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ABSTRUCT 
 

 The idea of applying the biological principle of natural evolution to artificial 

systems, introduced more than three decades ago, has seen impressive growth in the 

past few years. Evolutionary algorithms have been successfully applied to numerous 

problems from different domains, including optimization, automatic programming, 

machine learning, economics, operations research, ecology, population genetics, 

studies of evolution and learning, and social systems . In this study we will only 

consider genetic algorithms.  

 As its name suggests, a Genetic Algorithm (GA) is a biologically inspired search 

heuristic which produces a population of random solutions (called chromosomes) to a 

given problem and iteratively applies genetic operators on this population to evolve 

better and better solutions over successive generations. GAs are probabilistic 

searching methods which use implicitly parallel directed random exploration of the 

search space to produce near-optimum solutions over time.  

 One of the greatest attributes of GAs is that they are capable of  "learning" – that 

is, they modify future solutions based on the successes and failures of past solutions. 



Also, they are capable of adapting to changes over time. Therefore, GAs are considered 

to be in the realm of Artificial Intelligence. While a GA may never produce the 

absolute optimum solution, it is mathematically likely to get very close using a 

fraction of the computational requirements of an exhaustive deterministic search.  

The distribution system is considered not only as one of the important part of 

the electric power system but one of the most complicated systems created by the 

mankind. It constitutes the link between  electricity utilities and consumers. Usually,  

it suffers from unbalanced feeder structures and unbalanced loading which affects 

system power quality and electricity price.   

 This presentation introduces a genetic based  algorithm (G.A) to determine the 

states of the switches for minimum loss configuration . The problem of feeder 

configuration can be looked upon as an  optimization problem, where the objective 

function reflects the different goals that the individual utilities may pursue.  

The algorithm can be directed to minimize the losses which are a major sign of 

better power quality. Also, the operator has the ability to direct it to minimize the 

active power loss.  A radial distribution system is used to demonstrate the capability 

of the proposed G.A along with load flow studies.  

 

 

 

CHAPTER-1
 

INTRODUCTION 
 

1.1 Introduction & Engineering applications of Optimization 
The ever increasing demand to lower the production cost to withstand 

competition  has prompted to look for rigorous methods of decision making, such as 

optimization methods, to design and produce products both economically and 

efficiently. Optimization techniques, having reached a degree of maturity over the past 

several years are being used in wide spectrum in industries. With rapidly advancing 

computer technology, computers are becoming more powerful and correspondingly, the 



size of complexity of problems being solved using optimization techniques is also 

increasing. Optimization methods coupled with modern tools of computer – aided 

design are also being used to enhance the creative process of conceptual and detailed 

design of system. 

Various techniques are used to speed up the convergence of optimization 

problems. In this dissertation, an optimization technique, generic algorithm which can 

perform dynamical and possess adaptive features has been presented. The detail of 

the same has been discussed in the next chapters and later and the numerical 

calculations have been included in last chapter. Also the results are completed with 

other techniques.  

Optimization in its broadest sense is applied to solve any engineering problem. 

Some typical applications are given below: 

1 Design of aircraft and aerospace structures for minimum weight 

2 Finding the optimal trajectories of space vehicles. 

3 Design of civil engineering structures frames, foundations, bridges, 

towers, chimneys and dams for minimum cost. 

4 Minimum-weight design for structures for earth quake, wind and other 

types of random loading. 

5 Design of water resource systems for maximum benefits. 

6 Data compression and virtual channel enhancement. 

7 Optimum design of linkages, cams, gears, machine tools and other 

mechanical components. 

8 Selection of machining conditions in metal-cutting  processes for minimum 

production cost. 

9 Design of material handling equipment such as conveyers, trucks and 

cranes for minimum cost. 

10 Design of pumps, turbines and heat transfer equipments for maximum 

efficiency. 

11 Optimum design of electrical machinery such as motor, generator and 

transformers. 

12 Optimum design of electrical works. 



13 Shortest route taken by sales person visiting various cities during one 

route. 

14 Optimal production planning, controlling and scheduling. 

15 File allocation in distributed systems. 

16 Energy conservation. 

17 Design of transporter networking. 

18 Path routing 

19 Planning of maintenance and replacement of equipment to reduce 

operating cost. 

20 Inventory control. 

21  Robot path allocation. 

22 Genetic algorithm is used to search for a number of hidden layers are 

neutral network solution and to design a starting set of weights to the 

networks. 

23 Planning the best strategy to obtain maximum profit in the presence of a 

competitor. 

