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Abstract
In this paper, we characterize signed graphs whose line sigraphs and jump sigraphs are switching
equivalent.

1. Introduction

For standard graph theory terminology and notation used in the paper the reader is referred to Bollobds [1].
All graphs considered here are finite and simple. A graph in which every edge is designated positive or neg-
ative is called a signed graph (or sigraph in short; see e.g., [2]).

Let G = (V, E) be a graph, the jump graph of G, J(G) was defined by Chartrand er al., [3] as follows: The
set of vertices of J(G) is the set E; two distinct vertices e, ¢’ € £ are defined to be adjacent in J(G) when-
ever e me” = @ . As noted in [3], it is obvious from this definition that J(G) is the complement L(G) of the
standard line graph L(G) of G.

Very recently, the notion of the jump graph was extended to the class of sigraphs [4] as follows: The Jump

sigraph J(§) of a sigraph § has J(S%) as its underiymg, graph; an edge ee” of J(5¥) is defined to be negative
if and only if the corresponding edges e and ¢’ in § have opposite signs.

Recall the definition of the line sigraph L(8) of a sigraph § introduced by Behzad and Chartrand [5): The
underlying graph of L(S) is L($"); an edge ee’ of L(5%) is defined to be negative if and only if both e and e
are negative edges in S. One is naturally lead to look for an analog of the graph equation

(1) JG) = L(G)

for the case of jump sigraphs. For this to be meaningful, however, one first needs a proper definition for the
complement of a given sigraph. It is a long-standing open problem to construct such a definition that is in con-
sonance with consistency theory in social psychology [6]1-[8]. One possible approach toward this end would
be to start by looking at possible relationships between the structures of J(S) and L(S) . Hence, we feel it
worthwhile to first examine the relationship

(2) J(8) ~ L(S),

where ~ denotes the binary relation switching equivalent between two sigraphs as defined in the next section.
[n fact, in this paper, we solve the sigraph equivalence (2) in the sense that we determine the structure of all
sigraphs satisfying (2). We also obtain conditions for which J(§) = L(S) (see Theorems 5 and 6).

2. Preliminaries

A marking of a sigraph S is an assignment of positive and negative signs to the vertices of S. That is, a marking
is function from the vertex set of S to the set {+1, 1}. Given a marking p of S, a switching S with respect to
is defined as the sigraph. called the switched sigraph and denoted by S (5, obtained from S by complement-
ing the sign of every edge whose end vertices are oppositely signed undm L. A sigraph Sy, switches to another
sigraph S,, written S~ S5, if there exists a marking [ of S, such that § (Se) =5, . It may be easily verified
that the binary IL]JHUI] ~is in fact an equivalence relation on the class of ali sigraphs; two sigraphs in the same
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equivalence class are therefore said to be switching equivalent to each other. This notion is illustrated in
Figure 1, where positive and negative edges are depicted as solid and broken line segments, respectively.

By a positive (negative) section in a sigraph § we mean a
maximal edge-induced subgaph consisting of only the
positive (negative) edges of S. A cycle in § is said to be
positive if it contains an even number of negative edges;
or, equivalently, if the product of the signs of its edges is
positive. A cycle that is not positive is said to be negative.
A signed graph S is balanced if every cycle in S is positive =
[21[9] —[13]. It may be noted that balance is a property

that is invariant under switching (see e.g., [12][13]). In

fact, much more can be said. A bijection f between the

vertex sets V; and V5 of two sigraphs S| and S, respec-
tively, is called a cycle isomorphism (or weak isomor-
phism, as in [13]) between S, and S if f preserves both

vertex adjacencies and the cycle signs of | and S,.

