ATTRIBUTE BASED CRYPTOGRAPHY FOR GRID COMPUTING
A Dissertation Submitted in partial fulfillment of the requirements

for the award of the degree of

MASTER OF ENGINEERING

(Computer Technology & Applications)

by
Santosh Yadav
College Roll No. 02/CTA/05
Delhi University Roll No. 2002
Under the guidance of

Dr. Goldie Gabrani

[image: image12.emf]0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

Communication Cost in Kbits

Number of attributes

AKI Vs GSI PKI

AKI

GSI PKI

Department Of Computer Engineering

Delhi College of Engineering

Bawana Road, Delhi-110042

(University of Delhi)

June-2007
CERTIFICATE

This is to certify that the dissertation entitled “Attribute Based Cryptography For Grid Computing” which is submitted by Santosh Yadav in partial fulfillment of the requirement for the award of degree Master of Engineering in Computer Technology & Application, Delhi College of Engineering; Delhi is a record of bonafide work carried out and completed under my supervision and guidance during the academic session 2006-2007.

(Dr.Goldie Gabrani)
 (Prof. D. Roy Choudhury)

 Superviser Head of Department

 Department of Computer Engineering

 Delhi College of Engineering

 Delhi-110042

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Dr. Goldie Gabrani, Ex-Head of the Department, Department of Computer Engineering for the constant motivation and support during the duration of this project. It is my privilege and owner to have worked under the supervision. Her invaluable guidance and helpful discussions in every stage of this project really helped me in materializing this project. It is indeed difficult to put her contribution in few words.

I would also like to take this opportunity to present my sincere regards to my teachers’ viz. Professor D. Roy Choudhury, Dr S. K. Saxena, Mr. Rajeev Kumar and Mrs. Rajni Jindal for their support and encouragement.

I am thankful to my friends and classmates for their unconditional support and motivation during this project.

Santosh Yadav
M.E. (Computer Technology & Applications)

College Roll No. 02/CTA/05
Delhi University Roll No. 2002
Abstract

The demand for access to computational power, resources and storage capacity is never ending despite the fact that computing technologies now achieve a high level of sophistication due to continuous improvements in computing power and network bandwidth. The demand of solving these large and complex new problems is met using the concept of Grid Computing. Grid computing deals with the structure and operation of computational grids providing an infrastructure to allow access to a wealth of sharable resources such as processing power, databases, and any other hardware devices or software components. The present technology uses PKI as a secure and standard technology so that the participating resources as well as the users can be uniquely and securely identified within a grid environment. But the PKI system provides coarse level of access control i.e. the resource is either fully available or not accessible at all. Since it is also certificate based technology which leads to an increase in the communication cost.

The main objective of this dissertation is to remove the shortcomings in the traditional PKI and provides fine level of granularity through attribute of the user and resource for secure communications among grid entities within a dynamically changing grid environment. This is carried out using the concept of Attribute Based Cryptography. Using Attribute Based Cryptography, an attribute of an entity, which can be a user can be transformed into his public key and used on the fly for generation of private key without any authenticity check. This concept defines Attribute based Key Infrastructure (AKI) for grid computing environment. Further mutual authentication in grid computing environment using the TLS protocol has been design and fully implemented. The potential of Attribute Based Cryptography provides more immediate flexibility to entities within a security infrastructure and its certificate-free approach well matches the dynamic qualities of grid environments.
Contents

1 Introduction

1.1
Motivation and Objectives
1
1.2
Dissertation Contributions
2
1.3
Organisation of the dissertation
3
 Grid Security and Globus Toolkit
4
2.1
Grid computing
4
2.1.1
Definition of Grid computing
4
2.1.2
Evolution of Grid
4
2.1.3
Grid architecture
6
2.1.4
Grid applications
8
2.2
Security in Grid
9
2.2.1
Grid Security Requirements
9
2.2.2
Current Security Implementation for Grid
12
2.2.2.1
Kerberos 5
12
2.2.2.2
X.509
13
2.2.2.3
Public Key Infrastructure (PKI)
14
2.3
Globus Toolkit
16
2.3.1
Globus Security Infrastructure
17
2.3.1.1
Public Key Cryptography
18
2.3.1.2
Digital Signatures
18
2.3.1.3
Certificates
18
2.3.1.4
Mutual Authentication
19
2.3.1.5
Confidential Communication
20
2.3.1.6
Securing Private Keys
20
2.3.1.7
Single Sign-On, Delegation and Proxy Certificates
21
 Attribute-Based Cryptography
22
3.1
Certificate-based PKI and attribute-based PKI
22
3.2
Attribute based cryptography primitive
24
3.2.1
Overview of elliptic curves and parings
24
3.2.2
Sahai-Waters Large Universe construction
25
 Design and Implementation of Attribute-Based Key Infrastructure
29
4.1
Attribute based Key Infrastructure for Grid (AKI)
29
4.1.1
Overview
29
4.1.2
Design of AKI
30
4.1.2.1
Mutual Authentication
32
4.1.2.2
Single Sign-On
33
4.1.2.3
Delegation
34
4.1.2.4
Key Update
34
4.1.2.5
Key Revocation
35
4.1.3
Performance Analysis
35
4.2
Software Details
37
4.2.1
Attribute-based Cryptography module
37
4.2.1.1
Setup_System.c:
37
4.2.1.2
Common.c:
38
4.2.1.3
Policy_lang.c:
38
4.2.1.4
Keygen.c:
38
4.2.1.5
Encrypt.c:
38
4.2.1.6
Decrypt.c:
39
4.2.2
Environment setup and TLS handshake module
39
4.2.3
Standard cryptography and utility Software
39
4.3
Simulation Testbed Setup and Results
40
4.3.1
Testbed setup: Hardware Setup
40
4.3.2
Testbed setup: Software Setup
41
4.3.3
Installing Globus Toolkit 4.0
44
4.3.4
Configuring GT4.0 and Installation of Attribute Based Cryptography
46
4.3.5
Running GridFTP service over configured Platform
51
 Conclusion and Further Research
54
5.1
Conclusion
54
5.2
Further Research
55
 References
57

List of Figures

5Figure 2.1: Evolution path of Grid

Figure 2.2: The layered grid architecture and its mapping to the IP architecture [11].
7
Figure 2.4: GlobusToolkit Structure [20]
17
Figure 3.1: Module diagram of Attribute-based cryptography
28
Figure 3.2:A hierarchical structure of entities in AKI
31
Figure 4.1: Hardware setup
40

List of Tables

8Table 2.1: Five classes of grid applications [11].

Table 3.1: Major Difference between C-PKI and A-PKI
24
Table3.2: A’s long and short term credential
32
Table 4.1: Host name and their configuration
41
Table 4.2: User of grid systems
44

List of Acronyms

ABC/ABE
Attribute-based cryptography/Attribute-based encryption

AES
Advanced Encryption Standard

CA
Certifying Authority

DES
Data Encryption Standard

GGF
Global Grid Forum

GSI
Grid Security Infrastructure

GT
Globus Toolkit

KDC
Key Distribution Centre

LDAP
Lightweight Directory Access Protocol

MIME
Multimedia Internet Mail Extension

OGSA
Open Grid Service Architecture

OGSI
Open Grid Service Infrastructure

PKI
Public Key Infrastructure

PKG
Private Key generator

SSL
Secure Socket Layer

TLS
Transport Layer Security

TA
Trusted Authority
chapter 1
1. Introduction

This chapter presents an overview of the dissertation. The motivation of the work and its contributions to the prevailing grid security has been discussed. This section also deals with the overall organisation of the dissertation.

1.1 Motivation and Objectives

Tremendous improvements to computing power, network bandwidth and storage capacity are allowing computing technologies to a high level of sophistication. Nevertheless, there remains an increasing demand for access to more computational power, resources and storage capacity due to demands of large and complex new problems. Grid computing [1-3] has been proposed as a mechanism to meet such demands. During the last years, the concept of Grid computing has become increasingly popular. In short, Grid computing deals with the structure and operation of computational grids. It aims to provide an infrastructure allowing access to a wealth of sharable resources such as processing power, databases, storage applications and any other hardware devices or software components. All of these can be reached by remote users who want to solve resource intensive problems in computational science and engineering, experimental science, industrial engineering, corporate communications and so on.
In order to achieve workload and data sharing between resources reliably, it is necessary that participating resources as well as users can be uniquely and securely identified. Provision of appropriate security within a grid environment seems to be more challenging than most conventional distributed systems. Public key infrastructure (PKI) technology is presently employed in most grid implementations as it is perceived as a secure and standard technology which is widely supported and easily integrated with different applications on different platforms. In the Globus Toolkit (GT) [4], the leading toolkit used in developing many grid systems, proxy certificates [5] have been designed and deployed in addition to standard X.509 public key certificates. This removes some of the shortcomings in the traditional PKI setting and provides additional properties that align with the requirements for secure communications among grid entities within a dynamically changing grid environment.

Independent of grid computing, a variant of conventional public key technologies called attribute-based cryptography [6-8] has recently received considerable attention. It can offer a more feasible and better solution than prevailing PKI based Globus Security Infrastructure. It overcome the shortcomings in the traditional PKI and provides fine level of granularity through attribute of the user and resource for secure communications among grid entities within a dynamically changing grid environment. Using Attribute Based Cryptography, an attribute of an entity, which can be a user can be transformed into his public key and used on the fly for generation of private key without any authenticity check. The dissertation aims to deploy Attribute Based Cryptography in place of the PKI-based Grid Security Infrastructure (GSI) in the Globus Toolkit (GT). This concept defines Attribute based Key Infrastructure (AKI) for grid computing environment. This infrastructure includes proposal for mutual authentication, single sign on, authorization, delegation and key management. It offers more lightweight and flexible key usage and management approaches within grid security infrastructures than a traditional PKI. Further mutual authentication in grid computing environment using the Transport Layer Security (TLS) protocol has been design and fully implemented. The potential of Attribute Based Cryptography provides more immediate flexibility to entities within a security infrastructure and its certificate-free approach well matches the dynamic qualities of grid environments.

1.2 Dissertation Contributions
The implementation of Attribute Based Cryptography in grid security is an evolving and emerging field but the potential of Attribute Based Cryptography has only been partially investigated till date. The contributions of this dissertation can be summarized as follows.
· An Attributed-based Key Infrastructure based on Attribute based cryptography for grid security system has been presented which includes mutual authentication, single sign on, authorization, delegation, key revocation and key update.
· Further Attribute-based Cryptography and mutual authentication using TLS handshake protocol over Globus toolkit 4.0 (GT) is designed and perform successfully.
Further this design provides the base for the support of single sign-on, authorization, credential delegation and key management in a natural way.
1.3 Organisation of the dissertation
The remainder of the dissertation is organized as follows. First, some information on concepts of grid computing, grid security and current implementation in globus toolkit is given in chapter 2. It also covers the grid architecture, role of web services in grid computing and grid security technology used to meet these requirements in grid implementation. Secondly in chapter 3 we give an overview of cryptography and along with the information about attribute-based cryptography. It also includes mathematical definition of Attribute-based Cryptography and steps involved in encryption and decryption. It also includes the feasibility study of attribute-based cryptography over other existing security features. Third in chapter 4 we present the design for deployment of Attribute-based encryption in security infrastructure of grid system. This system is named as attribute-based key infrastructure for grid systems. Further it deals with implementation details which include software details, testbed setup and results. The final chapter of this dissertation concludes the work with scope for further research.
Chapter 2

2. Grid Security and Globus Toolkit
This chapter gives an overview of grid computing and the associated security features. Some grid security issues relevant to the work are also discussed here.
2.1 Grid computing
The term grid was first used in the mid-1990s to denote a distributed computing infrastructure for advanced science and engineering applications [12].The term, grid computing, has become one of the latest buzzwords in the IT industry. Grid computing is an innovative approach that leverages existing IT infrastructure to optimize compute resources and manage data and computing workloads.
2.1.1 Definition of Grid computing

In [30] Gartner defined Grid as,

 "A Grid is a collection of resources owned by multiple organizations that is coordinated to allow them to solve a common problem." Gartner further defines three commonly recognized forms of grid.”

