Asynchronous Data Replication in the Data Centre

Dissertation

On

Asynchronous Data Replication

In the

 Data Centre

Submitted in Partial fulfillment of the requirements

For the award of Degree of

MASTER OF ENGINEERING

(Computer Technology and Application)

Delhi University, Delhi

Submitted By:

Pratik Shrivastava

University Roll No 10603

Under the Guidance of:

Dr. S.C. Gupta,

Sr. Technical Director

National Informatics Centre, Govt. of India

And

Mrs. Rajni Jindal

Department Of Computer Engineering

Delhi College of Engineering, Delhi

[image: image1.jpg]onous Data Replication in Data Centre

CERTIFICATE

that the work contained in this dissertation entitled
Data Replication in the Data Centre” by Pratik
the requirement for the partial fulfillment for the award
e of Master of Engineering in Computer Technology &
at Delhi College of Engineering is a record work done by
my guidance in the academic year 2007- 2008.

\J

Lk @
7 3395 /ef
Dr. S.C. Gupta,
Sr. Technical Director
HOD Training Division
National Informatics Centre
Department of Information
T

‘echnology
Gowt. of India

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY

[image: image7.wmf]

Abstract

Originally the basic purpose of the data replication was to create a backup copy of the company’s business data. This data could be used in case of emergencies such as system crash, disaster recovery etc. The term is now widely used in the computing world as a method of making data available at geographically distributed sites.
By nature, the databases provide replication as an inherent feature. Various open source database replication solution are commercially available today such as Slony for Postgres. Microsoft provides replication features in SQL server 2005.

The distributed application can make use of replicated data to improve availability, enhance response time and also as originally conceived provide an innovative backup mechanism. The nature of many distributed applications developed and deployed by NIC differs from other distributed applications in the sense that the remote databases are updated in offline mode by local client applications. The central master database, hosted at Internet Data Centre at Head Office keeps the consolidated information from all remote databases.

The process adopted to consolidate information currently uses standard solutions such as Slony. The main drawback of this solution is that it is designed for master-slave replication and does suit the specific need of the NIC requirements.

This replication solution proposed in this thesis is developed using an innovative replication model called Multi-masters (M) to Central master (1) replication. This model is an optimistic bi-directional replication. It models M to 1 replication and 1 to M replication using trigger based replication methodology. M to 1 replication is a transactional replication where as 1 to M model from Central Master to Remote Masters is a snapshot pull replication technology.

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartfelt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor Dr S.C. Gupta, Sr. Technical Director, NIC and Ms Rajani Jindal for their invaluable guidance, encouragement and patient reviews. Their continuous inspiration has made me complete this dissertation in time. They kept on boosting me time and again for putting an extra ounce of effort to realize this work.

I would also like to take this opportunity to present my sincere regards to my guide Ms Daya Gupta, Mr. Manoj Sethi and Mr. Rajeev Kumar for their support and encouragement.

 I am also thankful to my classmates for their unconditional support and motivation during this work. I am also grateful to my Head Dr. Gautam Bose, DDG NIC, Mr. Rajesh Singh, Sr. Technical Director NIC and NIC as a whole for giving me the opportunity pursuing this ME course and help in conceptualising the project. And to all those outstanding individuals with whom I have worked in the organization, who helped me understanding the replication technology as it is used in the data centre of NIC, email system of NIC and two software projects studied as part of this project namely Central Integrated Police Application and Central Government Health Scheme.

 I am grateful to my wife and parents for their moral support, encouragement and love all the time. Without it, my thesis could never have been completed.

Pratik Shrivastava

M.E. (Computer Technology and Application)

Department of Computer Engineering

Delhi College of Engineering, Delhi-42
Table of Contents

 Page

Certificate ……………………………..……………………………………………………….…1

Abstract ……………………………..………………………………………………………….2
Acknowledgements ……………………………..………………………………………………………….3
Table of Contents ……………………………..………………………………………………….………4
List of Figures

…………………………………………………………………………………….…..7
List of Abbreviations

 …………………………...…………………………………………………………..8
Chapter

1. Introduction to Replication…………………………………………..…..…9

1.1 Need of Data Replication Needed ….………… …….…………….......…10

1.2 Motivation…………………………………………………………………….11

1.3 Terminology…………………………………….……………………………12

1.4 Nature of Replication ………………………………………………………13

1.5 Type of Replication…………………….………………………….………..13

1.6 Scheduling Replication………………………………………….. ………...16

1.7 Method of Replication………………………………………………….…...19
1.8 Replication Model……………………………………………………….…...20
1.9 Recovery Point Objective ..……………………………………….………..23
2. Problem Identification…………………………….……………………….25

 2.1 Definition of Problem…….…………………….………………………..…25

2.2 Background of the Project…………………….….………….…………..…25

2.2.1 Existing Application Deployment Scenario at NIC…...………….........25

2.2.2 Distributed Application Architecture………………………………….…25

2.2.3 Web based solution …………………….……………………..…….…..28

2.2.4 Data Replication at NIC Data Centre………………………….……….29

3. Proposed Replication Architecture

3.1 Standard Master-Slave Model...………… ………….31

3.2 Replication Model Introduced...………… …....31

3.3 Multi-Master-Central Master Model….… ….…..32

3.4 Terminology Used …………………………………………………..……36

3.5 Approach to Replication Problem …. . ……….…38

3.6 Node Structure ………..….. . …………....39

3.7 Assumptions ……………………… ………...40

4. Implementation of Replication Database……………………………..42

4.1
Modification in Database Schema…………………………………42
4.1.1 Creation of Initial Database42

4.1.2 Database Structure at Remote Node … …43

4.1.3 Database Structure at Central Node …………………………....….47

4.2. Replication Process……………………………………………………49

4.2.1 Central Node Set-up…………………..…..49

4.2.2 Remote Node Set-up……………………………………………………50

4.2.3 Role of Client Applications………... ……. ….51

4.2.4 Replication as a Three-Steps Process ………………………………..53

4.2.4.1 Recording Changes ……….……………………………………53

4.2.4.1.1 Transaction File Updates.………………… …………53

4.2.4.1.2 Event Based Auditing..………………………………..53

4.2.4.1 3 Master File Updates…………………………..……….56

4.2.4.2 Replication Process…….…….… ………..……………………..56

4.2.4.2.1 Replicating Transaction File………….……………….57

4.2.4.2.2 Replicating Master File…………....…..……………..58

4.2.4.2.3 Replication Algorithm…….…..…….…..…………….58

4.2.4.3 Merging Process…………………… …………….……………59

4.2.4.3.1 Merging Algorithm……… ….………..…..……….……59

4.2.4.3.2 Reconstruction of SQL Statement…..……………….61

4.2.4.4 Clearing of Audits Table…………… …………..……………..63

4.2.4.5 Removing Remote Node………………………..…………. …63

5. Software Platform…………………………………………………………….66
6. Conclusion and Future Work ………………………………………………66
6.1 Writing Daemon………………….………………………………………......67

6.2 Maintaining Audit Trail……………………………………………………...68

6.3 Fail-Over Site………………..…………………………………..………….68

6.4 Standby Server for Critical Applications………………………………….68
6.5 Limitation of Asynchronous Replication…………………………………..69

6.6 Integration with Postgres…………………………………………………...70

6.7 Usefulness of Existing Replication Products CIPA Project………….…..70
References…..…………………..…………………………………..…..……….72

List of Figures

Fig 1.1
Synchronous Replication Architecture

18
Fig 1.2
Asynchronous Data Replication

19
Fig 1.3
Primary Copy Replication

21
Fig 1.4
Multi Master Replication

22
Fig 2.1
CIPA Architecture

27

Fig 2.2
DR Set up at NIC

30

Fig 3.1
Architecture Design:

34

Fig 3.2
Basic node structure

39
Fig 4.1
Updating Master File

52
Fig 4.2
Updating Transaction File

52

Fig 4.3
Replication as three step process

53
Fig 4.4
System Flow Diagram

64

Fig 4.5
System Flow Diagram

65
List OF ABBREVIATIONS

ACK

Acknowledgement

BCP
Business Continuity Plan: A comprehensive business plan that details actions to take in the event of a disaster.
CIPA

Common Integrated Police Application
DML

Data Manipulation Language

DR
Disaster Recovery; Recovery processes designed to recover business objectives.
FC
Fibre Channel; a high performance infrastructure implemented to connect groups of disks; a network protocol where Fibre channel frames are transported over IP channel
FC-IP
Fibre Channel over IP; The process of routing FC traffic over IP communications devices
G2G

Government-to-Government Application

G2C

Government to Citizen Application

IDC

Internet Data Centre

PKY

Primary Key

RDBMS

Relation Database Management System

RPO

Remote Point Objective

RTO

Remote Time Objective

SAN

Storage Area Network

ZDL

Zero Data Loss

1 Introduction to Replication:

Replication is the process of making a replica (a copy) of something. A replication (noun) is a copy. The term is used in fields as varied as microbiology (cell replication), knitwear (replication of knitting patterns), and information distribution (CD-ROM replication).

