

BLUETOOTH- COMMUNICATING AND EXCHANGING
DATA WITH ANOTHER DEVICE, SECURITY

A dissertation submitted in partial fulfillment of the requirements
for the award of the degree

of

MASTER OF ENGINEERING
in

ELECTRICAL ENGINEERING
(With Specialization in Control and Instrumentation)

Submitted by
PRAVEEN DARSHANAM
(College Roll No. 12/ C&I/ 04)

(Delhi University Roll No. 8670)

Under the guidance of
Dr. PARMOD KUMAR

Professor and Head of the Department
Department of Electrical Engineering

DELHI COLLEGE OF ENGINEERING
(UNIVERSITY OF DELHI)

BAWANA ROAD, DELHI -110042
INDIA

JUNE 2006

CERTIFICATE

This is to certify that the work being presented in this dissertation

entitled “BLUETOOTH-COMMUNICATING AND EXCHANGING DATA

WITH ANOTHER DEVICE, SECURITY”, in partial fulfillment of the

requirement for the award of the degree of Master of Engineering in

Electrical Engineering with specialization in Control and Instrumentation

submitted by PRAVEEN DARSHANAM (8670) to the Department of

Electrical Engineering, Delhi College of Engineering, is the record of the

student’s own work carried out under my supervision and guidance.

Dr. PARMOD KUMAR
Prof. and Head of Department,
Dept. of Electrical Engineering,
Delhi College of Engineering,
Delhi - 110042

 i

ACKNOWLEDGEMENT

This report, as we see today is an outcome of persistent effort and a

great deal of dedication and it has drawn intellectual and moral support

from various people within the institution. I am extremely indebted to my

honorable guide Dr. PARMOD KUMAR, Prof. and Head of the

Department, Department of Electrical Engineering for his invaluable

support and guidance throughout the development of this project. It is a

matter of great pride for me to have worked under him, which in itself

was a source of inspiration for me to complete the project with great

enthusiasm, energy and determination. I also give extra special thanks to

him for dedicating his valuable time whenever I needed to discuss project

related work.

I take this opportunity to thank all members of Electrical

Engineering Department for their valuable help in this project.

I am also thankful to all my friends who continuously helped and

motivated me during the course of this dissertation.

PRAVEEN DARSHANAM
M.E. (Control &Instrumentation)
Roll No. 12/ C &I/ 04
University Roll No. 8670
Department of Electrical Engineering,
Delhi College of Engineering

 ii

CONTENTS

CERTIFICATE i
ACKNOWLEDGEMENT ii
CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES viii
ACRONYMS ix
ABSTRACT x

CHAPTER I- INTRODUCTION
1.1 Introduction 1
1.2 Objective 2
1.3 Proposed solution 2
1.4 Features of Wireless Communication 2
1.5 Bluetooth Overview

1.5.1 Bluetooth Name and History 2
1.5.2 What is Bluetooth? 3
1.5.3 Bluetooth Special Interest Group (SIG) 4

1.6 Dissection of Dissertation 4

CHAPTER II- REVIEW WORK
2.1 Introduction 6
2.2 Bluetooth 6
2.3 Linux Bluetooth stacks: OpenBT and BlueZ 7
2.4 Linux 8
2.5 Conclusion 9

CHAPTER III- BLUETOOTH TECHNOLOGY BASICS
3.1 Introduction 10
3.2 Working of Bluetooth

3.2.1 Frequency Hopping 10
3.2.2 Power Consumption 11
3.2.3 Security 12

3.3 Bluetooth Architecture
3.3.1 The Bluetooth Protocol Stack 16
3.3.2 The Bluetooth Profiles- A Hierarchy of Groups 17

3.4 Bluetooth Specification 21
3.5 Conclusion 22

CHAPTER IV- THE BLUETOOTH PROTOCOL STACK
4.1 Introduction 23
4.2 Bluetooth Module-Lower Protocols of the Transport Group

 iii

4.2.1 Radio 23
4.2.2 Baseband

4.2.2.1 Bluetooth Device Address 25
4.2.2.2 Masters, Slaves, Piconets and Scatternets 26
4.2.2.3 System Timing 26
4.2.2.4 Physical Links: SCO and ACL 27
4.2.2.5 Bluetooth Packet Structure 28
4.2.2.6 Packet Types 29
4.2.2.7 Bitstream Processing 32

4.2.3 Link Controller 32
4.2.4 Link Manager 33
4.2.5 Host Controller Interface 34

4.3 The Bluetooth Host- Upper Protocols of the Transport Group
4.3.1 The L2CAP Layer 34
4.3.2 The RFCOMM Middleware Protocols 36
4.3.3 SDP Middleware Protocols 36

4.4 Conclusion 37

CHAPTER V- MAKING BLUETOOTH ENABLED PERSONAL
COMPUTER
5.1 Introduction 38
5.2 Setting up BlueZ

5.2.1 Obtaining BlueZ 38
5.2.2 Requirements 39
5.2.3 Compilation and Installation 39
5.2.4 Loading BlueZ Modules 40
5.2.5 Device Initialization 41
5.2.6 Debugging the BlueZ Driver 42

5.3 Conclusion 43

CHAPTER VI- ESTABLISHING A LINK BETWEEN PC AND MOBILE
6.1 Introduction 44
6.2 Dongles 44
6.3 Transport protocol 45
6.4 Port numbers and the Service Discovery Protocol 47
6.5 Establishing network connections 51
6.6 Conclusion 53

CHAPTER VII- EXPERIMENTATION RESULTS AND DISCUSSION 54

CHAPTER VIII- CONCLUSION AND FURTHER WORK 64

 iv

REFERENCES 65

APPENDIX I 67

APPENDIX II 70

 v

LIST OF FIGURES

Figure 1.1 Bluetooth- Wire replacements Technology

Figure 3.1 The Bluetooth protocol stack

Figure 3.2 Cross-section of the Bluetooth protocol stack

Figure 3.3 Dependencies of the Bluetooth profiles

Figure 3.4 Bluetooth Headset

Figure 4.1 Format of BD_ADDR.

Figure 4.2 Bluetooth Clock

Figure 4.3 Bluetooth Packet Structure

Figure 4.4 Packet Header format

Figure 4.5 Format of the FHS payload

Figure 4.6 LMP PDU payload body

Figure 4.7 The HCI Layer

Figure 4.8 Interoperability with existing protocols & applications

Figure 5.1 BlueZ Overview Diagram

Figure 5.2 a Starting Bluetooth Services

Figure 5.2 b Starting Bluetooth Services

Figure 5.3 List of modules starting with b, h, l and r

Figure 6.1 Bluetooth USB Dongle Name

Figure 6.2 Inquiring

Figure 6.3 Paging

Figure 6.4 Shows the Connection

Figure 7.1 Name of the Bluetooth Device (Mobile)

Figure 7.2 Technical Information of the Bluetooth Device (Mobile)

Figure 7.3 Different Packets in which data is sent

Figure 7.4 Pinging Devices

Figure 7.5 HCI Packet Analyzer

 vi

Figure 7.6 Hcitool

Figure 7.7 Bluetooth USB Dongle is not connected

Figure 7.8 Repetition of up and down cycles

Figure 7.9 Starting Bluetooth

Figure 7.10 hciconfig -a

Figure 7.11 Dial-Up Networking (DUN)

 vii

LIST OF TABLES

Table 1 Bluetooth Device Class

Table 2 Radio Parameters

Table 3 Description of the FHS payload

Table 4 Comparison of the protocols

Table 5 Port numbers and their terminology for various protocols

 viii

ACRONYMS

ACL Asynchronous connection-oriented

CAC Channel Access Code

DAC Device Access Code

DH Data-High Rate

DM Data - Medium Rate

eSCO extended Synchronous connection-oriented

HCI Host Controller Interface

IAC Inquiry Access Code

IEEE Institute of Electrical and Electronic Engineers

L2CAP Logical Link Control and Adaptation Protocol

LCP Link Control Protocol

LM Link Manager

LMP Link Manager Protocol

LSB Least Significant Bit

MAC Medium Access Control

Mbps Million (Mega) bits per second

MTU Maximum Transmission Unit

OBEX OBject EXchange protocol

PPP Point-to-Point Protocol

RSSI Received Signal Strength Indicator

SCO Synchronous connection-oriented

SDP Service Discovery Protocol

UART Universal Asynchronous Receiver- Transmitter

UUID Universally Unique Identifiers

WLAN Wireless Local Area Network

 ix

ABSTRACT

Bluetooth is a newly proposed protocol for local wireless

communication and has become a de facto standard for short-range ad

hoc radio connections. This report provides a study on the various

protocol stacks. This thesis will also bring up the different layers in the

BlueZ Bluetooth Stack. After an overview of the general Bluetooth

protocols, we discussed how to enable a normal Desktop PC to a

Bluetooth enabled PC and establish a link between different devices.

Security concern is one of the most important problems delaying the mass

adoption of Bluetooth. Some weaknesses of the Bluetooth security

strategies are analyzed, together with potential risks and possible attacks

against the vulnerabilities. Corresponding counter measures are also

proposed in order to improve the Bluetooth security.

 x

CHAPTER I

INTRODUCTION

1.1 Introduction

IrDA (Infrared Data Association) [14], [15] specifies a cable replacement

technology for point-to-point communication between ad hoc data access points, with

a maximum distance of 3 feet. This technology requires Line Of Sight (LOS)

communication within a 30° narrow angle cone at rates between 9600 bps and

16Mbps. IrDA transceivers operate at a transmit power of 100mW and are identified

by 32-bit physical addresses. The main applications for IrDA are simple data transfer

and synchronization between static devices at a short range. An example application

is the exchange of business cards between two handheld computers that are equipped

with IrDA ports.

 IrDA devices must be very close, no more than about 1 meter apart.

 The communicating devices must have a direct line of sight to each other.

Because it relies on radio waves.

Bluetooth [1], [2], [3] communication overcomes these strict requirements. This

makes Bluetooth communication much more flexible and robust. It’s also important to

note that because Bluetooth excels at low-bandwidth data transfer, it is not intended as

a replacement for high-bandwidth cabled peripherals. For high-bandwidth devices,

such as external hard drives or video cameras, cables are still the best option.

Bluetooth is the name of a new short-range, low bandwidth wireless

communication technology. Many people might have heard of Bluetooth but few had

experienced it hands-on. This technology is designed to be small enough to include in

portable devices such as mobile phones and personal digital assistants (PDAs) but

many usage scenarios also involve laptops, desktops, printers, cameras and other

types of devices. Several consumer accessories featuring Bluetooth support are

already into the market.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 1

1.2 Objective
This report considers how to make a Personal Computer to Bluetooth enabled.

And establish a communication link between the Desktop PC and the other Bluetooth

device (say mobile phone). We will also discuss about the software and hardware

(Bluetooth USB Dongle) required to connect the devices.

1.3 Proposed Solution
Use Linux as operating system because it provides support to Bluetooth. Use

BlueZ [20] as the Linux stack to make a Personal Computer to Bluetooth enabled.

And the hardware used is Orchid USB [17] Bluetooth Dongle to establish a link

between the devices. While transferring the data we have to take care that Wi-Fi [16]

or Microwave ovens are not operating. These technologies affect each other because

all operate in a frequency spectrum of 2.4 GHz.

1.4 Features of Wireless Communication
The two most important phenomena impacting telecommunications over the

past decade have been the explosive parallel growth of both the Internet and mobile

telephone services. The Internet brought the benefits of data communications to the

masses with email, the Web, and eCommerce; while mobile service has enabled

"follow-me anywhere/always on" telephony.

