computational inefficiency. In this section

we discuss how terms can be indexed in order to get positive results to search queries.

 Traditional Indexing

A popular way of creating an index for search engines is to add the terms from the

document processor to the index, sometimes calculate term-proximity within the

documents and add that information to the index. This way, it is possible to search

for combinations in the documents, e.g. for a query like ’computer science’, the

search engine would rank the documents highest that have the two terms side-by-

side. However, this additional information, i.e. the term proximity, makes the index

larger and might make the search engine inefficient. This is where the concept of an

inverted file is introduced. Most traditional search engines use this structure to

represent their index with great results.

When representing such large amounts of data it is not feasible to list the words

per document in an index. Instead an inverted index data structure is used which lists

the documents per word. An inverted index is an index structure storing a mapping

from words to their locations in a document or a set of documents, allowing full text

search. This structure also optimizes the speed of the query as the query can look-up

the word and find the documents containing it.

An inverted index has many variants but usually contains a reference to documents

for each word and, possibly, also the position of the word in the document. If we

have the set of texts

T = {τ0 = i love you, τ1 = you love i, τ2 = love is blind, τ3 = blind justice},

Context Detection In Web Queries. Page 18

Table 2. Inverted table

When searching for the words love and blind we get the result set {0, 1, 2} ∩ {2,

3} = {2}.

A full inverted index can be created from the same text set T by adding the local

word number giving a full inverted index as seen in Table

Table 3. Full Inverted Table

When searching for the phrase i love you we get hits for both τ0 and τ1, but if we

use the positioning we will only get τ0 as seen in bold in Table.

The index might also include details such as:

Position of a word

Position of the starting character

Term weights

 Term frequency

 Clustering

Another possible way of indexing or improving an index, is to arrange documents

into clusters, or categories. In this way, the documents dealing with similar or the

same subject would be placed in the same category. Using categorization, it would be

possible to only index the terms that are descriptive for each category. This would

Context Detection In Web Queries. Page 19

decrease the size of the term histograms and in turn also decrease the size of the

index. Using a clustered index can hopefully give us a more detailed index, which In

turn would give more precise and relevant search results. For example, if a query for

‘computer science’ was submitted, the search engine would try and predict in which

of the predefined categories the search terms are a part of. Then the search engine

could search within these categories and return the results categorized and by

relevance. However, this categorization comes with added computational effort since

the clustering requires additional information stored in the inverted file structure and

not to mention the calculation of the clusters themselves.

Essentially, the clustering could be yet another detail in our inverted file as

mentioned above. Using steering as additional information in our index, the index

would be more specific and contain the following details for each indexed term:

• List of documents where the term occurs

• The term weight

• Position within each document

• List of categories the word belongs to

As mentioned above, the indexer has to calculate the context for each document and

decide which category, or even categories, it belongs to. Also, the categories that

documents should adhere to must either be pre-calculated, in order to make this

procedure faster, or they could be calculated in real-time.

Calculating the categories real-time is computationally expensive. This is because

if a document is added to the index and does not match any of the already calculated

categories, a new category is created. When a new category is added, all the already

indexed documents need to be checked to see if they match the new category. If

documents have been moved to new categories, all categories need to be recalculated.

There are ways of doing such add ins more effectively, but it is very complex and still

time consuming. Therefore, the predefined categories seem like the best way to go.

However, this also comes at a price.

In order to predefine the categories, the indexer must be given a training-set to use

for its categorization this training-set must be descriptive enough to be able to define

Context Detection In Web Queries. Page 20

all the categories of the downloaded documents. Such datasets are hard to come by,

and even harder to create so this is not an easy task.

Clustering Algorithms

Several algorithms have been developed and used to categorize text documents, some

of which are listed below:

• Latent Semantic Indexing (LSI)

• Independent Component Analysis (ICA)

• Probabilistic Latent Semantic Indexing (PLSI)

• Bisecting k-means

• Spherical k-means

• K-Nearest Neighbor (kNN)

• Bayes-Classifier

• Principal Component Analysis (PCA)

• Artificial Neural Network

• Non-negative Matric Factorization (NMF)

Also, we found another algorithm, Frequent Term-based Clustering (FTC), promising

but not many articles discuss its effectiveness or performance. The most common

algorithms are probably LSI, PLSI, ICA and Bisecting k-means.