On the Internet, a Web site that has been replicated in its entirety and put on another site is called a mirror site. Such mirror sites can exist in various locations, which are geographically distant.

Using the groupware product, Lotus Notes, replication is the periodic electronic refreshing (copying) of a database from one computer server to another so that all users in the Notes network constantly share the same level of information.

As defined by Wikipedia replication is the process of sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility. It could be data replication if the same data is stored on multiple storage devices, or computation replication if the same computing task is executed many times. A computational task is typically replicated in space, i.e. executed on separate devices, or it could be replicated in time, if it is executed repeatedly on a single device.

The access to a replicated entity is typically uniform with access to a single, non-replicated entity. The replication itself should be transparent to an external user. Also, in a failure scenario, a failover of replicas is hidden as much as possible.

Database replication is the creation and maintenance of multiple copies of the same database. In most implementations of database replication, one database server maintains the master copy of the database and additional database servers maintain slave copies of the database.

Database writes are sent to the master database server and are then replicated by the slave database servers. Database reads are divided among the entire database servers, which results in a large performance advantage due to load sharing.

In addition, database replication can also improve availability because the slave database servers can be configured to take over the master role if the master database server becomes unavailable.

Thus defining replication is pretty easy. The basic idea is that you want to copy data from one place to another. While the concept of replication is simple, several processes are involved in the replication namely collecting the data to be replicated, defining the condition of transferring the data and actually transferring the data. Whichever method of replication is used the processes remains the same.

Data replication is a process that attempts to make a copy of a company's current data, or selected sets of data, onto other storage devices. Preferably, this should be performed in the background. Thus the applications using the data are not disabled and disrupt. This copy may then be kept on a local storage system, ready to be used in an instant should the primary system fail; alternately, it may reside at a distant location, quickly available should a disaster hit the primary data enter. In addition, the copies may be used for advanced backup initiatives, server or storage consolidations, or data migration.

1.1 Need of Data Replication

As mentioned above the data replication was originally aimed to serve as data backup methodology. The idea was to keep the data at another storage system to use it later for recovery in case of failure of hardware. This data could be used for other processes as well. Tape backup can involve downtime since the system being backed up cannot be used during the process. Given the ever-increasing demand for round the clock data access, it gets harder and harder for companies to complete backups within time. Backup is more a problem in the remote offices, user premises where there are no skilled staff.
Therefore the data replication has advantage of providing alternative mechanism of backing up data without the intervention of the people.

Secondly, Organisations generating data dynamically as required to conduct their business operations can effectively use data replication to enhance availability of computerised data. The data can be replicated to remote locations that will provide safety from disasters in the primary data centre and also serves as data backup. In case of failure of the primary resources the data can be made available from the replicated sites. These sites are known as disaster recovery sites.

Thirdly, data replication can be used to develop distribute applications. This is a more recent phenomenon. The master site handles all the writes to the database where as remote site can be used for read access. Thus the scalability and performance of the application is increased.
1.2 Motivation:

 The basis of disaster recovery planning is the business requirement of the organization. The need to know what is being protected and why is essential for running the organisation. A well-documented requirement in the form of Business Continuity Plan spells out these clearly taking in to account Risk Assessment and Business Impact Analysis. While building a replication solution for an organization the objectives mentioned in the BCP have to be met.

Every organization must spell out its Recovery Point Objective (RPO) and the Recovery Time Objective (RTO) to get the application running.

National Informatics Centre has primary data centre at its New Delhi office, while the disaster recovery site (DR site) is located at Hyderabad office. It has deployed storage-based replication of data to DR site. This is working as a disaster recovery solution for recovering the data from DR site in case a disaster at the primary data centre struck. It is able to resume the operation from DR site if DR site configured with matching hardware and software. This data replication is generic and caters to all kind of data to be copied from different hardware and software resources.

However, computerised applications have variety of deployment architecture. The most common being centralised web based applications where in application servers and database servers both are located in the data centre. This can be handled easily by existing data replication solution. The other type of applications is deployed at remote locations accessing and manipulating the local database. The master database at the data centre consolidates the data from all remote locations. Data replication requirements in these cases are different from the generic data replication solution available at the data centre. Therefore the need to develop a customized solution has arisen. This led to the conceptualisation of this project.

1.3 Terminology:

The publisher is the server that has the data you want to replicate. It makes the data available for replication.

A Publication is made up of the various pieces of data you can replicate, such as tables, views and so on.

The Distributor is the next function in the transfer. It acts like an agent of replication. Its rolls changes based on the type of replication being used.

The system that receives the data is called the Subscriber. Depending on the type of replication used the receiving of data grately varies.

Subscription:

The subscriber subscribes to the publication i.e the database and not to the article within it i.e table views etc. That means the subscriber does not pick and choose the data that is sent to it by the publisher. All the changed data in the publication is sent.

1.4 Nature of Replication:

Push Replication:

The publisher pushes the newly published data to the subscriber at a predefined time interval or on continous synchronous basis.

Pull Replication:

The Subscriber in this type of replication can request to pull the data in from the publisher. This can be done whenver subscrier wants to do it.

Service Agents or Daemons:

Replication solutions available today use service agents in Microsoft evironment or Daemons as they are called in Unix environment. These agents work as a background process and listen to the event. Whenever, the request of replication either Push or Pull is received from Publisher or Distributor the agent becomes active and start the replication process.

1.5 Types of Replication:

There are three types of replication technologies:

· Host-based,

· SAN/network-based and

· Array-based.

The type of technology an organisation chooses depends on its specific replication objectives, its budgetary constraints, and the storage environment.

Primary Objective of replication plays an important role in selecting the replication types.

This can be achieved by answering following questions.

· Is data replication needed to provide a mirror of data for business continuance?

· If so, how long can the application afford to be out of service-seconds, minutes or hours?

· What are the infrastructure requirements and limitations?

· What are the company's data availability policies?

· What resources are available to implement, manage and maintain the replication system?

Host-based replication:

Host based replication uses replication software running on a server or dedicated appliances to pass data across a WAN to a target system. Host based is generally least expensive of the three methods but doesn’t always offer the same performance.

The data is replicated at the logical level rather than at the physical level, which means that the primary and secondary storage devices do not need to have the same physical characteristics, or even to come from the same vendor. Logical level replication would be concerned with moving data, whether by block or file, from source to target. The specific hardware used to store the data would not be of primary concern as long as data could be read from the source drive, transferred over the network and written to the target drive.

It supports data replication between any two storage arrays, or even individual drives, and does not require any additional hardware to replicate data.

However, host-based replication can be more difficult to manage with large groups of servers, if the tool does not provide a centralized management console. In addition, it consumes host resources during replication, and has operating system dependencies. Thus, as the data replication volume increases more resources of the server are needed therefore the server needs to be scaled up accordingly.

SAN/network-based Replication

SAN/network-based replication uses a switch or appliance that sits on the network in the data path to handle replication. SAN/network-based replication devices have proprietary replication technology but are vendor-agnostic across host servers and storage hardware. SAN/network-based replication provides vendor-neutral controller-based mirroring and TCP/IP replication. It supports all Fibre (Fibre Channel) based I/O, does not consume any application server I/O resources, is storage vendor independent, and can provide some additional facilities when used in conjunction with a snapshot or mirror.

The main drawback of using this type of replication is that it requires a new layer of hardware to be installed in the data path, including at the remote site if replicating data for disaster recovery. Many of these systems require OS-dependent agents that add an additional layer of compatibility issues. In addition, SAN/network-based replication has poor integration with application server software.

SAN/network-based replication can be a powerful solution if the company is prepared to install a SAN appliance in the data path. It offers the positive capabilities of a controller-based solution without being proprietary. SAN/network-based replication is an ideal solution for active/active clusters or shared database environments, where host-based replication cannot be supported.

Array-based Replication

Array-based replication was the first method available, and is provided by the major hardware vendors. It was initially only available for high-end storage devices, but is now being seen on mid-tier arrays. However, this method only replicates data between storage controllers from the same vendor. While array-based replication requires proprietary hardware, it is not operating system or server-dependent.

Array-based replication is vendor specific, so an EMC source could not interchange data with a NetApps target, for example. Array-based replication is implemented in the storage control unit provided by the storage vendor. It offers high performance, and optimises host server resources by offloading replication to the array controllers.

On the down side, array-based replication requires proprietary homogenous storage and dedicated network pipes between the arrays, making it the highest cost solution. In addition, set-up and management of array-based replication can be difficult and error-prone.

Array-based replication also provides poor integration with the application server, as well as applications. Replication at the controller level must be set up so that it includes full logical volumes, and preserves write order across the logical volume(s). In some cases, array-based offerings may not expand to capacities required by companies requiring high levels of replication.