Wi-Fi and cellular networks are rapidly converging, opening the way for innovative

services and usage scenarios that benefit both end users and mobile carriers. The Wi-Fi

Alliance is a strong proponent of Wi-Fi Mobile Convergence (WMC) and has prioritized

efforts to make the integration of Wi-Fi and mobile devices easier and to improve the

performance of the voice and multimedia applications that are at the core of converged

services.

1.5 Bluetooth Overview
1.5.1 Bluetooth Name and History

Harald I Bluetooth (Danish Harald Blåtand) was the King of Denmark

between 940 and 985 AD. The name "Blåtand" was probably taken from two old

Danish words; 'blå' meaning dark skinned and 'tan' meaning great man. He was born

in 910 and by 960 he was at the height of his powers, ruling over both Denmark and

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 2

Norway. Harald conquered all of Denmark and Norway and made the Danes

Christian. Harald was killed in a battle in 985 AD. Harald completed the country's

unification begun by his father, converted the Danes to Christianity, and conquered

Norway. Old Harald Bluetooth united Denmark and Norway, Bluetooth of today will

unite the worlds of computers and telecom.

1.5.2 What is Bluetooth?

Bluetooth wireless technology is a short-range communications system

intended to replace the cable(s) connecting portable and/or fixed electronic devices.

The key features of Bluetooth wireless technology are robustness, low power [8],

and low cost. The Bluetooth core system consists of an RF transceiver, baseband

[3], and protocol stack. The system offers services that enable the connection of

devices and the exchange of a variety of classes of data between these devices over

relatively short ranges. WLANs and Bluetooth™ both operate under Federal

Communications Commission (FCC) Part 15 rules.

Figure 1 Bluetooth- Wire replacement Technology

DEVICE CLASS TYPE STRENGTH RANGE (METERS)

Class 1 Devices High 100 mW (20 dBm) Up to 100

Class 2 Devices Medium 2.5 mW (4 dBm) Up to 10

Class 3 Devices Low 1 mW (0 dBm) Well within 1

Table1 Bluetooth Device Class

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 3

1.5.3 Bluetooth Special Interest Group (SIG)

In 1994 Ericsson Mobile communications initiated a study to investigate the

feasibility of a low-power low-cost radio interface between mobile phones and their

accessories. In Feb 1998, five companies Ericsson, Nokia, IBM, Toshiba and Intel

formed a Special Interest Group (SIG). The group contained the necessary business

sector members - two market leaders in mobile telephony, two market leaders in

laptop computing and a market leader in digital signal processing technology. It was

estimated that before year 2002, Bluetooth was a built-in feature for more than 100

million mobile phones and several million communication devices ranging from

handsets and portable PCs to desktop computers and notebooks.

1.6 Dissection of Dissertation
The thesis is organized as follows

Chapter I deals with the Objective of the Thesis and the proposed solution to the

problem.

Chapter II describes the review work of the project viz. hardware’s and software’s

used

Chapter III deals with the Bluetooth Technology basics. This covers the Bluetooth

Modules which covers the lower parts of the system from radio up to the host

interface. And the Bluetooth Host which describes the higher parts of the system

which would typically exist on or in a host system that is “Bluetooth Enabled”.

Chapter IV describes about the official Linux Bluetooth stack, BlueZ. BlueZ was

supported by Linux even before the kernel versions of 2.4.21. But from kernels of

2.4.21 and above BlueZ has become a part of Linux.

Chapter V describes how to configure a Linux kernel so that we can make a normal

Desktop PC to Bluetooth enabled PC. We also discussed about the various software’s

and hardware’s required to configure the Linux kernel.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 4

Chapter VI discusses how to establish a communication link between two devices.

The devices used in this project are a Personal Computer (64bit AMD Athlon, 512MB

Simmtronics RAM) and a mobile phone (Nokia 6600).

Chapter VII deals with experimentation results and discussion related to them.

Chapter VIII explains about the further work that can be done on Bluetooth

technologies and concludes the thesis.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 5

CHAPTER2

REVIEW WORK

2.1 Introduction

Bluetooth represents a very simple proposition, obviating the need for

connectivity via physical wires; this is itself the powerful added value for Bluetooth.

Bluetooth is a WPAN technology. A great deal of interest, talent and energy has

marshaled around this existing new technology. Until now most of the information

available about Bluetooth wireless communications has been from the SIG’s official

website or from brief press articles or news letters. The Bluetooth SIG was formed

early in 1998 by Ericsson, Intel, IBM, Nokia [19] and Toshiba to develop an open

specification for globally available short-range wireless radio frequency

communications.

2.2 Bluetooth
Bluetooth wireless technology was conceived by engineers at Swedish

telecommunications manufacturer Telefonaktiebolaget LM Ericsson who realized the

potential of global short-range wireless communication. In 1994 Ericsson Mobile

Communication began a study of radio links which aren’t directional and it doesn’t

need line of sight, so it has obvious advantages over the infra-red links to replace

cables that linked its mobile phones with accessories. Out of this study was born the

specification [1] for Bluetooth Wireless technology.

A diverse set of wired and wireless devices are Bluetooth connectable,

including office appliances, e.g. desktop PCs, printers, projectors, laptops, and PDAs;

communication appliances, e.g. speakers, handsets, pagers, and mobile phones [19];

home appliances, e.g. DVD players, digital cameras, cooking ovens, washing

machines, refrigerators, and thermostats. Bluetooth is suitable for a wide range of

applications, e.g. wireless office and meeting room, smart home and vehicle,

intelligent parking, electrical paying and banking.

Bluetooth adopts master-slave architecture to form an ad hoc wireless network

named piconet [13]. A master in a piconet may communicate with up to seven active

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 6

slaves. Several connected piconets can further form a scatternet [10]. Bluetooth was

developed by Bluetooth Special Interest Group (SIG) formed in May 1998. The

founding members included Ericsson, Intel, IBM, Nokia, and Toshiba. Since then,

almost all of the biggest telecommunications companies have joined the Bluetooth

SIG, e.g. 3Com, Lucent, Microsoft, Motorola, etc.

Bluetooth specification is a free open standard and the first Version 1.0 came

out in 1999. The next version was 1.1 released in February 2001. Version 1.2 was

released in early 2004. The Bluetooth Core Specification 1.2 has been significantly

restructured for better consistency and readability. The new Version 2.0 was released

in November 2004 with an extra feature of Enhanced Data Rate (EDR). The

Bluetooth Core Specification version 2.0 + EDR introduces Enhanced Data Rate

(EDR). EDR provides a set of additional packet types that use the new 2 Mbps and 3

Mbps modes. The most important structure changes have been performed in Baseband,

LMP, HCI and L2CAP. As the Bluetooth Specification continues to evolve, some

features, protocols, and profiles are replaced with new ways of performing the same

function. Often these changes reflect the evolution of the communications industry.

Implementations with versions 1.1 and 1.2 reach speeds of 723.1 kbit/s.

Version 2.0 implementations feature Bluetooth Enhanced Data Rate (EDR), and thus

reach 2.1 Mbit/s. Technically version 2.0 devices have a higher power consumption,

but the three times faster rate reduces the transmission times, effectively reducing

consumption to half that of 1.x devices (assuming equal traffic load).

2.3 Linux Bluetooth stacks: OpenBT and BlueZ
There are two totally different Bluetooth stacks available for Linux, both of

them are open source. OpenBT is mostly a contribution of Axis, and BlueZ [20] is

originally a contribution of Qualcom. BlueZ is the official Linux Bluetooth stack.

BlueZ is a powerful Bluetooth communications stack with extensive APIs that allows

a user to fully exploit all local Bluetooth resources, but it has no official

documentation. It provides support for core Bluetooth layers and protocols. The main

architectural difference between the stacks is their interfaces, both to drivers and

applications. OpenBT uses a serial abstraction, and BlueZ uses a network abstraction.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 7

http://en.wikipedia.org/wiki/Kilobit_per_second
http://en.wikipedia.org/wiki/Mbit/s

The strengths of OpenBT 0.8 are:

• More mature, used in real products

• Wider set of utilities and documentation

• Support BCSP (and a wider range of hardware functions)

• Easier to hook your programs to RFCOMM

The strengths of BlueZ 1.2 are:

• Included in standard Linux kernel, better integration

• Modular design, more than one Bluetooth port per stack

• Excellent USB support

• hcidump

The additional strengths of BlueZ 2.4 are:

• Excellent PAN/BNEP support (complete and flexible)

• Excellent RFCOMM support (now as easy as OpenBT, but more flexible)

• Supported in OpenObex 1.0.0 (Obex over RFCOMM)

In order to use BlueZ, you need to have at least a 2.4.4 Linux kernel. The 2.4.6

kernel has BlueZ built-in. In case, if you want to use the latest version of BlueZ, you

should disable native BlueZ support. BlueZ can be used with USB or Serial interface

based Bluetooth devices. Additionally, BlueZ provides Virtual HCI device (vhci)

which can be used to test your Bluetooth applications. This is very useful if you do

not have any real Bluetooth devices.

2.4 Linux
Linux is an operating system for PC platforms with many advantages for

developers. The software code of the Linux kernel and most of the applications are

open source and freely downloadable from the Internet at no cost. The open source

community does development and maintenance of the code. Any problem regarding

the software can be thrown into the community. The response out of the community is

usually quick and to the point. Last but not least: Linux has proven to be a very stable

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 8

operating system. For the new Fedora Core 5 the kernel version is 2.6.15 and also it

includes inbuilt Linux Bluetooth Protocol Stack, BlueZ.

2.5 Conclusion
As stated earlier, not all radio waves are the same; the faster and further a

radio wave travels, the more energy [8], [9] it requires, here lies the difference

between Bluetooth and Wi-Fi. Unlike Bluetooth, which emphasizes low power and

short range and in turn offers a transmission speed of approximately 800 Kbps, Wi-Fi

depends on a higher energy intake to offer a 100-meter range and 11 Mbps maximum

transmission rate. This speed makes Wi-Fi more than 10 times as fast as Bluetooth

and similar to a high-speed modem. For large file transfers and quick Internet access,

Wi-Fi outperforms Bluetooth.

As Bluetooth and Wi-Fi began to capture the interest of the hi-tech industry,

many understood the exciting potential of these technologies to revolutionize how

people connect their devices. But negative publicity surfaced when analysts and

members of the media speculated that the two technologies competed against each

other. Most industry insiders and technology experts agree that the two wireless

technologies do not compete but rather complement each other.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 9

CHAPTER III

BLUETOOTH TECHNOLOGY BASICS

3.1 Introduction
The term BluetoothTM refers to an open specification for a technology to

enable short range wireless voice and data communication. Bluetooth is a cable-

replacement technology designed to wirelessly connect peripherals, such as mice and

mobile phones, to your desktop or laptop computer and to each other. Bluetooth is an

inexpensive, low-power, short-range radio-based [11], [12] technology. Bluetooth is

not a wireless networking solution, such as AirPort. Rather, it is an alternative to the

IrDA (Infrared Data Association) standard. Although the IrDA standard, too, supports

wireless communication between peripherals and computers, it has two limiting

requirements. First, IrDA devices must be very close, no more than about 1 meter

apart. Second, the communicating devices must have a direct line of sight to each

other. Bluetooth overcomes both these bottlenecks.

3.2 Working of Bluetooth
3.2.1 Frequency Hopping

Bluetooth radios transmit using a frequency hopping spread spectrum (FHSS)

technique. This technique forces transmissions to switch between 79 different

frequency channels in the ISM band (This frequency band is 2400 - 2483.5 MHz.) at

1600 hops per second. The master Bluetooth device sends its unique device address

(similar to an Ethernet address) and the value of its internal clock as inputs to its

slaves. This information is used to calculate the “pseudo-random” hopping order at

which transmissions occur (“pseudo” meaning that the hopping order repeats after

some time). Because the master device and all its slaves use the same algorithm with

the same initial input, the connected devices always arrive together at the next

frequency. At any given time, a Bluetooth device operating in master mode can

communicate with up to seven slave devices will hop together in frequency.

