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1. INTRODUCTION

A normalized analytic function f is uniformly convex (starlike) if for every circular arc ~
contained in A := {z € C : |z| < 1} with center { € A the image arc f() is convex
(starlike with respect to f(()). The class of all uniformly convex (starlike) functions is denoted

by UCV(UST). These classes were introduced and studied by Goodman [4, 3] and he has
shown that

(1.1) ercV<:=>§R{1+(z—g)";:((j))} >0, (z,CcA),
:=0r()) ]
(12) fEUST@rﬁR{f(Z)_f(O >0, (2¢€A)

Renning [9] and Ma and Minda [6, 7] have given the following one variable characterization
of the class of uniformly convex functions.

Theorem 1.1. Let f € A. Then f € UCV ifand only if

zf"(2) zf"(z)
(13 R {1 + } e , (z€A).
) & 7 e | Eed
Since the Alexander type result f € UC'V if and only if zf' € UST failed [11], the class
(1.4) S;={f: f=2F', FeUCV}

was introduced by Renning [9]. Also Renning [12] generalized this class to SP(«, 3). Subra-
manian ef al. [14], Bharathi et a/. [1] and Kanas [5] have studied the class of functions called
uniformly k-convex functions.

[n this paper, we define two subclasses of meromorphic starlike functions with positive co-
efficients which are similar to the classes SP(«, 3) and the uniformly k-convex functions and
obtain a necessary and sufficient condition for functions to be in these classes and obtained
certain other related results as a consequences of our main results.

Let £, be the class of meromorphic functions

(1.5) f(z)z;}j;-kZanz” (peN:={1,2,3,...}),
n=p

which are analytic in the punctured disk
E={z:2€C and 0< |z|<1}.
Let 3 () be the subclass of ¥, consisting of functions f(z) satisfying
Zf’(z)>
1.6 §R(~—~m > pa z € A).
(1.6) o )7 (
The class 3, consists of functions f(z) € ¥, of the form (1.5) where a,, > 0 and
Zo(a) = (@) N,
Definition 1.1. Let o > 0; 0 < 3 < 1. Define the class £,(c, 8) by

_ . 1zf'(2) 1z2f'(2)
(1.7) Ty{a, B) = {fEE,,. %{ o F ) }Za > ) + 0, (zEA)}.

The class ip(a, ) is the subclass of Ep(a, B) consisting of functions f(z) € I, of the form
(1.5) where a,, > 0:

F1

(1.8) Zp(a, B) = By N Syl B).
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Definition 1.2. Let o > 0; 0 < 3 < 1. Define the class (e, B) by

(L%B%xm—{fEEw‘id%ﬂ+a+ﬁ§%{—éﬁé?}+a—ﬁ,(zeA*.

p f(2)
(1.10) (e, 8) = B, N T3(e, B).

The class i;(a, ) is defined by

2. THE CLASSES Z,(a, ) AND £, (a, 3)

‘We now prove the following:

Theorem 2.1. If f(2) € X,(a, ), then

Proof. If f € ¥,(c, 3), then by (1.7) we have

»{3) = gl
> an {1}
’ R0 = s

) 2 (52)
fo ez (31L).

To obtain a converse to Theorem 2.1, we first determine the largest radius R, such that the
disk |[w —a| < R, is contained in R(w) > a|w — 1|+ 3. Note that this inequality can be written

as 5
U — 5
( ﬁ) =(u—-12+v) w=u+iv.

<

Hence by (1.6), we have

as desired. §

The square of the distance from (a, 0) to a point in R(w) > a|w — 1| + 3 is therefore given by
2
D=(u—a)?+ (%) —(u—1)>2%

aD - Q[M
du o

Since

—a+1],
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we see that the minimum of d is given by

a+ g3

2
U= = 1) 4+ = .
@=L+ or wu T

Also,ifa?(a—1)+ 8 < ‘;‘_%f, the minimum is at u = 22 Otherwise it is the minimum of the

1+a”
two extremum values.