(c) Ranking

Whenever a user submits a query to a search engine, the engine returns a sorted list of

results. This list is what the ranking algorithm in the search engine sees as the most

relevant results, the first result being the most relevant one etc. In today’s search engines

these ranking algorithms can differ very much in design and performance. Any user

familiar with the use of search engines knows that the results to a given query are rarely

the same for the most popular search engines. In fact, these lists can be very different.

This is in part due to which pages the search engines have indexed, but also due to the

different underlying ranking algorithms.

Context Detection In Web Queries. Page 21

Generally, ranking a web page is not as easy as it seems. For example, if a

ranking algorithm is based solely on word matching and a user submits a query using

very common keywords such as sports or movies, the algorithm ranks all pages

containing these keywords equally and thus, possibly, gives the user a lot of useless

results in random order. A more sophisticated algorithm would try and determine the

relevance of the pages containing the keywords and rank them accordingly. As the

number of web pages and other data on the Internet increases, returning relevant results

to search queries becomes more difficult. Much effort has been put into the development

of ranking algorithms in order to return more relevant results to the user.

 The number of documents in the indices has been increasing by many orders of

magnitude, but the user’s ability to look at documents has not. People are still only

willing to look at the first few tens of results.

A user is less likely to continue using a search engine which returns few relevant

results within the first tens of the results. There are mainly three strategies in practice

today when it comes to ranking search results. Namely, Link Analysis, Vector Space

Model and Relevance Feedback. In the following subsection these strategies will be

briefly introduced.

 Link Analysis

Link analysis in general is used to try and find a link between two subjects. For

example, link analysis is used in law enforcement when a criminal’s bank records,

telephone calls etc. are investigated to try and find evidence of his or her crime.

Banks and insurance companies also use this kind of link analysis to try and detect

fraud. Within the field of search engines, the link analysis strategy to ranking is

based on how the pages on the Internet link to each other. The assumption is that

pages regarding a specific subject will, with good probability, link to other pages on

similar or the same subject. This seems like a very reasonable assumption and has

worked quite well in practice, e.g. Google uses this approach.

An example of ranking algorithm based on link analysis is Google’s own Page

Rank algorithm [23]... The following quote taken from Google’s Technology

Web page explains the essence of the Page Rank algorithm:

Context Detection In Web Queries. Page 22

Page Rank relies on the uniquely democratic nature of the web by using its vast

link structure as an indicator of an individual page’s value. In essence, Google

interprets a link from page A to page B as a vote, by page A, for page B. But, Google

looks at more than the sheer volume of votes, or links a page receives; it also

analyzes the page that casts the vote. Votes cast by pages that are themselves

”important” weigh more heavily and help to make other pages ”important”.

So basically, a page’s rank in Google’s search results is higher if many, preferably

important, pages link to that page. The higher the Page Rank, the more relevant the

page is (according to Google). The mathematics behind the Page Rank algorithm is

quite impressive but will not be explained here. For a good explanation of the

mathematics and other design issues of the algorithm see [24].

Another example of a ranking algorithm using link analysis is the HITS

algorithm. The HITS algorithm utilizes the link structure of the Internet like the Page

Rank algorithm. The HITS algorithm is based on hubs and authorities, i.e. the

algorithm calculates two values for each query, a hub value and an authority value.

The authority value estimates the content of the page while the hub value estimates

the value of its links to other pages.

 Vector Space Model

Ranking using Vector Space Model (VSM) is very simple. Basically, each document

in VSM is represented as a column in a term-document matrix. Each row in the term-

document matrix represents a term. The value at index tdi,j says how many times term

i occurs in document j. For example:

Context Detection In Web Queries. Page 23

Where the column vector di is called the term-vector for document i. The

term-vectors are often in very high dimensions as each term represents a single

dimension, i.e. the richer the vocabulary, the higher the term-vector dimensions.

When ranking documents using VSM, the Cosine Similarity Measure

calculates the angle between two vectors in the above matrix. The closer the angle

is to zero, the more similar the two documents are. Therefore, when a query is

submitted to a search engine, a term vector is constructed for that query in a

similar way as it is done for documents. The best matches for that query are the

documents with the highest similarity to the query vector.

Measuring similarity between two term-vectors is frequently done using

the Cosine Similarity Measure. The cosine similarity measure between vector a

and b is defined as the angle between the two vectors:

Where a • b is the dot product between the two vectors and |k| refers to the

length of the vector. The similarity is found by looking at the angle between the

two vectors. The smaller the angle, the greater the similarity between the vectors.