Therefore, if two or more piconets are within range of one another, the frequencies at

which they transmit may match up during some time slots. This overlap in frequency

and time will cause packet collisions and loss of throughput in these piconets. This

means that Bluetooth technology will actually interfere with itself. This interference

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 10

will be referred to as “inter-piconet” interference. The Bluetooth specification [1]

already describes methods to help reduce the amount of Bluetooth interference. Some

of these methods include changing the data packet length, adding forward error

correction, and the use of adaptive power control. Adaptive power control keeps

Bluetooth devices from radiating more power then necessary.

After a Bluetooth device sends or receives a packet, it and the Bluetooth

device or devices it is communicating with “hop” to another frequency before the next

packet is sent. Compared with other systems operating in the same frequency band,

the Bluetooth radio typically hops faster and uses shorter packets. This is because

short packages and fast hopping limit the impact of microwave ovens and other

sources of disturbances. Use of Forward Error Correction (FEC) limits the impact

of random noise on long-distance links. FHSS scheme has three advantages:

■ It allows Bluetooth devices to use the entirety of the available ISM band, while

never transmitting from a fixed frequency for more than a very short time. This

ensures that Bluetooth conforms to the ISM restrictions on transmission quantity per

frequency.

■ It ensures that any interference will be short-lived. Any packet that doesn't arrive

safely at its destination can be resent at the next frequency.

■ It provides a base level of security because it's very difficult for an eavesdropping

device to predict which frequency the Bluetooth devices will use next.

3.2.2 Power Consumption

As a cable-replacement technology, it’s not surprising that Bluetooth devices

are usually battery-powered devices [9], such as wireless mice and mobile phones. To

conserve power [8], most Bluetooth devices operate as low-power, 1 mW radios

(Class 3 radio power). This gives Bluetooth devices a range of about 5–10 meters.

This range is far enough for comfortable wireless peripheral communication but close

enough to avoid drawing too much power from the device’s power source.

Many tests have been done to prove that Bluetooth devices are too low in

power to have any negative impact on health. Three low-power modes, which extend

battery life by reducing activity on a connection, have been defined. These modes are

called Park, Hold, and Sniff [2], [3].

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 11

Active Mode: In the active mode, the Bluetooth unit actively participates on the

channel. The master schedules the transmission based on traffic demands to and from

the different slaves. In addition, it supports regular transmissions to keep slaves

synchronized to the channel. Active slaves listen in the master-to-slave slots for

packets. If an active slave is not addressed, it may sleep until the next new master

transmission.

Sniff Mode: Devices synchronized to a piconet can enter power-saving modes in

which device activity is lowered. In the SNIFF mode, a slave device listens to the

piconet at reduced rate, thus reducing its duty cycle. The SNIFF interval is

programmable and depends on the application. It has the highest duty cycle (least

power efficient) of all 3 power saving modes (sniff, hold & park).

Hold Mode: Devices synchronized to a piconet can enter power-saving modes in

which device activity is lowered. The master unit can put slave units into HOLD

mode, where only an internal timer is running. Slave units can also demand to be put

into HOLD mode. Data transfer restarts instantly when units transition out of HOLD

mode. It has an intermediate duty cycle (medium power efficient) of the 3 power

saving modes (sniff, hold & park).

Park Mode: In the PARK mode, a device is still synchronized to the piconet but does

not participate in the traffic. Parked devices have given up their MAC (AM_ADDR)

address and occasional listen to the traffic of the master to re-synchronize and check

on broadcast messages. It has the lowest duty cycle (power efficiency) of all 3 power

saving modes (sniff, hold & park).

3.2.3 Security

Today's wireless world means that data is being sent among us invisibly from

device to device, country to country, and person to person. This data in the form of e-

mails, photos, contacts and addresses are precious and private to each of us. This

private information, no longer making its way along wires in plain sight, needs to be

sent securely to its intended recipient without interception.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 12

Product developers that use Bluetooth wireless technology in their products

have several options for implementing security. There are three modes of security [7]

for Bluetooth access between two devices.

 Security Mode1: non-secure

 Security Mode2: service level enforced security

 Security Mode3: link level enforced security

 The manufacturer of each product determines these security modes. Devices

and services also have different security levels. For devices, there are two levels:

"trusted device" and "untrusted device." A trusted device, having been paired with

one's other device, has unrestricted access to all services. With regard to services,

three security levels are defined: services that require authorization and

authentication, services that require authentication only and services that are open to

all devices.

The recently reported issues of advanced "hackers" gaining access to

information stored on select mobile phones using Bluetooth functionality are due to

incorrect implementation. The names bluesnarfing and bluebugging have been given

to these methods of illegal and improper access to information. The questions and

answers below provide users with more information about these current issues and

will address their concerns for dealing with these security risks.

Bluejacking: Bluejacking allows phone users to send business cards anonymously

using Bluetooth wireless technology. Bluejacking does NOT involve the removal or

alteration of any data from the device. These business cards often have a clever or

flirtatious message rather than the typical name and phone number. Bluejackers often

look for the receiving phone to ping or the user to react. They then send another, more

personal message to that device. Once again, in order to carry out a bluejacking, the

sending and receiving devices must be within 10 meters of one another. Phone owners

who receive bluejack messages should refuse to add the contacts to their address

book. Devices that are set in non-discoverable mode are not susceptible to

bluejacking.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 13

Bluebugging: Bluebugging allows skilled individuals to access the mobile phone

commands using Bluetooth wireless technology without notifying or alerting the

phone’s user. This vulnerability allows the hacker to initiate phone calls, send and

receive text messages, read and write phonebook contacts, eavesdrop on phone

conversations, and connect to the Internet. As with all the attacks, without specialized

equipment, the hacker must be within a 10 meter range of the phone. This is a

separate vulnerability from bluesnarfing and does not affect all of the same phones as

bluesnarfing.

Bluesnarfing: Bluesnarfing allows hackers to gain access to data stored on a

Bluetooth enabled phone using Bluetooth wireless technology without alerting the

phone’s user of the connection made to the device. The information that can be

accessed in this manner includes the phonebook and associated images, calendar, and

IMEI (international mobile equipment identity). By setting the device in non-

discoverable, it becomes significantly more difficult to find and attack the device.

Without specialized equipment the hacker must be within a 10 meter range of the

device while running a device with specialized software. Only specific older

Bluetooth enabled phones are susceptible to bluesnarfing.

Cabirworm: The cabir worm is malicious software, also known as malware. When

installed on a phone, it uses Bluetooth technology to send itself to other similarly

vulnerable devices. Due to this self-replicating behavior, it is classified as a worm.

The cabir worm currently only affects mobile phones that use the Symbian series 60

user interface platform and feature Bluetooth wireless technology. Furthermore, the

user has to manually accept the worm and install the malware in order to infect the

phone. More information on the cabir worm is available from the software licensing

company Symbian and on the websites of F-Secure, McAfee and Symantec.

Affect of PIN on security: The personal identification number (PIN) is a four or

more digit alphanumeric code that is temporarily associated with one's products for

the purposes of a one time secure pairing. During this process one or both devices

need a PIN code to be entered, which is used by internal algorithms to generate a

secure key, which is then used to authenticate the devices whenever they connect in

the future. It is recommended that users employ at minimum an eight character or

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 14

more alphanumeric PIN when possible. Product owners must share that PIN number

only with trusted individuals and trusted products for pairing. Without this PIN

number, pairing cannot occur. It is always advisable to pair products in areas with

relative privacy. Avoid pairing your Bluetooth enabled devices in public.

To perform this hack, it is necessary for the attacker to overhear the initial

pairing process, which normally only happens once in a private environment and

takes a fraction of a second. There are some possible methods to try and force a

deletion of the security key in one of the two Bluetooth devices, and hence initiate a

new pairing process, which we could then listen in to. To do this, we need to

masquerade as the second device during a connection. The equipment needed for this

process is very expensive and usually used by developers only. If this process

succeeds the user will see a message on their device that asks them to re-enter a PIN

code. If they do this while the attacker is present, and the PIN code they enter is

sufficiently short, then the attack could theoretically succeed. If the PIN key that has

been used consists of only four numeric characters, a fast PC can calculate the

security key in less than one tenth of a second. As the PIN key gets longer, the time to

crack the security code gets longer and longer. At eight alphanumeric characters it

would take over one hundred years to calculate the PIN making this crack nearly

impossible.

This is an academic analysis of Bluetooth security. What this analysis outlines

is possible, but it is highly unlikely for a normal user to ever encounter such an attack.

The attack also relies on a degree of user gullibility, so understanding the Bluetooth

pairing process is an important defense.

Denial of service (DoS): The well known denial of service (DoS) attack, which has

been most popular for attacking internet web sites and networks, is now an option for

hackers of Bluetooth wireless technology enabled devices. This nuisance is neither

original nor ingenious and is, very simply, a constant request for response from a

hacker’s Bluetooth enabled computer (with specific software) to another Bluetooth

enabled device such that it causes some temporary battery degradation in the

receiving device. While occupying the Bluetooth link with invalid communication

requests, the hacker can temporarily disable the product’s Bluetooth services. The

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 15

DoS attack only offers the hacker the satisfaction of temporary annoyance, but does

not allow for access to the device’s data or services – no information residing on the

receiving device can be used or stolen by the attacker.

3.3 Bluetooth Architecture
Bluetooth is both a hardware-based radio system and a software stack that

specifies the linkages between layers. This supports flexibility in implementation

across different devices and platforms. It also provides robust guidelines for

maximum interoperability and compatibility. In this section, we’ll learn about:

• The Bluetooth protocol stack. The protocol stack is the core of the Bluetooth

specification that defines how the technology works.

• The Bluetooth profiles. The profiles define how to use Bluetooth technology to

accomplish specific tasks.

3.3.1 The Bluetooth Protocol Stack

The heart of the Bluetooth specification is the Bluetooth protocol stack. By

providing well-defined layers of functionality, the Bluetooth specification ensures

interoperability of Bluetooth devices and encourages adoption of Bluetooth

technology. As we can see in Figure, these layers range from the low-level radio link

to the profiles.

Figure 3.1 The Bluetooth protocol stack

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 16

Layer Location

RFCOMM

L2CAP

HCI Driver

Host PC (software)

HCI Transport USB/UART

Host Controller

Link Manager

Link Controller (Baseband)

Radio

Module (firmware)

Figure3.2 Cross-section of the Bluetooth protocol stack

3.3.2 The Bluetooth Profiles-A Hierarchy of Groups

The Bluetooth specification defines a wide range of profiles [1], describing

many different types of tasks, some of which have not yet been implemented by any

device or system. By following the profile’s procedures, developers can be sure that

the applications they create will work with any device that conforms to the Bluetooth

specification. This section focuses on almost all profiles that different OS supports.

For information on other profiles, including those still in development, see the

Bluetooth specification. At a minimum, each profile specification contains

information on the following topics:

• Dependencies on other profiles. Every profile depends on the base profile, called

the generic access profile, and some also depend on intermediate profiles.

• Suggested user interface formats. Each profile describes how a user should view

the profile so that a consistent user experience is maintained.

• Specific parts of the Bluetooth protocol stack used by the profile. To perform its

task, each profile uses particular options and parameters at each layer of the stack.

This may include an outline of the required service record, if appropriate. The

Bluetooth profiles are organized into a hierarchy of groups, with each group

depending upon the features provided by its predecessor. Figure 3.3 illustrates the

dependencies of the Bluetooth profiles.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 17

Figure 3.3 Dependencies of the Bluetooth profiles.