1.6 Scheduling Replication:

Replication can be done broadly in two ways.

Synchronous Replication

Asynchronous Replication

Synchronous replication:

This method of replication is primarily used when the organisation need zero data loss. The system thus becomes highly available where in the event of a failure of the primary data source (example hardware failure) another mirror system should take over immediately from the latest point of failure.

This type of replication is traditionally used over short distances so that application performance is not impacted.

In synchronous replication, a source system sends data to the target, mirroring device. The target device then sends a code back to the source providing a check value that the source verifies to be correct. If the acknowledgment is not correct, the data is retransmitted by the source to the target. In a synchronous system, the data is continually being synchronized, assuring that the data on both the source and target systems match.

While synchronous replication provides a complete mirror of data on both source and target, it can take a considerable amount of time to synchronize systems because of the delays inherent in the process. Additionally, if the server should go down, or the link between source and target are interrupted, data that has not yet been synchronized may be lost.

[image: image2.emf]
Fig 1.1 Shows Synchronous Replication architecture where write on the local system is considered complete when the network from the remote site is received

Asynchronous replication:

Asynchronous replication allows the source device to send a continuous stream of data to the target. The delays required to synchronize the data between source and target don't impact the flow of data from source to target. Although asynchronous replication has the advantage of speed, there is an increased risk of data loss using this method, because received data is not verified. Asynchronous replication slows writes to the source volumes while the target volumes are updated in the background. It is used primarily in disaster recovery scenarios where the recovery site is located far away and the application would experience severe performance degradation with synchronous replication.

[image: image3.emf]
Fig. 1.2 shows asynchronous data replication where the acknowledgement is immediately sent to the sending host once it is written on the local storage.

Asynchronous Update Propagation:
· Collect updates at primary using triggers or the log

· Triggers (Oracle8, Rdb, SQL Server, DB2, …):On every update at primary, a trigger fires to store the update in the update propagation table.

1.7 Method of Replication:

Snapshot:

Snapshot replication is taking an entire set of data and replicating it to another database. This is the most powerful easy to set up replication type. However, the data size grows with every replication and becomes difficult and using more time and resources.

Example: A company has sales representatives in the field and the company wants to send the latest price list every day to them it can use snapshot replication to send the data every day using push technology. Sales representative work on a offline mode with this new price list.

Transactional:

Transactional replication takes an initial snapshot of data as well, but then tracks the changes that have been made at the Publisher and sends them to the Subscriber. This type of replication is typically smaller and often used for remote clients.

With every insert, delete or update operation performed by the publisher the replication is done either instantly or a point in time.
Merge:

Merge replication allows for updates from both the Publisher and Subscriber of the data. This is very useful for remote clients who make changes in a disconnected fashion in the field to keep the office data set current, as well as receive changes from the office. This type can be a bit more involved to due to conflict resolution.

1.8 Replication Model

Primary-Copy Replication:

In this type of replication there are many replica system in the cluster. One of the replica is designated as the Primary copy (Publisher).

All transactions upate only the primary copy. Primary copy then initiates replication process and send the updates later (asynchronously) to the secondary replicas in the order they were applied to the primary. The secondary replicas are called subscribers.

[image: image4.wmf]
Fig 1.3 Primary Copy Replication

Multi Master Replication:
Some systems must operate when partitioned. They create multi master. Every master is updateable and not just the primary. It is necessary to detect conflicting updates on different copies.

Examples: Salesperson’s disconnected laptop:

Customer table (rarely updated) Orders table (insert mostly)

Customer log table (append only)

· So conflicting updates from different salespeople are rare

· Use primary-copy algorithm, with multiple masters

· Each master exchanges updates (“gossips”) with other replicas when it reconnects to the network

· Conflicting updates require reconciliation (i.e. merging)

	Replica1

Initially x=0

T1: X=1

[image: image5.png]

Send(X=1)

[image: image6.wmf]
X=2
	Primary

Initially x=0

X=1

Send (X=1)

X=2

Send (X=2)

	Replica 2

Initially x=0

T1: X=2

Send(X=2)

X=1

Fig 1.4 Conflicts in Multi Master Replication

Optimistic replication:

It is, also known as lazy replication, a strategy for replication in which replicas are allowed to diverge. Traditional pessimistic replication systems are based on the principle of single-copy consistency. that is, users should observe the system to behave as if there was only one copy of the data. Optimistic replication does away with this in favor of eventual consistency, meaning that replicas are guaranteed to converge only when a system is idle. According to Yashito [10] Optimistic algorithms let data be accessed without a priori synchronization, based on the “optimistic” assumption that problems will occur only rarely, if at all. Updates are propagated in the background, and occasional conflicts are fixed after they happen.

An optimistic replication algorithm consists of five elements:

1. Operation submission: Users submit operations at independent sites.

2. Propagation: Each site shares the operations it knows about with the rest of the system.

3. Scheduling: Each site decides on an order for the operations it knows about.

4. Conflict resolution: If there are any conflicts among the operations a site has scheduled, it must modify them in some way.

5. Commitment: The sites agree on a final schedule and conflict resolution result, and the operations are made permanent.

There are two strategies for propagation: state transfer, where sites propagate a representation of the current state, and operation transfer, where sites propagate the operations that were performed (essentially, a list of instructions on how to reach the new state).

Scheduling and conflict resolution can either be syntactic or semantic. Syntactic systems rely on general information, such as when or where an operation was submitted. Semantic systems are able to make use of application-specific information to make smarter decisions. Note that state transfer systems generally have no information about the semantics of the data being transferred, and so they have to use syntactic scheduling and conflict resolution.

1.9 Recovery Point Objective:

The recovery point objective (RPO) is the maximum acceptable level of data loss following an unplanned “event,” like a disaster (natural or man-made), act of crime or terrorism, or any other business or technical disruption that could cause such data loss. The RPO represents the point in time, prior to such an event or incident, to which lost data can be recovered (given the most recent backup copy of the data). With the zero data loss (ZDL) objective a business would like to have the upto date data available in the event of failure due to say a disaster recovery, hardware failure etc.

In case of ZDL it is must to have synchronous replication solution. The disaster site should be in sync with the primary site. This becomes more challenging as the distance between the two site increases. Within a datacentre RPO with ZDL can be achieved by mirroring technology. This is valid for a shorter distance of DR centre as well.

With oranisation having RPO greater that zero means that it can afford to have asynchronous replication solution. In this case RPO can be minutes of several hours. This allows for greater distances and wider choices of transport of data.

Recovery Time Objective:

The recovery time objective (RTO) is a period of time within which business and / or technology capabilities must be restored following an unplanned event or disaster. The RTO is a function of the extent to which the interruption disrupts normal operations and the amount of revenue lost per unit of time as a result of the disaster. These factors in turn depend on the affected equipment and application(s).

Both of these numbers represent key targets that are set by businesses during continuity and disaster recovery planning; these targets in turn drive the technology and implementation choices for business resumption services, backup / recovery / archival services, and recovery facilities and procedures.
2. Problem Identification

2.1 Definition of Problem:

The research problem can be defined as building a replication solution using a multi-master (publishers) to central master (subscriber) replication model. The proposed replication solution is aimed to maintain a single consistent and consolidated copy of the multi master databases at the central master. This would facilitate deploying the client application at the remote sites with a local copy of the database in an offline mode. Whenever a remote site wants to replicate its data to the central master it gets connected and transfers differential data to the central master. This replication is done asynchronously.

Approach adopted here is creating infrastructure at the application level in the databases involved in the replication to automate the replication process.

2.2 Background of the Project:

2.2.1 Existing Application Deployment Scenario at NIC

NIC has been implementing numerous applications of central and distributed nature. Many of the application users are located in the State capitals and other cities. In some case like Common Integrated Police Application (CIPA) and Central Government Health Scheme (CGHS) application, there are multiple users within a city. These applications are either distributed in nature or a web-based solution.

2.2.2 Distributed Application Architecture:

Distributed application such as CIPA works on standalone model where in at every individual police station the client application with the database is installed locally. This has advantage of response time, as there are no network constraints issues and no CPU utilization problem. Thus, the need of scaling to a high-end server is also ruled out. The application is thus highly replicable.

There is a need to consolidate the information on a daily basis to the central server. This is required by senior officials for getting the top-level information for decision making from all the remote sites. The current solution to this is a combination of replication (using open source software Slony) as well as manual process of merging of replicas.

The database at every remote site is replicated to the central site daily during the off peak period. The central site thus receives replicas of the database from all remote sites. These replicas are then restored as database at the central site. This copy of the database is merged with the central database. This process is repeated for all the replicated database received at the central node.

