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Abstract

Given a signed graph (or, in short, sigraph) S = (¥, E; o) on the
graph G = (V, E), its line sigraph L(S) is a sigraph defined on
the line graph L(G) of G by defining an edge ef in it negative if
and only if both e and fare adjacent negative edges in S. In this
communication, we define a given sigraph § to be a line
sigraph if there exists a sigraph H such that L(H) = S (read as
“L(H) is isomorphic to S"). We then .give structural
characterizations of line sigraphs, extending the well-known
characterization of line graphs due to L.W. Beineke.

(Keywords : sigraph/ line sigraph/ positive section )

Introduction

For standard terminology and notation in
graph theory, not_specifically defined in the
communication, the reader 1is referred to
Bollob4s'. AIl graphs considered in this
communication are finite, simple, and without
self-loops and multiple edges.

A signed graph, or sigraph in shortz’s, is an
ordered pair S = (Su, s), where s'isa graph G =
(V, E) called the underlying graph of S, and s :
E(S") - {+, -} is a function defined on the edge
set E(S") = E into the set {+, -} of qualitative
values ‘+’ (‘positive’) and ‘-° (‘negative’) called
signs. We let E (S) = {e € E(G): s(¢) = +} and E
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(S) = {e€ E(G): s(e)= -}. Then the set E(S) = E
+(S) u E (S) is called the edge set of S; the
elements of E +(,S') ((E (S)) are called positive
(negative) edges in S. Two vertices u, v € V(S) =
V(Su) = V are said to be adjacent in § whenever
they are adjacent in -3 (i.e. whenever uv € E(S")).
Thus, graphs may be regarded as sigraphs in
which all the edges are positive; hence, we regard
graphs as all-positive sigraphs (all-negative
sigraphs are defined similarly). A sigraph is said
to be homogeneous if it is either all-positive or
all-negative and heterogeneous otherwise.

Sigraphs are much studied in the literature
because of their extensive use in modeling a
variety of social processes™"® and also because of
their strong connection with many classical
mathematical systems®. It is also due to the fact
that the class of graphs is contained in the class of
sigraphs, whence the results proved for sigraphs
must hold for graphs as well thereby providing
generalizations of results from graph theory to the
class of sigraphs. The purpose of this
communication is to provide such a
generalization, namely that of the well-known
characterization of line graphs due to Beineke

(cf.: Harary").
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Line Sigraphs

Behzad and Chartrand’ have given a
definition of the line sigraph L(S) of a given
sigraph § as follows: the vertices of L(S)
correspond one-to-one with the edges of S, ee, €

E(L(S)) < the edges of § corresponding to the
vertices e, and e of L(S) have a vertex in common

in S, and for any ee € E(L(S)) one has ee € E

(L(S)) < the adjacent edges of § corresponding to
e; and e; are both negative in S.

We define a given sigraph S to be a line
sigraph if and only if it is isomorphic to the line
sigraph L(T ) of some sigraph 7. The following
theorem is the well-known characterization of a
line graph given in most of the standard
textbooks on graph theory (e.g., see Harary’).

Theorem 1 : The following statements are
equivalent: ;

(a) G =(V, E) is a line graph.

(b) The edges of G can be partitioned into some
of its complete subgraphs in such a way that
no vertex lies in more than two of the
subgraphs.

The Main Result

We shall now embark on obtaining
characterizations of line sigraphs. Towards this
end, we need to define a nonstandard term
introduced by the first author " as we will
find its use in stating the main result of this
communication: A positive (negative) section in a
sigraph S is a maximal edge-induced subsigraph
consisting of only the positive (negative) edges of
S which turns out to be simply a path when S is a
cycle or a path.

Hence, we give structural characterizations of
a line sigraph, which is the main result of this
communication.
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Theorem 2 : The following statements are
equivalent for any sigraph S :

(i) Sis a line sigraph ;

(ii) " is a line graph and for any two vertices u, v
e W(S) and for any u-v path in § either u = v
and the cycle so created is not a triangle with
exactly two negative edges or the u-v path
contains no positive section of length one
unless one of its ends is u or v;

(iii) S does not contain an induced subsigraph

isomorphic to either of the two sigraphs, S,
formed by taking the path Py = (x, , v, y)
with both the edges (x,u) and (v,y) negative
and the edge (#,v) positive and S, formed by
taking S; and identifying the vertices x and y,
or to any sigraph on Beineke's nine forbidden
subgraphs for a graph to be a line graph;

(iv) S" is a line graph and for any positive edge uv

of § either there is no negative edge at u or
there is no negative edge at v;

W) S" is a line graph and vertices of S can be
assigned signs '+ or '-' such that both the
ends of every negative edge receive '-' sign
and the same is not true for any positive edge;

(vi) S is a line graph and the vertex set V(S) of §

can be partitioned into two subsets ¥ and V3,
one of them possibly empty, such that all the
negative edges of S join vertices of just one of
the subsets.

Proof: (i) = (ii). Suppose S is a line
sigraph. Then there exists a sigraph T such that §
:"’L(Tu ) so that " is a line graph.

To prove the other part of (ii), we first note
that if S is homogeneous, then there is nothing to
prove. Hence, suppose that S is a heterogeneous
sigraph. Let, on the contrary, there exist a pair of
distinct vertices u and v and a u-v path having a
positive section of length one such that it does not
contain u or v. This implies that the edges of the
u-v path incident to the end vertices of the
positive section are both negative. Let (u, ), &3, V)
be a u-v path in S such that eje; € E +(S) and ue,
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and e,v are negative edges incident to e, and e,
respectively. Now, by the definition of the sign of
an edge in the line sigraph, the pair # and e; as
also the pair e, and v must be adjacent negative
edges in 7, whence in particular e; and e, would
then both be negative, a contradiction to our
assumption that ee, is a positive edge in S. Thus,
the proof follows by contraposition in this case.