In [11], Foster and Kesselman, the pioneers of modern grid development, wrote:
“A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive and inexpensive access to high- end computational capabilities.”
2.1.2 Evolution of Grid
Even though the computational capability and network performance have gone to a great extent, there are still problems in the fields of science, engineering, and business, which cannot be effectively dealt with using the current generation of supercomputers. In fact, due to their size and complexity, these problems are often resource (computational and data) intensive and consequently entail the use of a variety of heterogeneous resources that are not available in a single organization. The emergence of the Internet as well as the availability of powerful computers and high-speed network technologies as low-cost commodity components is rapidly changing the computing landscape and society. These technology opportunities have led to the possibility of using wide-area distributed computers for solving large-scale problems, leading to what is popularly known as Grid computing.
Grids enable the sharing, selection, and aggregation of a wide variety of resources including super computers, storage systems, data sources, and specialized devices that are geographically distributed and owned by different organizations for solving large-scale computational and data intensive problems in science, engineering, and commerce.

Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. The standardization of communications between heterogeneous systems created the Internet explosion. The emerging standardization for sharing resources, along with the availability of higher bandwidth, are driving a possibly equally large evolutionary step in grid computing [4]. The evolution path of grid computing and its analogy with current web and telnet system is depicted in fig. 2.1.

[image: image2]
Figure 2.1: Evolution path of Grid
2.1.3 Grid architecture
After about a decade of focused research and development, and experimentation, considerable consensus has emerged among the grid community on the requirements and architecture for grid computing. Because of the large-scale and heterogeneous nature of grid, inter-operability has always been the central architectural issue. Standardized protocols, defining the content and sequence of message exchanges used to request remote operations, have emerged as an essential means of achieving interoperability.

In what follows, we describe the grid architecture proposed by Foster et al. in [11], which has now become the foundation for all grid systems.
The Layered Grid Architecture: The original layered grid architecture proposed by Foster et al. is shown in Figure 2.2. A brief description of each component is as follows:
· The fabric layer provides the lowest level of access to actual resources and implements the mechanisms that allow those resources to be shared and utilized.
· The connectivity layer defines the communication and security protocols required for network data transmissions between different fabric layer resources.

· The resource layer builds on the connectivity layer, implementing protocols that enable secure negotiation, initiation, monitoring, accounting and payment for sharing operations on individual resources.

· The collective layer deals with the coordination of multiple resources by providing functions such as resource discovery and scheduling.

· The application layer is where grid applications are implemented by utilizing services defined in any of the previous layers.
Figure 2.2 also shows the mapping between the grid and internet protocol architectures. They are similar in that components within each layer of the protocol architecture share common characteristics with each other, where each layer can build on the capabilities and behavior provided by the layer below. The major difference lies in the interaction between layers of the architecture. In the Internet protocol, each layer generally interacts only with the layer above or below. For instance, a message created at the application layer can only be passed down to the transport layer. In the grid architecture, applications are able to call services defined at any lower layers. At each layer, there are Application Program Interfaces (APIs) implemented by Software Development Kits (SDKs) that allow exchanges of protocol messages with the appropriate services at different layers.
[image: image1.jpg]

Figure 2.2: The layered grid architecture and its mapping to the IP architecture [11].
The Open Grid Services Architecture: By 2001, the rapidly increasing uptake of grid computing technologies among the gradually enlarging grid community had resulted in the emergence of the Global Grid Forum (GGF) as a standards body. One of the early activities of the GGF was developing the Open Grid Services Architecture (OGSA) [12], which aims to define a common, standard and open architecture for grid systems. A set of standard interfaces for services applicable to grid applications such as job management services, resource management services, and security services are specified in OGSA. These services are termed grid services. These are web services with extended features that allow them to support grid applications. However, OGSA is only a high-level architectural view of what grid services are and this has spawned another standard called the Open Grid Services Infrastructure (OGSI), also developed by GGF. OGSI gives a formal and detailed technical specification of what a grid service is.
2.1.4 Grid applications
Grid concepts and technologies were first developed to facilitate resource sharing in far using scientific collaborations among universities and research institutions. Computational grids are normally used for resource intensive and computationally demanding scientific simulation or analysis, and complex problems which require dynamically constructed collaborative environments such as climate change simulation, modeling of high energy and nuclear physics, analysis of large statistical samples in astronomical research and so forth. Table 2.1 presents a classification of grid applications into the five types identified by Foster and Kesselman in [11].
	Category
	Characteristics
	Examples

	Distributed supercomputing
	Very large problems needing lots of CPU, memory, etc
	Distributed interactive simulation, stellar dynamics

	High throughput

	Harness many otherwise idle resources to increase aggregate throughput
	Chip design, parameter studies, cryptographic problems

	On demand

	Remote resources integrated with local computation, often for bounded amount of time
	Medical instrumentation, network-enabled solvers, cloud detection

	Data intensive

	Synthesis of new information from many or large data sources
	Sky survey, physics data, data assimilation

	Collaborative

	Support communication or collaborative work between multiple participants
	Collaborative design, data exploration, education

Table 2.1: Five classes of grid applications [11].
 In order to help develop these applications, there are numerous government-funded grid projects with the backing of industry players. These projects are both developing core technologies and deploying production grids. Some of the recent major projects initiated are as follows:
· Globus [13] is aimed at bringing together a large community of organizations and individuals to conduct research in and development of the fundamental technologies for grid computing. The Globus Toolkit is an open source software toolkit being developed by the Globus Alliance. Globus is supported by US government agencies such as the Defense Advanced Research Projects Agency (DARPA), the National Science Foundation (NSF), the US Department of Energy, and the National Aeronautics and Space Administration (NASA).

· TeraGrid [15], completed in September 2004, was a multi-year effort to build and deploy one of the world's largest and fastest distributed infrastructures for open scientific research. The project, which was sponsored by NSF, currently connects nine supercomputing centers in the US. This brings together over 40 tera°ops6 of computing power, nearly 2 petabytes7 of rotating storage, and specialized data analysis and visualization resources into production. These resources are interconnected at 10 to 30 gigabits/second via a dedicated national network.

· EU DataGrid [14] is a project funded by European Union (EU) to build the next generation computing infrastructure. The project, completed in March 2004, partly serves as a testbed for the European Organisation for Nuclear Research (CERN)'s Large Hadron Collider (LHC) Computing Grid Project, the world's largest and most powerful particle accelerator.

· GridSim: Grid Modeling and Simulation Toolkit [16]: The GridSim toolkit an Australian grid develops and maintains by R.Vuyya provides a comprehensive facility for simulation of different classes of heterogeneous resources, users, applications, resource brokers, and schedulers. It can be used to simulate application schedulers for single or multiple administrative domains distributed computing systems such as clusters and Grids.
Apart from the above grid projects, there are close to a hundred other on-going grid projects and initiatives around the globe.
2.2 Security in Grid

Security has become a vital and omnipresent issue for any distributed system. Grid systems, operating in networked, open environments, are no different. In the remainder of this section, we will begin by providing the security requirements for grid applications.
2.2.1 Grid Security Requirements
The broad area of security within grids can be broken down into five main areas. These areas can then be examined in turn with their specific requirements established. It should be noted that due to the highly variable security requirements of different organisations only the core points are covered that are relevant to the dissertation work.
 The five main areas of security:
· Authentication
· Authorization
· Confidentiality
· Integrity and

· Management
Authentication: Authentication is to ascertain whether a person is bona fide. Authorization is to decide whether they are allowed to perform some given action. Provision for Mutual Authentication lies at the heart of the grid model, as the grid relies to a certain extent on trust between parties. An authorized person is trusted to use a service. An unauthorized person is not trusted to use a service. You cannot ascertain authorization until the person in question is authenticated unequivocally as that person and not an impostor. It is also necessary for a person to ascertain that a service is the one they are looking for and not an impostor posing as that service, before handing over potentially important material. Therefore the need for mutual authentication provision is vitally important within any grid software. Many grids make use of third party Certification Authorities (CA’s) to enable mutual authentication. A CA is used to validate people who apply for certificates for use in mutual authentication. They ensure that a person is bonafide before handing them a certificate. That certificate is signed by the CA to state which CA issued it. Therefore in the mutual authentication process it is a trusted third party that is in effect vouching for who a person is. This is a some what simplified view of what a CA does, but it suffices to say that it is a very important requirement that the role third parties play, be considered carefully in the design of any grid.
Authorization: Authorization mechanisms deal with issues beyond that of authentication, as authentication only proves who you are. Access to service should be limited to those with permission to do so Access to hardware / Software / Data Access should only be authorized to restricted actions on a machine. Users should not have free rein over other people’s resources. For example a person may have access to a processor and space on a hard disk but may not have permission to make use of local peripherals. Similarly access to a certain piece of software or data set may be allowed, but access to other resident software may need to be restricted. User Interaction Users should only be able to communicate with a recognized service through a specified interface for the purposes of authorization / authentication and data transmission.
 Confidentiality: Issues with confidentiality are more complex in that the requirements are less easily defined. Most of the issues in this area are concerned with what it is acceptable for a given individual to see. It includes
Communications: Transmissions between parties should be secured to allow the transport of sensitive or private data and / or programs. This becomes more important with the rising role of Virtual Organization VO’s within the grid.
Data Protection: In order for grids to legally exist it is essential that they comply with appropriate legislation, such as the Data Protection Act. Multi-level services. In the case of multi-level services agreed information flows must be set out before a service is utilized, to take into account what information if any should be passed on of a users identity and / or information about them to subsequent sub services. Secure Areas Users should have a secure area from which to run programs. Data should not be accessible to others from outside nor should the program be able to affect other processes running on a machine outside of that area.
Integrity: Issues with integrity concentrate on what prevents subversion of a system if some one did get in. They also deal with recovery from damage done either intentionally or unintentionally. Authentication / Authorization mechanisms to ensure the integrity of passwords in the long term some allocation should be made for the regular changing of keys, passwords, tokens etc within the grid framework itself. Storage should also be secured against unauthorized access. It should be made clear whose responsibility this before any service is launched.
Management: Some form of centralized security model should exist for VO’s to allow for the addition / removal/ and alteration of user privileges without the need for excessive manipulation of the underlying setup of the system. In many systems built in expiry of ID has been used to control revocation etc. Many of the possible uses for future grids within VO’s and companies depend on a rapid deployment strategy, which requires a security mechanism which can be easily installed and maintained with a modular approach allowing it to be adapted to specific circumstances.
In this dissertation, our focus will be on the following items from the above list, namely: (i) entity authentication; (ii) single sign-on (authentication) (iii) delegation (authentication) and (iv) Data confidentiality and integrity. Furthermore, we will look at the integration of our proposals with current grid security architectures.
2.2.2 Current Security Implementation for Grid
In this section, we intend to cover only security technologies or mechanisms relevant to the scope of this dissertation. These include Kerberos 5, X.509, public key infrastructure (PKI), proxy certificates and their role in grid environments, the Transport Layer Security (TLS) protocol and how it is used to support grid security infrastructure, and some basic concepts about RSA encryption and signature schemes.
2.2.2.1 Kerberos 5
The Kerberos protocol has been developed at the Massachusetts Institute of Technology (MIT). [17] It is based upon a conventional symmetric cipher; in the original implementation, DES is used as the symmetric cipher, but the Kerberos specifications do not require that DES be used, so that any other symmetric cipher for instance Triple-DES, AES or IDEA can be used as well. The Kerberos protocol is a two-stage authentication mechanism. In the first step, a client authenticates itself to a central entity, the Kerberos. Named after the hellhound that guards the entrance to the underworld in Greek mythology, the Kerberos also known as Key Distribution Center (KDC) or Authentication Server (AS) maintains and guards a mutual secret key with every potential client. After successful authentication, the client needs to acquire a service ticket in order to make use of a particular service.