The Base Profile

At the base of the profile hierarchy is the generic access profile (GAP), which

defines a consistent means to establish a baseband link between Bluetooth devices. In

addition to this, the GAP defines:

■ Which features must be implemented in all Bluetooth devices

■ Generic procedures for discovering and linking to devices

■ Basic user-interface terminology

All other profiles are based on the GAP. This allows each profile to take advantage of

the features the GAP provides and ensures a high degree of interoperability between

applications and devices. It also makes it easier for developers to define new profiles

by leveraging existing definitions.

Remaining Profiles

The service discovery application profile describes how an application

should use the SDP to discover services on a remote device. As required by the GAP,

any Bluetooth device should be able to connect to any other Bluetooth device. Based

on this, the service discovery application profile requires that any application be able

to find out what services are available on any Bluetooth device it connects to.

The human interface device (HID) profile describes how to communicate

with a HID class device using a Bluetooth link. It describes how to use the USB HID

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 18

[17] protocol to discover a HID class device’s feature set and how a Bluetooth device

can support HID services using the L2CAP layer.

As its name suggests, the serial port profile defines RS-232 serial-cable

emulation for Bluetooth devices. As such, the profile allows legacy applications to use

Bluetooth as if it were a serial-port link, without requiring any modification. The

serial port profile uses the RFCOMM protocol to provide the serial-port emulation.

The dial-up networking (DUN) profile is built on the serial port profile and

describes how a data-terminal device, such as a laptop computer can use a gateway

device, such as a mobile phone or a modem to access a telephone-based network. Like

other profiles built on top of the serial port profile, the virtual serial link created by

the lower layers of the Bluetooth protocol stack is transparent to applications using

the DUN profile. Thus, the modem driver on the data-terminal device is unaware that

it is communicating over Bluetooth. The application on the data-terminal device is

similarly unaware that it is not connected to the gateway device by a cable.

The headset profile describes how a Bluetooth-enabled headset should

communicate with a computer or other Bluetooth device (such as a mobile phone).

When connected and configured, the headset can act as the remote device’s audio

input and output interface.

Figure 3.4 Bluetooth Headset

The hardcopy cable replacement profile describes how to send rendered

data over a Bluetooth link to a device, such as a printer. Although other profiles can

be used for printing, the HCRP is specially designed to support hardcopy applications.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 19

http://en.wikipedia.org/wiki/Image:Bluetooth_headset.jpg

The generic object exchange profile provides a generic blueprint for other

profiles using the OBEX protocol and defines the client and server roles for devices.

As with all OBEX transactions, the generic object exchange profile stipulates that the

client initiate all transactions. The profile does not, however, describe how

applications should define the objects to exchange or exactly how the applications

should implement the exchange. These details are left to the profiles that depend on

the generic object exchange profile, namely the object push, file transfer, and

synchronization profiles.

The object push profile defines the roles of push server and push client.

These roles are analogous to and must interoperate with the server and client device

roles the generic object exchange profile defines. The object push profile focuses on a

narrow range of object formats for maximum interoperability. The most common of

the acceptable formats is the vCard format. If an application needs to exchange data in

other formats, it should use another profile, such as the file transfer profile.

The file transfer profile is also dependent on the generic object exchange

profile. It provides guidelines for applications that need to exchange objects such as

files and folders, instead of the more limited objects supported by the object push

profile. The file transfer profile also defines client and server device roles and

describes the range of their responsibilities in various scenarios. For example, if a

client wishes to browse the available objects on the server, it is required to support the

ability to pull from the server a folder-listing object. Likewise, the server is required

to respond to this request by providing the folder-listing object.

The synchronization profile is another dependent of the generic object

exchange profile. It describes how applications can perform data synchronization,

such as between a personal digital assistant (PDA) and a computer. Not surprisingly,

the synchronization profile, too, defines client and server device roles. The

synchronization profile focuses on the exchange of personal information management

(PIM) data, such as a to-do list, between Bluetooth-enabled devices. A typical usage

of this profile would be an application that synchronizes your computer’s and your

PDA’s versions of your PIM data. The profile also describes how an application can

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 20

support the automatic synchronization of data—in other words, synchronization that

occurs when devices discover each other, rather than at a user’s command.

3.4 Bluetooth Specification
Here are some specification details:

 The devices in a piconet share a common communication data channel. The

 Channel has a total capacity of 1 megabit per second (Mbps). Headers and

handshaking information consume about 20 percent of this capacity.

 In the United States and Europe, the frequency range is 2,400 to 2,483.5 MHz,

with 79 1-MHz radio frequency (RF) channels. In practice, the range is 2,402

MHz to 2,480 MHz. In Japan, the frequency range is 2,472 to 2,497 MHz with

23 1-MHz RF channels.

 A data channel hops randomly 1,600 times per second between the 79 (or 23)

 RF channels.

 Each channel is divided into time slots 625 microseconds long.

 A piconet has a master and up to seven slaves. The master transmits in even

time slots, slaves in odd time slots.

 Packets can be up to five time slots wide.

 Data in a packet can be up to 2,745 bits in length.

 There are currently two types of data transfer between devices: SCO

(synchronous connection oriented) and ACL (asynchronous connectionless).

 In a piconet, there can be up to three SCO links of 64,000 bits per second

each. To avoid timing and collision problems, the SCO links use reserved slots

set up by the master.

 Masters can support up to three SCO links with one, two or three slaves.

 Slots not reserved for SCO links can be used for ACL links.

 One master and slave can have a single ACL link.

 ACL is either point-to-point (master to one slave) or broadcast to all the

slaves.

 ACL slaves can only transmit when requested by the master.

 The official Bluetooth logo:

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 21

3.5 Conclusion
The Bluetooth specification not only covers how to set up short range wireless

links but also describes the Bluetooth qualification process. By putting their products

through this process, companies that join the Bluetooth SIG can get a free license to

use the Bluetooth wireless technology and Bluetooth brand. Bluetooth specification

also includes different profiles which detail how applications should use the Bluetooth

protocol stack. Bluetooth ensures that devices maintain time synchronization by

repeatedly resynchronising to the Master’s transmissions. Since the frequency

hopping algorithm is based on the device clock, this also ensures that frequency

hopping is in step.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 22

CHAPTER IV

THE BLUETOOTH PROTOCOL STACK

4.1 Introduction

The elements of the stack (protocols, layers, applications and so on) are

logically partitioned into three groups:

The Transport Protocol Group - Radio, Baseband, Link Manager and L2CAP

The Middleware Protocol Group- RFCOMM, TCS and SDP

It also supports third protocols like Internet-

related protocols (PPP, IP, TCP), WAP, OBEX

The Application Group - This refers to the software that resides above the

protocol stack supplied by device manufacturers,

independent software vendors or others which

exercises the protocol stack to accomplish some

function that benefits the user of a Bluetooth

device.

Each Bluetooth module vendor will determine how to measure the link quality.

4.2 Bluetooth Module-Lower Protocols of the Transport Group
At the bottom of the stack are the firmware layers that are usually

implemented as part of the Bluetooth device itself. The Radio and the Link Controller

perform low-level functions such as timing and error correction and cannot be

accessed directly by the programmer. The link manager implements control functions

such as link setup between devices and power modes. These are features that an

application will want access to in order to control the operation of the device.

4.2.1 Radio

The Bluetooth radio implements the air interface for Bluetooth devices and

involves circuitry for modulation and demodulation as well as amplifiers. It is at the

lowest level of the protocol stack. The operating band of 83.5 MHz (2.4835-2.4465

GHz) is divided into 1MHz spaced channels, each signaling data at 1 mega symbols.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 23

Bluetooth radio system is an ad hoc system that allows devices from lots of different

manufacturers to communicate with one another when they come into range.

PARAMETERS VALUES

MODULATION G-FSK, h ≤ 0.35

PEAK DATA RATE 1 Mb/s

RF BANDWIDTH 220 kHz (-3dB), 1 MHz (-20 dB)

RF BAND 2.4 GHz, ISM band

HOP CHANNELS 23/ 79

CARRIER SPACING 1 MHz

PEAK TX POWER ≤ 20dBm

Table 2 Radio Parameters

Bluetooth uses Gaussian-shaped frequency shift keying (GFSK) modulation

with a nominal modulation index of k=0.3. This binary modulation was chosen for its

robustness, and, with the accepted bandwidth restrictions, it can provide data rates to

about 1Mbps. A noncoherent demodulation can be accomplished by a limiting FM

discriminator. This simple modulation scheme allows the implementation of low-cost

radio units, which is one of the main aims of the Bluetooth system.

4.2.2 Baseband

The baseband layer (resource manager) determines and instantiates the

Bluetooth air- interface. In comparison with the cabled environment it might be said

that the baseband determines the “shape” and “pin configuration” of the interface. It

has two main functions. The baseband later defines the master and slave roles for

devices. It also defines how the frequency hopping sequences used by communicating

devices are formed and the rules for sharing the air interface among several devices;

these rules are based upon a time division duplex (TDD) and packet-based polling

scheme.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 24

The device manager is the functional block in the baseband that controls the

general behavior of the Bluetooth device. It is responsible for all operation of the

Bluetooth system that is not directly related to data transport, such as inquiring for the

presence of other nearby Bluetooth devices, connecting to other Bluetooth devices, or

making the local Bluetooth device discoverable or connectable by other devices. The

device manager requests access to the transport medium from the baseband resource

controller in order to carry out its functions. The device manager also controls local

device behavior implied by a number of the HCI commands, such as managing the

device local name, any stored link keys, and other functionality. Key functions of the

Bluetooth baseband are:

Piconet and device control functions: Connection creation, Frequency-hopping

sequence selection and Timing

Modes of operation: Power control and secure operation

Medium access functions: Polling, packet types [5], packet processing and Link types

4.2.2.1 Bluetooth Device Address

Every Bluetooth chip ever manufactured is imprinted with a globally unique

48-bit Address [1], [2] which we will refer to as the Bluetooth address or device

address. This is identical in nature to the MAC addresses of Ethernet or 802.11 LAN

devices and both address spaces are actually managed by the same organization - the

IEEE Registration Authority. These addresses are assigned at manufacture time and

are intended to be unique and remain static for the lifetime of the chip. It conveniently

serves as the basic addressing unit in all of Bluetooth programming. For one

Bluetooth device to communicate with another, it must have some way of determining

the other device’s Bluetooth address. This address is used at all layers of the

Bluetooth communication process, from the low-level radio protocols to the higher-

level application protocols. In contrast, TCP/IP network devices that use Ethernet as

their data link layer discard the 48-bit MAC address at higher layers of the

communication process and switch to using IP addresses.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 25

Figure 4.1 Format of BD_ADDR.

• LAP field: lower address part consisting of 24 bits

• UAP field: upper address part consisting of 8 bits

• NAP field: non-significant address part consisting of 16 bits

4.2.2.2 Masters, Slaves, Piconets and Scatternets

A Bluetooth Wireless Personal Area Network (BT-WPAN) consists of

piconets. Each piconet is a cluster of up to eight Bluetooth devices. One device is

designated as the master, and the others are the slaves. A scatternet is formed with the

linking of one or more piconets. This linking is formed by the sharing of a common

device called a gateway or bridge or Relay Node to form a scatternet. These

interconnected piconets within the scatternet form a backbone for the Mobile Area

Network (MANET).

A device can be both a master and a slave in different piconets. This could

lead to a switch of roles between Master and Slave in the new connection. Inter-

piconet communications are established over the shared unit. Time multiplexing must

be used for that unit to switch between piconets. In case of ACL links, a unit can

request to enter the HOLD or PARK mode in the current piconet, during which time

it may join another piconet by just changing the channel parameters. Units in the

SNIFF mode may have sufficient time to visit another piconet in between the sniff

slots. If SCO links are established, other piconets can only be visited in the non-

reserved slots in-between.