(ii) = (i). Suppose S is the sigraph satisfy-
ing (ii). We shall show that § is the line sigraph,
i.e., there exists a sigraph T such that S = L(T).

Now, g being a line graph its lines can be
partitioned into a family J of complete subgraphs
of S' such that no vertex of S lies in more than
two of these subgraphs. Then take S" to be the
intersection graph Q (F) of the family F=3 U V'’
(S) where ¥’ (S) denotes the family of all one-
point subsets of F(S) each of which belongs to
exactly one of the complete subgraphs in 3. Then,
by the construction described in the characteri-
sation of line graphs, S = L(Q (F) ) where if F =
(Ol L. , Lg)- then there exists an
isomorphism ¥ : V (§) — V(L(Q(F))) such that
W(v)=L;L;ifand only if L; N L; = {v}. We shall
show that S = L(T) where T“ = Q (F) and s;: E(Q
(F)) € {+, -} is such that

si(Lil)=—<d(v)#0and L, N L;= {v }.

Let L,L; and L;L, be adjacent in L(Q(F)). Then
there exist u, v € ¥(S) such that L; N L;= {u } and
Li N Ly = {v }. Hence, for the sign of the edge
(LiLy, LiLy) in L(T) we have s{L,L;, L,L) = - if and
only if sy(L;L) = s,(L;Ly) = - so that d "(#) #0 and
d“(v) #0. This implies that there exist x, y € V(S)
such that ux, vy € E °(S). Since W(u) = L,L;, ¥(v)
= Ly and ¥ is an isomorphism, ‘P'I(LILJ)
¥ LL)=uv € E(S).

Suppose, uv € E '(S). Then x = y, for
otherwise in the x-y path (x, u, v, y), we see that
(u, v) is the positive section of length one, a
contradiction to the second condition of the
hypothesis. But then § would contain a triangle
with exactly two negative edges contradicting the
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second condition of the hypothesis again. Thus,
for each pair of distinct vertices v and v, neither
any u-v path contains a positive section of length
one unless # or v is an end vertex of it nor a
triangle with exactly two negative edges.

Now, suppose sdL.L;, L,L;) = +. This implies
that s;(L,L)) # s,(L;L;) so that either d "(u) # 0 and
d(v)=0o0ord («)=0and d (v) # 0. Now uv €
E(S) because of the isomorphism ‘F. In the first
case, since d (1) # 0 and d (v) = 0, uv € E "(S).
Similarly, in the second case, since d (#) = 0 and
d (v) # 0 the same conclusion can be arrived at.

(ii) = (iii). S* being a line graph, it is known
that none of the nine Beineke's forbidden
subgraph57 can be induced subgraphs of S, and
hence no sigraph on any one of them can be a line
sigraph. Also, from the second condition of (ii)
none of the two sigraphs §; and S, can be an
induced subsigraph of the line sigraph.

(iii) = (iv). Since none of the sigraphs on any
of the nine Beineke's forbidden subgraphs is an
induced subsigraph of S none of those nine graphs
in particular is an induced subgraph of S whence
by Beineke's theorem mentioned above it follows
that $* is a line graph. Also, the two sigraphs S,
and S, are forbidden subsigraphs of § ; this
condition implies the second part of (iv) as
follows:

Suppose uv is an edge of S and there exist
negative edges wue; and ve, of S at w and v
respectively. Then the pair # and e; and also the
pair v and e, must be adjacent negative edges in
T, so uv is a negative edge in S. Hence, this part
of the proof is seen to be complete by
contraposition.

(iv) = (i). Suppose (iv) holds for a given
sigraph S. Then §* = L(H) for some graph H. Let
T=(V(H), E(H), 0 ) be the sigraph with 0 (e) = -
if and only if there is at least one negative edge at
the vertex e of S. Then, an edge uv in E(L(T)) is
negative if and only if 0 (w)=-and 0 (v)=-in T
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which is true if and only if there exist negative
edges at u and at v in S if and only if uv is
negative in S.

(iv) = (v). Assuming the truth of (iv) implies
that there does not exist any positive edge uv € S
such that both u and v are incident to negative
edges, so the end vertices of the negative edge
can be assigned '-' sign so that the vertices of the
positive section, which is of length at least two,
can both be assigned ‘+ ', or ‘+ ' to one of them
and - ' sign to its other end; this is not possible if
uv is a positive edge and adjacent to negative
edges at both v and v.

(v) = (vi). Let =V, U V, be such that V, is
the set of vertices which have received © + ' sign;
hence, ¥, = V -V, would be the set of vertices that
have received the * — * sign. Thus, obviously,
every edge connecting two vertices u, v of V; is
negative while all the edges across ¥, and V; are
positive and those joining vertices within ¥, are
also positive. Hence, <JV;> contains negative
edges only.

(vi) = (v). Given the partition of F(S) into the
subsets V', and ¥, as described in (vi), assign -’
sign to all the vertices in ¥, and ¢ + ' sign to all
the vertices in V.

(vi) = (ii). That §* is a line graph is given in
(vi). So, if (ii) is false then there exist vertices u, v
€ V(S) such that for any u-v path in S there exists
a positive section of length one such that it does
not contain u or v. Hence, let (u, e,, e, v) be a u-v
path in S such that e;e; € E “(S) and ue; and e,v
are negative edges incident to e; and e;
respectively. But then, (v) is violated. The
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conclusion implies violation of (vi). Thus, the
proof in this case follows by contraposition.
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