The Kerberos protocol has three main vulnerabilities: Its centralized structure, its need for time synchronicity, and the underlying cipher. For an experiment about the dangers of a compromised Kerberos see [18].

Centralized Server Structure. For a malicious attacker, the central Kerberos server is a very attractive target. If the attacker can somehow compromise the Kerberos, then the entire security system is worthless. Therefore, it is absolutely vital that the Kerberos is physically secure, that the server software is free of exploits, and that access to it is minimized.

Time Synchronicity. In order for the protocol to work securely, it is obviously necessary that the clocks of all computers involved be synchronized to a sufficiently high degree. Insufficient synchronicity may be exploitable by use of a replay or a denial-of-service attack.

Underlying Cipher. It is also obvious that the entire protocol can only be safe if the underlying cipher algorithm is sufficiently safe. The canonical cipher used in Kerberos, DES, seemed to be safe until the recent, successful attacks, for example those of the various “DES Challenges” in which dedicated hardware has proven to be successful. Therefore, it is obvious that serious general attacks are coming increasingly close to being feasible, and it seems advisable to avoid using DES.

2.2.2.2 X.509
Strictly speaking, the X.509 standard is not an authentication protocol, but a public key infrastructure (PKI). It is also known as the ISO Authentication Framework. It is not based upon a traditional symmetric cipher, but a more unconventional asymmetric cipher. As with the Kerberos protocol, the X.509 standard does not define a specific cipher algorithm to be used, but it does recommend the RSA algorithm. X.509 is defined [16]; ITU recommendations regarding X.509 are also available. [2] Since the X.509 standard is not based on a symmetric, but on an asymmetric cipher, it differs significantly from the Kerberos protocol in various key points. In X.509 terms, there is no single “master” authentication server or authentication center. Instead, each and every party in the protocol needs to decide by itself that it trusts. In practice, this means that there are several trust centers which a given party trusts. Trust centers are called certification authorities (CAs) in public-key infrastructures.
The X.509 authentication framework does also introduce vulnerability to break-ins. The most serious break-ins are compromise of a user private key, compromise of a CA private key, and cryptanalysis of the underlying cipher.
User Private Key: Due to the nature of the cipher algorithms involved in X.509 certificates, it is possible to steal a private key from a user by acquiring sufficient privileges on the computer system on which the private key is stored. While the private key is usually enciphered with a passphrase to add an additional layer of protection for when the public key is stolen, this protection is very weak.

CA Private Key: In principle, the above paragraph holds true for CA private keys, too. However, in this case, the damage done would be much greater, for many users' certificates depend on the CA's integrity. If the CA were compromised, then the intruder would be able to sign any certificate he wishes with the CA's signature, thereby giving fake certificates more authority.

Underlying Cipher: Finally, if one of the underlying cipher algorithms is crypt analyzed, then obviously all public and private keys and with them all certificates depending on the affected cipher algorithm are obsolete and worthless.

2.2.2.3 Public Key Infrastructure (PKI)
Diffie and Hellman introduced public key cryptography, a concept that offers an alternative to conventional secret key cryptography. Later on, the concept of PKI was introduced as a means of supporting security services using public key encryption and digital signature techniques. The practicality of a public key cryptosystem relies on the assurance of the authenticity of the public keys of the users. In order to achieve this, public key certificates are used to bind public keys with their respective owners' identities using digital signatures generated by a trusted third party. In order to (partly) facilitate the growth and development of PKIs, many standards such as Lightweight Directory Access Protocol (LDAP), Secure/Multipurpose Internet Mail Extension (S/MIME) and X.509 [18] have been proposed which help to define an appropriate certificate framework within a PKI. By using X.509, an ITU Telecommunication Standardization Sector (ITU-T) standard for KI, a public key is bound to a user's respective Distinguished Names (DNs) through an X.509 public key certificate issued by a CA. Figure 2.3 shows an example of an X.509 certificate which includes information such as the issuer, subject, validity period, public key and signature of a CA. A certificate, which is approximately 2 kilobytes in size, is usually transmitted across the network in PEM9 encoding format. A PKI (in this dissertation we assume X.509-based PKI) usually exists in a hierarchical structure whereby there might be a few intermediate CAs between a user and a root CA which all users are expected to trust. The CA who issues certificates to its users normally operates at an organization’s domain level. Above this CA is an intermediate CA that, in turn, certifies the domain level CA. A root CA, normally a worldwide reputable and trusted party, sits at the top of the PKI hierarchy. This means that to check the validity of a user's certificate, a verifier needs to trace and verify all the certificates from the end of a chain back to the beginning, at the root CA whom the verifier can trust. This can be done through certification path validation procedures specified in [18].
[image: image11.emf]0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

Communication Cost in Kbits

Number of attributes

AKI Vs GSI PKI

AKI

GSI PKI

Figure 2.3: Sample X.509 certificate [Adobe acrobat Reader Prof 8.0 Generated].
Currently, PKI is the most widely used security infrastructure for grid implementations. One early development of a PKI-based security infrastructure for grid applications was the Globus Toolkit's Grid Security Infrastructure (GSI). Apart from PKI, there are a small number of grid projects which use Kerberos [17] as the backbone of their security infrastructures. Kerberos was an early development of authentication and authorization services using symmetric key techniques which is light weight. Therefore, PKI is preferred for grid applications, while Kerberos seems to be best suited for intra-domain security. In order to achieve inter-operability with PKI-based systems, the Kerberos-based grid projects make use of a Kerberised client-side program, called KX.509, to acquire X.509 certificates using a client's existing Kerberos ticket.

2.3 Globus Toolkit
The open source Globus® Toolkit is a fundamental enabling technology for the "Grid," letting people share computing power, databases, and other tools securely online across corporate, institutional, and geographic boundaries without sacrificing local autonomy. The toolkit includes software services and libraries for resource monitoring, discovery, and management, plus security and file management. In addition to being a central part of science and engineering projects that total nearly a half-billion dollars internationally, the Globus Toolkit is a substrate on which leading IT companies are building significant commercial Grid products [19]. The architecture of globus toolkit is shown in figure 2.4.

The toolkit includes software for security, information infrastructure, resource management, data management, communication, fault detection, and portability. It is packaged as a set of components that can be used either independently or together to develop applications. Every organization has unique modes of operation, and collaboration between multiple organizations is hindered by incompatibility of resources such as data archives, computers, and networks. The Globus Toolkit was conceived to remove obstacles that prevent seamless collaboration. Its core services, interfaces and protocols allow users to access remote resources as if they were located within their own machine room while simultaneously preserving local control over who can use resources. Much as the World Wide Web brought Internet computing onto the average user's desktop, the Globus Toolkit is helping to bridge the gap for commercial applications of Grid computing. Since 2000, companies like Avaki, DataSynapse, Entropia, Fujitsu, Hewlett-Packard, IBM, NEC, Oracle, Platform, Sun and United Devices have pursued Grid strategies based on the Globus Toolkit.

[image: image3.jpg]Globus Toolkit® version 4 (GT4)

1 Communty
1 scheduler
1 Framework

Grid|
| Telecontrol
1 Protocol

% 4

Resource ws

Alocaions Componait
Mangoment i

TG
e Non-ws
Hiowions Components

Execuion | Information Common
Management Services Runtime

[coro G componat st e oz btwesnicramant lssos sttt ssor
1~ 71 ContibutionTech Preview: pudlic interfaces may change between incremental releases

* Doprocated Component: ot supportod; il be dropped in a future rlease

Figure 2.4: GlobusToolkit Structure [20]

2.3.1 Globus Security Infrastructure
The security services provided by the GT rely upon a security architecture called the Grid Security Infrastructure (GSI)[19]. This is based on PKI technology. The focus of the GSI is primarily on authentication, message protection, and single sign-on and credential delegation through proxy credentials.

GT4 provides distinct WS and pre-WS authentication and authorization capabilities. Both build on the same base, namely standard X.509 end entity certificates and proxy certificates, which are used to identify persistent entities such as users and servers and to support the temporary delegation of privileges to other entities.

2.3.1.1 Public Key Cryptography

The most important thing to know about public key cryptography is that, unlike earlier cryptographic systems, it relies not on a single key (a password or a secret "code"), but on two keys. These keys are numbers that are mathematically related in such a way that if either key is used to encrypt a message, the other key must be used to decrypt it. Also important is the fact that it is next to impossible (with our current knowledge of mathematics and available computing power) to obtain the second key from the first one and/or any messages encoded with the first key.
2.3.1.2 Digital Signatures

Using public key cryptography, it is possible to digitally "sign" a piece of information. Signing information essentially means assuring a recipient of the information that the information hasn't been tampered with since it left your hands.

To sign a piece of information, first compute a mathematical hash of the information. (A hash is a condensed version of the information. The algorithm used to compute this hash must be known to the recipient of the information, but it isn't a secret.) Using your private key, encrypt the hash, and attach it to the message. Make sure that the recipient has your public key.

To verify that your signed message is authentic, the recipient of the message will compute the hash of the message using the same hashing algorithm you used, and will then decrypt the encrypted hash that you attached to the message. If the newly-computed hash and the decrypted hash match, then it proves that you signed the message and that the message has not been changed since you signed it.

2.3.1.3 Certificates

A central concept in GSI authentication is the certificate. Every user and service on the Grid is identified via a certificate, which contains information vital to identifying and authenticating the user or service. A GSI certificate includes four primary pieces of information:

· A subject name, which identifies the person or object that the certificate represents.

· The public key belonging to the subject.

· The identity of a Certificate Authority (CA) that has signed the certificate to certify that the public key and the identity both belong to the subject.

· The digital signature of the named CA.

Note that a third party (a CA) is used to certify the link between the public key and the subject in the certificate. In order to trust the certificate and its contents, the CA's certificate must be trusted. The link between the CA and its certificate must be established via some non-cryptographic means, or else the system is not trustworthy
2.3.1.4 Mutual Authentication

If two parties have certificates, and if both parties trust the CAs that signed each other's certificates, then the two parties can prove to each other that they are who they say they are. This is known as mutual authentication. GSI uses the Secure Sockets Layer (SSL) for its mutual authentication protocol, which is described below. (SSL is also known by a new, IETF standard name: Transport Layer Security, or TLS.)

Before mutual authentication can occur, the parties involved must first trust the CAs that signed each other's certificates. In practice, this means that they must have copies of the CAs' certificates--which contain the CAs' public keys--and that they must trust that these certificates really belong to the CAs.

To mutually authenticate, the first person (X) establishes a connection to the second person (Y).
· To start the authentication process, X gives Y his certificate.

· The certificate tells Y who X is claiming to be (the identity), what X's public key is, and what CA is being used to certify the certificate.

· Y will first make sure that the certificate is valid by checking the CA's digital signature to make sure that the CA actually signed the certificate and that the certificate hasn't been tampered with. (This is where Y must trust the CA that signed X's certificate.)

· Once Y has checked out X's certificate, Y must make sure that X really is the person identified in the certificate.

· Y generates a random message and sends it to X, asking X to encrypt it.

· X encrypts the message using his private key, and sends it back to Y.

· Y decrypts the message using X's public key.

· If this results in the original random message, then Y knows that X is who he says he is.

· Now that Y trusts X's identity, the same operation must happen in reverse.

· Y sends X her certificate, X validates the certificate and sends a challenge message to be encrypted.

· Y encrypts the message and sends it back to X, and X decrypts it and compares it with the original.

· If it matches, then X knows that Y is who she says she is.

· At this point, X and Y have established a connection to each other and are certain that they know each others' identities

2.3.1.5 Confidential Communication

By default, GSI does not establish confidential (encrypted) communication between parties. Once mutual authentication is performed, GSI gets out of the way so that communication can occur without the overhead of constant encryption and decryption.