+

Sy

Theorem 1 (Zaslavsky [13]): Two sigraphs S; and S, with the same underlying graph are
switching equivalent if and only if they are cycle isomorphic. |

Corollary 1.1: A sigraph S is balanced if and only if § is switching equivalent (cycle iso-
morphic) to its underlying graph S*. ]

Theorem 2 (Acharaya and Sinha [4]): For any sigraph S, its jump sigraph J(S) is
balanced. ' 2

Theorem 3 (Wu and Guo [14]): The graph equation J(G) = L(G) has only six soluuom
namely, K,, Ps, Cs, P5, K5 3—e, and K5 5. L

3. Main Results

To progress toward finding the solutions to graph Equation (2), we first observe that if § is a solution to (2),
then in view of Theorem 2, L(S) must be balanced. Thus, a sigraph § is a solution to (2) if and only if the
underlying graph §" is one of the six sigraphs given by Theorem 3 and L(S) is balanced. We characterize
sigraphs with balanced line sigraphs in the following result.

Theorem 4: For a sigraph S, £(S) is balanced if and only if the following conditions hold:
(1) for any cycle Zin §
(a) if Z is all-negative, then Z has even length;
(b) if Z is heterogeneous, then Z has an even number of negative sections with even length;
(2) for v € V(S),if deg(v) > 2, then there is at most one negative edge incident at v in S.
Proof:
Suppose L(S) is balanced. Then, by definition, every cycle Z” in L(S) contains an even number of negative
edges. The vertices of Z’ correspond to the edges of a cycle Z in S. Since the length of any negative section
in Z is reduced by one when transformation L is applied once to S, then (1) is immediate because of positivity
of Z".
On the other hand, suppose not all the vertices of Z’ correspond to edges of a cycle in S. Then there is a vertex
¢’ € Z' that corresponds to an edge in § incident at a vertex v with degree at least three. Suppose there are
»> 1 negative edges incident at v. Clearly, if >3 then some three of these negative edges create a negative
triangle in L(S) contradicting the hypothesis that L(S) is balanced. Therefore, r 2. If r = 2, then since.v
has degree at least 3, the two negative edges together with one positive edge incident at v create a negative tri-
angle in L(S). again contradicting the hypothesis that L(S) is balanced. Thus, (2) must hold.
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Sufficiency

Suppose conditions (1) and (2) hold for a sigraph §. We show that L(S) is balanced. If § is all-positive then,
by definition, L(S) is also all-positive and, hence, it is trivially balanced. Thus, suppose that § is a heteroge-
neous sigraph. We need to consider two cases.

Case 1: S has no cycle.

In this case, every cycle in L(S) is due to edges in S that are incident at a vertex of degree greater than or equal
to three. Hence, consider any vertex v whose total degree is at least three. By condition (2), there is at most
one negative edge incident at any such vertex. Thus, either all edges incident at v are positive or there is
exactly one negative edge incident at v. In either case, all the cycles in L(S) contained in the clique formed by
the edges incident at v are positive. Since there is no cycle in L(S) created by any cycle in S (S is acyclic) it
follows that every cycle in L(S) is positive. Thus, L(S) is balanced.

Case 2: S has at least one cycle.

Suppose S has at least one cycle and conditions (1) and (2) hold. If there is no vertex of degree greater than
or equal to three, then every component of § is either a path or a cycle; furthermore, one of these components
must be a cycle. By condition (1a), if a cycle in S is all-negative then it must have even length and every such
cycles generates an all-negative cycle of even length in L(S). Now, if a cycle in § is heterogeneous then, by
condition (1b), it has an even number of negative sections of even length. Thus, by definition, the length of
each of these negative sections is reduced by one in L(S). Consequently, the number of negative sections of
odd length in L(S) is even. It follows that each such cycle in § goes to a cycle in L(S) with an even number of
negative edges. Hence, L(S) is balanced.

Next, suppose that § has at least one vertex with degree at least three. For simplicity, we may assume that S
is connected. Then, clearly, every cycle in S must contain a vertex of degree at least three and at any such ver-
tex v; on a cycle Z of S, two of the edges ¢; _ | and e, incident at v; must belong to Z.