Looking at figure, it is easy to see that the smaller the angle θ, the more similar

the vectors |a| and |b| are. When θ = 0 the vectors are identical.

Fig no .5 Cosine similarity

The Vector Space Model and the calculation and usage of the Cosine Similarity

Measure along with other similarity measures.

Context Detection In Web Queries. Page 24

 Relevance Feedback

Relevance feedback is used to try and improve the relevance of the results returned

by a search engine, where the search engine’s original ranking usually follows one of

the above mentioned schemes. The idea is that the search engine can learn which

results are relevant for a given query. However, the machine has to get some

feedback data in order to improve its results. Feedback information is used to either

adjust the weights in a given query and/or add terms to the query to make it more

specific. There are mainly two types of relevance feedback used, namely, explicit

feedback and implicit feedback. Explicit feedback is where a user tells the search

engine explicitly what results is relevant and which are not. Implicit feedback is

where the search engine “monitors” which links a user follows for the given query.

The search engine then makes the assumption that the links followed are more

relevant than the others and in that way adjusts that page’s rank in subsequent,

similar queries.

It is intuitively clear that explicit feedback can be very useful to improve ranking

results, given that the users are honest and consistent in their evaluations. In [25],

Patil et. al. introduce a tool that can be used to get explicit feedback from users.

Implicit feedback is not so intuitive since one can visit 10 search results before

finding any useful result and therefore the other nine results should not get a higher

ranking for the query. However, in [26], Jung et. al. found that considering all ”click-

data” in a search session has the potential to increase recall and precision of the

queries. Also, in [27] Rohini and Ambati found that using implicit relevance

feedback based on search engine logs and user profiles gave improved precision

results.

Context Detection In Web Queries. Page 25

2.1.4 Performance Measures

 (a) Precision
 The proportion of retrieved and relevant documents to all the documents retrieved:

 Total Number of Relevant Retrieved Documents

Total Number of Retrieved Documents

A perfect Precision score of 1.0 means that every result retrieved by a search was

relevant (but says nothing about whether all relevant documents were retrieved)

(b) Recall
The proportion of relevant documents that are retrieved, out of all relevant documents

available:

Total Number of Relevant Retrieved Documents

Total Number of Relevant Documents

A perfect Recall score of 1.0 means that all relevant documents were retrieved by the

search (but says nothing about how many irrelevant documents were also retrieved).

Both the measures are used to measure the accuracy of a system’s ability to retrieve

documents with respect to a given query. Ideally, you would like to achieve both high

recall and high precision. In reality, you must strike a compromise. Indexing terms that

are specific yields higher precision at the expense of recall. Indexing terms that are broad

yields higher recall at the cost of precision. For this reason, an IR system’s effectiveness

is measured by the precision parameter at various recall levels.

Context Detection In Web Queries. Page 26

(c) Some Other Measures
There are a number of more advanced and specific types of precision and recall measures

that are used as modern evaluation measures. [9]

 Fallout is a measure of how quickly precision drops as recall is increased. Fallout

is defined as the probability to find an irrelevant among the retrieved documents:

Total Number of Irrelevant Retrieved Documents

Total Number of Retrieved Documents

 R-precision is the precision at R where R is the number of relevant documents in

the collection for the query. It is the precision after R retrieved documents, where

R is the number of relevant documents that exists for that query. An R-precision

of 1.0 is equivalent to perfect relevance ranking and perfect recall. However, a

typical value of R-precision which is far below 1.0 does not indicate the actual

value of

 Recall (since some of the relevant documents may be present in the hit-list

beyond point R).

 Initial precision is the precision at recall 0% in the interpolated precision-recall

graph. It is an indication of relevance ranking of the top few hits. Similarly, one

can define a final precision that is the precision at 100% recall. Final precision

indicates how far down one need to go in the hit-list to find all relevant

documents.

 Precision at 0.5 Recall is the precision after half the relevant documents have

been retrieved.

 Average Precision is the average of precision scores at every relevant document

in the retrieved set.