Note that 5 13
_I_ e
2la—1 L2 TE < — + 1.
o )_HB"I ﬁa_a(l+a)+
Case (i). Leta < 1+ - . In this case,
1 fa+p4 . a+ g 2
R, = F=g =8 = =
e N1+ 1+ a
1=@y* §FE—1%°
1+ o 1+
_ a-l—ﬁ
B 14 e
_ ,_atB
N l+a
Case (it). Leta > 1 + —~— (1+) In this case, R, wmm{a—ﬁ—g,\/—f} where

X = (1-a)?-2a%a-12+2(8-1)(1 —a)+a*a—-1)
= (1—aP(L—a") —2(1 - B)(1 - &)

(1~ a)[(1 ~a){l —o®) — 2(1 ~0)),

For3=0,a=1,X = (1 —a)(—2) = 2a — 2. Then

Ry = min{a—ﬁﬁ, \/(l—a)[(l—a)(l—oﬁ)—2(1*}8)]}

Il

l+a

= min {a— a+,6’ V(1= a)2(1 — a?) —2(1—,@)(1@)}.

14 o
We show that

2
2.1) ( 11’6) > (1—a)*(1 —a®) —2(1 — B)(1 —a).
Note that the inequality (2.1) is equivalent to
2
(2.2) (1—a+‘fi£—1) > (1—-a)*(1-a%) —2(1-B)(1l—a).

Setting 1 — ¢ = 2z in (2.2) yields

2
(x - %) > 2?1 —a?) - 2(1 - Bz

or

B—1 B-1\° 1-6\?
(2.3) a2x2+2w(m+l—ﬁ>+(m> —(a:r:+1+a) =1

Thus we have proved the following:
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Lemma 2.2, Let

a—(ﬁg fora51+§(]1—;§a—)
I, =
VIO =aP0=a?) =20 - B)(1—a) fora>1+ 2
Then
{w:]w—a| <R} C{w:R(w) > alw - 1|+ }.
Note that 3 1-8
(6 -
- f o [ TR
R, <a i orall a> +a(1-|—oz)
and 8 ey
o+ i
B i — forall @< 14—,
SRR T
Hence if 1-8 I~
4 W B Qe &
= +a(l+a) or =S+
we have
Rl:l_a-l—ﬂ
1+«
Therefore
ng}_a-ﬁ—ﬁ
1+ao

Hence we have the following:
Theorem 2.3. If f(z) € X} (&££), then f(2) € 5,(a, B).

Corollary 2.4. The two classes &5 (32£) and ,(cv, B) are equal:

14+a
=. [a+ ﬁ -
z, ( ) = X,(a, 8).
Theorem 2.5. [15] Let f(2) = 5 + 202 an2". Then

14+«

oo
f(z) € i;(af) if and only if Z(n +pa)a, < p(1 —a).
n=p
Corollary 2.6. Let f(2) = % + 377 a,2". Then

@4 f() €Sy p) Fandonlyif Y [n(l+a)+pla+ B)an <p(l - ).

n=p
Corollary 2.7. If f(2) € &,(a, 8), then
" p(l.—B)
"T (l+an+platp)

The result is sharp for f(z) = % -+ m’%ﬁz”.

Corollary 2.8. If f(z) € ip(a,ﬁ), then
1 1-74 1 1-4

iy P <—4 —— " 4P ek and |z|=r1).
™ 1+2a+8 "f(z)l—rp+1+2a+ﬁr (= el =7)
The result is sharp for f(z) = £ + lﬁg;iﬁz”.
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3. THE CLASSES X} (q, 8) AND Z7(c, 3)

Theorem 3.1. If f(2) € Zy(a, B), then [(2) € ¥(8). In particular if f(z) € Ei(a, B), then
f(z) € Z3(B).