Disadvantages

The replica so generated is a point-in-time copy (snapshot) of the remote databases thus containing all the records of the database replicated earlier. As the volume of the database increases the replication volume also increases. This requires higher bandwidth and more merger time.
Fig 2.1 of CIPA Architecture

2.2.3 Web Based Solution:

Central Government Health Scheme (CGHS) is one of the latest entry in web based application architecture which is fairly common architecture and popular too. In this type of solution, the application and the database servers are located usually at NIC Internet Data Centre. This requires a good Internet connectivity at all time to deliver the uninterrupted services.

The browser based application architecture requires very minimum hardware and software sizing at the remote end (client side) there by reducing the cost and time of implementation to minimum.

All updates are done at the central site i.e. on the central master database. Local application is connected over the Internet to access these databases for retrieving information and updating transactions.

These applications are public domain G2G G2C e-governance applications where Internet link break-up and high concurrent users delay the delivery of the services. This causes a huge embarrassment to the user of the application, which in the above applications is Police department and doctors respectively.

Disadvantages:

While the above architecture is good in terms of maintaining data consistency and synchronization of information at all time this suffers from possible delay in the delivery of services as indicated above at any point of time. Some time this delay can be in minutes or even in hours.

Secondly, the bandwidth limitation at many end-user organizations may further limit the response time and cause frustration to the user and the ultimate beneficiary i.e. public.

2.2.4 Data Replication at NIC Data Centre:

NIC has its primary data centre called Internet Data Centre (IDC) at its headquarters New Delhi. This data centre houses about 1200 servers. There is a SAN storage facility of approximately 100 TB online space. NIC has hosted over 2000 Government website in these servers. Servers range from Sun Solaris, Microsoft, and Linux operating system with wide variety of databases likes Oracle, MS SQL Server, PostgresQL, MySQL etc.
NIC’s data centre at Hyderabad is designated as disaster recovery site (DR site).

Both Primary and DR sites are connected through a WAN link from Power Grid Corporation of India Ltd. The total bandwidth of WAN is 100 Mbps.

NIC employs a commercial replication solution using storage array replication type. As depicted in the diagram, Storage Array based replication is connected to another similar storage array at DR site to facilitate replication.

A user application in the internal network fabric requests for replication of its data has to provide the path of the mounted disk drive. This disk is mapped in HDS storage system as a disk to be replicated.

TrueCopy™ software installed at the Storage Array replicate the data asynchronously over the FC switch to a FC-IP router. FC-IP router has two LAN OUT port through which it packets incoming FC frames in IP packets and sent to a gateway switch at Delhi Network Centre (INOC).

These packets are then transmitted over WAN to DR site network gateway switch from there are routed back to the Storage array in the similar but reverse fashion.

Fig 2.2 DR Set Up at NIC

3. Design of Replication Architecture:

3.1 Standard Master-Slave Model:

Standard RDBMS like Oracle and MS SQL Server supports broadly two model of replication namely Primary Copy Replication and Multi-Master Replication. In Primary Copy Replication a site declared as master site is the one where updates are written. The replica site(s) are located on the remote stations may be geographically hundreds of miles apart.

All the updates on the master are replicated to replica(s) site either synchronously or asynchronously. A replica site can also act as a forwarding node to other nodes to reduce the bandwidth requirement etc at the master site. This is known as 1 to 1 replication.

In Multi-master replication there are multiple masters (say M). The updates are written to this group of masters (update every where). There are advantages in that if one master fails others continue to update the database. This comes under 1 to M replication. Thus, there are number of masters having up to date copy of the database at all time.

3.2 Replication Model Introduced

Various replication solutions available in the market are explored both from the open source and from the commercial product ranges to meet the CIPA and CGHS replication requirements. These products are based on one of the above models. However, both standard Master-Slave and Multi Master Replications do not conform to the need. CIPA deployment architecture is based on independent remote masters being updated by only local client applications. The updates are sent to the central master for consolidation purposes.

 This project therefore proposes an innovative Multi-Masters (M) – Central Master (1) and Central Master (1) to Multi Masters (M) Replication Model called in this project M to1 and 1 to M replication model respectively. Multi masters are located at remote sites. Central Master is located at Internet Data Centre.
In M to 1 replication multi-masters are publishers and central master subscribes to it. Multi masters publish transaction data of the application database.

In 1 to M replication the central master becomes publisher of master lists such as State, District List etc. Remote Masters subscribe to this data and use pull replication technology to refresh themselves. The detailed model architecture is described in the following sections.

3.3 Multi-master-Central Master Replication Model

The project like CIPA can be thought of having several master sites (say M sites) located in remote locations. Every master site hosts the database having identical schema. There is a central site (1 site) hosting the central database with the same schema as remote masters.

The client application at a remote master site updates the database in an offline mode. The changes in the local master database are captured at transaction level and recorded in a local control table. Whenever a client application fires Update, Insert or Delete DML statements on the local database an event is triggered to capture the changes affecting the database. This capture is therefore transactional and done instantaneously. The change is recorded only when the concerned DML statement causing this change has been committed.

These changes are then replicated to the central site hosting central master database. The purpose of the central master database is to consolidate the data from all remote masters. The consolidation of data is carried out using the merge process at the central master site. The above method of replication is named as M to 1 replication. This is transactional method of replication.

On the other hand the central database maintains all master tables consisting of standard list of codes such as State lists, District lists and other code list used in the application. A client application on the central master site will update these master tables.

Remote sites will continuously poll the central master database to check the timestamp of the last change occurred in the master tables. If the timestamp at the central site and the polling remote site do not match (i.e. the time stamp at the central site is greater or newer than the time stamp of the polling remote site) then the remote site will pull the master data in. This pull replication is based on snapshot method of replication.

The above architecture is depicted in the figure 3.1 below. The solution proposed for CIPA is based on this model. Implementation of this model necessitates modification in implementation strategies of the existing original database to include replication features. These features are described in the chapter 4 “Implementation of Replication Database”.

Accordingly, the existing application will be hosted on local servers in the office LAN of the end-user premises. Thus doing away with the need of online updates on the central server and improving the performance of the local application instead of web based update such as CGHS. This is similar to CIPA architecture of deployment.

The central server hosted at a head office Internet Data Centre (IDC) with the consolidated information from all the remote location.

 Fig 3.1 Architecture Design

Write fidelity:

Write fidelity is an important aspect while keeping track of the changes as they occur in the database. To maintain strict write order every change is recorded in the log table with a timestamp and an auto sequencing system. The writes are applied on the master site in the same order as they were applied in the remote site. The merging algorithm takes care of this. Write fidelity helps in maintaining consistency across replicated and local database after consolidation.

Writes on different remote sites (multi master) are independent of each other and while applying these changes on master site the control log table is read one by one from every remote site.

Atomicity of the Transaction:

The control file records the changes in a row on insert delete or update event of an underlying table when the commit is being done on the table. The trigger, executed on the occurrence of any of these events, is a part of the transaction responsible for making changes in the table. Therefore, the databases do not permit committing within the trigger.

If the transaction does not commit successfully it rolls back and so does the changes affected by the trigger. Thus atomicity of the database is maintained.

Conflict Resolution:

Conflicts have to be resolved in case of remote merging of the changes at the central master. Conflict can occur in case of violation of referential integrity. In the remote database it is presumed that the client application manipulating the local database (on the remote site) does it uniquely across all remote databases.

For, example, in case of CIPA application a FIR entry is made in a remote site is always distinct and unique compare to another FIR entry made at other remote site.
To do so, the primary key of all transaction tables should be composed of site identification as one of columns.
Timestamp: every row updated is recorded in the control table using the time stamping.

Data partitioning: each row is guaranteed to be manipulated by only one server.

The present solution is thus free from conflicts.
3.4 Terminology Used:

To describe the proposed replication database architecture we need to understand certain terminology and their functioning as they are used in this solution.

Transaction Table:

Tables in the database those are used by application programs for recording transactions as per the business logic. Thus, the business logic of the software system determines the transaction tables in the database being used. Transaction tables are referred in this document as transaction files.

Master Table:

Master tables are the tables in the database used as look up tables for getting the codes of lists such as State List, District List etc. Master tables are referred in this document as master files.

Node:

The database instance at any site involved in the replication is known as node.

Central Node (Administrator):

There is one central database consisting of consolidated information of all the remote databases (called stations in this project). The central database administrator is responsible for creating and maintaining all the master files. Any updates on these masters are done centrally at this database.

Work Station Nodes:

As mentioned above a Work Station (or simply stations) is a remote site containing the local copy of the database. The end user application is configured to make changes in the local database. These applications are permitted to change only transaction tables using the application interface woven with business logic.

Cluster:

A group of nodes involved in the replication form a cluster. Every node willing to participate in the replication process needs to register in the cluster.

Publisher:

The site that hosts the database and publishes the information is known as publisher. In the present problem the node that publishes the data is known as publisher node.

Subscriber:

The site that subscribes the articles from the publisher receives periodically these articles.

Articles:

Articles are related set of relational objects those are published by the publisher. These objects are generally the database tables.

