[GTN XLIII:1]

A CHARACTERIZATION OF SIGNED GRAPHS THAT ARE SWITCHING EQUIVALENT TO THEIR JUMP SIGNED GRAPHS

Mukti Acharya 1 and Deepa Sinha 2

Department of Applied Mathematics Delhi College of Engineering Bawana Road, Delhi - 110042, INDIA 1 < muktil 948@yahoo.com> 2 < deepa_sinha 2001@yahoo.com>

Abstract

In this paper, we define the jump signed graph of a given signed graph and offer a structural characterization of signed graphs that are switching equivalent to their jump signed graphs.

For graph theory terminology and notation in this note we follow [1]. Additional terms and notation are introduced as and when necessary.

The jump graph J(G) of a graph G is defined in [2] and shown to be the complement $\overline{L(G)}$ of the standard line graph L(G) of G (see, for example, [3]).

The purpose of this note is to extend the concept of jump graphs to the class of *signed graphs* (or *sigraphs* in short [4]) since this appears to have interesting connections with certain long-standing questions in social psychology (see, for example, [5]).

By definition (see [1][4]) a sigraph is an ordered pair $S = (S^u, s)$, where $S^u = (V, E)$ is a graph called the underlying graph of S and $s:E \to \{+, -\}$ is a function from the edge set E of S^u into the set $\{+, -\}$ called a signing of the graph S^u . Let $E^+(S)$ denote the set of all edges of S^u that are mapped by s to the element "+" and let $E^-(S) = E - E^+(S)$. The elements of $E^+(S)$ are called positive edges of S and those of $E^-(S)$ are called negative edges of S.

The line sigraph L(S) of a given sigraph S is defined in [4]. Since $J(G) \approx \overline{L(G)}$, as noted above, one would naturally like to extend the notion of jump graphs to the realm of sigraphs and seek an analogue of this relationship (see [6]).

We define the jump sigraph J(S) of a sigraph S to be a sigraph such that $(J(S))^u \approx J(S^u)$, where two vertices of J(S) (the edges of S) are connected by a negative edge if and only if the corresponding edges in S have opposite signs.

The sign of a cycle in a sigraph $S = (S^u, s)$ is defined as the product of the signs of its edges. S is then said to be balanced if every cycle in S is positive (see, for example [1][7]). A marking of S is a function $\mu: V(S) \to \{+, -\}$; S together with a particular marking μ is denoted by S_{μ} . A simple condition that characterizes balance in S is that it is possible to find a marking μ of S such that $s(uv) = \mu(u)\mu(v)$ for every edge uv of S [8]. We now give a straightforward, yet interesting, property of jump sigraphs.

Lemma 1: For any sigraph S, its jump sigraph J(S) is balanced.

Proof: Let σ denote the signing of J(S) and let the signing s of S be treated as a marking of the vertices of J(S) (that is, of the edges of S). Then, by the definition of J(S) we see that $\sigma(ee') = s(e)s(e')$ for every edge ee' of J(S) and, hence, by the characterization of balance mentioned above, the result follows.

Given a marking μ of S, by switching S with respect to μ we mean reversing the sign of every edge of S whenever the end vertices have opposite signs in S_{μ} [8]. We denote the sigraph obtained in this way by $S_{\mu}(S)$ and this sigraph is called the μ -switched sigraph or just switched sigraph. A sigraph S_1 switches to a sigraph S_2 (that is, they are switching equivalent to each other), written $S_1 \sim S_2$, whenever there exists a marking μ such that $S_{\mu}(S_1) \approx S_2$.

We now characterize those sigraphs that are switching equivalent to their jump sigraphs.

In the case of graphs the following result is due to Simić [9] (see also [2]) where $H \circ K$ denotes the *corona* of the graphs H and K [3].

Lemma 2: The jump graph J(G) of a graph G is isomorphic with G if and only if G is either C_5 or $K_3 \circ K_1$.

THEOREM 1: A sigraph S satisfies $S \sim J(S)$ if and only if S is a balanced sigraph on either C_5 or $K_3 \circ K_1$.

Proof: The Sufficiency part of the proof is straightforward, thus we prove only the necessity. Since $S^u \approx (J(S))^u$, S must be isomorphic to either C_5 or $K_3 \circ K_1$ by Lemma 2. Because J(S) is balanced, by Lemma 1, S must be balanced.

Remark: Theorem 1 leaves very few cases for which $S \approx J(S)$; in fact, these cases form a subset of the set of solutions of $S \sim J(S)$. It would be of interest to know exactly what these cases are.

Acknowledgement

The authors wish to thank Dr. B.D. Acharya for providing his valuable time for useful and rigorous discussions on the subject of this research note.

References

- [1] G.T. Chartrand; Graphs as Mathematical Models. Prindle, Weber, and Schmidt, Inc., Boston (1977).
- [2] G.T. Chartrand, H. Hevia, E.B. Jarette, and M. Schultz; Subgraph distance in graphs defined by edge transfers. *Discrete Mathematics*, 170, 63–79 (1997).
- [3] F. Harary; Graph Theory, Addison-Wesley, Massachusettes (1969)
- [4] M. Behzad and G.T. Chartrand; Line-coloring of signed graphs, Elemente der Mathematik, 24(3), 49-52 (1969).
- [5] B.D. Acharya and S. Joshi; On sociagrams to treat social systems endowed with dyadic ambivalence and indifference. (February, 2001). —Preprint.
- [6] M. Acharya and D. Sinha; A characterisation of sigraphs whose line sigraphs and jump sigraphs are switching equivalent. (2002). —Submitted.
- [7] F. Harary, R.Z. Norman and D. Cartwright; Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New York (1965).
- [8] B.D. Acharya and M. Acharya; New algebraic models of social systems, Indian J. Pure & Appl. Math., 17(2), 150–168 (1986).
- [9] S.K. Simić; Graph equation $L^n(G) = \overline{G}$. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz., 498/541, 41–44 (1975).