Proof. Let f € Zj(a, ). Then by (1.9) we have

e FAPE 21'(2) .
%{pf(Z)}+a B, g BT
2F'(2)
= %{M&)+a+ﬁ}

or

B zf@}
%{pﬂﬂ =
Hence by(1.6), we have f € Z5(0). 1

To obtain a converse to Theorem 3.1, we note that f € ¥5(3) if

!
e
pf
This is a circular disk |w — 1| < 1 — §. This disk should be contained in the parabolic region
lw—(a+0)] < R(w+a — 3) or equivalently in v? < do(u— ) where w = —zf'(2)/p/f (2
w + iv. Note that when o — 0, the parabolic region reduced to the line segment v = 0
Therefore, the class £3(3) € Zp(e, (3) for small @ > 0. Hence we determine conditions on
a Bsuchthatthedlsk lw — 1| < 1 — B is inside |lw — (o + B)| € R(w + a — B). To find
such condition, we first find the radius of largest disk |w — a| < R, contained in the parabolic

region. Then the required condition on a, @ will be given by Ry > 1 — (. The expression for
R, is given in the following:

) .

Lemma 3.2. Let a > (. Then the disk |w — a| < R, is contained in

lw — (o + B)| < R{w + a - B}
where
Ra‘{ fora<2a+f

%/ala—a—p) fora>2a+8
Note that
{ forl <2a+p
Ry=

2v/a(l—a-0) forl>2a+8 '
If2a0+ 8 >1,then Ry =1-6>1-0. If2a+ﬁ < 1, then Ry > 1 — @ provided
2+/a(l —a— ) > 1 — (3 and this is not the case since R, obtained by taking minimum of

1 -8, 2¢/a(l — a — ). Therefore we have the following:

Corollary 3.3. Let a > % Then

2y(B) € Ti(a, B).
Corollary 3.4. Let a > 22, Then

24(8) = Ti(a, B)-
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Corollary 3.5. Let o > 152, Then

f€Ey(,8) ifandonlyif Y (n+pBlan < p(1 - B).

n=p
Corollary 3.6. If f(z) € i;(a,ﬁ), then
gl —f)
T n+pp
The result is sharp for
o 1 p(l _ﬁ) n
&) = e
Corollary 3.7. If f(z) € £3(a, B), then
- 1 1-p
- < o » = 7).
= 1+ﬂr _]f(z)]_Tp+1+ﬁr (z€eE and |z|=T)
The result is sharp for
1, 1-8,
f(z)_zp+1—|-ﬁz'

4. PARTIAL SUMS

Silverman [13] determined sharp lower bounds on the real part of the quotients between the
normalized starlike or convex functions and their sequences of partial sums. Since to a certain
extend the work on meromorphic case is analogous to analytic case, one is interested to search
results analogous to those of Silverman for meromorphic univalent functions. In this section,

motivated essentially by the work of Silverman [13] and Cho and Owa [2] we will investigate
the ratio of a function of the form

(4.1) fR) =27+ anz"? (peN={1,23,...}),

n=1

to its sequence of partial sums

k-1
(4.2) fi(z) =27 and fi(z)=2""+ Zanz”_” (ke N\ {1})
n=1

when the coefficients are sufficiently small to satisfy the condition 4.3 below. More precisely
we will determine sharp lower bounds for R{ f(z)/fx(z)} and R{ fr(2)/f(2)}.