 Recall (1000) is the recall after 1000 retrieved documents. This is more practical

than true recall over all documents since modern systems can return a huge

number of results

Context Detection In Web Queries. Page 27

2.2 Basics of Information Theory
2.2.1 Information Theory
Information theory is a branch of applied mathematics and electrical engineering

involving the quantification of information. Historically, information theory was

developed by Claude E. Shannon to find fundamental limits on compressing and reliably

storing and communicating data. Since its inception it has broadened to find applications

in many other areas, including statistical inference, natural language processing,

cryptography generally, networks other than communication networks — as in

neurobiology[1] the evolution[2] and function[3] of molecular codes, model selection[4]

in ecology, thermal physics,[5] quantum computing, plagiarism detection[6] and other

forms of data analysis.[7]

A key measure of information in the theory is known as entropy, which is usually

expressed by the average number of bits needed for storage or communication.

Intuitively, entropy quantifies the uncertainty involved when encountering a random

variable. For example, a fair coin flip (2 equally likely outcomes) will have less entropy

than a roll of a die (6 equally likely outcomes).

Applications of fundamental topics of information theory include lossless data

compression (e.g. ZIP files), loss data compression (e.g. MP3s), and channel coding (e.g.

for DSL lines). The field is at the intersection of mathematics, statistics, computer

science, physics, neurobiology, and electrical engineering. Its impact has been crucial to

the success of the Voyager missions to deep space, the invention of the compact disc, the

feasibility of mobile phones, the development of the Internet, the study of linguistics and

of human perception, the understanding of black holes, and numerous other fields

[citation needed]. Important sub-fields of information theory are source coding, channel

coding, algorithmic complexity theory, algorithmic information theory, and measures of

information.

 Shannon–Hartley Theorem

In information theory, the Shannon–Hartley theorem is an application of the

noisy channel coding theorem to the archetypal case of a continuous-time analog

communications channel subject to Gaussian noise. The theorem establishes

Shannon's channel capacity for such a communication link, a bound on the

Context Detection In Web Queries. Page 28

maximum amount of error-free digital data (that is, information) that can be

transmitted with a specified bandwidth in the presence of the noise interference,

under the assumption that the signal power is bounded and the Gaussian noise

process is characterized by a known power or power spectral density. The law is

named after Claude Shannon and Ralph Hartley.

Considering all possible multi-level and multi-phase encoding techniques,

the Shannon–Hartley theorem states that the channel capacity C, meaning the

theoretical tightest upper bound on the information rate (excluding error

correcting codes) of clean (or arbitrarily low bit error rate) data that can be sent

with a given average signal power S through an analog communication channel

subject to additive white Gaussian noise of power N, is:

 Where

 C is the channel capacity in bits per second;

 B is the bandwidth of the channel in hertz (pass band bandwidth in case of a modulated

signal);

 S is the total received signal power over the bandwidth (in case of a modulated signal,

often denoted C, i.e. modulated carrier), measured in watt or volt2;

 N is the total noise or interference power over the bandwidth, measured in watt or

volt2; and

 S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the

communication signal to the Gaussian noise interference expressed as a linear power ratio

(not as logarithmic decibels

2.2.2 Entropy and Co-information

 Entropy

The entropy, H, of a discrete random variable X is a measure of the amount of

uncertainty associated with the value of X.

Context Detection In Web Queries. Page 29

Suppose one transmits 1000 bits (0s and 1s). If these bits are known ahead

of transmission (to be a certain value with absolute probability), logic dictates that

no information has been transmitted. If, however, each is equally and

independently likely to be 0 or 1, 1000 bits (in the information theoretic sense)

have been transmitted. Between these two extremes, information can be

quantified as follows. If {X}, is the set of all messages x that X could be, and p(x)

is the probability of X given x, then the entropy of X is defined

Here, I(x) is the self-information, which is the entropy contribution of an

individual message, and {E}{X} is the expected value.) An important property of

entropy is that it is maximized when all the messages in the message space are

equiprobable p(x) = 1 / n,—i.e., most unpredictable—in which case H(X) = logn.

The special case of information entropy for a random variable with two outcomes

is the binary entropy function:

 Co-information

The concept of co-information is a natural one to use in attempting to

build a theory of machine learning, just as the concept of ‘grouping of the

variables’ the co- information theory define as a part of probalistic method,

entropy and mutual information. Both represent degrees of “hanging

togetherness” amongst elements. We argue that the two concepts are the same.

They arise from intuitions (both from mathematics and from neuroscience) those

patterns (regularities, symmetries, dependencies, redundancies) in the world, can

be captured in structured groupings of variables. In this context, the memories

embedded in a group of variables are the patterns that are statistically more likely

to appear in this group. The overall propensity of a group to produce patterns

together is what we mean by the co-information: it is a measure of ‘groupness’

[3].