3.5 Approach to Replication Problem:

The replication method suggested in this paper is a variation of Optimistic Replication suggested by [10]. In this model, for certain tables known as transaction tables, remote nodes are the Publishers those continuously update data locally. The central node is the Subscriber most appropriately hosted at Internet Data Centre. This is done at transaction level.

The master list and look up tables are generally static and need to be updated centrally. Thus, the Central Node publishes the master data and Remote Nodes subscribes to this data. This is known as master data replication. This replication is done as a snap-shot pull replication.

Following figure shows the structure of the nodes involved in the replication process. The Data Centre Node is the Central Node. Remote nodes are located geographically at distance place. All sites involved are having Internet connection.

First the publishing site records changes that are being taking place as and when a client application fire DML query on the database. These transactions are carried out on the local tables and recorded in a control files.

The data transfer from a publishing node to subscribing node takes place asynchronously at a predefined time interval. The transfer of data takes place incrementally, that is only changes are propagated during replication. Replication algorithm is evolved and described in the following section.

This is a lazy replication technique. The basic principle is be-optimistic, i.e. let the updates happen at a site independent of other multi masters the consolidation to the central site will happen later.

Once the replication completes the receiving node has to merge the data at the local database. I have evolved a merge algorithm described in the following section.

3.6 Node Structure

Figure 3.2 shows the basic node structure. Data Centre Node is a central node (central database server) hosting the master database. Remote nodes are installations at remote sites of the database.

As it is clear from the figure above that the publisher-subscriber model implemented in this system both the Remote Node and Central Node have a dual roles to play. In master data replication Central node publishes the data and Remote Node subscribes it. In transaction data replication Remote Node publishes the data, which is subscribed by Central Node.

This is bi-directional replication topology. Transactional Changes in remote sites are propagated asynchronously to central node at a predetermined interval. Similarly, the changes from central to remote will happen asynchronously.

Central Node:

The central note will publish the master data to the remote note as and when it changes the data. This data is subscribed by one or more remote node(s).

Remote Node:

The remote node will publish transaction data at the end of every day. The published data is transactional. The changes are recorded locally in case of any transaction takes place during the day. Central Node subscribes this data.

3.7 Assumptions:

Replication methodology assumes that all nodes involved in replication maintain certain minimum standards.

1. Database at either end can be heterogeneous in nature.

2. Database must support some method of recording unique row identification, which is normally all standard RDBMS do support.

3. Basic schema of all the tables will remain same in master node and remote node(s) with a variation as mentioned in the following section.

4. Master and Transaction tables are clearly identified at the time of implementing the replication feature.

5. Only the central node application will write on the master files.

6. Transactions files are updated by remote node(s).

7. Replication programs developed in this thesis have administrative privileges to make schema level changes.

4. Implementation of replication Database:

The implementation of the proposed database replication has two major components. The first of these relates to modification in the schema of the database being considered for replication. This is necessary to include additional features in the database schema to support replication model suggested in this project. This modification in the schema is described in the section 4.1.

The second major component of implementation is designing of the system processes to realise the replication. The section 4.2 addresses the replication processes.

4.1 Modification in Database Schema

4.1.1 Creation of Initial Database:

The client database application needing to implement the proposed replication feature has to host the initial database at the central node. The schema of the database will have to be modified to include replication features.

The replication features include additional control tables, triggers, modification in standard schema and the replication programs. Following sections list the additional components at the central and remote nodes.

Control tables are created at the central node to record various replication parameters and changed transactional data. Similarly remote nodes will also have additional control tables and changed schema.

4.1. 2 Database Structure at Remote Node:
Remote nodes have to register first with the central node as a cluster member. A remote node hosts the standard database schema as designed originally for the client application. This schema will be modified to facilitate replication features as follows.

1. Transaction Tables

Transaction tables are the set of tables storing all transactional changes at a remote site. The client application will fire DML queries to perform these changes. The changes in data of these tables are recorded and replicated to the central master site. Following design changes are carried out for replication purposes in the transaction tables.

Unique Identification of a row:

It is necessary to uniquely identify every row in a replicating table. Although, the primary key is a unique identifier for a table the generic replication system should better seek an alternative since many tables would not have declared primary key column as it not strictly enforced by DBMS systems. However, to record the changes taken place in a database table unique row identification is a must. The fact that every standard RDBMS system has one or the other mechanism to define the row uniquely in a table, makes it easier to identify the same row in remote and central node correctly.

For example, MS SQL Server’s uniqueidentifier data type with rowguid activated generates the unique identifier for a row in the table. Every row inserted in the table is given a unique ID based by the database. Unique ID thus generated is not duplicated in the table.

Oracle’s rowid: A rowid is a pseudo column that uniquely identifies a row within a table, but not within a database. It is possible for two rows of two different tables stored in the same cluster to have the same rowid.

Postgres maintains an OID: PostgresQL defines a series of system columns in all tables, which are normally invisible to the user. The unique object identifier of a row is OID. PostgresQL automatically adds this 4-byte number to all rows. It is never re-used within the same table.

Thus it is fairly easy to identify a row in a table to be replicated using one of this row identifier depending on the DBMS used.

Defining row identifier:

All replicable transaction tables at publisher site shall have one additional column “rowguid”. This special column will store unique row ID of the transaction table generated by the related publisher site.

Although in Oracle and Postgres though the system column rowid and OID respectively are present and need not be defined as a separate table column but for replication purposes the field rowguid is needed to store the value of the row id as a column value.

All other columns will remain the same in the replicating tables.

2. Control Tables:
2.1 Table: Audits<siteID> // siteID will be unique ID which is sent by central node on registration.

Purpose: Every remote (site) will have one control table named “Audits”. All changes in the underlying tables (transaction tables) at the remote site are recorded in this table. This table is known as LOG table.

Structure:

Column:

rowguid

uniqueidentifier
// rowguid activated

timestam

datetime

// date and time of change

seqno

int

//auto sequence number

table_name

varchar(255)

// name of the table

user

varchar(255)

//database user

data

xml

//changed data in XML form

Note:

a) The above structure is created in MS SQL Server and remains same in other RDBMS with change in equivalent data types.

b) rowguid field will store the unique row identifier of the table.
c) data field will store entire old or new row of the table indicated by the value of field table name.

2.2 Table: Registration
Purpose: To record registration information of this node received from the central node. It contains only one row having SiteID of the local site. This id uniquely identifies the node in the cluster. Every replication process uses this site id whenever sending or receiving data.

Column:

SiteID

Char(4)

 //Site ID sent by central node

RegistrationDate
datetime

// Date of joining the replication

 cluster

RemovalDate
datetime

//Date of removal from the

 replication cluster

2.3. Table : ACK

Purpose: To send and receive the acknowledgement of sending and receiving control files. The corresponding ACK file in the Central Node will contain the information about the receiving of the control files from the remote node having site id as the values of the column SiteID.
Column:

ID

uniqueidentifier
PKY

SiteID
char(4)

// site ID

snddate
datetime

// date and time of sending

ackdate
datetime

// date and time of ack

ackstat
char(1)

// 0= no ack

 1= file received successfully

 2= failure

seqno

int

// max seqno of Audits replicated

2.4 Trigger:

Every remote node table to be replicated will have a trigger implemented for insert, update and delete operations. The trigger will record all changes in the table to the Audits table. The listing of the trigger at the remote site is given in the following sections.

4.1.3 Database Structure at the Central Node

1. Master Tables:

All master tables such as code directories, look up tables etc. have same schema in both central node and remote node(s). Master tables will be updated by Central node side application only.

Remote node(s) will receive replica of master table(s) as and when they are changed at central node. This replication will also happen asynchronously to remote site.

Master table replication is an example of pull replication where remote node pulls the data from the central node periodically.

2. Transaction Tables:

All transaction tables at the central node will have the schema modified to include on additional column rowguid of data type varchar. This column gets the unique row identifier value generated by the corresponding replicating table of remote site(s). This column at the Central node is not meant to regenerate the row id again. This will simply have the value of the row id already generated by remote table at the remote end.

3. Control Tables:

3. 1 Table: Registration

Purpose: Registration Table is one of the control tables at the central node. Its purpose is to record all the registered node details of the cluster participating in the replication. As soon as a request for registration is received from the remote node a row indicating this fact is added in this table.

Removal of the node from the registration will be indicated with the removalDate column contains a value. Removal can either be requested by the remote node or done by the central node.