Theorem 4.1. Let f(z) € ip(a,ﬁ) be given by (4.1) and define the partial sums fi(z) and
fi(2) given by (4.2). Suppose also that

(4.3) dnlan| €1,
n=1
where
(n+p)(1+a)+plat+f)

4 = ;
el p(1-5)
Then f € X,(«, B). Furthermore,

f(z) 1 ’

(4.5) %{fk(z)}>1dk ze E\keN
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and

Te(2) dy,
(4.6) m{f(z)}>1+dk'

Proof. For the coefficients d,, given by (4.4) it is not difficult to verify that

dn+1 > dﬂ > 1
Therefore we have

k-1 [e7] o
(4.7) D lanl+de Y lan] £ dulan| < 1
n=*k n=1

n=1

by using the hypothesis (4.3). By setting

9(z) = d {]Jv;((i)) B (1 - dik)}

n-1
ni

00
dea
14> a

n=1

=1
nzn

and applying (4.7), we find that

S. SIVAPRASAD KUMAR AND V. RAVICHANDRAN AND G, MURUGUSUNDARAMOORTHY

. 5
‘gl(z)*ll b kgk|a|

g Z) + 1 k-1 o)
il 225 ool =i 3 an
n= n=k

<L omie By
which readily yields the assertion (4.5) of Theorem 4.1. If we take

gh—e
(4.8) flz)=2z7P -
dy,
then @ "
Flz z 1
=]l-——=1—-—— as z—1—,
fi(2) dy dy

which shows the bound (4.5) is the best possible for each k£ € N.

Similarly, if we take
- felz) — di
mls) = @) {BE_ S}

(14+dg) 3 apz™
n==k

= 1=

1+ 3 a,zn

n=1
and making use of (4.7), we can deduce that

sl =1 U+dw§U%l
g2(z) + 1‘ o

k-1 00
2_22 |an|+(1_dk) Z lanl
n=k

n=1
which leads us immediately to the assertion (4.6) of Theorem 4.1.
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The bound in (4.6) is sharp for each k € N with the extremal function f(z) given by (4.8).
The proof of the Theorem 4.1 is thus completed. §

REFERENCES

[1] R. BHARATHI, R. PARVATHAM and A. SWAMINATHAN, On subclasses of uniformly convex
functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17-32.

[2] N.E. CHO and S. OWA, Partial sums of certain meromorp

hic functions, J. Inequal. Pure Appl. Math.
5, no. 3, Art. 30 (2004).

[3] A. W. GOODMAN, On uniformly starlike functions, J. Marh. Anal, Appl. 155 (1991), 364-370.
[4] A. W. GOODMAN, On uniformly convex functions, 4nn. Polon. Math. 56 (1991), no. 1, 87--92.

[5] S. KANAS and H. M. SRIVASTAVA, Linear operators associated with k-uniformly convex func-
tions. Integral Transform. Spec. Funct. 9 (2000), no. 2, 121-132.

[6] W.MA and D. MINDA, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2, 165-175.

[7] W. MA and D. MINDA, Uniformly convex functions. IL. Ann. Polon. Math. 58 (1993), no. 3, 275-
285.

[8] M. L. MOGRA, T. R. REDDY and O. P. JUNEJA, Meromorphic univalent functions with positive
coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.

[9] F. RONNING, Uniformly convex functions and a corresponding class of starlike functions, Proc.
Amer. Math. Soc. 118 (1993), no. 1, 189-196.

[10] F. RONNING, A survey on uniformly convex function and uniformly starlike functions, 4nn. Univ.
M. Curie-Sklodowska 47 (1993), 123-134.

[11] F. RONNING, On uniform starlikeness and related properties of univalent functions, Complex Vari-
ables, Theory Appl. 24 (1994), 233-239.

[12] F. RONNING, Integral representations of bounded starlike functions, Ann. Polon. Math. 60 (1995),
no. 3, 289-297.

[13] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997),
221-227.

[14] K. G. SUBRAMANIAN, G. MURUGUSUNDARAMOORTHY, P. BALASUBRAHMANYAM

and H. SILVERMAN, Subclasses of uniformly convex and uniformly starlike functions, Math.
Japon. 42 (1995), no. 3, 517-522.

[15] B. A. URALEGADDI and M. D. GANIGI, A certain class of meromorphically starlike functions
with positive coefficients, Pure Appl. Math. Sci. 26 (1987), 75-81.