4.2.2.3 System Timing

Each Bluetooth device runs a 28-bit clock that is never adjusted or turned off.

The clock ticks 3,200 times per second or once every 312.5 μsec, which corresponds

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 26

to a clock rate of 3.2 KHz. The clock has an accuracy of ±20 parts per million (ppm)

but in low-power modes (e.g. standby, hold or park) the accuracy is reduced to ±250

ppm by using a low-power oscillator. An attacker using low energy lasers (LEL) or

electronic magnetic pulses (EMP) can disrupt the Bluetooth clock and disable

communications between all devices. This type of attack renders any communication

network inoperable. Both LEL and EMP attacks are extremely rare and there is very

little risk involved by this type of attack.

Figure 4.2 Bluetooth Clock

4.2.2.4 Physical Links: SCO and ACL

There are two basic types of physical links that can be established between a

master and a slave. They are

• Synchronous Connection Oriented (SCO)

• Asynchronous Connection-Less (ACL)

An SCO link provides a symmetric link between the master and the slave, with

regular periodic exchange of data in the form of reserved slots. Thus, the SCO link

provides a circuit-switched connection where data are regularly exchanged, and as

such it is intended for use with time-bounded information as audio. A master can

support up to three SCO links to the same or to different slaves. A slave can support

up to three SCO links from the same master.

An ACI link is a point-to-multipoint link between the master and all the slaves

on the piconet. It can use all of the remaining slots on the channel not used for SCO

links. The ACL link provides a packet-switched connection where data are exchanged

sporadically, as they become available from higher layers of the stack. The traffic

over the ACL link is completely scheduled by the master.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 27

4.2.2.5 Bluetooth Packet Structure

The different types of packets [1] that are used for communicating over inter

device ACL and SCO links. Packets can be breakdown into their constituent parts

such as access code, packet header, payload header and payload. Every packet

consists of an access code, a header and a payload.

Every packet starts with an access code. The access code is 72 or 68 bits and

the header is 54 bits. The access code consists of a preamble, a sync word, and

possibly a trailer. If a packet header follows, the access code is 72 bits long, otherwise

the access code is 68 bits long and is known as a shortened access code. The

shortened access code is used in paging, inquiry, and park. The shortened access code

does not contain a trailer. This access code is used for synchronization, DC offset

compensation and identification. The access code identifies all packets exchanged on

a physical channel: all packets sent in the same physical channel are preceded by the

same access code.

Three different access codes are defined

• device access code (DAC)

• channel access code (CAC)

• inquiry access code (IAC)

All access codes are derived from the lower address part (LAP) of a device

address or an inquiry address. The device access code is used during page, page scan

and page response sub states and shall be derived from the paged device’s

BD_ADDR. The channel access code is used in the CONNECTION state and forms

the beginning of all packets exchanged on the piconet physical channel. The channel

access code shall be derived from the LAP of the master’s BD_ADDR. Finally, the

inquiry access code shall be used in the inquiry sub state. There is one general IAC

(GIAC) for general inquiry operations and there are 63 dedicated IACs (DIACs) for

dedicated inquiry operations.

The payload ranges from zero to a maximum of 2745 bits. Different packet

types have been defined. Packet may consist of:

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 28

 the shortened access code only

 the access code and the packet header

 the access code, the packet header and the payload.

Figure 4.3 Bluetooth Packet Structure.

The header contains link control (LC) information and consists of 6 fields.

They are LT_ADDR (3- bit logical transport address), TYPE (4-bit type code

specifies which packet type is used and determines how many slots the current packet

will occupy), FLOW (1-bit flow control), ARQN (1-bit acknowledge indication),

SEQN (1-bit sequence number) and HEC (8-bit header error check). The total header,

including the HEC, consists of 18 bits and is encoded with a rate 1/3 FEC resulting in

a 54-bit header.

Figure 4.4 Packet Header format.

4.2.2.6 Packet Types

Packet type defines which type of traffic is carried out by this packet (SCO,

ACL, NULL, POLL), the type of error correction used for the payload and how many

slots the payload will last for. The packets used on the piconet are related to the

logical transports they are used in. Three logical transports with distinct packet types

are defined

 the SCO logical transport,

 the eSCO logical transport and

 the ACL logical transport.

For each of these logical transports, 15 different packet types can be defined.

There are five common kinds of packets [1], [3] viz. NULL, POLL, FHS, DM1 and

ID packet. All are common packet types but ID packet does not have a packet header.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 29

ID packet: The identity or ID packet consists of the device access code (DAC) or

inquiry access code (IAC). It has a fixed length of 68 bits. It is a very robust packet

since the receiver uses a bit correlator to match the received packet to the known bit

sequence of the ID packet.

NULL packet: The NULL packet has no payload and consists of the channel access

code and packet header only. Its total (fixed) length is 126 bits. The NULL packet

may be used to return link information to the source regarding the success of the

previous transmission (ARQN), or the status of the RX buffer (FLOW). The NULL

packet may not have to be acknowledged.

POLL packet: The POLL packet is very similar to the NULL packet. It does not

have a payload. In contrast to the NULL packet, it requires a confirmation from the

recipient. It is not a part of the ARQ scheme. The POLL packet does not affect the

ARQN and SEQN fields. Upon reception of a POLL packet the slave shall respond

with a packet even when the slave does not have any information to send unless the

slave has scatternet commitments in that timeslot. This return packet is an implicit

acknowledgement of the POLL packet. This packet can be used by the master in a

piconet to poll the slaves. Slaves shall not transmit the POLL packet.

FHS packet: The FHS packet is a special control packet containing, among other

things, the Bluetooth device address and the clock of the sender. The payload contains

144 information bits plus a 16-bit CRC code. The payload is coded with a rate 2/3

FEC with a gross payload length of 240 bits. The payload consists of eleven fields.

The FHS packet is used in page master response, inquiry response and in role switch.

The FHS packet contains real-time clock information. This clock information shall be

updated before each retransmission. The retransmission of the FHS payload is

different than retransmissions of ordinary data payloads where the same payload is

used for each retransmission. The FHS packet is used for frequency hop

synchronization before the piconet channel has been established, or when an existing

piconet changes to a new piconet.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 30

Figure 4.5 Format of the FHS payload

Parity bits

This 34-bit field contains the parity bits that form the first part of the
sync word of the access code of the device that sends the FHS packet.
These bits are derived from the LAP.

LAP This 24-bit field shall contain the lower address part of the device that
sends the FHS packet.

Undefined This 2-bit field is reserved for future use and shall be set to zero.

SR This 2-bit field is the scan repetition field and indicates the interval
between two consecutive page scan windows.

Reserved This 2-bit field shall be set to 10.

UAP This 8-bit field shall contain the upper address part of the device that
sends the FHS packet.

NAP This 16-bit field shall contain the non-significant address part of the
device that sends the FHS packet (see also section 4.2.2.1 for LAP,
UAP, and NAP).

Class of device This 24-bit field shall contain the class of device of the device that
sends the FHS packet.

LT_ADDR This 3-bit field shall contain the logical transport address the recipient
shall use if the FHS packet is used at connection setup or role switch.
A slave responding to a master or a device responding to an inquiry
request message shall include an all-zero LT_ADDR field if it sends
the FHS packet.

CLK27-2 This 26-bit field shall contain the value of the native clock of the
device that sends the FHS packet, sampled at the beginning of the
transmission of the access code of this FHS packet. This clock value
has a resolution of 1.25ms (two-slot interval). For each new
transmission, this field is updated so that it accurately reflects the real-
time clock value.

Page scan mode This 3-bit field shall indicate which scan mode is used by default by
the sender of the FHS packet.

Table3 Description of the FHS payload

DM1 packet: The DM1 packet carries data information only. The payload is between

1 and 18 information bytes (including the 1-byte payload header) plus a 16-bit CRC

code. The DM1 packet occupies a single time slot. The information plus CRC bits are

coded with a rate 2/3 FEC. The payload header in the DM1 packet is 1 byte long. The

length indicator in the payload header specifies the number of user bytes (excluding

payload header and the CRC code).

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 31

4.2.2.7 Bitstream Processing

Bluetooth units often have to contend with electro-magnetically noisy

environments. Thus, there is a need for some kind of error-detection and correction.

For error-detection, Bluetooth uses various checksum-calculations. When errors are

detected, there are 3 error-correction schemes defined for Bluetooth. They are

1. 1/3 rate FEC (Forward Error Correction)

2. 2/3 rate FEC

3. ARQ unnumbered scheme (Automatic Repeat Request).

The purpose of the FEC scheme on the data payload is to reduce the number of re-

transmissions. However, in a reasonably error-free environment, FEC gives

unnecessary overhead that reduces the throughput. Therefore, the packet definitions

have been kept flexible to use FEC in the payload or not, resulting in

 the DM and DH packets for the ACL link, and

 the HV packets for the SCO link.

The packet header is always protected by a 1/3 rate FEC; it contains valuable link

information and should be able to sustain more bit errors.

4.2.3 Link Controller

The link controller is responsible for encoding and decoding of Bluetooth packets

from the data payload [5] and parameters related to the physical channel, logical

transport and logical link. The link controller carries out the link control protocol

signalling (in close conjunction with the scheduling function of the resource manager),

which is used to communicate flow control and acknowledgement and retransmission

request signals. The interpretation of these signals is a characteristic of the logical

transport associated with the baseband packet. Interpretation and control of the link

control signalling is normally associated with the resource manager’s scheduler.

Different Link Controller states are Standby, Inquiry, Inquiry Scan, Page, Page Scan,

Connection- Active, Connection- Hold, Connection- Sniff and Connection- Park. The

different LC operations are

 Device Discovery and Inquiry

 Connection Establishment and Paging

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 32

 Optional Paging Scheme

4.2.4 Link Manager

The link manager is responsible for the creation, modification and release of

logical links (and, if required, their associated logical transports), as well as the update

of parameters related to physical links between devices. The link manager

communicates with the link managers on other Bluetooth devices using the Link

Management Protocol (LMP). The link manager is responsible for link set-up and

control using the Link Management Protocol (LMP). The link manager assumes that

the link control provides a guaranteed delivery mechanism for the LMP messages. It

provides the protocol support for a number of procedures, including: authentication,

encryption control link physical parameter control, e.g. power control, timing

accuracy master-to-slave switching (and vice versa) [6].

Link manager communicates with its peers on other devices using the Link

Management Protocol (LMP). Every LMP message begins with a flag bit which is 0 if

a master initiated the transaction and 1 if the slave initiated the transaction. That bit is

followed by a 7-bit Operation Code, and by the message's parameters.

Figure 4.6 Link Manager Protocol signalling layer

When a link is first set up, it uses single-slot packets by default. Multi-slot

packets make more efficient use of the band, but there are some occasions when they

can't be used, for example on noisy links or if SCO links don't leave sufficient space

between their slots for multi-slot packets.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 33

LMP also provides a mechanism for negotiating encryption modes and

coordinating encryption keys used by devices on both ends of the link. In addition,

LMP supports messages for configuration of the quality of service on a connection.

Packet types can automatically change according to the channel quality, so that the

data can be transferred at a higher rate when the channel quality is good and on lower

rates with more error protection if the channel quality deteriorates.

4.2.5 Host Controller Interface

All interaction between the host PC and the Bluetooth device occurs via the

HCI Driver. This is because it is the abstraction layer responsible for communicating

with a Bluetooth device across a variety of transport layers such as USB, UART and

PCMCIA. The HCI supports ACI, SCO and HCI command and event logical channels.

Figure 4.7 The HCI Layer

4.3 The Bluetooth Host- Upper Protocols of the Transport Group
The upper layers of the stack are usually implemented in software.