GSI can easily be used to establish a shared key for encryption if confidential communication is desired. Recently relaxed United States export laws now allow us to include encrypted communication as a standard optional feature of GSI.

A related security feature is communication integrity. Integrity means that an eavesdropper may be able to read communication between two parties but is not able to modify the communication in any way. GSI provides communication integrity by default. (It can be turned off if desired). Communication integrity introduces some overhead in communication, but not as large an overhead as encryption.

2.3.1.6 Securing Private Keys

The core GSI software provided by the Globus Toolkit expects the user's private key to be stored in a file in the local computer's storage. To prevent other users of the computer from stealing the private key, the file that contains the key is encrypted via a password (also known as a passphrase). To use GSI, the user must enter the passphrase required to decrypt the file containing their private key.

We have also prototyped the use of cryptographic smartcards in conjunction with GSI. This allows users to store their private key on a smartcard rather than in a file system, making it still more difficult for others to gain access to the key.

2.3.1.7 Single Sign-On, Delegation and Proxy Certificates

GSI provides a delegation capability: an extension of the standard SSL protocol which reduces the number of times the user must enter his passphrase. If a Grid computation requires that several Grid resources be used (each requiring mutual authentication), or if there is a need to have agents (local or remote) requesting services on behalf of a user, the need to re-enter the user's passphrase can be avoided by creating a proxy.

A proxy consists of a new certificate and a private key. The key pair that is used for the proxy, i.e. the public key embedded in the certificate and the private key, may either be regenerated for each proxy or obtained by other means. The new certificate contains the owner's identity, modified slightly to indicate that it is a proxy. The new certificate is signed by the owner, rather than a CA.

Chapter 3
3. Attribute-Based Cryptography

This section gives a background study of attribute-based cryptography. We review some basic concepts of pairings and some cryptographic primitives used in attribute-based cryptosystems. Further the performance and implementation issues for attribute-based cryptographic schemes, is discussed which have an impact on the practicality of the schemes.
3.1 Certificate-based PKI and attribute-based PKI
In Chapter 2, we gave a review of the conventional certificate-based PKI that supports the widely used RSA encryption and signature schemes. Here we are going to describe, at a relatively high-level, how attribute-based PKI works and what its key differences from the traditional PKI are. The subsequent sections will then delve into more details, uncovering some of the underlying concepts concerning pairings and describing the attribute-based cryptographic primitives that we will employ throughout this dissertation. We begin by looking at a simplified version of the Attribute-based Cryptography/ABE scheme. We now informally specify a threshold Attribute-based Encryption system as a collection of four algorithms [21].
· Setup This is a randomized algorithm that takes no input other than the implicit security parameter. It outputs the public parameters PK and a master key MK.

· Key Generation This is a randomized algorithm that takes as input as an access structure A, the master key MK and the public parameters PK. It outputs a decryption key D.

· Encryption This is a randomized algorithm that takes as input a message m, a set of attributes, and the public parameters PK. It outputs the cipher text E.
· Decryption This is a randomized algorithm that takes as input a cipher text E, a target set, and the private key PK. It outputs the message m.

The Setup and Key gen algorithms are normally executed by a Private Key Generator (PKG), while the Encrypt and Decrypt algorithms are carried out by users. The PKG in turn will be managed and controlled by a Trusted Authority (TA), a trusted third party roughly equivalent to a CA in a traditional PKI. A user's private key in their certificateless setting also consists of two components: (i)an identity-dependent partial private key (generated in the same way which the normal identity-based approach does); and (ii) a full private key which can be produced using the partial private key and some secret known only to the user.
The main technical difference between a certificate-based PKI and an attribute-based PKI is the binding between the public/private keys and the individual. This can be achieved by using a certificate in the traditional PKI. In the attribute-based setting, the public key is bound to the transmitted data while the binding between the private key and the individual is managed by the TA.
A public key based on an identifier can be constructed on-the-fly at any time, even before its matching private component is computed. In terms of key generation, the conventional PKI allows either a user or his CA to create public/private key pairs. However, it is only the TA that can compute private keys in the attribute-based setting. This inevitably implies that an attribute-based PKI has an escrow facility, which may or may not be desirable. Water suggested in that key escrow can be circumvented by using multiple TAs and threshold cryptography. On the other hand, because of this built-in feature, the user always needs to set up an independent secure channel with his TA for retrieving private key material. For key revocation, water proposed the use of date concatenated with the user's identifier to achieve automated key expiry. This may obviate the need for a revocation mechanism. However, it has the disadvantage of increasing the TA's workload, since the TA is required to regularly generate private keys and deliver them to its users. Table 3.1 summarizes the above comparison between traditional PKIs and attribute-based PKIs. There are applications which do not tolerate key escrow as in the case of attribute- based cryptosystem. This and other traditional PKI issues such as key revocation have inspired other new models of infrastructures for supporting public key cryptography. In a way, key revocation in these proposals has become simpler than in the traditional approach, provided the CA/TA can afford to withstand the burden of producing partial private keys regularly for its users.
	Feature
	Certificate-based PKI
	Attribute-based PKI

	Public key generation
	Using random information
	Using an explicit identifier

	Private key generation
	By a user or the CA
	By the PKG

	Key certification
	Yes
	No

	Key distribution
	Requiring an integrity protected channel for distributing a new protected public key from a user to his CA
	Requiring an integrity and privacy channel for distributing a new private key from the TA to its user

	Public key retrieval
	From a public directory or from the key owner
	On-the-fly based on the key owner's identifier

	Escrow facility

	No (except when key generation is run by the CA)
	Yes

Table 3.1: Major Difference between C-PKI and A-PKI
3.2 Attribute based cryptography primitive

In this section, we give a brief introductory on elliptic curves and pairings. We also establish some computational problems which will be used throughout the dissertation. Later we give detail process involve in attribute-based cryptography.
3.2.1 Overview of elliptic curves and parings
Let p be a large prime, m an integer with m≥1, and let Fpm be the finite field with pm elements. So p indicates the characteristic of the field and m denotes its extension degree. The multiplicative group of Fpm is denoted as F*pm.

Let E/Fpm be an elliptic curve over the field Fpm. This is commonly defined by an equation of the form

 y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
(1)
where ai (Fpm for i = 1, 2, 3, 4, 6. A point P = (x, y) (Fpm × Fpm is said to be on the curve if (x, y) satisfies the above equation. Associated with the curve E/Fpm is an additive Abelian group (E(Fpm), +) whose elements are the points on the curve together with a null element (or a point at infinity), denoted ∞. The size of E(Fpm) is called the order of the curve over the field Fpm, denoted #E(Fpm).
Suppose that E(Fpm) has a cyclic subgroup G1 of order q, for some prime q. Define the embedding degree (or security multiplier) to be the least integer k > 0 such that q/pkm-1 and q ≠ pl -1 for all 0 < l < k. Let G2 denotes a cyclic subgroup of F*pm of order q. An admissible pairing in the context of Attribute Based Cryptography is a function ê which maps a pair of elliptic curve points of G1 to an element of G2, denoted
[image: image4.wmf]112

ê

׃GGG

´®

 and which has the following properties:

· Bilinear: Given P,Q,R (G1, we have
 ê(P,Q + R) = ê(P,Q).ê(P,R) and ê(P + Q,R)= ê(P,R).ê(Q,R)
 (2)
Hence, for any a, b(Zq*,
 ê(aP,bQ) = ê(abP,Q)=ê(P,abQ)=ê(aP,Q)b=ê(Q,R)ab
(3)
· Non-degenerate: There exists P(G1, such that ê(P,P)≠1.
· Computable: If P, Q(G1, then ê(P,Q) can be efficiently computed.

For any a(Zq* and P(G1, we write aP as the scalar multiplication of group element P by integer a. Typically, G1 is obtained as a subgroup of the group of points on a suitable elliptic curve over a finite field, and G2 is obtained from a related finite field.
3.2.2 Sahai-Waters Large Universe construction
For our system we use a variant of the Sahai-Waters Large Universe system [23] which is as follows. This construction not only reduces the size of the public parameters but also allows us to apply a collision resistant hash function H:{0,1}*
[image: image5.wmf]®

 Zp* and use arbitrary strings, that were not necessarily considered during public key setup, as attributes.
Let G1 be a bilinear group of prime order p, and let g be a generator of G1. Additionally, let
[image: image6.wmf]112

ê

׃GGG

´®

, denote the bilinear map. A security parameter, k, will determine the size of the groups. Also define the Lagrange coefficient (i, S for i(Zp and a set, S, of elements in Zp. The data will be encrypted under a set (of n elements of Zp*. Our construction follows.
 Setup (n) Choose a random value y(Zp and let g1 = gy. Now choose a random element g2 of G1. Next, choose t1, t2, ………tn+1 uniformly at random from G1. Let N be the set {1, 2 … n + 1}. Define a function T, as:
 n+1

T(X) = g2Xn (ti(i, N(X)

(4)
 i=1
 Function T can be viewed as the function g2Xn gh(X) for some n degree polynomial h. The public parameters PK is: g1, g2, t1, t2……, tn+1 and the master key MK is: y.
 Encryption (m,(, PK) To encrypt a message m(G1 under a set of attributes (, choose a random value s(Zp and publish the cipher text as:
E = ((, E’ = me (g1, g2) s, E” = gs, {Ei = T (i) s} i(().

(5)
 Key Generation (T, MK, PK) The algorithm outputs a key which enables the user to decrypt a message encrypted under a set of attributes (, if and only if T (() = 1. The algorithm proceeds as follows. First choose a polynomial qx for each non-leaf node x in the tree T. These polynomials are chosen in the following way in a top down manner, starting from the root node r.
For each node x in the tree, set the degree dx of the polynomial qx to be one less than the threshold value kx of that node, that is, dx = kx -1. Now for the root node r, set qr(0) = y and dr other points of the polynomial qr randomly to define it completely. For any other node x, set qx(0) = qparent(x)(index(x)) and choose dx other points randomly to completely define qx.
Once the polynomials have been decided, for each leaf node x, we give the following secret values to the user:
 Dx = g2qx(0) .T(i)rx where i = att(x)

(6)
 Rx = grx

(7)
where rx is chosen uniformly at random from Zp for each node x. The set of above secret pairs is the decryption key D.

Decryption (E,D) As for the case of small universe, we first define a recursive algorithm DecryptNode(E,D,x) that takes as input the cipher text E = ((, E’, E”, {Ei} i((), the private key D (we assume the access tree T is embedded in the private key), and a node x in the tree. It outputs a group element of G2 or (as follows.
 Let i = att(x). If the node x is a leaf node then:

 e(Dx,E”)/e(Rx,Ei) = e(g2qx(0)T(i)rx,gs)/e(grx,T(i)s) =
 e(g2qx(0),gs).e(T(i)rx,gs)/e(grx,T (i)s) = e(g, g2)s.qx(0) if i ((DecryptNode(E, D, x) =
 (Otherwise

(8)
We now consider the recursive case when x is a non-leaf node. The algorithm DecryptNode (E, D, x) then proceeds as follows: For all nodes z that are children of x, it calls DecryptNode (E, D, z) and stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z such that Fz ≠(. If no such set exists then the node was not satisfied and the function returns(.
Otherwise, we compute and find the final result as

Fx = e(g, g2)s.qx(0)

Now that we have defined our function DecryptNode, the decryption algorithm simply calls the function on the root of the tree. We observe that DecryptNode (E, D, r) = e (g, g2) ys = e (g1, g2) s if and only if the cipher text satisfies the tree. Since, E’ = me(g1, g2)s the decryption algorithm simply divides out e(g1, g2)s and recovers the message m. Algorithms Setup and Encryption remain exactly the same as for the above construction. Key Generation takes a Monotone Span Program (MSP) and the master key as input. For each row i of the matrix, it gives the following pair to the user: (Di = g2Mi.u. T (i) ri, Ri = gri) where u is chosen such that 1.u = y (master key), and ri is chosen randomly.