Now, suppose that L(S) is not balanced. Then L(S) must contain a negative cycle
Zp = (e ep i p€p €y €p))

of length k = 3. Without loss of generality, we may assume that & is the least possible length for any such
cycle. By conditions (1) and (2), not all the vertices of Z; correspond to edges that are incident at a single ver-
tex in S, nor do they form a cycle in §. Thus, some vertices of Z; correspond to edges of a cycle Z; in § and
some correspond to edges incident at a vertex of degree greater than equal to three. Since v; is any such vertex
and e; |, e,e;, | are edges incident at v; in Z, where ¢; _, and ¢; _ are edges of the cycle Z; in S, it
follows from the definition of L(S), that the negativity of Z; is not is not changed as a result of the positive
clique formed by the edges constituting a star at v;. However, the length of the cycle in L(S) is reduced by
one, contradicting minimality of the length of Zj, in L(S). The contradiction shows that L(S) must be
balanced. ]

By Theorem 3, solutions to Equation (2) are the sigraphs § that satisfy the conditions of Theorem 4 and have
underlying graphs that are any of the graphs given by Theorem 3. Thus,

Theorem 5: A sigraph S satisfies J(S) - L(S) if and only if
(1) §“ is isomorphic to any of the graphs K,, Ps, Cs, P, K3 3-e orK, 5, and
(2) § satisfies the conditions of Theorem 4. ]

Specifically, Theorem 5 yields the following solutions to Equation (2).
Solution set 1: All sigraphs on the acyclic underlying graphs K, and Ps.
Solution set 2: The sigraphs with underlying graph Cj that are shown in Figure 2.
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Solution set 3: The sigraphs with underlying graph P;’ that are shown in Figure 3,
Solution set 4: The sigraphs with underlying graph K 53— e that are shown in Figure 4.

Solution set 5: The sigraphs with underlying graph K 4 that are shown in Figure 5.
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Figure 4: Figure 5:

We now consider the question of defining in a reasonable way the complement of a given sigraph S. To this
end we propose the following unary eperation on S: Let & denote a signing of § and let |1 be the marking of

S obtained by defining W(x) , for each vertex u, as the product H - o(x) of the signs o(x) of the edges x
incident at u. xe E,

We define an operator ¢ that transforms S into a sigraph S with the same vertex set as that of § and two ver-
tices are adjacent whenever the vertices are not adjacent in §* and with each edge uv signed p(u)p(v).
Clearly, S as defined here is a sigraph whose underlying graph is the usual graph complement of $* and it
is also balanced. Consequently, the following result, which is not difficult to verify, shows that an analog of
(1) (namely Equation (4)) is highly restrictive; however, the relation of switching equivalence is more suitable
for this comparison, as can be seen from the universality of Equation (3).
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Theorem 6: For any sigraph S,
(3) J(S) ~ L(S) , and
@  JS=LE),

if and only if S satisfies the two conditions of Theorem 5. ]

4. Concluding Remarks

As mentioned, one of the observations made in [3] is that J(G) is isomorphic to the complement L(G) of
L(G) for every graph G. However, this leads to the question of whether such a relation holds for J(S) and
L(S), both of which are now well defined. Toward answering this question, we found a unary operator ¢ that
ransforms S into a balanced sigraph S defined on the usual complement of the underlying graph S¥of §. As
a result we discovered that an analogue of Equation (1) for a sigraph is highly restrictive if one uses isomor-
phism as the binary relation, but there does exist a universal analogue of (1) if we use switching equivalence
as the binary relation to compare J(S) and L(S). However, there still appear to be two major shortcomings:
(1) whether § is balanced or not, /() and L(S) are balanced; and (2) the unary operator ¢ is not involutory in
the sense that § is not isomorphic to § as required for a unary operator to function as a complementation.

Thus, our suggestion for a reasonable definition of the complement of a sigraph remains to be refined. Since
it is a long-cherished dream of social psychologists to propose an acceptable definition of the complement of
a sigraph [6], it would perhaps be worth studying several related problems, such as Equation (2) in a compa-
rable manner since the effort may eventually resolve this open question.
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