4.3.1 The L2CAP Layer

The Logical Link Control and Adaptation Protocol (L2CAP) layer is an

abstraction layer that hides the complexities of the underlying transport protocol. The

purpose of L2CAP is to provide connection-oriented and connectionless data services

to higher layer protocols. To achieve this L2CAP provides the following functionality

[6]:

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 34

 multiplexing of higher layer protocols

 establishment, maintenance and clearing of logical connections for

connection-oriented services

 segmentation and re-assembly services to allow packets of up to 64 kilobytes

to be transported between L2CAP entities.

 Additional features include support for groups

allowing existing protocols such as TCP/IP to run unmodified over Bluetooth.

L2CAP resource manager: The L2CAP resource manager block is responsible for

managing the ordering of submission of PDU fragments to the baseband and some

relative scheduling between channels to ensure that L2CAP channels with QoS

commitments are not denied access to the physical channel due to Bluetooth

controller resource exhaustion. This is required because the architectural model does

not assume that the Bluetooth controller has limitless buffering, or that the HCI is a

pipe of infinite bandwidth. L2CAP Resource Managers may also carry out traffic

conformance policing to ensure that applications are submitting L2CAP SDUs within

the bounds of their negotiated QoS settings. The general Bluetooth data transport

model assumes well-behaved applications, and does not define how an

implementation is expected to deal with this problem.

The channel manager is responsible for creating, managing and destroying

L2CAP channels for the transport of service protocols and application data streams.

The channel manager uses the L2CAP protocol to interact with a channel manager on

a remote (peer) device to create these L2CAP channels and connect their endpoints to

the appropriate entities. The channel manager interacts with its local link manager to

create new logical links (if necessary) and to configure these links to provide the

required quality of service for the type of data being transported.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 35

Figure 4.8 Interoperability with existing protocols & applications

4.3.2 The RFCOMM Middleware Protocols

The RFCOMM layer is a serial port (RS-232 serial ports) emulation protocol

that is intended primarily to emulate serial ports over the L2CAP protocol. It is based

on the El31 GSM mobile telephone specification IS 07.105. The concept is basically

to allow a laptop, or other computing device, to connect to, say, a GSM phone, which

is used as a radio modem for remotely accessing data services via the GSM network.

RFCOMM provides the same major attributes of TCP. The biggest difference

between TCP and RFCOMM from a network programmer’s perspective is the choice

of port number. Whereas TCP supports up to 65535 open ports on a single machine,

RFCOMM only allows for 30. This has a significant impact on how to choose port

numbers for server applications, and is discussed shortly.

4.3.3 SDP Middleware Protocols

The Service Discovery Protocol (SDP) allows Bluetooth devices to discover

what services are available on a device. It has a client-server architecture that uses the

Service Discovery Database at the server. The Service Discovery Database (or SDP

server) contains a number of Service Records, and each Service Record contains

attributes of the service. One of the attributes is the Service Record Handle, which

uniquely identifies each service record within the SDP server. The SDP supports both

searching for services and browsing. Searching allows a client to search for a specific

service, which is subsequently identified by the Service Record Handle attribute.

Browsing allows a client to discover what services are supported; these are identified

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 36

by the service attributes, including the Service Record Handle. Once a service has

been identified, its attributes can be requested using the Service Record Handle. The

attributes include information on how to connect to the service via the protocol stack,

e.g. the RFCOMM server channel number with which the service is registered. The

Service Discovery Protocol is run over L2CAP.

4.4 Conclusion
The general overview of the upper and lower protocols of the transport group

was discussed here. With the knowledge of the Bluetooth Module and Bluetooth Host

we can implement any given task related to Bluetooth with ease. From this chapter it

is clear that what the exact purpose of each layer and protocol.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 37

CHAPTER V

MAKING BLUETOOTH ENABLED PERSONAL COMPUTER

5.1 Introduction
BlueZ is a powerful Bluetooth communications stack with extensive APIs that

allows a user to fully exploit all local Bluetooth resources, but it has no official

documentation. Furthermore, there is very little unofficial documentation as well.

Novice developers are told to figure out the API by reading through the BlueZ source

code. This is a time consuming process which reveals small pieces of information at a

time, and is quite often enough of an obstacle to deter many potential developers. This

chapter presents a short introduction to developing Bluetooth applications in C with

BlueZ.

BlueZ is the official Linux Bluetooth stack. It provides support for core

Bluetooth layers and protocols. BlueZ has many interesting features:

 Flexible, efficient and modular architecture

 Support for multiple Bluetooth devices

 Multithreaded data processing

 Hardware abstraction

 Standard socket interface to all layers

 Currently BlueZ consists of (see also Figure 5.1):

 HCI Core

 HCI UART, USB and Virtual HCI device drivers

 L2CAP protocol module

 Configuration and testing utilities

5.2 Setting up BlueZ

5.2.1 Obtaining BlueZ

BlueZ [20] can be directly downloaded. There is also an up to date CVS tree available

there.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 38

Figure 5.1 BlueZ Overview Diagram

5.2.2 Requirements

In order to use BlueZ, atleast a 2.4.4 Linux kernel is required. The 2.4.6 kernel

has BlueZ built-in. In case, if the latest version of BlueZ is needed, disable native

BlueZ support on the present PC. BlueZ can be used with USB or Serial interface

based Bluetooth devices. Additionally, BlueZ provides Virtual HCI device (vhci)

which can be used to test Bluetooth applications. This is very useful if we do not have

any real Bluetooth devices.

5.2.3 Compilation and Installation

To configure BlueZ for the kernel run

./configure

The configure command automatically searches for all the required

components and packages in the directory. Optionally, the configure support the

following options:

--enable-debug enables BlueZ debugging

--with-kernel=<path> kernel source path (default is /usr/src/linux)

Once the Configure ran successfully, to compile and install BlueZ, run:

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 39

make install

Installation of BlueZ is complete! Now, see the README and configure.help

for further compilation instructions including instructions for cross-compilation. As

usually it is good to check /var/log/messages for any output messages.

To update Linux kernel tree with the up to date CVS version run

make update

and recompile your kernel.

Figure 5.2a Starting Bluetooth Services

Figure 5.2b Starting Bluetooth Services

5.2.4 Loading BlueZ Modules

The following lines need to be present in /etc/modules.conf always in order for

BlueZ to work correctly:

alias net-pf-31 bluez

alias bt-proto-0 l2cap

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 40

To use UART based Bluetooth devices, add the following line to the file

/etc/modules.conf in addition to the above

alias tty-ldisc-15 hci_uart

To use the Virtual HCI device, add the following line to the file /etc/modules.conf

alias char-major-10-250 hci_vhci

After making any of the above changes, you can run the below command to enable

auto-loading of BlueZ modules.

depmod –a

Manual loading of the modules can be done by:

modprobe bluez

modprobe hci_uart UART support. Optional

modprobe hci_usb USB support. Optional

modprobe l2cap

To see the BlueZ modules, run

lsmod

If there are any errors, check your /var/log/messages file.

5.2.5 Device Initialization

UART Devices: Make sure that /etc/hcid.conf is correct (tty, speed, flow, etc). Start

hcid. To configure the UART devices, use the tool hciattach. It can be called either

manually or from the PCMCIA cardmgr scripts.

USB Device: Be sure to have USB support properly installed on the Desktop PC that

is being used. Plug in the USB device, check that the USB stack is loaded (usb-core

and uhci or usb-uhci or ohci) and do

modprobe hci_usb

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 41

Devices get initialized when they are plugged in (USB) or on the startup of the

daemon (UART). When configured correctly they should be brought up automatically.

Check your kernel and system logs for error messages.

5.2.6 Debugging the BlueZ Driver

If things go wrong don’t panic but follow these guidelines.

 check the system log in /var/log/messages

 check the debug output from the BlueZ driver

 check for dead processes, like hcid

 check whether loading the right modules compiled for current kernel from the

right location.

Also try:

cvs update get the very latest CVS code

make distclean clean any changes in the code

./configure --enable-debug enable debug output in the BlueZ driver

make update will make sure that Bluetooth headers in the

kernel- tree are up-to-date

make

make install install the newly compiled modules and tools

If it still hangs

 reboot

 unplug all Bluetooth USB devices (maybe even unplug all data and power

connections for a while if you are using developer hardware)

 comment out all uart devices in /etc/hcid.conf

 kill hcid (if it was running)

 start emulator hciemud localhost:10

 start hcid

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 42

Figure 5.3 List of modules starting with b, h, l and r

5.3 Conclusion
After the successful completion of the compilation and installation of BlueZ

the computer we had now is Bluetooth enabled. To increase the services provided by

the PC we can bring various software’s and install them. Now a Bluetooth USB

Dongle is used as HCI layer which should be inserted in the USB port present in the

CPU.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 43

CHAPTER VI

ESTABLISHING A LINK BETWEEN PC AND MOBILE

6.1 Introduction
Although Bluetooth was designed from the ground up, independently of the

Ethernet and TCP/IP protocols, it is quite reasonable to think of Bluetooth

programming in the same way as Internet programming. Fundamentally, they have

the same principles of one device communicating and exchanging data with another

device. The different parts of network programming can be separated into several

components

 Choosing a device with which to communicate

 Figuring out how to communicate with it

 Making an outgoing connection

 Accepting an incoming connection

 Sending data

 Receiving data

Some of these components do not apply to all models of network

programming. In a connectionless model, for example, there is no notion of

establishing a connection. Some parts can be trivial in certain scenarios and quite

complex in another. If the numerical IP address of a server is hard-coded into a client

program, for example, then choosing a device is no choice at all. In other cases, the

program may need to consult numerous lookup tables and perform several queries

before it knows its final communication endpoint.

6.2 Dongles

A Bluetooth dongle can be loosely defined as a small device that is externally

attached to a system in order to provide Bluetooth functionality. Dongles consist of

the same type of ASSP as a development kit although they do not necessarily

implement any of the optional parts of the Bluetooth specification. Usually they

provide only one HCI transport layer option and come bundled with a software stack

and some utility programs.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 44

Figure 6.1 Bluetooth USB Dongle Name

6.3 Transport protocol
Once the client application has determined the address of the host machine it

wants to connect to, it must determine which transport protocol to use. This section

describes the Bluetooth transport protocols closest in nature to the most commonly

used Internet protocols. Both Bluetooth and Internet programming involve using

numerous different transport protocols, some of which are stacked on top of others. In

TCP/IP, many applications use either TCP or UDP, both of which rely on IP as an

underlying transport. TCP provides a connection-oriented method of reliably sending

data in streams, and UDP provides a thin wrapper around IP that unreliably sends

individual datagram’s of fixed maximum length. There are also protocols like RTP for

applications such as voice and video communications that have strict timing and

latency requirements. While Bluetooth does not have exactly equivalent protocols, it

does provide protocols which can often be used in the same contexts as some of the

Internet protocols.

RFCOMM + TCP

The RFCOMM protocol provides roughly the same service and reliability

guarantees as TCP. Although the specification explicitly states that it was designed to

emulate RS-232 serial ports (to make it easier for manufacturers to add Bluetooth

capabilities to their existing serial port devices), it is quite simple to use it in many of

the same scenarios as TCP. In general, applications that use TCP are concerned with

having a point-to-point connection over which they can reliably exchange streams of

data. If a portion of that data cannot be delivered within a fixed time limit, then the

connection is terminated and an error is delivered. The biggest difference between

TCP and RFCOMM from a network programmer’s perspective is the choice of port

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 45

number. Whereas TCP supports up to 65535 open ports on a single machine,

RFCOMM only allows for 30.

L2CAP + UDP

UDP is often used in situations where reliable delivery of every packet is not

crucial, and sometimes to avoid the additional overhead incurred by TCP. Specifically,

UDP is chosen for its best-effort, simple datagram semantics. These are the same

criteria that L2CAP satisfies as a communications protocol.