[image: image7]
Figure 3.1: Module diagram of Attribute-based cryptography
Chapter 4
4. Design and Implementation of Attribute-Based Key Infrastructure
This chapter contains the description of design and implementation of attribute based key infrastructure. In the first section, details of design of key infrastructure are discussed. After that details of the implementation and installation of the software is discussed; this chapter concludes itself with the simulation testbed setup and results. The software described herein has been written with the Globus Toolkit version 4.0 in mind. However, since only high-level GSI features are directly involved, it should be possible to run our software with either no or only minor modifications if a newer version of the Globus Toolkit is used.
4.1 Attribute based Key Infrastructure for Grid (AKI)
Attribute based Key Infrastructure (AKI) for grid computing environment includes proposal for mutual authentication, single sign on, authorization, delegation and key management. It offers more lightweight and flexible key usage and management approaches within grid security infrastructures than a traditional PKI. This section describe the design, how attributed based cryptography can be deployed for the security infrastructure for grid computing.
4.1.1 Overview

Attribute Based Cryptography has the following attractive properties due to which it seems better than the current implementation and related works

· Attributed-based: The use of attribute-based public keys in Attribute Based Cryptography allows any entity's public key to be generated and used on-the fly without the need for a directory look-up or other public key distribution mechanism.

· Fine access control: It provides fine access control over a resource on the grid since it is based on attribute and decryption is only possible when a considerable amount of attributes are available.

· Certificate-free: Attribute Based Cryptography may be used without use of certificates since public keys can be computed based on some public identifiers, and
· Small key sizes: Since attribute-based cryptographic schemes use pairings which are, in turn, based on elliptic curves, they can have smaller key sizes than more conventional public key cryptosystems such as RSA.
The Attribute based key Infrastructure (AKI) has following features:

Single sign-on: As with the GSI, our AKI proposal supports single sign-on through the use of attribute-based proxy credentials.
Mutual authentication and key agreement: AKI also supports a certificate-free authenticated key agreement protocol based on the TLS handshake. Our protocol allows mutual authentication and session key establishment between two entities in a more lightweight manner than the traditional TLS as it has small key sizes and requires no certificates.
Delegation: A non-interactive delegation protocol which works in the same way as in the GSI, in the sense that the delegator signs a new public key of the delegation target.
4.1.2 Design of AKI
In our attribute-based key infrastructure for grid (AKI), we propose to replace the CA in the current certificate-based grid systems with a TA (Trusted Authority). The TA's roles including acting as the PKG and supporting other user related administration and management. It is a common proposal (see for example the European DataGrid (EDG) project3) that each nation has one CA to serve members within the country. If AKI is to be deployed at such a scale, we expect that the root TA's system parameters will be bootstrapped in the grid system, while the other TAs' public information can be downloaded by the users through their grid clients.

Figure 3.2:A hierarchical structure of entities in AKI

When a new grid user Alice (A) goes to a nearby RA, the RA performs the following steps:
The RA verifies A's identity by checking her passport (or national ID-card). Once the check succeeds, the RA compares A's identity with its global identity list and subsequently assigns her a distinguished Aid ({0, 1}*. The identifier is in the form of
/C=IN/O=eScience/OU=DCE/CN=Alice/Y=2007
The RA generates A's long-term private key SA = s0PA, where PA = Setup (Aid) is the matching long term public key. The long-term credential for A and her TA's system parameters which have been signed by the root TA are distributed to her through a temporary storage medium such as a pen drive.
The user's client must create a proxy credential every time when the user “signs on” to the grid system.
This is done as follows:
 A runs the Key generation (SA, PA Aid) algorithm to generate a short term private key SB = s0PB + sAPB, where PB = setup (Aid||LTA) is the corresponding short-term public key. LTA denotes the lifetime of A's key in some fixed format.
After this A is ready and allowed to submit job requests.
Consider a simple scenario where A wants to submit a job request JOB_req to a target resource X with attribute as identity based key set as show in Table 3.2

	Credential
	Public Key
	Private Key

	Long-term
	PA = Setup (Aid)
	SA = s0PA

	Short-term
	PB = setup(Aid||LTA)
	SB = s0PB + sAPB

Table3.2: A’s long and short term credential

Now we see how grid services can be performed securely using AKI.

4.1.2.1 Mutual Authentication

Before the job can be started, A must perform mutual authentication with the newly created managed job service. As we have discussed earlier in Section 2.3.1.4, a user must verify that he is indeed submitting his job to the right host and correct account, while the hosting server must check if the user is who he claims he is. In the GSI, this is achieved using the standard TLS protocol. Here we will see attribute-based authenticated key agreement protocol based on the TLS handshake protocol, Protocol 1.It assumes that the TA's system parameters are already known to the protocol participants.

	Protocol 1 Attribute-based authenticated key agreement based on the RSA TLS handshake

(1) A X : ClientHello = ηA, session id, cipher suite

(2) X A : ServerHello = ηX, session id, cipher suite

 ServerAttribute = ATRX, LTX
 ServerHelloDone

(3) A X : ClientIdentifier = ATRA, LTA
 ClientKeyExchange =EncryptX(master_secret)
 IdentityVerify = SigB(handshake_messages)

 ClientFinished

(4) X A : ServerFinished

Alternative. Protocol 1 can be easily transformed into a protocol that supports Diffie-Hellman key exchange. Protocol 2 shows the attribute-based version of Diffie-Hellman TLS handshake.

	Protocol 2 Attribute-based authenticated key agreement based on Diffie-Hellman TLS handshake.

(1) A X : ClientHello = ηA, session id, cipher suite

(2) X A : ServerHello = ηX, session id, cipher suite

 ServerAttribute = ATRX, LTX
 ServerKey Exchage=xP, signx(xP, ηA, ηX)
 ServerHelloDone

(3) A X : ClientIdentifier = ATRA, LTA
 ClientKeyExchange =aP
 IdentityVerify = SigB(handshake_messages)

 ClientFinished

(4) X A : ServerFinished

4.1.2.2 Single Sign-On

The first step in a job submission is to create a user proxy credential. With the proxy credential, A does not need to sign on (i.e. access her encrypted long-term private key SA with her passphrase) again until the expiry of her short-term public/private key pair. A can store her short-term private key SB in a local file system accessible by her GT client so that the client can use the key as it wishes. Single sign-on can be seen as the preliminary but important step before mutual authentication or delegations are performed between A and another entity. At any point in time during the job submission session, A's client can prove possession of SB on A's behalf. A's client will need to do this when challenged by other entities during the execution of key agreement and delegation protocols.

4.1.2.3 Delegation

In our large universe construction, individual users can generate new private keys using their private keys, which can then be delegated to other users. A user which has a private key can compute a new private key corresponding to any access tree T which is more restrictive than T . Thus, the users are capable to acting as a local key authority which can generate and distribute private keys to other users. Computation of a new private key from an existing private key is done by applying a set of basic operations on the existing key. This operation is shown in protocol 3.

	Protocol 3 Identity-based credential delegation based on

the Waters scheme

 A X : DelegationTokenX, SigB (DelegationTokenX)
Where DelegationTokenX = (AidA, AidX, JOB_req, Policy, LTAX)

4.1.2.4 Key Update

We expect that the user's long-term public key is fixed as PA = Setup (Aid),where its associated long-term private key is s0PA and s0 is the master secret of the TA. In a grid environment, it is a normal practice to renew the user's long-term keys on a yearly basis. In this it can be done through the TA issuing a new private key s0P0.This is a more proactive approach as compared to current practice in PKI because the TA can easily compute the user's new long-term public key without requesting a new public key from the user. This once-a-year key update method seems to be secure since Protocol 1 achieves forward-secrecy as with the standard TLS protocol. That means compromise of the user's long-term private key does not allow the adversary to recover any past session keys. The user creates a new short-term public/private key pair every time she signs on to the system. As with the current GSI setting, we assume the default lifetime for the keys is 12 hours. These short-term keys are used for various security services such as mutual authentication, single sign-on, and delegation. Upon expiry of the proxy credential, these keys will be deleted from the local file system where they are temporarily stored.

4.1.2.5 Key Revocation

For key revocation in the GSI, the user is expected to check a certificate revocation list (CRL) stored in a trusted directory or the CA's web site periodically depending on the policy enforced by his local administrator. However, many users do not bother doing this in reality. This may not cause serious concern as the CA can always instruct the user's entry in a grid Gatekeeper's (or a Resource Broker's) grid-map file to be removed when the CA is notified about key compromise of the user. In the Attribute Based Cryptography setting, all the revocation method is supported. We could use a more fine-grained attribute such as extending the user's identifier to another level which specifies a month, `M' field such as “/C/O/OU/CN/Y/M”. This allows automated expiry of public keys after one month. Revocation of short-term keys is a minor concern here as these keys will be destroyed upon expiry of their validity periods.

4.1.3 Performance Analysis

Here a performance comparison between the standard GSI approach and AKI proposal is done, by examining two types of overhead: communication cost and computational cost.

Communication cost: indicates the total network bandwidth required for transmission of data between two parties.

Computational cost: Computational cost refers to the amount of computation required to perform cryptographic operations.

Here we discuss performance trade-off between the GSI and AKI.

Communication costs: Sahai-Waters construction makes use of a bilinear group G to perform bilinear map operations:
[image: image8.wmf]112

ê

׃GGG

´®

. This type of bilinear map is said have symmetric groups. Both G1 and G2. Require 512 bits to be represented. G1 is represented with 170 bits while G2 is represented with 510 bits. Given the bit length of the bilinear groups, we examine the length of a user’s private key. Each attribute i possessed by a principal corresponds to two private key components di and Di. This yields (for a private key with n attributes):
KeySize (n) = 2.n.512bits

For AKI this key is transferred twice over the network along with signature of 816 bits which results to 2(816)+2(2.(n).512)bits
For GSI the communication cost estimated for TLS is to be 2(12)+2(6.4)+2(0.512) = 37.8 kilobits, since there are two public key certificates, two proxy certificate, one encrypted pre-master secret (for ClientKeyExchange), and one signed message (for Certificate Verify) being transmitted over the network.
Computational cost: As compared to GSI in AKI we have high computational cost. This is logical since we are preparing our key on the fly so it’s a burden on the client as well as server also. But to achieve the fine level of granularity in access control this burden can be easily handled. New technique may evolve which will decrease the computation cost of the AKI.

4.2 Software Details

We have implemented the Attribute-based cryptography using C language and used Linux scripts for customizing environment and TLS handshake implementation. These program s uses the PBC library [25] to implement our attribute-based cryptography. For didactic purposes the full implementation has been break up in three modules:
· Attribute-based cryptography module

· Environment setup and TLS handshake module

· Standard cryptography and utility Software

4.2.1 Attribute-based Cryptography module

This module was specifically designed for implementation of attributed based cryptography standard. This module consists of seven C file implementing seven simple functions. These are

· Setup_System.c

· Common.c

· Policy_lang.c

· Keygen.c

· Encrypt.c and
· Decrypt.c
4.2.1.1 Setup_System.c:
This file implements setup_system function which creates and initializes a new attribute-based cryptosystem. Specifically, this initiates two key structures: global_params and authority_ pri. global_params contains global parameters required to perform encryption and decryption operations. authority_priv contains the master secret, from which all attribute keys are defined. authority_priv must be kept secret in order to ensure the security of the system. Setup_System must be given pbc_ param_file_name, name of an XML file defining an elliptic curve for Attribute Based Cryptography is formulated. such parameter files are , a param.xml and c159_param.xml. The nature of Attribute Based Cryptography is such that every cipher text in a given cryptosystem is of a fixed length. The user can specify what this length is by providing the API with ct_len.
4.2.1.2 Common.c:
 This file implements function that is used to add a new attribute, whose name is specified by att_name, to the universe of attributes in the system. This file also provide common environment for the other files used in the program.
4.2.1.3 Policy_lang.c:
This file is an Skeleton implementation for Bison's Yacc-like parsers in C. It parses the attribute of the user passed to it.
4.2.1.4 Keygen.c:

This file implements the function that is used to create a user’s keying information based on the attributes that they possess. Keeping key generation separate enables the Give Attribute function to be executed with fewer trust assumptions than is needed to perform the Key Generation function.
4.2.1.5 Encrypt.c:

This file implements the function that is used by a user to create a new cipher text, cipher text. The user specifies, message, a string they would like to encrypt and, uid, a list of attributes that they would like to encrypt to. The user can encrypt with at most ct_len attributes. The program will pad the cipher text with as many default attributes as is necessary to make the cipher text contain a total of ct_len attributes. A list of the attributes used to perform encryption are included in each cipher text in order for the party performing decryption to know which attributes are required to decrypt the message. Encryption is significantly more complicated than other function calls. Specifically, in attribute-based cryptography which makes constructions mandate that a cipher text’s payload must be a group element. To enable ABE to carry non-group element payloads we use the Key Encapsulation Mechanism(KEM) [25].
4.2.1.6 Decrypt.c:

 This file implements the function that decrypts a cipher text encrypted with Encryption. This process begins with the decrypting party verifying that they have the required attributes. The party performing decryption will then use their attributes to decrypt the decrypt the cipher text in order to obtain the AES key. The party will then use the AES key to verify the cipher text. If the cipher text can be verified, then it will be used to decrypt the actual payload.
4.2.2 Environment setup and TLS handshake module

This include list of modified scripts which embeds the support of attribute based infrastructure in simpleCA of globus toolkit.

