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Abstract

In this paper, we define the jump signed graph of a given signed graph and offer a structural char-
acterization of signed graphs that are switching equivalent to their jump signed graphs.

For graph theory terminology and notation in this note we follow [1]. Additional terms and notation are intro-
duced as and when necessary.

The jump graph J(G) of a graph G is defined in [2] and shown to be the complement L(G) of the standard
line graph L(G) of G (see, for example, [3]).

The purpose of this note is to extend the concept of jump graphs to the class of signed graphs (or sigraphs in
short [4]) since this appears to have interesting connections with certain long-standing questions in social psy-
chology (see, for example, [5]).

By definition (see [1]1[4]) a sigraph is an ordered pair S = (S% s), where % = (V, E) is a graph called the
underlying graph of S and s:E — {+, -} is a function from the edge set £ of S* into the set {+,—} calleda
signing of the graph §%. Let E*(S) denote the set of all edges of S* that are mapped by s to the element “+”

and let E~(S) = E — E*(S). The elements of E*(S) are called positive edges of S and those of E7(S) are
called negative edges of S.

The line sigraph L(S) of a given sigraph S is defined in [4]. Since J(G) = L(G) , as noted above, one would

naturally like to extend the notion of jump graphs to the realm of sigraphs and seek an analogue of this rela-
tionship (see [6]).

We define the jump sigraph J(S) of a sigraph S to be a sigraph such that (J(S))* = J(S¥) , where two vertices

of J(S) (the edges of S) are connected by a negative edge if and only if the corresponding edges in S have
opposite signs.

The sign of a cycle in a sigraph § = (¥, s) is defined as the product of the signs of its edges. § is then said
to be balanced if every cycle in § is positive (see, for example [1][7]). A marking of § is a function
n:V(S) = (+, —}; S together with a particular marking . is denoted by S, . A simple condition that charac-
terizes balance in § is that it is possible to find a marking . of § such that s(uv) = wu)pu(v) for every edge uv
of § [8]. We now give a straightforward, yet interesting, property of jump sigraphs.

Lemma 1: For any sigraph S, its jump sigraph J(S) is balanced.

Proof: Let ¢ denote the signing of J(S) and let the signing s of S be treated as a marking of the vertices of
J(8) (thatis, of the edges of §). Then, by the definition of J(S) we see that o(ee’) ‘= s(e)s(e”) forevery edge
ee’ of J(S) and, hence, by the characterization of balance mentioned above, the result follows. B

Given a marking W of S, by switching S with respect to . we mean reversing the sign of every edge of S when-
ever the end vertices have opposite signs in S, [8]. We denote the sigraph obtained in this way by S ,(S) and
this sigraph is called the p-switched sigraph or just switched sigraph. A sigraph Sy switches to a sigraph S
(that is, they are switching equivalent to each other), written S, ~ S, , whenever there exists a marking p such
that S (§)) = ;.

We now characterize those sigraphs that are switching equivalent to their jump sigraphs.
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In the case of graphs the following result is due to Simié [9] (see also [2]) where H ¢ K denotes the corona
of the graphs H and K [3].

Lemma 2: The jump graph J(G) of a graph G is isomorphic with G if and only if G is
either C5 or Ky K| . |

THEOREM 1: A sigraph § satisfies S~ J(S) if and only if S is a balanced sigraph on
either C5 or Ky 0 K.

Proof: The Sufficiency part of the proof is straightforward, thus we prove only the necessity. Since

S*=(J(8))*, § must be isomorphic to either Cs or K50 K, by Lemma 2. Because J(S) is balanced, by
Lemma 1, S must be balanced. e

Remark: Theorem 1 leaves very few cases for which S = J(S) ; in fact, these cases form a subset of the set of
solutions of § ~ J(S). It would be of interest to know exactly what these cases are.
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