Context Detection In Web Queries. Page 30

2.3 Contextual Retrieval on Web
Contextual retrieval is one of the major long term challenges in information

retrieval. Contextual retrieval is defined as combine search technologies and

knowledge about query and user context into a single framework in order to

provide the most ‘appropriate’ answer for a user's information needs”. The use of

context in information retrieval is not a new idea. Jing et al. [33] use context as a

basis of measuring the semantic distances between words. During indexing, the

context of terms in documents is generated and stored in vector form. During

retrieval, the context of a term in a query is generated and is used to measure the

semantic distance between itself and candidate morphological variants in

documents. Mutual information of terms is used to match related terms during the

calculation of context distance. Billhardt et al. [34] propose a context-based

vector space model for information retrieval. After the term-document matrix has

been constructed, it is used is a basis for generating a term context matrix where

each column is considered a semantic description of a term. This term context

matrix is then combined with the document vectors from the term-document

matrix to transform it into the final document context vector used for retrieval.

The WEBSOM [35] system is an example of another way in which context has

been used for information retrieval. It uses a two level Kohonen’s self-organizing

map approach to group words and documents of contextual similarity. Context in

WEBSOM is limited to the terms that occur direct either sides of the term in

question. IntelliZap [36] is a context-based web search engine that requires the

user to select a key word in the context of some text. The approach makes

effective use of the contextual information in the immediate vicinity of the

keywords selected, so that retrieval precision can be improved. Inquires [37, 38]

is another web search engine that uses contextual information to improve search

results. A user must specify some contextual information, considered as

preferences, pertaining to the query. This context (preferences) provides a high-

level description of the users information need and ultimately control the search

strategy used by the system. Hyperlink information can be a very valuable source

Context Detection In Web Queries. Page 31

of evidence for web information retrieval and it is either based on a set of

retrieved documents during retrieval or on a global analysis of the entire

document collection during indexing. Kleinberg [39] illustrates how hyperlink

information in web pages can be used for web search when using a set of

retrieved documents. An approach that also uses the characteristics of link

information from a set of retrieved documents for topic distillation is presented by

Amitay et al. [40]. PageRank, as proposed by Brin et al. [41], is hyperlink-based

retrieval algorithm that calculates document scores by considering the entire

hyperlink connected graph represented by all the links in the entire document

collection. It uses link information to model user behavior by calculating the

probability that a user will eventually visit a certain page. This probability or Page

Rank of a page is used to prioritize its ranking during retrieval.

The model with the most similar form of ours is [44], though it uses

traditional query expansion to determine context of query. Another closely related

work [43], implicitly deduce context using three different algorithms. Finally

[42], offers Term context model as a new tool for accessing term presence in a

document.

Context Detection In Web Queries. Page 32

Chapter 3
The Algorithmic Framework

In this chapter we give the details of the Context Detection Algorithm designed to extract

contextual evidence from the user query. The algorithm is based on an information-

theoretic measure: the co-information and is used to generate a context coverage list

given a multi-term query.

3.1 Multi-term Query
Multi term query of keywords plays a quintessential role in the Web search paradigm.

Recent studies claim that queries involving one or two keywords are most common in

Web searches. While most Web Search engines perform very well for a single-keyword

query, their precision is not good for query involving two or more keywords because the

search results usually contain a large number of pages with weak relevance. Also, the

users have a well-defined query re-formulation behavior, i.e., most multiple term queries

include more than one context and users usually reformulate their queries by context

instead of terms. A context is usually included as a sub-query in a user’s query and it has

strong impacts on the quality of search results.

3.2 Using Snippets
A query typically contains only a few terms, which provide limited information. One

straightforward method is to submit a query to a search engine to get the top ranked

search pages. Those retrieved results provide some richer information about the query. In

other words, we call the retrieved results of query as the local information of this query.

Meanwhile, a query has its global information, based on the whole corpus, to provide

more information. However, the global based approach can cause high computational

complexity and it was shown in [3] that a local based approach outperforms the global

Context Detection In Web Queries. Page 33

based approach. So in this research, the top ranked search results are utilized to enrich the

query.

In the local analysis, we select significant characteristics from each (retrieved and

relevant) document and name them ‘features’, i.e., given the search results for a query,

we need to decide what features should be extracted from the search engine to construct

the enrichment. Generally, three kinds of features are considered: the title of a page, the

snippet generated by the search engine, and the full plain text of a page. We use the top N

ranked snippet retrieved by search engine as the local search result of query. A Snippet is

a short fragment of text extracted from the document content [18].