· ab_crypt.out : Compiled Output file of attributed based cryptography.
· setup-simple-ca: Scripts responsible for calling ab_crypt.out file when we create simpleCA using globus toolkit. This file enable user to get the attribute and pass it to ab_crypt.out file.
· setup-openssh: File responsible for communication between SSH and ab_crypt.out file.
· setup-ssl-utils.c7881362: File responsible for communication between SSL and ab_crypt.out file.
· grid-cert-request: File responsible for getting certificate.
· grid-ca-sign: File responsible for signing the certificate.
4.2.3 Standard cryptography and utility Software

In addition to the attribute-based cryptography we have also used standard cryptographic tools. It includes
JAVA SDK: j2sdk-1_4_2_04-linux-i586.bin[26].

ANT Package: apache-ant-1.7.0-bin.tar.gz[27].

JUNIT: junit3.8.1.zip[28]
GCC: Inbuilt in Fedora Core 4
TAR: Inbuilt in Fedora Core 4

SED: Inbuilt in Fedora Core 4

PERL: Inbuilt in Fedora Core 4

4.3 Simulation Testbed Setup and Results
This section presents the steps necessary to install and configure GT4.0 and attribute based key infrastructure on machines running Fedora core 4.

· Testbed setup: Hardware setup
· Testbed setup: Software setup

· Installing Globus Toolkit 4.0.

· Configuring GT4.0 and Installation of Attribute Based Cryptography.

· Running GridFTP service over configured Platform.

4.3.1 Testbed setup: Hardware Setup

This section gives an overview of the configuration of the hardware used in our lab. We built a very small scenario. It is the simplest Grid environment, intended to test and illustrate the concepts and components behind the GT4.0 and attribute based key infrastructure. An Ethernet Cross Cable and two Intel® Pentium® IV machines were used. In Figure 4.1, we illustrate this environment with the host names and the functionality of each machine. The host names are dcegrid1 and dcegrid2. The machines should have a clock speed of 2.66 GHz, 512 MB of memory, and hard drives totaling 20 GB.

 [image: image9.jpg]

 [image: image10.jpg]

 Figure 4.1: Hardware setup

Table 4.1 summarizes the names of the machines to be used in the Grid, their IP addresses, and the software to be installed on them.
	Host name
	IP
	Description

	dcegrid1.dce.edu
	192.168.31.2
	Fedora core 4

	dcegrid2.dce.edu
	192.168.31.3
	Fedora core 4

Table 4.1: Host name and their configuration

4.3.2 Testbed setup: Software Setup

Check for zlib development libraries for GSI-OpenSSH. zlib-dev will be required for building GSI-OpenSSH.

[root@localhost ~]# rpm -qa |grep zlib

jzlib-javadoc-1.0.5-2jpp_1fc

zlib-1.2.2.2-3

jzlib-demo-1.0.5-2jpp_1fc

zlib-devel-1.2.2.2-3

jzlib-1.0.5-2jpp_1fc

Java SDK Installation. Download the installer from Sun site[26]. The recommended version by Globus is v1.4.02 or higher(I used v1.4.2). Install it from the binary executable,

[root@localhost ~]# mkdir /usr/local/java
[root@localhost ~]# cd /usr/local/java
[root@localhost ~]# chmod a+x j2sdk-1_4_2_04-linux-i586.bin
[root@localhost ~]# ./j2sdk-1_4_2_04-linux-i586.bin
[root@localhost ~]# ln -s /usr/local/java/j2sdk1.4.2_04 java

Add these two lines to your /etc/profile to set the environment(bash), export
JAVA_HOME=/usr/local/java/java
export PATH=$PATH:$JAVA_HOME/bin
Ant Installation: Download the Apache Ant binary distribution[27]. The recommended version by Globus is v1.7.0.

[root@localhost ~]# mkdir /usr/local/ant
[root@localhost ~]# cd /usr/local/ant
[root@localhost ~]# tar -zxvf /usr/local/src/apache-ant-1.7.0-bin.tar.gz
[root@localhost ~]# ln -s /usr/local/ant/apache-ant-1.7.0 ant

Add these two lines to your /etc/profile to set the environment(bash),
export ANT_HOME=/usr/local/ant/ant
export PATH=$PATH:$ANT_HOME/bin
JUnit Download the installer[28]. The recommended version by Globus is v3.8.1. Unzip it to the location you want,

[root@localhost ~]# unzip /usr/local/src/junit3.8.1.zip
[root@localhost ~]# cp junit3.8.1/junit.jar $ANT_HOME/lib/.

[root@localhost ~]# cd $ANT_HOME/lib

[root@localhost ~]#

Compare some versions

GCC/g++ should be 3.3 or more, tar should be 1.10.x or more , sed should be 3.1.1 or more, and perl should be version 5.0. In our code:
[root@localhost ~]# gcc --version
gcc (GCC) 4.0.0 20050519 (Red Hat 4.0.0-8)

Copyright (C) 2005 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

[root@localhost ~]# g++ --version

g++ (GCC) 4.0.0 20050519 (Red Hat 4.0.0-8)

Copyright (C) 2005 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

[root@localhost ~]# tar --version
tar (GNU tar) 1.15.1

[root@localhost ~]# sed --version

GNU sed version 4.1.4

Copyright (C) 2003 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE,

to the extent permitted by law.

[root@localhost ~]# make --version
GNU Make 3.80

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

[root@localhost ~]# perl --version
This is perl, v5.8.6 built for i386-linux-thread-multi

Copyright 1987-2004, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the

GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on

this system using `man perl' or `perldoc perl'. If you have access to the

Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Check for postgres sql it is generally preinstalled with fedora core 4.

[root@localhost ~]# rpm -qa |grep postgresql
postgresql-server-8.0.3-1

postgresql-libs-8.0.3-1

postgresql-odbc-08.00.0100-1

postgresql-jdbc-8.0.3-1

postgresql-docs-8.0.3-1

postgresql-tcl-8.0.3-1

postgresql-test-8.0.3-1

postgresql-devel-8.0.3-1

postgresql-8.0.3-1

if not then download it and install it.

Creating user accounts

As a security precaution, GT4.0 needs to be installed by a non-root user. The rationale behind this lies in the fact that many of the services are designed to be run with limited access to the Globus environment. Installing it as a root user undermines this important feature.

	User ID
	Group ID
	Description

	root
	Root
	Super user needs.

	globus
	Globus
	Globus Toolkit environment. For installation and execution of the Toolkit.

	grid1
	User
	Users other than root or globus. End user environment for job execution on the Grid.

	grid2
	
	

Table 4.2: User of grid systems
Users can be created as :

[root@localhost ~]# useradd -u 512 -g globus -d /home/globus -s /bin/bash -c "this user is used for installation of GT 4.0" -p seeyou globus

[root@localhost ~]# useradd -u 512 -g user -d /home/grid1 -s /bin/bash -c "this user is used for job execution" -p seeyou grid1

[root@localhost ~]# useradd -u 512 -g user -d /home/grid2 -s /bin/bash -c "this user is used for job execution" -p seeyou grid2

4.3.3 Installing Globus Toolkit 4.0

There are different versions of toolkit to download based on the service components . I have installed the WS Base Installer[29] package. It installs only the web services (WS) components from GT4 and the supporting packages. It gives you WS Core and the base services of WS GRAM, the Index Service, and Reliable File Transfer (RFT) service, as well as a GridFTP server.

1. Add these lines to your /etc/profile to set the environment(bash),

export GLOBUS_LOCATION=/usr/local/globus-4.0.1
export GPT_LOCATION=/usr/local/globus-4.0.1
export PATH=$PATH:$GLOBUS_LOCATION/bin

Untar the package

[root@localhost ~]# mkdir /usr/local/globus-4.0.1
[root@localhost ~]# chown globus.globus /usr/local/globus-4.0.1
[root@localhost ~]# . /etc/profile
[root@localhost ~]# chmod 644 /tmp/gt4.0.3-x86_fc_4-installer.tar.gz

If you already haven't done so, open another terminal and change the user to globus

[root@localhost ~]# su globus
[globus@localhost root]$ cd /usr/local/globus-4.0.1
[globus@localhost root]$ tar -zxvf /tmp/gt4.0.3-x86_fc_4-installer.tar.gz

Install

[globus@localhost root]$ cd globus-4.0.1-base-source-installer
[globus@localhost root]$./configure --prefix=/usr/local/globus-4.0.1/ --with-iodbc=/usr/lib

checking build system type... i686-pc-linux-gnu

checking for javac... /usr/java/j2sdk1.4.2_10//bin/javac

checking for ant... /usr/local/apache-ant-1.6.5/bin/ant

configure: creating ./config.status

config.status: creating Makefile

If there is any problem then re-set the path

[globus@localhost root]$ export ANT_HOME=/usr/local/apache-ant-1.7.0

[globus@localhost root]$ export JAVA_HOME=/usr/local/java
[globus@localhost root]$ export PATH=$ANT_HOME/bin:$JAVA_HOME/bin:$PATH

and again rerun the command

[globus@localhost root]$./configure --prefix=/usr/local/globus-4.0.1/ --with-iodbc=/usr/lib
[globus@localhost root]$make | tee installer.log

cd gpt-3.2autotools2004 && OBJECT_MODE=32 ./build_gpt

build_gpt ====> installing GPT into /usr/local/globus-4.0.1/

...

...

...

echo "Your build completed successfully. Please run make install."

Your build completed successfully. Please run make install.

[globus@localhost root]$ make install |tee minstallar.log

/usr/local/globus-4.0.1//sbin/gpt-postinstall

...

...

...

Done

4.3.4 Configuring GT4.0 and Installation of Attribute Based Cryptography
Installing attribute based key Infrastructure in SimpleCA.
[globus@localhost root]$g++ -o ab_crypt.out Setup_System.c Common.c policy_lang.c Keygen.c Encrypt.c Decrypt.c

[globus@localhost root]$cp ab_crypt.out /usr/bin/openssl/ab_crypt.out

[globus@localhost root]$cp –-force setup-simple-ca /usr/local/globus4.0.1/setup/setup-simple-ca

[globus@localhost root]$cp –-force ssetup-openssh /usr/local/globus4.0.1/setup/ setup-openssh

[globus@localhost root]$cp –-force setup-ssl-utils.c7881362 /usr/local/globus4.0.1/setup/ setup-ssl-utils.c7881362

[globus@localhost root]$cp –-force grid-cert-request /usr/local/globus4.0.1/bin/ grid-cert-request

[globus@localhost root]$cp –-force grid-ca-sign /usr/local/globus4.0.1/bin/grid-ca-sign

Installing SimpleCA To install SimpleCA package provided by Globus follow these commands.