L2CAP, by default, provides a connection-oriented protocol that reliably sends

individual datagram’s of fixed maximum length. Being fairly customizable, L2CAP

can be configured for varying levels of reliability. To provide this service, the

transport protocol that L2CAP is built on employs a transmit/acknowledgement

scheme, where unacknowledged packets are retransmitted. There are three policies an

application can use

• never retransmit

• retransmit until total connection failure (the default)

• drop a packet and move on to queued data if a packet hasn’t been

acknowledged after a specified time limit (0-1279 milliseconds). This is useful

when data must be transmitted in a timely manner.

Although Bluetooth does allow the application to use best-effort

communication instead of reliable communication, several caveats are in order. The

reason for this is that adjusting the delivery semantics for a single L2CAP connection

to another device affects all L2CAP connections to that device. If a program adjusts

the delivery semantics for an L2CAP connection to another device, it should take care

to ensure that there are no other L2CAP connections to that device. Additionally,

since RFCOMM uses L2CAP as a transport, all RFCOMM connections to that device

are also affected. While this is not a problem if only one Bluetooth connection to that

device is expected, it is possible to adversely affect other Bluetooth applications that

also have open connections.

The limitations on relaxing the delivery semantics for L2CAP aside, it serves

as a suitable transport protocol when the application doesn’t need the overhead and

streams-based nature of RFCOMM, and can be used in many of the same situations

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 46

that UDP is used in. Given this suite of protocols and different ways of having one

device communicate with another, an application developer is faced with the choice

of choosing which one to use. In doing so, we will typically consider the delivery

reliability required and the manner in which the data is to be sent. As shown above we

will usually choose RFCOMM in situations where we would choose TCP and L2CAP

when we would choose UDP.

Requirement Internet Bluetooth

Reliable, streams-based TCP RFCOMM

Reliable, datagram TCP
RFCOMM or L2CAP with

infinite retransmit

Best-effort, datagram UDP
L2CAP (0-1279 ms

retransmit)

Table 4 Comparison of the protocols.

6.4 Port numbers and the Service Discovery Protocol
Once a numerical address and transport protocol are known, choose the port

number to communicate with a remote machine. Almost all Internet transport

protocols in common usage are designed with the notion of port numbers, so that

multiple applications on the same host may simultaneously utilize a transport protocol.

Bluetooth is no exception, but uses slightly different terminology. In L2CAP, ports

are called Protocol Service Multiplexers (PSM), and can take on odd-numbered

values between 1 and 32767. In RFCOMM, channels 1-30 are available for use. These

differences aside, both protocol service multiplexers and channels serve the same

purpose that ports do in TCP/IP. L2CAP, unlike RFCOMM, has a range of reserved

port numbers (1-1023) that are not to be used for custom applications and protocols.

This information is summarized in Table 5. The word port is used in place of PSM

and channel for clarity.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 47

Protocol Terminology Reserved/well-known

ports

Dynamically

assigned ports

TCP port 1-1024 1025-65535

UDP port 1-1024 1025-65535

RFCOMM channel none 1-30

L2CAP PSM odd numbered 1-4095

odd numbered

4097 -32765

Table 5 Port numbers and their terminology for various protocols

In Internet programming, server applications traditionally make use of well

known port numbers that are chosen and agreed upon at design time. Client

applications will use the same well known port number to connect to a server. The

main disadvantage to this approach is that it is not possible to run two server

applications which both use the same port number. Due to the relative large number

port numbers to choose from, this has not yet become a serious issue. The Bluetooth

transport protocols, however, were designed with few port numbers, which means we

cannot choose an arbitrary port number at design time. Although this problem is not

as significant for L2CAP, which has around 15,000 unreserved port numbers,

RFCOMM has only 30 different port numbers. A consequence of this is that there is a

greater than 50% chance of port number collision with just 7 server applications. In

this case, the application designer clearly should not arbitrarily choose port numbers.

The Bluetooth answer to this problem is the Service Discovery Protocol (SDP).

Instead of agreeing upon a port to use at application design time, the Bluetooth

approach is to assign ports at runtime and follow a publish-subscribe model. The host

machine operates a server application, called the SDP server that uses one of the few

L2CAP reserved port numbers. Other server applications are dynamically assigned

port numbers at runtime and register a description of themselves and the services they

provide (along with the port numbers they are assigned) with the SDP server. Client

applications will then query the SDP server (using the well defined port number) on a

particular machine to obtain the information they need.

This raises the question of how do clients know which description is the one

they are looking for. The standard way of doing this in Bluetooth is to assign a 128-bit

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 48

number, called the Universally Unique Identifier (UUID) [1], at design time.

Following a standard method of choosing this number guarantees choosing a UUID

unique from those chosen by anyone else following the same method. Thus, a client

and server application both designed with the same UUID can provide this number to

the SDP server as a search term.

As with RFCOMM and L2CAP, only a small portion of SDP has been

described here - those parts most relevant to a network programmer. Among the other

ways SDP can be used are to describe which transport protocols a server is using, to

give information such as a human-readable description of the service provided and

who is providing it, and to search on fields other than the UUID such as the service

name. Another point worth mentioning is that SDP is not even required to create a

Bluetooth application. It is perfectly possible to revert to the TCP/IP way of assigning

port numbers at design time and hoping to avoid port conflicts, and this might often

be done to save some time. In controlled settings such as the computer science

laboratory, this is quite reasonable. Ultimately, however, to create a portable

application that will run in the greatest number of scenarios, the application should

use dynamically assigned ports and SDP.

The various services offered by my Bluetooth enabled PC are

Inquiring ...
Browsing 00:0E:6D:DE:F2:42 ...
Service Name: Fax
Service RecHandle: 0x10000
Service Class ID List:
 "Fax" (0x1111)
 "Generic Telephony" (0x1204)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 1
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100
Profile Descriptor List:
 "Fax" (0x1111)
 Version: 0x0100

Service Name: Dial-up Networking
Service RecHandle: 0x10001

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 49

Service Class ID List:
 "Dialup Networking" (0x1103)
 "Generic Networking" (0x1201)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 1
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100
Profile Descriptor List:
 "Dialup Networking" (0x1103)
 Version: 0x0100

Service Name: Bluetooth Serial Port
Service Description: Bluetooth Serial Port
Service Provider: Symbian Ltd.
Service RecHandle: 0x10002
Service Class ID List:
 "Serial Port" (0x1101)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 2
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100

Service Name: OBEX Object Push
Service RecHandle: 0x10003
Service Class ID List:
 "OBEX Object Push" (0x1105)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 9
 "OBEX" (0x0008)
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100
Profile Descriptor List:
 "OBEX Object Push" (0x1105)
 Version: 0x0100

Service Name: OBEX File Transfer
Service RecHandle: 0x10004
Service Class ID List:

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 50

 "OBEX File Transfer" (0x1106)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 10
 "OBEX" (0x0008)
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100
Profile Descriptor List:
 "OBEX File Transfer" (0x1106)
 Version: 0x0100

Service Name: Handsfree Audio Gateway
Service RecHandle: 0x10005
Service Class ID List:
 "Handfree Audio Gateway" (0x111f)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 3
Language Base Attr List:
 code_ISO639: 0x656e
 encoding: 0x6a
 base_offset: 0x100
Profile Descriptor List:
 "Handsfree" (0x111e)

 Version: 0x0101

6.5 Establishing network connections
In order to establish new connections the procedures inquiry and paging are

used. The inquiry procedure enables a unit to discover which units are in range, and

what their device addresses and clocks are. With the paging procedure, an actual

connection can be established. Only the Bluetooth device address is required to set up

a connection. Knowledge about the clock will accelerate the setup procedure. A unit

that establishes a connection will carry out a page procedure and will automatically

become the master of the connection.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 51

Figure 6.2 Inquiring

For the paging process, several paging schemes can be applied. There is one

mandatory paging scheme which has to be supported by each Bluetooth device. This

mandatory scheme is used when units meet for the first time, and in case the paging

process directly follows the inquiry process. Two units, once connected using a

mandatory paging/scanning scheme, may agree on an optional paging/scanning

scheme.

Figure 6.3 Paging

The Connection Establishment

After the paging procedure, the master must poll the slave by sending POLL

or NULL packets, to which the slave responds. LMP procedures that do not require

any interactions between the LM and the host at the paged unit’s side can then be

carried out. When the paging device wishes to create a connection involving layers

above LM, it sends LMP_host_connection_req. When the other side receives this

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 52

message, the host is informed about the incoming connection. The remote device can

accept or reject the connection request by sending LMP_accepted or

LMP_not_accepted.

Figure 6.4 Shows the Connection

When a device does not require any further link set-up procedures, it will send

LMP_setup_complete. The device will still respond to requests from the other device.

When the other device is also ready with link set-up, it will send

LMP_setup_complete. After this, the first packet on a logical channel different from

LMP can then be transmitted.

6.6 Conclusion

 In this chapter we saw the similarities between the various transport layers of

TCP/IP (Transport Control Protocol/Internet Protocol) and Bluetooth Transport

protocols. Also we established link between Bluetooth enabled Desktop PC and

Mobile.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 53

CHAPTER VII

EXPERIMENTATION RESULTS AND DISCUSSION

Before establishing a link make sure that Desktop PC is Bluetooth enabled and

the Mobile phone used is in discoverable mode (show to all).

The principle remains the same, however, in that the unique identifying

address of the target device must be known to communicate with it. In both cases, the

client program will often not have advance knowledge of these target addresses. In

Internet programming, the user will typically supply a host name, such as dce.edu or

dceonline.com, which the client must translate to a physical IP address using the

Domain Name System (DNS). In Bluetooth, the user will typically supply some user-

friendly name, such as “My Phone” (here “PRAVEEN DARSHANAM”), and the

client translates this to a numerical address by searching nearby Bluetooth devices.

hciconfig - HCI device configuration utility

hciconfig hciX [up Open and initialize HCI device

|down Close HCI device

|reset Reset HCI device

|rstat Reset stat counters

|auth Enable Authentication

|noauth Disable Authentication

|encrypt Enable Encryption

|noencrypt Disable Encryption

|piscan Set page scan and inquiry scan mode

|noscan Disable scan modes

|iscan Set inquiry scan mode only

|pscan Set page scan mode only

|inq [length] Inquiry of devices

|ptype [type] Set packet type

|lm [mode] Get/Set default link mode

|lp [policy] Get/Set default link policy

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 54

http://www.dce.edu/

|conn Show active connections

|features Show features

|name [name] Get/Set local name

|class [class] Get/Set class of device

|version Display version information

Device Name

Since humans do not deal well with 48-bit numbers like 0x000EED3D1829

(in much the same way we do not deal well with numerical IP addresses like

192.68.161.104), Bluetooth devices will almost always have a user-friendly name.

This name is usually shown to the user in lieu of the Bluetooth address to identify a

device, but ultimately it is the Bluetooth address that is used in actual communication.

For many machines, such as cell phones and desktop computers, this name is

configurable and the user can choose an arbitrary word or phrase. There is no

requirement for the user to choose a unique name, which can sometimes cause

confusion when many nearby devices have the same name. When sending a file to

someone’s phone, for example, the user may be faced with the task of choosing from

5 different phones, each of which is named ”My Phone”. Although names in

Bluetooth differ from Internet names in that there is no central naming authority and

names can sometimes be the same, the client program still has to translate from the

user-friendly names presented by the user to the underlying numerical addresses. In

TCP/IP, this involves contacting a local name server, issuing a query, and waiting for

a result. In Bluetooth, where there are no name servers, a client will instead broadcast

inquiries to see what other devices are nearby and query each detected device for its

user-friendly name. The client then chooses whichever device has a name that

matches the one supplied by the user.