3.3 Co-information metric
Co-information measures the information that two discrete random variables share: it

measures how much knowing one of these variables reduces our uncertainty about the

other. As for a sub-query generated by the original query, the Co-Information between its

terms can be used to measure the information bound up in those terms. The more

information bound up one sub-query has, the higher possibility to be a topic it has.

Mathematically this information-theoretic measure is defined as [3]

where v’ = (x1i; x2j; …; xnl) and T ’ is any subset of v’. v' means the number of elements

in v’, and the same with T' . In this way, for n events x1i, x2j, …, xnl, we define the co-

information, CI, between them I (x1i ; x2j ; …; xnl) by

We utilize the Co-Information metric to measure the degree of one sub-query being a

topic. In our approach, the probability space of one query is built based on the local

Context Detection In Web Queries. Page 34

results of all sub-queries. Given a query Q = t1 t2 …tn, where ti (1<= i <=n) is the ith term

of Q, we obtain the context coverage list as described in the following algorithm:

3.4 Context Detection Algorithm
Given a query Q = t1 t2 …tn, where ti (1<= i <=n) is the ith term of Q, the context coverage

list is obtained as described in the following algorithm [3]:

Step 1: Get the set of all sub-queries, SQ = {sqk}, 1<=k<=2n+1-2, where 1<=k<=2n+1-2

is the number of all sub-queries and 2n-2 = S1 n +S2 n +…+Sn-1 n

Step 2: Enrich each sub-query by submitting it into search engine and get the top N

ranked snippets. In this way, we can get (2n-2). N* snippets for query q. The snippet set is

defined as S(Q) = {sni}, 1<=i<=(2n-2). N*, where sni is the ith snippet. N* = min(N, N’),

where N’ is the actual number of retrieved snippets by search engine for each query.

Step 3: The probability of sub-query in S (Q) is defined as

p (sqk) is the probability of occurrence of sqk in collection.

Step 4: As for sqk, we get its sub-query set, defined as SQk = { sqk1..sqk2,….sqk2 k -2}.

Step 5: Order all sub-queries in a descendant value of Co-information and split it into two

parts by the threshold of zero. In other words, the first part includes the sub queries with

positive CI and the last part includes the sub-queries with negative CI.

Step 6: Finally, the list of context words we detected from SQ is defined as: Context

Coverage List, CL = { C1, C2, …., Ci,…CM }, where Ci is one sub-query which has

positive CI and M is the total number, and I(Ci) >= 0, I(Ci)>=I(C i-1), 1<= i<=M.

Context Detection In Web Queries. Page 35

 Chapter 4.

Experimental Setup and Analysis

In this chapter we give the details of implementation. An application is built that gives

the context coverage list as output which can be used for query enrichment to yield

remarkable improvement in the performance.

4 .1 Implementation Detail
We developed our application in C# which is a high performance language for technical

computing and programming in an easy to use environment where problems and solution

are expressed in familiar mathematical notation.

The create graphical user interface in C# which provides user a interface by

which put own query and find the related document from the database and find the

context of the related to user query and provide the coverage list from the database .

The data is use a static database because the corpus data base is very difficult to

fetch without purchasing but we have try to fetch with the help of Google API, yahoo

API and that is not feasible. So we have created the data base and store the document. So

this application is a prototype.

Context Detection In Web Queries. Page 36

The Graphical User Interface

Figure 5. Graphical user interface

 User insert file type in the option field and put own query in query field.

4.2 Sample Snippets

To detect the context we have considered some queries and snippets generated specific to

the query are as follows:

Example Queries:

(a) What is bank loan?

(b) Bank mortgage?

(c) Borrower and finance?

Context Detection In Web Queries. Page 37

Sample Snippet 1

Sample Snippet 2

Sample Snippet 3

)

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available.

The UK mortgage (2) market is one of the most innovative and competitive in the world…………finance
against various assets………….. proprietary lenders (typically banks (14)). …can obtain loan (24) which is
secured against mortgage (28)……..property (42)…..Since 1982, when the market was substantially…….
deregulated, ………… mortgage (74) types.

A new mortgage (2) is a loan (6) from bank (8) secured by real property (12) through the use of a legal
instrument mortgage (18)……………., is most often used to mean loan (35). A home buyer or builder can
obtain financing …………………………….financial institution, such as a bank (61), either directly or
indirectly through intermediaries……... and other characteristics can vary considerably…..bank (98)

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available.