[globus@localhost root]$export GLOBUS_LOCATION=/usr/local/globus-4.0.1

[globus@localhost root]$ source $GLOBUS_LOCATION/etc/globus-user-env.sh

[globus@localhost root]$ $GLOBUS_LOCATION/setup/globus/setup-simple-ca

WARNING: GPT_LOCATION not set, assuming:

GPT_LOCATION=/usr/local/globus-4.0.1

C e r t i f i c a t e A u t h o r i t y S e t u p

This script will setup a Certificate Authority for signing Globus

users certificates. It will also generate a simple CA package

that can be distributed to the users of the CA.

The CA information about the certificates it distributes will

be kept in:

/root/.globus/simpleCA/

ERROR: It looks like a CA has already been setup at this location.

Do you want to overwrite this CA? (y/n) [n]:y

The unique subject name for this CA is:

cn=Globus Simple CA, ou=simpleCA-localhost.localdomain, ou=GlobusTest, o=Grid

Do you want to keep this as the CA subject (y/n) [y]:

Enter the email of the CA (this is the email where certificate

requests will be sent to be signed by the CA):santoshmcayadav@yahoo.co.in

Enter the number of attribute you want to set: (default is 1)

2

enter attribute 1: santoshmcayadav@yahoo.co.in
enter attribute 2: santosh_yadav

attribute are ok

The CA certificate has an expiration date. Keep in mind that

once the CA certificate has expired, all the certificates

signed by that CA become invalid. A CA should regenerate

the CA certificate and start re-issuing ca-setup packages

before the actual CA certificate expires. This can be done

by re-running this setup script. Enter the number of DAYS

the CA certificate should last before it expires.

[default: 5 years (1825 days)]:

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

creating CA config package...done.

A self-signed certificate has been generated

for the Certificate Authority with the subject:

/O=Grid/OU=GlobusTest/OU=simpleCA-localhost.localdomain/CN=Globus Simple CA

If this is invalid, rerun this script

./setup-simple-ca

and enter the appropriate fields.

The private key of the CA is stored in /root/.globus/simpleCA//private/cakey.pemThe public CA certificate is stored in /root/.globus/simpleCA//cacert.pem

The distribution package built for this CA is stored in

/root/.globus/simpleCA//globus_simple_ca_c7881362_setup-0.19.tar.gz

This file must be distributed to any host wishing to request

certificates from this CA.

………..CA setup complete.

The following commands will now be run to setup the security

configuration files for this CA:

$GLOBUS_LOCATION/sbin/gpt-build /root/.globus/simpleCA//globus_simple_ca_c7881362_setup-0.19.tar.gz

$GLOBUS_LOCATION/sbin/gpt-postinstall

setup-ssl-utils: Configuring ssl-utils package

Running setup-ssl-utils-sh-scripts...

Note: To complete setup of the GSI software you need to run the

following script as root to configure your security configuration

directory:

/usr/local/globus-4.0.1/setup/globus_simple_ca_c7881362_setup/setup-gsi

For further information on using the setup-gsi script, use the -help

option. The -default option sets this security configuration to be

the default, and -nonroot can be used on systems where root access is

not available.

setup-ssl-utils: Complete

Now SimpleCA is created here and we can see now

[root@localhost globus]# ls ~/.globus/simpleCA/

cacert.pem globus_simple_ca_c7881362_setup-0.19.tar.gz newcerts

certs grid-ca-ssl.conf private

crl index.txt

That's the directory where my simpleCA has been created. Now I need to make my machine trust that new CA, which I do by running the following command as root:

[root@localhost globus]#export GLOBUS_LOCATION=/usr/local/globus-4.0.1
[root@localhost globus]# /usr/local/globus-4.0.1/setup/globus_simple_ca_c7881362_setup/setup-gsi --default

setup-gsi:
Configuring GSI security

Installing /etc/grid-security/certificates//grid-security.conf.c7881362...

Running grid-security-config...

Installing Globus CA certificate into trusted CA certificate directory...

Installing Globus CA signing policy into trusted CA certificate directory...

setup-gsi: Complete

[root@localhost globus]# ls /etc/grid-security

certificates globus-host-ssl.conf hostcert.pem

containercert.pem globus-user-ssl.conf hostcert_request.pem

containerkey.pem grid-security.conf hostkey.pem

[root@localhost globus]# ls /etc/grid-security/certificates/

c7881362.0 globus-user-ssl.conf.c7881362

c7881362.signing_policy grid-security.conf.c7881362

globus-host-ssl.conf.c7881362

Those are the configuration files that establish trust for the simpleCA for my Globus Toolkit installation.

Now that we've created a CA and trust it, we'll get a hostcert for the machine:

[root@localhost globus]# source $GLOBUS_LOCATION/etc/globus-user-env.sh

[root@localhost globus]# grid-cert-request -force -host `localhost`

bash: localhost: command not found

 /root/.globus/usercert_request.pem already exists

 /root/.globus/usercert.pem already exists

 /root/.globus/userkey.pem already exists

Generating a 1024 bit RSA private key

...++++++

.++++++

writing new private key to '/root/.globus/userkey.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Level 0 Organization [Grid]:Level 0 Organizational Unit [GlobusTest]:Level 1 Organizational Unit [simpleCA-localhost.localdomain]:Level 2 Organizational Unit [localdomain]:Name (e.g., John M. Smith) []:

A private key and a certificate request has been generated with the subject:

/O=Grid/OU=GlobusTest/OU=simpleCA-localhost.localdomain/OU=localdomain/CN=root

If the CN=root is not appropriate, rerun this

script with the -force -cn "Common Name" options.

Your private key is stored in /root/.globus/userkey.pem

Your request is stored in /root/.globus/usercert_request.pem

Please e-mail the request to the Globus Simple CA santoshmcayadav@yahoo.co.in

You may use a command similar to the following:

 cat /root/.globus/usercert_request.pem | mail santoshmcayadav@yahoo.co.in

Only use the above if this machine can send AND receive e-mail. if not, please

mail using some other method.

Your certificate will be mailed to you within two working days.

If you receive no response, contact Globus Simple CA at santoshmcayadav@yahoo.co.in
We need to sign the certificate using our simpleCA, as globus:

[root@localhost globus]# grid-ca-sign -in /etc/grid-security/hostcert_request.pem -out hostsigned.pem

To sign the request

please enter the password for the CA key:

The new signed certificate is at: /root/.globus/simpleCA//newcerts/01.pem

Our last step is to copy that signed certificate into /etc:

[root@localhost globus]#cp ~globus/hostsigned.pem /etc/grid-security/hostcert.pem

The hostcert and hostkey are owned by root, and will be used by the GridFTP server. If services like web services container runs as non-root, we need a certificate owned by globus. In the end, we need one host certificate/key owned by root, and one host certificate/key owned by globus: repeat the above steps to get the key for globus.

[globus@localhost globus]$cp hostcert.pem containercert.pem

[globus@localhost globus]$ cp hostkey.pem containerkey.pem

[globus@localhost globus]$ chown globus:globus container*.pem

[globus@localhost globus]$setenv GLOBUS_LOCATION /usr/local/globus-4.0.1/

[globus@localhost globus]$source $GLOBUS_LOCATION/etc/globus-user-env.csh

[globus@localhost globus]$grid-cert-request

[globus@localhost globus]$cat /home/bacon/.globus/usercert_request.pem | mail santoshmcayadav@yahoo.co.in

[globus@localhost globus]$grid-ca-sign -in request.pem -out signed.pem

[globus@localhost globus]$cat signed.pem | mail santoshmcayadav@yahoo.co.in
[globus@localhost globus]$cp signed.pem ~/.globus/usercert.pem

[globus@localhost globus]$ ls -l ~/.globus/

[globus@localhost globus]$vim /etc/grid-security/grid-mapfile

[globus@localhost globus]$ cat /etc/grid-security/grid-mapfile

Setting of the second machine: we follow the same process explained above for the second machine also.

4.3.5 Running GridFTP service over configured Platform
Now that we have our secure credentials in place, we can start a service. This setup comes from the GridFTP Admin Guide.

[globus@localhost globus]$vim /etc/xinetd.d/gridftp

[globus@localhost globus]$ cat /etc/xinetd.d/gridftp
service gsiftp

{

instances = 100

socket_type = stream

wait = no

user = root

env += GLOBUS_LOCATION=/usr/local/globus-4.0.1

env += LD_LIBRARY_PATH=/usr/local/globus-4.0.1/lib

server = /usr/local/globus-4.0.1/sbin/globus-gridftp-server

server_args = -i

log_on_success += DURATION

nice = 10

disable = no

}

[globus@localhost globus]$ vim /etc/services

[globus@localhost globus]$ tail /etc/services

vboxd 20012/udp

binkp 24554/tcp # binkp fidonet protocol

asp 27374/tcp # Address Search Protocol

asp 27374/udp

dircproxy 57000/tcp # Detachable IRC Proxy

tfido 60177/tcp # fidonet EMSI over telnet

fido 60179/tcp # fidonet EMSI over TCP

Local services

gsiftp 2811/tcp

[globus@localhost globus]$ /etc/init.d/xinetd reload

Reloading internet superserver configuration: xinetd.

[globus@localhost globus]$ Netstat -an | grep 2811

tcp 0 0 0.0.0.0:2811 0.0.0.0:* LISTEN

Now the gridftp server is waiting for a request, so we'll run a client and transfer a file:

[globus@localhost globus]$grid-proxy-init -verifies -debug

User Cert File: /home/bacon/.globus/usercert.pem

User Key File: /home/bacon/.globus/userkey.pem

Trusted CA Cert Dir: /etc/grid-security/certificates

Output File: /tmp/x509up_u1817

Your identity: /O=Grid/OU=GlobusTest/OU=simpleCA-choate.mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon

Enter GRID pass phrase for this identity: ****

Creating proxy.....++++++++++++

..++++++++++++

 Done

Proxy Verify OK

Your proxy is valid until: Tue Nov 15 20:15:46 2005

[globus@localhost globus]$ Globus-url-copy gsiftp://dcegrid1.dce.edu/etc/group file:///tmp/dce.test.copy

[globus@localhost globus]$ Diff /tmp/dce.test.copy /etc/group/dce

[globus@localhost globus]$

…

And
CONGRATULATIONS!!! You have done it. No output means the file are copied successfully without any error over a secure network.
Chapter 5
5. Conclusion and Further Research
A brief conclusion and summary is presented in the first section of this chapter. Furthermore, some potential areas of further research work that are related to our dissertation is discussed in the second section.
5.1 Conclusion
Grid computing relies heavily on two features, among others:
· It must be secure in many ways: On one hand, users must know for certain that their data is not hijacked or made accessible to any unwanted entity; on the other hand, sites must be certain that only authorized users are able to use their resources, while it must also be ensured that resource consumption always be traceable so that some form of accounting is possible. These requirements are made much more complex by virtue of the highly heterogeneous and decentralized structure of the Grid community itself.
· Grid computing must also be easy to use. If Grid computing is to become more important and wide-spread in the future, then it is absolutely necessary for any Grid computing software to be as easy to use as is possible. The more complicated a process the usage of Grid software is, the more potential users will shy away from this technique.
In this dissertation, we studied the application of some attribute-based cryptographic schemes presented in Chapter 3, in designing security infrastructures for grid applications. The main focus has been on defining security at fine granularity and simplifying current PKI-based security architectures which make extensive use of certificates for supporting grid security services. We addressed issues related to certificate and public key management, such as certification and verification of public keys, and distribution of certificates, which cause extra overheads and potentially limit the scalability of grid applications.

The properties of Attribute Based Cryptography, in turn, are likely to result in a more lightweight security architecture than the certificate-based PKI approach.