Column:

siteID

char(4)
PKY //unique ID of remote node

registrationDate
datetime
// date of registration

removalDate

datetime
// date of removal

3.2 Table: Audits<siteID> where siteID is the unique ID of the remote site
Column:

rowguid

uniqueidentifier
PKY

timestam

datetime

PKY

seqno

int

//transaction sequence

 number

table_name

varchar(255)

user

varchar(255)

data

xml

3.3 Table: ACK
Purpose: To send and receive the acknowledgement of control file.

Column:

ID

uniqueidentifier
PKY

SiteID
char(4)

PKY // site ID

rcvdate
datetime

// date and time of sending

ackdate
datetime

// date and time of ack

ackstat
char(1)

// 0= no ack

 1= file received successfully

 2= failure

seqno

int

// max seqno of Audits replicated

4.2 Replication Process:

Replication processes evolved in the proposed replication model are described in detail in this section. The processes use the modified schema to replicate the data from remote master to the central master and vice versa.

The replication processes comprise of following major sub-processes:

· Set up of the databases (4.2.1 and 4.2.2).

· Capturing (Recording) of transaction level changes at remote site (4.2.4.1).

· Replicating the changes to the central master (4.2.4.2).

· Merging the replicated changes with the central master (4.2.4.3)

4.2.1 Central Node Set-up:

The client application wants to implements this replication model needs to set up initial database at the central node with basic schema as defined in the original database design of the application.

The basic schema is then modified using the modDB program. The program created as part of this project is installed at the central node and accesses this database. This program readies the above database for replication. It modifies the schema as described earlier under the heading ‘Creation of Initial Database- At Central Node’ in the. Addition of control tables and changes in schema of transaction tables etc. are done.

Pre Condition of modDB:

· Initial database is already set up.

· Transaction Tables are identified

· Master Tables are identified

Following are modDB program steps:

· Select the target database

· Select the master tables

· Select the transaction tables

· Alter schema of transaction tables to include replication changes.

· Add control tables

4.2.2 Remote Node Set-up:

Once the database is ready with replication features in the above step the remote site needs to be set up. A most recent snapshot of the original database is then created from the central node. This snapshot is installed at the new remote site. With this installation the remote site is brought to initial sync with the central node.

The modRDB program is the executed to modify the remote node database schema to include remote site control tables, triggers and modifies schema of transaction tables as descried in the section “Replication Database Design” under the heading “Creation of Initial Database- At Remote Node”.

Following are the steps of modRDB program.

· Begin

· Connect local database

· Connect remote database

· Register with the central server as a cluster node for replication

· Send the registration request to the central server along with IP address.

· Central Server records IP Address and assign a SiteID in the registration table

· Remote Station receives registration details and adds a row in the Registration Table.

· Once successfully register, sets up database

· Restore copy latest backup of central database without replication features

· Add control tables

· Add Triggers in the transaction tables.

· Finish

4.2.3 Role of Client Applications:

Client applications at Central Node and Remote node can now start functioning with the replication features installed at both ends.

There are two types of tables (files) in a database Master data tables (Master Files) and Transaction Data Tables (Transaction Files). Master file maintains standard list of codes to be used in the database uniformly across its implementation. The set of files responsible for recording the transactions as per business logic are known as transaction files.

Suggested client application at the Central Node maintains only master files. Master files are the files used uniformly across the distributed applications. Any change in the master data should therefore be done at the central node. The schematic diagram of replicating master files from Central Node to Remote Node is depicted in figure 4.1 below. The figure describes the replication process of propagating changed master data to remote nodes.
Remote Client Application performs the normal application business and updates only transaction tables. Figure 4.2 shows the schematic of replication of transaction files to central master.

Thus, the need to clearly distinguish the tables to be updated by remote node(s) and central node is essential in this suggested architecture. Figure below shows the master and transaction file updating flow and replication.

4.2.4 Replication as a three step process:

The proposed replication architecture advocates three major processes for replication.

i. Recording changes at the publisher level

ii. Replicating the changes to central master
iii. Merging changes at the subscriber end

Fig 4.3 Replication as three step process

4.2.4.1 Recording Changes

4.2.4.1.1Transaction Files Updates:

Remote client applications fire DML statement on the local database. The records are INSERTED, UPDATED or DELETED by these applications. Every change is recorded in the control table “Audits”. It stores the table name, unique row-id of the affected row and entire data (content) of the row (deleted or inserted) in XML format.

4.2.4.1.2 Event based auditing:

Audits file records data changes based on the triggers applied on the transaction file. Trigger is fired on Insert, Update or Delete event. On the successful execution of event (i.e. after committing the record) corresponding row(s) is generated in the audit table. Columns rowguid and timestam are primary keys identifying rows uniquely in the Audits table. Column data is an un-typed XML data type storing entire row either DELETED or INSERTED. Un-typed XML data type means that there is no associated schema with the column data thus it permits the rows of all tables to be bundled in the data column as XML data. Since the rows data are automatically generated there is need to validate the data against a schema.

An UPDATE statement would first delete the row with old data values and then insert the new row with new data values. Thus an UPDATE operation would create two entries in the Audits Table. First row will have the content in the data column of the form:

<DELETED Roll_No="20100171" App_No="228131" ……./>

The second row would look similar to

<INSERTED Roll_No="20100171" App_No="228131" ……./>

Similarly, an insert or delete operation would have entries starting with <INSERTED…/> and <DELETED …/> respectively.

Following Listing of Trigger is applied on a transaction table candidate.

· The changes are recorded in the Audits table.

· Transition table ‘DELETED’ and ‘INSERTED’ are used to capture the old row values and new row values. (This is MS SQL Server syntax)

· In other DBMS like ORACLE we use

set ANSI_NULLS ON

set QUOTED_IDENTIFIER ON

go

ALTER TRIGGER [dbo].[candtr] ON [dbo].[candidate]

WITH EXECUTE AS CALLER

FOR UPDATE, DELETE

AS

BEGIN

 SET NOCOUNT ON

 DECLARE @deletedrows TABLE (id INT IDENTITY(1,1), rowguid UNIQUEIDENTIFIER)

 DECLARE @insertedrows TABLE (id INT IDENTITY(1,1), rowguid UNIQUEIDENTIFIER)

 DECLARE @rowcount INT

 DECLARE @i INT

 DECLARE @table_name VARCHAR(255)

 DECLARE @data XML

 DECLARE @rec VARCHAR

 DECLARE @ts datetime

 DECLARE @rowguid UNIQUEIDENTIFIER

 DECLARE @seq int

 -- Obtain the name of the table the trigger belongs to

 SELECT @table_name = OBJECT_NAME(parent_obj)

 FROM

 sys.sysobjects

 WHERE

 id = @@PROCID

 SET @ts=getdate()

 SET @seq=(select seqno+1 from SNO)

 UPDATE SNO set seqno=@seq

 INSERT @deletedrows (rowguid)

 SELECT rowguid FROM DELETED

 SET @rowcount = @@ROWCOUNT

 SET @i = 1

 WHILE @i <= @rowcount

 BEGIN

 SELECT @rowguid = rowguid

 FROM @deletedrows

 WHERE

 id = @i

 SET @data = (SELECT * FROM DELETED WHERE rowguid = @rowguid FOR XML AUTO)--, ELEMENTS)

-- SET @rec = (SELECT * FROM DELETED WHERE rowguid = @rowguid for xml auto)

-- record in Audits file the changes….

 INSERT INTO dbo.Audits (rowguid, table_name,timestam, data,seqno)

 VALUES (@rowguid, @table_name, @ts,@data,@seq)

 SET @i = @i+1

 END

 INSERT @insertedrows (rowguid)

 SELECT rowguid FROM INSERTED

 SET @rowcount = @@ROWCOUNT

 SET @i = 1

 WHILE @i <= @rowcount

 BEGIN

 SELECT @rowguid = rowguid

 FROM @insertedrows

 WHERE

 id = @i

 SET @data = (SELECT * FROM INSERTED WHERE rowguid = @rowguid FOR XML AUTO)

-- SET @rec = (SELECT * FROM DELETED WHERE rowguid = @rowguid for xml auto)

 INSERT INTO dbo.Audits (rowguid, table_name, timestam,data,seqno)

 VALUES (@rowguid, @table_name, getdate(),@data,@seq)

 SET @i = @i+1

 END

END

4.2.4.1.3 Master Files Updates:

Central Node client application updates master files at the Central Database using INSERT or UPDATE statement. DELETION of row is not permitted as there can be a remote dependent table using a foreign key constraint on a master table and already having the corresponding child records. This child might not have replicated and merged at that point of time on the central node. Thus, a conflict can occur when merging remote data. Table Audit_M records the timestamp and table name of the table where the change has taken place in any of the master tables.
4.2.4.2 Replication Process:

There are two replication processes in the proposed architecture. First process is replicating the transaction files from remote to central node. This is done frequently. In the given scenario of most of the application hosted at NIC this can be a daily affairs. Ideally this should be during off-peak hours (say in the evening).

Secondly, replication of master data tables from central node to remote nodes. This can be done also asynchronously as and when changes occur.

4.2.4.2.1 Replicating Transaction file:

At the end of the day or any predefined schedule this replication process is executed. The replication program repTrans first copies the control file Audits to a temporary Audits<siteID> table. The <siteID> suffix identifies this table uniquely at the central node representing the data received from a specific site.