Banks (0) provide credit money against property (6)………….some mortgage (10) …………….……all

eligible to apply for the loan (18). It enables the borrower to apply for finance against a fixed asset, from

bank (28). The maximum amount of ………………….. Repayment is done through Equated Monthly

Instalments or EMI made to the bank (85). A wide range of……. mortgage (97) types are available.

Context Detection In Web Queries. Page 38

Chapter 5

Conclusion

Conclusion

We implemented a novel context detection algorithm given a user’s query. The aim was

to use “Context as a query” and treat the context as a background for possible refinement

of query.

Possible future directions can be towards making this technique easily pluggable

into existing systems and also finding alternatives other than Co-information metric for

the detection of context.

Context Detection In Web Queries. Page 39

References

[1] MPS, Bhatia, & Akshi, K Khalid. “A Primer on the Web Information Retrieval Paradigm”,

Journal of Theoretical and Applied Information Technology (JATIT), 2008, 4, (7), pp 657-662.

[2] MPS, Bhatia, & Akshi, K Khalid “The Context-driven Generation of Web Search”,

Proceedings of CISTM, 2008, pp 281-287.

[3] MPS, Bhatia, & Akshi, K Khalid “Contextual Proximity Based Term-Weighting for improved

Web Information Retrieval”, Proceedings of KSEM 2007, Lecture notes of AI-4798, Springer,

2007, pp 267-278.

[4] H. Billhardt, D. Borrajo, V .Maojo, “A context vector model for information retrieval”. J. Am.

Soc. Inf. Sci. Technol. 53(3), 236–249 (2002).

[5] L. Finkelstein, E.Gabrilovich, Y.Matias, E.Rivlin, Z.Solan, G. Wolfman, E.Ruppin.: “Placing

Search in context: the concept revisited”. In: Proceedings of the 10th International World Wide

Web Conference, pp. 406–414 (2001)

[6] Stephen Robertson topic” Understanding Inverse Document Frequency: On

theoretical arguments for IDF” Microsoft Research Reprinted from: Journal of

Documentation 60 no. 5, pp 503–520

[7] M. Kobayashi, K.Takeda: “Information Retrieval on the Web”. ACM Computing

Surveys 32(2) (2000)

[8] Monika Henzinger, “Information Retrieval on the Web”, 39th Annual Symposium on

Foundations of Computer Science (FOCS'98), Palo Alto, CA.

[9] Orland Hoeber and Xue Dong Yang” Interactive Web Information Retrieval Using

WordBars” Department of Computer Science University of Regina Regina,

Saskatchewan, Canada S4S 0A2 IEEE-2006

Context Detection In Web Queries. Page 40

[10] A. Z. Broder. Min-wise independent permutations. In Journal of Computer and

System Sciences, volume 60, pages 630–659, 2000.

[11] I.A. Witten, A.Moffat, and T.C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kauffam, 1999.

[12] S. Chakrabarti. Mining the Web: Analysis of Hypertext and Semi Structured Data

Mining the Web: Analysis of Hypertext and Semi Structured Data. Morgan Kaufmann,

2003.

[13] Hearst, M. A. (2000). Next generation web search: Setting our sites. IEEE Data

Engineering Bulletin, Special issue on Next Generation Web Search, Luis Gravano (Ed.)

[14] S. Brin and L. Page. The anatomy of a large-scale hyper textual Web search engine.

In Proceedings of 7th International World Wide Web Conference, Brisbane, Australia,

pages 107–117, 1998.

[15] J. Kleinberg. Authoritative sources in a hyper-linked environment. In Proceedings of

9th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, U.S., pages 668–

677, 1998.

[16] R. Lempel and S. Moran. The stochastic approach for link-structure analysis

(SALSA) and the TKC effect. In Proceedings of the 9th International World Wide Web

Conference, Amsterdam, The Netherlands, pages 387–401,2000.

[17] K. Bharat and M. Henzinger. Improved algorithms for topic distillation in a hyper-

linked environment. In Research and Development in Information Retrieval, pages 104–

111, 1998.

Context Detection In Web Queries. Page 41

[18] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

Comput. Surv., 34(1):1–47, 2002.

[19] Ricarco Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley, 1999.

[20] W.B.Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and

Algorithms. Prentice Hall, 1992.

[21] D. Hull and G. Grefenstette. A detailed analysis of english stemming algorithms.