Figure 7.1 Name of the Bluetooth Device (Mobile)

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 55

Figure 7.2 Technical Information of the Bluetooth Device (Mobile)

To query for the default packet type

Figure 7.3 Different Packets in which data is sent

l2ping - L2CAP ping

l2ping [-S source addr] [-s size] [-c count] [-f] <bd_addr>

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 56

Figure 7.4 Pinging Devices

l2test - L2CAP testing

l2test <mode> [-b bytes] [-P psm] [-I imtu] [-O omtu] [bd_addr]

Modes: -d Dump (server)

-c Reconnect (client)

-m Multiple connects (client)

-r Receive (server)

-s Send (client)

Options: -I Incoming MTU that we accept

-O Minimum outgoing MTU that we need

-b Size of the data chunks in kb

-P Use this PSM

If you have several devices on one box this may be useful:

-S <Source BD address>

A simple throughput test using l2test:

Server: l2test -I 2000 -r

Client: l2test -O 2000 -s <bd_addr>

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 57

scotest - SCO testing

scotest <mode> [-b bytes] [bd_addr]

Modes: -d Dump (server)

-c Reconnect (client)

-m Multiple connects (client)

-r Receive (server)

-s Send (client)

hcidump - HCI packet analyzer

Figure 7.5 HCI Packet Analyzer

hcitool - Generic writing and monitoring to the HCI interface

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 58

Figure 7.6 Hcitool

hcitool [-i hciX] OGF OCF param...

where OGF Is the OpCode Group Field (00-3F),

OCF is the OpCode Command Field (0000-03FF),

param... are parameters.

Each parameter is a sequence of bytes. Bytes are entered in hexadecimal form

without spaces, most significant byte first. The size of each parameter is determined

based on the number of bytes entered. An example to do an inquiry using LAP

0x9E8B33 for 10 _ 1.28 sec and unlimited responses is

hcitool -i hci0 01 0001 33 8b 9e 10 00

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 59

and to stop the inquiry

hcitool -i hci0 01 0002

Personal Computer (AMD Athlon, 64 bit Technology) and

Bluetooth device (Nokia 6600) connected via USB.
[root@localhost Bluetooth]# lsmod

Module Size Used by

uhci 23040 0 (unused)

eepro 100 15984 1 (autoclean)

usbcore 48784 1 [uhci]

The list of all modules present in the Linux operating system is given in the Appendix

II.

[root@localhost Bluetooth]# modprobe l2cap

[root@localhost Bluetooth]# lsmod

Module Size Used by

l2cap 15552 0 (unused)

bluez 20624 0 [l2cap]

uhci 23040 0 (unused)

eepro 100 15984 1 (autoclean)

usbcore 48784 1 [uhci]

[root@localhost Bluetooth]# modprobe hci_usb

[root@localhost Bluetooth]# hciconfig

Figure 7.7 Bluetooth USB Dongle is not connected

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 60

If the Dongle is not connected repeat the commands to invoke the device. That is

shown in the figure below. We can manually bring device up by using the hciconfig

command

hciconfig hci0 up

Figure 7.8 Repetition of up and down cycles

After the repetition of the cycles try to invoke the device as shown in the figure below.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 61

Figure 7.9 Starting Bluetooth

Figure 7.10 hciconfig -a

The BlueZ stack includes an application named rfcommd that is used to

connect two Bluetooth devices at the RFCOMM layer. Once the connection has been

established pppd can be launched to place a new route for IP traffic between the two

hosts, assuming that PPP is correctly configured.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 62

Figure 7.11 Dial-Up Networking (DUN)

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 63

CHAPTER VIII

CONCLUSION AND FURTHER WORK

The thesis discussed the origins of the SIG and presented an overview of

wireless communication concepts leading to the development of the Bluetooth

technology and specification. Future versions of the specification are expected to

provide higher data rates for Bluetooth (between 2 and 10 Mbps) and to provide the

multimedia distribution facilities which are becoming a key requirement for the future

of information technology. As Bluetooth and Wi-Fi began to capture the interest of

the hi-tech industry, many understood the exciting potential of these technologies to

revolutionize how people connect their devices. But negative publicity surfaced when

analysts and members of the media speculated that the two technologies competed

against each other. Most industry insiders and technology experts agree that the two

wireless technologies do not compete but rather complement each other.

The scope for future work is huge. Going into the depths of Bluetooth protocol

stack may help in performing practical setups like running Bluetooth robots,

Bluetooth remote for TV’s. Also mobile phones can used as remote for running music

on MP3 players or on PC. The scope of Bluetooth is so vast that in future it may be

part of every human beings life.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 64

REFERENCES

[1] Bluetooth Special Interest Group, Specification of the Bluetooth System, v2.0,

http://www.bluetooth.com, November 2004.

[2] B. A. Miller and C. Bisdikian, “Bluetooth Revealed: The Insider’s Guide to an

Open Specification for Global Wireless Communications”, Prentice Hall, 2001.

[3] J. Bray and C. F. Sturman, “Bluetooth: Connect Without Cables”, Prentice Hall

2001.

[4] KVSSSS Sairam, N.Gunasekaran, S.Rama Reddy, “Bluetooth in Wireless

Communication”, IEEE Communications Magazine, June 2002.

[5] Chatschik Bisdikian, “An Overview of the Bluetooth Wireless Technology”, IEEE

Communications Magazine, pages 86- 94, December 2001.

[6] R. Shepherd, “Bluetooth wireless technology in the home”, Electronics &

Communication Engineering Journal, pages 195- 203, October 2001.

[7] Gregory Lamm, Gerlando Falauto, Jorge Estrada, Jag Gadiyaram, “Bluetooth

Wireless Networks Security Features”, Proceedings of the IEEE, pages 265-272, June

2001.

[8] C. Schurgers, V.Raghunathan, M. Srivastava, “Power management of energy-

aware communication systems”, ACM Trans. Embedded CompSystems, vol. 2, iss.3,

pages 431-447, August 2003.

[9] E. Shih, “Wake on Wireless: An event driven energy saving strategy for battery

operated devices”, Proc. MOBICOM, pages 160-171, 2002.

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 65

http://www.bluetooth.com/

[10] G. Tan, A. Miu, J. Gutang and H. Balakrishna, “Forming scatternets from

Bluetooth personal area networks”, MIT Technical Report, MITLCS-TR-826,

October 2001.

[11] Haartsen, J.C. and Zurbes, S., “Frequency hop selection in the Bluetooth radio

system”, IEEE Seventh International Symposium on Spread Spectrum Techniques

and Applications, pages 83-87, Sep. 2002.

[12] Zan Li, Yilin Chang and Lijun Jin, “A Novel Family of Frequency Hopping

Sequences for Multi-hop Bluetooth Networks”, IEEE Transactions on Consumer

Electronics, Vol. 49, No. 4, pages 1084- 1089,November 2003

[13] Ivan Howitt, “Mutual Interference Between Independent Bluetooth Piconets”,
IEEE Transactions On Vehicular Technology, vol. 52, no. 3, pages 708- 718, May

2003.

[14] Ron Weinstein, “RFID: A Technical Overview and Its Application to the

Enterprise”, IEEE Computer Society-IT Pro, pages 27- 33, June 2005.

[15] Jeremy Landt, “The history of RFID”, IEEE POTENTIALS, pages 8- 11,

November 2005.

[16] IEEE 802.11b Working Group. (http://grouper.ieee.org/groups/802/11)

[17] http://www.usb.org.

[18] http://www.bluetooth.org

[19] http://www.forums.nokia.com

[20] http://www.bluez.com

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 66

http://grouper.ieee.org/groups/802/11
http://www.usb.org/
http://www.bluetooth.org/
http://www.forums.nokia.com/
http://www.bluez.com/

APPENDIX I

To configure the UART devices you need to use the tool hciattach. It can be

called either manually or from the PCMCIA cardmgr scripts.

HCI daemon configuration file.

$Id: bluezhowto.tex, v 1.5.1.2 2001/11/14 12:03:10 beutel Exp $

HCId options

options {

Automatically initialize new devices

autoinit yes;

}

Default settings for HCI devices

default {

Local device name

name BlueZ;

Local device class

class 0x100;

Default packet type

pkt_type DH1, DM1;

}

HCI devices with UART interface configured without the use of hciattach

#uart {

/dev/ttyS0 57600 flow orchid;

/dev/ttyS1 57600 flow orchid;

#/dev/ttyS0 57600 flow;

}

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 67

Setting up a PPP Link
rfcommd.conf files for client and server.

Server side:

options {

psm 3; # Listen on this psm.

ppp /usr/sbin/pppd;

ifconfig /sbin/ifconfig;

route /sbin/route;

firewall /sbin/ipchains;

}

Network Access

na {

channel 1;

up {

ppp "noauth 10.4.42.15:192.168.50.1";

};

}

Start the server using ip 10.4.42.15 with:

rfcommd -s na

Client side:

options {

psm 3; # Listen on this psm.

ppp /usr/sbin/pppd;

ifconfig /sbin/ifconfig;

route /sbin/route;

firewall /sbin/ipchains;

}

Network Access

na {

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 68

channel 1;

up {

ppp "noauth";

};

}

Setting up a point-to-multipoint connection
Use following syntax in the rfcommd.conf file.

session_X {

channel X;

}

session_Y {

channel Y;

}

and then start a server for each session:

rfcommd session_X server

rfcommd session_Y server

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 69

APPENDIX II

Module Size Used by
autofs4 19013 1
i2c_dev 8773 0
i2c_core 20673 1 i2c_dev
rfcomm 34517 0
l2cap 23617 10 hidp,rfcomm
sunrpc 136573 1
ip_conntrack_netbios_ns 3009 0
xt_state 2241 9
ip_conntrack 49261 2 ip_conntrack_netbios_ns,xt_state
nfnetlink 6489 1 ip_conntrack
xt_tcpudp 3265 11
iptable_filter 3137 1
ip_tables 11657 1 iptable_filter
x_tables 1261 4 ipt_REJECT,xt_state,xt_tcpudp,ip_tables
hci_usb 15957 1
bluetooth 44069 4 hidp,rfcomm,l2cap,hci_usb
vfat 11969 5
fat 47709 1 vfat
dm_multipath 18121 0
button 6609 0
battery 9285 0
ac 4933 0
parport_pc 25445 1
parport 34313 3 ppdev,lp,parport_pc
nvram 8393 0
ohci1394 31749 0
ieee1394 288665 1 ohci1394
ehci_hcd 29005 0
ohci_hcd 19805 0
snd_hda_intel 17233 1
snd_hda_codec 112065 1 snd_hda_intel
forcedeth 22213 0
snd_seq_device 8909 3 snd_seq_dummy,snd_seq_oss,snd_seq
snd_pcm_oss 45009 0
snd_mixer_oss 16449 1 snd_pcm_oss
snd_pcm 76869 3
 snd_hda_intel,snd_hda_codec,snd_pcm_oss
snd_timer 22597 2 snd_seq,snd_pcm
snd 50501 11
snd_hda_intel,snd_hda_codec,snd_seq_oss,snd_seq,snd_seq_device,snd_pcm_oss,snd
_mixer_oss,snd_pcm,snd_timer
soundcore 9377 1 snd
snd_page_alloc 10441 2 snd_hda_intel,snd_pcm
dm_snapshot 15981 0

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 70

dm_mod 50009 7
dm_multipath,dm_snapshot,dm_zero,dm_mirror
jbd 52693 1 ext3
sata_nv 9157 7
libata 53969 1 sata_nv
scsi_mod 124649 3 sg,libata,sd_mod

BLUETOOTH - COMMUNICATING AND EXCHANGING DATA WITH ANOTHER DEVICE, SECURITY

 71