An entry is made in ACK table to record the information related to current table transfer.

Example:

Case: At a remote site ‘0004’ Audits table is to be replicated on 2 July 2008. ACK entry will be made as follows:

Column
Value

ID

 dlFwrer42%beE

SiteID

‘0004’

Sedate
02-July-2008 13:11:23:567

Ackdate
null

Acosta
0

Segno

40 // maximum seqno from ‘Audits0004’ table

This record of the table in XML formal along with Audits<siteID> file is sent to the central node. The method of sending used here is through remote connection between two database servers. Once the connection is established the required files are copied using standard DDL/DML commands.

The central node receives the Audits<siteID> file along with XML record. It updates local ACK table by appending data from XML record, updates the records with

rcvdate as current datetime,

ackdate current datetime,

ackstat=1.

Central node now sends the acknowledgement to the sending remote node database. Sending node, on receipt of the acknowledgement, updates ackdate and ackstat in the ACK table.

4.2.4.2.2 Replicating Master Files:

Master files are replicated from the central node to remote nodes. Replication program repMast runs on the Central node. This program copies all the master files to remote sites. This is a snapshot copy of the master tables. The trigger point of initiating replication from master to remote sites can be any time during the day or as soon as Audits_M file has at least one entry.

4.2.4.2.3 Replication algorithm:

In this model only file to be replicated is Audits file. The replication is done asynchronously. Following steps will be followed to perform the replication

connect remote node database; //which is mostly the local database on a remote node

connect central node database;

begin transaction

{

use remote node database;

if ! exists (Audits table) display msg “replication feature not enabled” exit;

else

 check the ACK.seqno in ACK table up to which replication is done

delete entries in Audits table <=ACK.seqno

if !exists (Audits<siteID> table)

create a copy of Audits and name it Audits<siteID>;

end if;

insert row in the ACK record with values of SiteID, snddate, ackdate(current date),ackstat=0

generate XML record of this ACK data

execute SQL statement to copy tables to central node database

append data from XML record to central node’s ACK table with ackstat=1

use remote database

update ack record with ackstat=1

} end transaction;

4.2.4.3 Merging Process:

Central Node has a merging process that runs during a pre-defined time interval. This process takes input from all Audits<siteID> files and applies the changes to corresponding tables using the merging algorithm mentioned below.

After the consolidation is done successfully, the Audits<siteID> table(s) is cleared and the acknowledgement is sent to the concerned remote node.

4.2.4.3.1 Merging Algorithm:

Merging process starts with noting down the current Audits<siteID> tables available in the database. The suffix siteID denotes the remote node identification number as generated during the registration time.

begin {

begin transaction{

read number of audits tables in the array

initialise array m[];

n:= count records from registration;

for i = 1 to n;

if EXISTS ‘Audits&n’ // concatenating to generate table with siteID

m[i]:= ‘Audits&n’;

end if

next n;

if empty m[] then msg “nothing to merge”

else

take first table from the array m[]

tbl:

sort the records in the table in the descending order of seqno;
row:
if !Exists row exit nxt

take a row or set of rows having same seqno value;

construct the sql statement (i.e. either INSERT, UPDATE or DELETE) as given in the section “Re-Construction of SQL DML Statement”;

store the sql statement generated in a string;

execute
sql statement;

fetch
next row;

loop row:

nxt:
msg ‘tbl Audits&n’ is merged’

fetch
next table

if !empty m[] then

go tbl:

else

msg ‘merging completed’;

stop;

} end transaction;

};

4.2.4.3.2 Re-Construction of SQL DML Statement:
Audits file, which records the changes in various transaction files at the remote node and Audits_M file which records changes in the master files at the central node have information related to changes in the tables data.

The data column of the both these tables contain complete row-data of the affected row of the table mentioned in the table_name column. XML formatted content of the data column is un-typed and needs to be converted to relation types in order to store the values of the corresponding field in the table.

It is essential to reconstruct SQL DML statement that was executed on the original row to transform it in to the new row. To bring in the same change in the destination table the merge algorithm above uses the reconstructed SQL statement. The effectiveness and correctness of merging depends heavily on how correctly this reconstruction takes place.

There are two step in reconstructing SQL statement one identification of SQL statement using the information available in the Audits table and then constructing the identified statement. The generated SQL statement can be UPDATE, INSERT or DELETE.

· Identifying SQL Statement

· If there is more than two row bearing the same values for seqno, table_name and rowguid column then

· if one row contains <INSERTED… tag in the data column and second row contains <DELETED.. tag in the data column. The DML statement executed was “UPDATE”

· If there is one row for a seqno then depending of tag in the data column the statement can be easily identified. For example. <INSERTED> tag means that the executed DML statement was an INSERT statement. <DELETED> tag means that the executed DML statement was a DELETE statement.

· Reconstruct the valid SQL Statement:

· UPDATE/INSERT/DELETE statement can be simply re-written from the content of the data column.

· If the identified statement is UPDATE the string can be formed as

· UPDATE <table_name> set column_name1=’value1’ etc.

Here, table_name field gives the value for name of the table to update. Column_name1 is the first field name in the field-value pair of XML data such as column1=”value1”, column2==”value2” etc..

· The where clause should contain the equality expression equating rowguid column of the transaction table (specified in the table_name column) with the rowguid column of the Audits<siteID> table. Remember the difference between both rowguid columns at the central site and remote site transaction table is that at the remote site this is system generated unique value for every new row while at the Central note this is a fixed Char string uniquely identified the selected row. The idea behind this is to make use of unique identifier of the row at the publisher site in the subscriber site as a key data value identifying the row.

4.2.4.4 Clearing of Audits<siteID> table:

Remote node clears Audits<siteID> tables and deletes corresponding entries from Audits table when it received the acknowledgment. This helps in maintaining the changed data in the Audits file that is not send to the central node. The seqno value in the ACK table stores the value of the maximum seqno in the Audits table that is sent to the subscriber node at any point of time. The table ACK can be queried as follows to give the last seqno up to which the information is sent to the subscriber.

Select max(seqno) from ACK

The Audits table can be deleted up to this point after receiving the acknowledgement from the subscribing note.

4.2.4.5 Removing Remote Site:

A Remote site can be removed from the cluster by the master site once the request from the remote site is received. The master updates the Registration Table by setting RemovalDate for the corresponding entry for the site. Remote site then makes changes in its own Registration table. Both sites execute RemoveReg module. It checks whether any other replication program is connected to the central database if so, it waits for it to complete before processing.

Fig 4.4 Proposed System Flow Diagram (Consolidating at Master Site):

Fig 4.5 Proposed System Flow Diagram:

5. Software Platform:

The replication system presented in this thesis is developed for Microsoft Platform. The current system supports replication of database from MS SQL server to MS SQL Server.

· The database design is done using MS SQL Server 2005 database.

· The replication programs are written in C#.NET

However, with a little change in database structure (i.e. equivalent data types in Oracle and PostgreSQL) this replication system can be used for different databases.

To make it generic and open source tool the further work is being under taken (at the time of writing of this report) using Java programming.

6. Conclusion and Future Works:

Proposed replication solution in this project has several advantages. This is a customized solution for NIC applications deployed at the user premises having low speed Internet connectivity and do not have uninterrupted WAN connection. Such places still exist in large number across India and other developed world and a potential computerization scheme might fail because of inability to keep up-to-date information.

 This replication product is developed at application level thereby providing full control on the replication solution for further related work like optimisation etc. Multi-Master to Central Master Replication model seeks to build a solution that would facilitate high flexibility in the database deployment at remote location. It reduces bandwidth requirement, which is crucial in asynchronous replication.

6.1 Writing Daemon:

Daemon or service agent functions as background process and continuously execute the scheduled tasks.
The replication process developed in this project is composed of three major components. Recording Changes at remote site, replicating changes to the central site and merging changes to the master database.

Changes are captured synchronously using triggers implemented on transaction tables. They are written in a log table and ordered using timestamp and auto sequence number.

Replication from remote site to central site requires this log file to be replicated. This process can be automated by executing a replicate daemon process at remote site. This daemon will wake up at pre-defined time interval and check the log file to determine whether any log records are due for replication. This process requires an additional column in the log table containing a flag. The flag can be set to indicate that a log record is transferred. Reset flag indicates not yet transferred. Daemon then replicates the records with flag reset. On successful transfer the master site will send the acknowledgement to the remote site and set the flag. After transferring the records to the master site the daemon will again go to sleep.

At the master site applychanges daemon will run in the background. This daemon will check the log tables received from all registered nodes (remote masters) to determine whether the merging with the database is pending. Accordingly, this daemon will execute the merge process. The algorithm of merge process and replication process is defined in the chapter 4.