We presented our findings that pertain to the use of Attribute Based Cryptography for constructing AKI in Chapter 3. Our results show that even though the PKI-based GSI is workable, it is still far from lightweight in terms of the network bandwidth requirement.

We have highlighted some of the fundamental issues in the PKI-based GSI. Some attribute-based solutions aimed at resolving these issues have been proposed. In conclusion, we believe that a security infrastructure designed using attribute-based techniques has more advantages than disadvantages as compared to the PKI-based GSI. Our attribute-based approach offers more exibility in terms of key usage and management than the more conventional PKI approach.

5.2 Further Research
This dissertation provides a useful summary of the current state of security affairs in Grid computing as well as a comprehensive comparison of various approaches of securing grid resources. It embeds attribute based cryptography in Grid computing successfully but since both the concept and implementation is new and based on Identity based cryptography which itself is not commercially acceptable yet so there is question of application and implementation both . From our point of view, the following thoughts seem to offer reasonable guidance in which direction to turn with future work.
Improvement of the Design: Since our conduct does not include some security services like delegation and key distribution of key infrastructure system. These services are important and without these services practical implementation seems difficult. So in near future it should be given importance.

Improvement of the Implementation: This dissertation only cover the implementation of attribute based cryptography and Mutual authentication using TLS handshake with attribute based cryptography. All other implementation of Key infrastructure can be carried out in near future.

 The concept of attribute-based secret public keys appears to be new. In this dissertation, we focused on investigating new properties possessed by attribute-based secret public keys and how these properties can be used to design password-based protocols. We also explored the practical use of the concept, aligning with the theme of this dissertation. However, our proposed attribute-based secret public key protocols require formal security analyses to prove the security of the protocols. Before we can do that, we must also develop security models and proofs for attribute-based secret public key encryption and signature schemes. It is not clear if this is a straightforward exercise since these schemes have unusual properties compared to standard schemes. For example, secret signatures produced by an attribute-based secret public key signature scheme should not only provide authentication and non-repudiation, but also data confidentiality.
In summary, studying security models and proofs for attribute-based secret public key protocols and schemes seems to be a natural and important step to further develop the concept of attribute-based secret public keys. This may, in turn, stimulate new research on the concept.
6. References

[1.] I. Foster and C. Kesselman, editors. ‘The Grid 2: Blueprint for a New Computing Infrastructure’. Elsevier, San Francisco.

[2.] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. ‘The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration.’ Open Grid Service Infrastructure Working Group, Global Grid Forum, June 2002.

[3.] I. Foster, C. Kesselman. ‘The anatomy of the Grid: Enabling scalable virtual organizations. International Journal of High Performance Computing Applications.’
[4.] I. Foster and C. Kesselman. Globus: ‘A metacomputing infrastructure toolkit.’ International Journal of Supercomputing Applications.

[5.] V. Welch, D. Engert, L. Pearman, and M. Thompson. ‘Internet X.509 public key infrastructure proxy certificate profile.’ The Internet Engineering Task Force (IETF), RFC 3820, June 2004.
[6.] Jason Crampton and Hoon Wei Lim ‘Role Signatures for Access Control in Grid Computing’, 10 May 2007.

[7.] Ling Cheung, Calvin ‘Newport Provably Secure Cipher text Policy ABE.’
[8.] Vipul Goyal, Omkant Pandey, Amit Sahaiz and Brent Waters ‘Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data.’
[9.] August Wilson ‘The Dark Side of the Flat World Emerging SOA security standards, challenges and opportunities for the federal sector.’
[10.] Gabriel Vanrenen, Sean Smith and John Marchesini ‘Distributing security-mediated PKI.’
[11.] I. Foster and C. Kesselman. ‘Chapter 2 of The Grid: Blueprint for a New Computing Infrastructure.’
[12.] I. Foster and C. Kesselman. ‘The grid in a nutshell. Chapter 1 of Grid Resource Management: State of the Art and Future Trends.’
[13.] The Globus Alliance. Globus Toolkit. Available at http://www.globus.org/toolkit/, last accessed in May 2007.

[14.] The European DataGrid Project. DataGrid. Available at http://eudatagrid.web.cern.ch/eu-datagrid/, last accessed in may 2007.

[15.] The TeraGrid Project. TeraGrid. Available at http://www.teragrid.org/, last accessed in may 2007.

[16.] The GridSim toolkit. Available at http://www.gridbus.com, last accessed in may 2007.
[17.] John Kohl and B. Cliord Neuman. ‘The Kerberos Network Authentication Service (Version 5).
[18.] Prof. Dr. Thomas Beth, Willi Geiselmann, and Rainer Steinwandt. Praktikum Kryptographie und Datensicherheitstechnik. Europäisches Institut für Systemsicherheit, Universität Karlsruhe, 2000/2001.
[19.] http://www-unix.globus.org/alliance/publications/papers.php#anatomy last accessed on June 2007.

[20.] Globus homepage: http://www-unix.globus.org/about_globus.htm, last accessed on February 2007.
[21.] Matthew Pirretti, Patrick Traynor and Patrick McDaniel ‘Secure Attribute-Based Systems.’
[22.] Vipul Goyal Omkant Pandey Amit Sahaiz and Brent Waters ‘Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data.’
[23.] Melissa Chase ‘Multi-Authority Attribute Based Encryption.’
[24.] Jason Crampton and Hoon Wei Lim. ‘Role Signatures for Access Control in Grid Computing.’
[25.] Available library at www.pbc.api.com, last accessed May 2007.

[26.] http://ant.apache.org/bindownload.cgi, last accessed April 2007.

[27.] http://java.sun.com/j2se/, last accessed April 2007.

[28.] http://www.junit.org/index.htm, last accessed April 2007.
[29.] http://www-unix.globus.org/toolkit/downloads/3.2/index.html#base, last accessed April 2007.
[30.] http://support.sas.com/rnd/scalability/grid/index.html, last accessed June 2007.

Internet

Web

Evolution path of grid computing

telnet://ftp://...

Computer

Computer

http://....

Web Page

Web Page

grid://

Grid

Application

Application

Application

Collective

Resource

Connectivity

Fabric

Application

Transport

Internet

Link

Grid protocol architecture

Internet protocol architecture

Certificate: This CA Root certificate is not trusted because it is not in the

Trusted Root Certification Authorities store.

Data:

Version: v3 (0x2)

Serial Number: 86 e0 b1 91 da 54 2d 9e e6 bc19 (0x13)

Signature Algorithm: md5WithRSAEncryption

Issuer: C = IN E = santoshmcayadav@yahoo.co.in

OU = Delhi College of Engineering O = DCE

CN = Santosh Yadav

Validity

Not Before: Wednesday, June 20, 2007 9:56:21 AM

Not After : Wednesday, June 20, 2012 9:56:21 AM

Subject: C = IN E = santoshmcayadav@yahoo.co.in

OU = Delhi College of Engineering O = DCE

CN = Santosh Yadav

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:be:5d:c1:4b:49:37:f0:58:7b:08:c6:f4:3d:25:58:39:a6:8c:90:2c:ce:e4:56:ca:92:11:29:6e:28:

d7:81:8f:0a:a1:f5:38:6b:8f:21:9d:36:67:3a:66:d8:bb:a6:86:a8:ee:c1:a9:91:a4:3e:6e:5f:5d:2e:

75:bd:31:aa:96:ee:16:a4:9a:ec:a7:03:11:89:ed:17:ba:d1:52:43:98:ce:0e:d1:59:23:0c:0a:8b:fd:

0a:f4:b9:99:60:9d:94:16:62:cc:94:8d:f1:4f:ac:e2:a4:45:94:87:33:74:90:0a:53:a6:0b:c8:9f:18:

15:8e:46:de:e5:a5:31:10:ad

Exponent: 65537 (0x10001)

X509v3 extensions:

Netscape Cert Type:

SSL Client, SSL Server, S/MIME, Object Signing

Signature Algorithm: md5WithRSAEncryption

21:ad:81:31:82:d9:f4:25:31:99:9a:96:88:b8:8a:6f:cb:26:e3:aa:f4:4c:c9:41:35:40:f7:5f:0c:2c:d2:3a:5f:35:f9:dd:

31:fb:92:3a:63:a2:67:0d:ee:3c:f0:f7:da:1a:0d:9a:c4:06:a6:b0:a8:8f:b2:10:21:a7:3b:05:86:e7:f9:b4:09:2a:15:a2:

5f:80:ca:c7:e4:44:54:47:03:5e:3a:91:00:d4:4f:6c:59:cd:94:32:86:61:56:6f:01:a1:00:3a:b9:6b:c1:fe:e5:82:35:20:

bf:25:fb:cd:76:29:02:5d:14:96:9f:f9:df:28:e1:65:66:e3:

5c:05

-----BEGIN CERTIFICATE-----

MIICJzCCAZCgAwIBAgIBEzANBgkqhkiG9w0BAQQFADBYMREwDwYDVQQKEwhHcmlk

d2lzZTEWMBQGA1UECxMNS3Jha293IGJyYW5jaDEYMBYGA1UECxMPb2F4YWNhLmlu

dHJhbmV0MREwDwYDVQQDEwhWZXJpZmllcjAeFw0wNDA2MjMxMTM0MzRaFw0wNTA2

MjMxMTM0MzRaMEQxETAPBgNVBAoTCEdyaWR3aXNlMRYwFAYDVQQLEw1LcmFrb3cg

YnJhbmNoMRcwFQYDVQQDEw5Lcnp5c3p0b2YgV2lsazCBnzANBgkqhkiG9w0BAQEF

AAOBjQAwgYkCgYEAvl3BS0k38Fh7CMb0PSVYOaaMkCzO5FbKkhEpbijXgY8KofU4

a48hnTZnOmbYu6aGqO7BqZGkPm5fXS51vTGqlu4WpJrspwMRie0XutFSQ5jODtFZ

IwwKi/0K9LmZYJ2UFmLMlI3xT6zipEWUhzN0kApTpgvInxgVjkbe5aUxEK0CAwEA

AaMVMBMwEQYJYIZIAYb4QgEBBAQDAgTwMA0GCSqGSIb3DQEBBAUAA4GBACGtgTGC

2fQlMZmaloi4im/LJuOq9EzJQTVA918MLNI6XzX53TH7kjpjomcN7jzw99oaDZrE

BqawqI+yECGnOwWG5/m0CSoVol+AysfkRFRHA146kQDUT2xZzZQyhmFWbwGhADq5

a8H+5YI1IL8l+812KQJdFJaf+d8o4WVm41wF

-----END CERTIFICATE----�

Security block relevant to Thesis

Keygen

Secret Key SK

User attribute

Target set S’

Start

MK Master Key

Stop

Encrypt

Setup

PK Public Key

Cipher text C

Decrypt

Threshold value K

Target set S

Message M

� EMBED Excel.Chart.8 \s ���

Level2

Level 1

Level 0

Delegation

Mutual authentication

Resource Proxy

Resource

User Proxy

User

Dcegrid1.dce.edu

192.168.31.2

Dcegrid2.dce.edu

192.168.31.3

Ethernet Cross cable

TA

PAGE

vi

_1244981140.unknown

_1244981445.unknown

_1244982313.xls
Chart1

		5		5

		10		10

		15		15

		20		20

		25		25

		30		30

		35		35

		40		40

		45		45

		50		50

AKI

GSI PKI

Number of attributes

Communication Cost in Kbits

AKI Vs GSI PKI

11.656

37.8

21.656

37.8

31.656

37.8

41.656

37.8

51.656

37.8

61.656

37.8

71.656

37.8

81.656

37.8

91.656

37.8

37.8

Sheet1

		0		5		10		15		20		25		30		35		40		45		50

		AKI		11.656		21.656		31.656		41.656		51.656		61.656		71.656		81.656		91.656

		GSI PKI		37.8		37.8		37.8		37.8		37.8		37.8		37.8		37.8		37.8		37.8

_1244981043.unknown