Technical report, Rank XEROX, 1996.

[22] Franca Debole and Fabrizio Sebastiani. “Supervised term weighting for automated

text categorization”. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied

computing, New York, NY, USA, ACM Press, pages 784–788, 2003.

[23] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper textual Web

search engine. Computer Networks and ISDN Systems, 30(1–7):107– 117, 1998.

[24] Amy N. Langville and Carl D. Meyer. Google’s PageRank and beyond: The science

of search engine rankings. Princeton University Press, 2006.

[25] Stefan Wild, James Curry, and Anne Dougherty. Improving non-negative matrix

factorizations through structured initialization. Pattern Recognition, 37(11):2217–2232,

2004.

[26] A. Kehagias, V. Petridis, V. Kaburlasos, and P. Fragkou. A comparison of word- and

sense-based text categorization using several classification algorithms, 2003

[27] Ambati Vamshi and U Rohini. Improving re-ranking of search results using

collaborative filtering. Lecture Notes in Computer Science, 4182:205–216, 2006.

Context Detection In Web Queries. Page 42

[28] Stephen Robertson “Understanding Inverse Document Frequency: On theoretical

arguments for IDF” Microsoft Research 7 JJ Thomson Avenue Cambridge CB3 0FBUK

(and City University, London, UK) Journal of Documentation 60 no. 5, pp 503–520

[29] R.R. Joshi and Y.A. Aslandogan. Concept-based web search using domain

prediction and parallel query expansion. Proceedings of the 2006 IEEE International

Conference on Information Reuse and Integration (IEEE Cat No.06EX1467), page 6 pp.,

2007.

[30] J. Zakos, B.Verma,: A Novel Context-based Technique for Web Information

Retrieval World Wide Web 9(4), 485–503 (December 2006).

[31] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In

Proceedings of 14th International World Wide Web Conference, pages 902–903, Chiba,

Japan, 2005.

[32] R. Ali and M.M.S. Beg. A framework for evaluating web search systems. WSEAS

Transactions on Systems, 6(2):257–264, 2007.

[33] H. Jing, E Tzoukermann: Information retrieval based on context distance and

morphology. In: Proceedings of the 22nd Annual International ACM SIGIR Conference

on Research and Development in information Retrieval, pp. 90–96. ACM Press, New

York (1999)

 [34] T. Honkela, S. Kaski, K.Lagus, T Kohonen,: WEBSOM — self-organizing maps of

document collections. In: Proceedings of WSOM_97 (Workshop on Self-Organizing

Maps), Espoo, Finland, pp. 310–315 (1997)

[35] E.Glover, S.Lawrence, M., Gordon, W.Birmingham, C Lee Giles,.: Web search

your way. Commun. ACM 44(12), 97–102 (2001)23. Lawrence, S., Giles, C.: Context

and page] analysis.

[36] S. Lawrence, C. Giles, Context and page analysis for improved web search. IEEE

Internet Computing 2(4), 38–46 (1998).

Context Detection In Web Queries. Page 43

[37] J.Kleinberg,: Authoritative sources in a hyperlinked environment. Journal of the

ACM 46(5), 604–632 (1999)

[38] E. Amitay, D.Carmel, A.Darlow, R.Lempel, A.Soffer: Topic distillation with

knowledge agents. In: Proceedings of the 11th Text Retrieval Conference (TREC-11),

Gaithersburg, Maryland, USA (2002

[39] S.Brin, L.Page: The anatomy of a large-scale hyper-textual web search engine. In:

Proceedings of the 7th WWW Conference, Brisbane, Australia, pp. 107–117 (1998a).

[40] J.Pickens, A.M. Farlance,: Term Context Models for Information Retrieval, ACM

CIKM (2006)

[41] S.Jonathan, et al.: Context Driven Ranking for the Web.

[42] J .Zakos, B.Verma,: A Novel Context-based Technique for Web Information

Retrieval World Wide Web 9(4), 485–503 (December 2006)

[43] S. Birch. Statistical text modelling - towards modelling of matching

problems.Master’s thesis, Informatics and Mathematical Modelling, Technical University

of Denmark, DTU, Richard Petersens Plads, Building 321, DK- 2800 Kgs. Lyngby, 2003.

Context Detection In Web Queries. Page 44

Appendix A: Screen-Shots
Q.1Taking Bank Loan

Context Detection In Web Queries. Page 45

Q.2 About Bollywood Music