6.2 Maintaining Audit Trail:

As a result of implementing this replication feature in any database application the audit trail of the database is automatically taken care. Audit trail is becoming an essential requirement of all public domain software to maintain the log of changes made in the databases. It may be required to further write some queries to the Audits table to find out who has performed what changes and when. As Audits table is cleared after the replication all need to be done is to keep appending changes in a new Audit _trail table at the time of capturing records in the Audits table.

6.3 Fail-Over Site:

The replication method developed in this solution can be extended to additionally generate a backup at a remote site automatically. The alteration would require that there are two central masters instead of one as suggested in this model.

Remote station while replicating, writes to two Central Masters. The second Central Master can be at a secondary site (DR Site) it takes over in the event of failure of First Central Master. This will act as an automatic fail-over system without the need of creating a mirror site synchronously.

6.4 Standby Server for Critical Applications:

The Audits log file captures changes on every DML operation performed on the transaction tables at the remote master. The replication process in the background keeps replicating records asynchronously from this log table to the master site. In case the remote master fails due to hardware failure or system crash, the replication process aborts abnormally and the un-replicated data in the remote site gets lost.

To avoid this situation the modification can be made in such a way that for every Insert, Update and Delete operations on the local transaction tables at the remote master two logs are maintained. Replication process sets the flag in both these logs to indicate the status of transfer of a log record. The first log file is at local server originating the transaction while the second log file is maintained at another server. The second server can be located locally or in a remote location at the most 8 to 10 KM away. These servers should be connected with high bandwidth connectivity. Thus, in case of disaster we can just change the applications to point to this standby server and run from the point of failure of the primary remote server.

6.5 Limitation of Asynchronous Replication:

Synchronous replication means that a transaction modifying the data is not considered committed until all servers in replication clusters have committed the transaction. This ensures that the failure will not lose any data and that all load-balanced servers will return consistent results no matter which server is queried.

In contrast, asynchronous solutions allow some delay between the time of a commit and its propagation to the other servers, opening the possibility that some transactions might be lost in a switch to a backup server, and that load balanced servers might return slightly stale results. Asynchronous communication is used when synchronous would be too slow.

Bandwidth Uncertainty:

The frequency and therefore volume of writes on the local database can vary time to time similarly, the effective transfer bandwidth also fluctuate. Further, the Internet routers can drop packets causing the communication message to deliver again. To make the situation worse, there can be complete failure of Internet connectivity. These uncertainties cause accumulation of outstanding writes at the primary site.
Data Inconsistency:

By nature, the asynchronous database replication cannot guarantee consistency as updates are written at different times at two database servers. Consistency has to be ensured by the replication model. The model suggested in this thesis assumes that the transactions at the remote sites are independent of each other i.e. there can not be any transactions in the remote servers updating the same row. A siteID or some tag is added as a primary key to uniquely identify each row in the remote servers. Thus, the result is highly consistent database.

6.6 Integration with Postgres:

The Central-Master – Multi Master Replication model suggested in this thesis is developed at application level as a third party tool. This model can be adopted as core Postgres replication feature supporting transactional replication from M masters to 1 Master and vice a versa. It is suggested that the Postgres developer community would take it further and built an integrated solution with Postgres that can be shipped with standard distribution.

6.7 Usefulness of Existing Replication Products CIPA Project:

In a standard MS SQL Server transaction replication with multi publisher single subscriber model (which is closest to the CIPA requirement), every individual transaction is replicated. Transactional replication requires a primary key in every replicated table. This cannot be guaranteed as RDBMS do not enforce primary key requirement and there can be schema-having tables without primary key.

The proposed model uses a workaround to this issue by identifying row using a unique row identifier at the original site. This identifier is saved as a key value in a separate column in the table. This is used as a key column in where clause for retrieving the same row in the destination remote table.

Oracle uses powerful Oracle Streams for replication. It supports two types of replication single master replication and multi master replication (described in Chapter 1). In multi master replication update everywhere algorithm is applied and all masters in the group are updated by the transaction. Thus a consistent and up to date copy of the database is maintained at all station. CIPA does not require multi master updates rather the local client application writes on the local database and then the consolidation takes place at master database at the central node (Data Centre node).

SLONY is open source replication software for PostgresQL. It is based on Master to Multiple Cascade-Slave replication model where in changes in the master are replicated to slave. Slaves can be configured to further propagate these changes to other slaves in a cascading manner. It best suited for data centre and backup sites for providing disaster recovery solution. In CIPA case there are multiple remote masters on which the updates are written. Using Slony these multiple masters will create their own replica at the slave site (Central database in CIPA). Thus Central Master Database will have replicas of various remote databases. These replicas will have to be merged to arrive at consolidated master database. This is indirect method of consolidation at master database.

References

[1] Matthias Wiseman? Fernando Pedoney Andr´e Schiper?, “Database Replication Techniques: a Three Parameter Classification” 19th Symposium on Reliable Distributed System 2000.

[2] Tyler Carter Symantec Senior Product Marketing Manager, “Long Distance Replication Technologies”, Symantec Veritas Architecture Network, 2007

[3] “ A Near Optimal Approach to Quality of Service Data Replication Scheduling
[4] Kevin Adams, Denis Gracanin, Michael G. Hinchey, “Increasing Resiliency through Priority Scheduling of Asynchronous Data Replication” , 11th International Conference on Parallel and Distributed System, 2005, IEEE 2005.
[5] Slony I A Replication System for PostgresQL, Jan Wieck
[6] Rodrigues, L.; Carvalho, N.; Vilaca, R.; Oliveira, R.; Guedes, S.
” GORDA – An Open Architecture for Database Replication” Network Computing and Applications, 2007. NCA 2007.
[7] Matthias Wiesmann “Comparison of Database Replication Techniques Based on Total Order Broadcast”, April 2005.
[8] Sushant Goel, Rajkmar Buwa, DATA REPLICATION STRATEGIES IN WIDE AREA DISTRIBUTED SYSTEMS, Grid Computing and Distributed Systems (GRIDS) Laboratory,Department of Computer Science and Software Engineering, The University of Melbourne, Australia

[9] Hitachi, Synchronous Data Replication,
[10] YASUSHI SAITO Hewlett-Packard Laboratories, Optimistic Database Replication, Microsoft Research Ltd., Cambridge, UK, Microsoft Research Ltd., Cambridge, UKACM Computing Surveys, Vol. V, No. N, 3 2005, Palo Alto, CA, USA and MARC SHAPIRO

http://www.dbmsmag.com/9705d15.html
http://www.dothill.com/tutorial/tutorial.swf
http://www-db.stanford.edu/peers/
Merge data

Merge data

Merge data

Bi-directional Transactional –Merging Replication between central and remote node(s)

Site 3

Site 2

Site 1 1i1sher

Data Source

Central Database

Replicator

DB 3

Internet

Registered Vehicles DB

Driving Licenses DB

Passport DB

Immigration DB

Web Based Citizen Interface

NCRB

State Head Quarters

DGP

State Crime Record Bureau

Police Station(s)

District Head Quarters

Superintendent of Police

Dy. Superintendent of PolInitial Database Set up with all Master Directories.

Transaction Tables to have additional control field for replication

Control Tables for Replication

ice

Data Centre Node

Remote Node 1

Remote Node 2

Remote Node 3

Remote Node 4

Receives Control Tables and sends ACK

Receives Ack

Remote Site

Central Server

Replication Workflow snapshot replication

(Central node publishing Remote node subscribing)

Central Node

Master files

Client Program

Updates master files and

Generate change event

Initial Database Set up with latest Snapshot from Central Database

Additional Control Table and Triggers

Apply updates to master files

Send Ack to Central Node

Register with the central server

Initial Database Set up with all Master Directories.

Transaction Tables to have additional control field for replication

Control Tables for Replication

Sends master files to asynchronously

Updates

Remote Node

Master files

Replicated

Central Node

Transaction files

Updates

Client Program

Remote Node

Transaction files

Replicated

Fig 4.1 Updating master files

4.2 Updating transaction files

Audits

Audits<siteID>

Merge

Recording

Changes in the original table

Replicator

Merging on the corresponding table

T1: Start

	Write (X1)..

Commit:

T2:

Tn:

X1

X2

Xm

Primary Copy

Secondaries

WAN

HDS Storage

HDS Storage

Gate Way

Switch

Gate Way Switch

FC-IP

Router

FC-IP Router

�

Remote Site

Central Server

Replication Workflow

(Remote node publishing Central node subscribing

Inspects Control Tables and apply changes to the database

Receives Ack

At the end of the day controls tables are copied.

Client resumes the work.

The copy is replicated to the central server

Registers remote site and send the Ack

Initial Database Set up with latest Snapshot from Central Database

Additional Control Table and Triggers

Client Application Resumes Functioning

Control Table records all changes

Register with the central server

Initial Database Set up with all Master Directories.

Transaction Tables to have additional control field for replication

Control Tables for Replication

Replicator

DB 2

Replicator

DB 1

PAGE
3