24 Optimization of membership functions of fuzzy logic control. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.2. METHODS OF OPTIMIZATIONS 
 

 

 

OPTIMAZATION

 
Mathematical    Stochastic Process   Statistical  
Programming             Techniques              Methods  
Techniques  
 
1.   Calculus methods   1.   Statistical decision       1. Regression  
          Theory             analyses 
2.   Calculus of variations   2.   Markov Processes       2. Cluster  
                  Analyses 
3.   Non-linear programming   3.   Queuing theory        3. Pattern  
                    Recognition 
4.   Geometric programming   4.   Renewal theory        4. Design of  
                    Experiment 
5.   Quadratic programming  5.   Simulation methods         5. Discriminate  
                     Analyses 
6.   Linear programming   6.   Reliability theory      (Factor 
analyses) 
7.   Dynamic programming  7.   Simulated annealing 
8.   Integer programming   8.   Genetic Algorithm 
9.   Stochastic programming  9.   Neural Network 
10. Separable programming    
11. Multiobjective programming 
12. Network methods 
      CPM & PERT 
13. Game theory 
14. Simulated annealing 
15. Genetic algorithm 
16. Neural Network  
 

 

 

 



 

 

 

• The mathematical programming techniques are useful in finding the minimum 

of a function of several variables under a prescribed set of constraints. 

• The stochastic process techniques are used to analyze problems which are 

described by a set of random variable having known probability distribution. 

• The statistical methods enable one to analyze the experimental data and build 

empirical models to obtain the most accurate representation of the physical 

situation. 

 

Several factors are considered in deciding a particular method to solve a given 

optimization problem as: 

(1) The type of problem to be solved. 

(2) The availability of ready made computer program. 

(3) The calendar time required for the development. 

(4) The accuracy of the solution. 

(5) The available knowledge of the efficiency of the method. 

(6) The programming language and the quality of coding desired. 

(7) The ease with which the program is used and its output is interpreted. 

 

1.3 Comparison of Genetic Algorithm with other Techniques  
 

 The GA differs substantially from more traditional search and optimization 

methods. The four most significant differences are: 

• Gas searches a population of points in parallel, not a single point. 

• Gas use probabilistic transition rules, not deterministic ones. 

• Gas works on an encoding of the parameter set rather than the 

parameter itself (except where real-valued individuals are used) 

• GA’s do not require derivative knowledge, only objective function & 

corresponding fitness, levels influence the direction of search 



 It is important to note that GA can provide a number of potential to a given 

problem and the choice of the final solution is left to the user, in cases where a 

particular problem does not have a unique solution, for e.g. in multi objective 

optimization where the result is usually a family of Pareto-optimal solutions. The GA 

is potentially useful for identifying these alternative solutions simultaneously. 

 

1.4  Application Areas of GAs 

When Would You Use a Genetic Algorithm? 

GAs are not guaranteed to find the global optimum solution to a problem, but they are 

generally good at finding “acceptably good” solutions to problems in “acceptably 

quickly”. Where specialized techniques exist for solving particular problems, they are 

likely to out-perform GAs in both speed and accuracy of the final result, so there is no 

black magic in evolutionary computation. Therefore GAs should be used when there is 

no other known efficient problem solving strategy. 

Applications 

Genetic algorithms are used in solving problems in the areas of cellular 

automata, fuzzy logic, image registration , communications network configuration , 

simulation modeling and optimization , time-tabling , multiobjective workforce 

scheduling , time constraint scheduling of limited resources , and combinatorial 

optimization. The most widely studied combinatorial task is traveling salesman 

problem. Bin packing problems are also widely studied . They have been utilized in 

playing games such as SimCity, SimEarth; in biology, chemistry and medicine; 

circuitry design and computer engineering; network routing for the telephone 

company; to detect computer viruses; for military artificial intelligence applications; 

military guidance and deciphering applications; art and music. GAs have been shown 

to be able to out-perform conventional optimization techniques of difficult, 

discontinuous, multimodal, noisy functions. 

 

1.5 ADVANMTAGE OF Genetic Algorithm 

 Genetic algorithm works according to the principles of natural genetics on a 

population of string structures representing the problems variables. Three operators 



reproduction, crossover and mutation – are used to create new and hopefully better 

populations. The basic differences of GA’s with most of the traditional optimization 

methods are that GA’s use a coding of variables instead of variables directly, a 

population of points instead of a single point and stochastic operators instead of 

deterministic operators. All these features make GA – search robust, allowing them to 

be applied to a wide variety of problems. 

 GA is powerful and versatile search and optimaization method applicable to a 

broad range of activities. 

 GA is the global optimization search method. It requires a little knowledge of 

mathematics i.e. it is single search method. 

 

1.6 DISSERTATION ORGANISATION 

 The material of this dissertation has been arranged in six chapters, 

references. The contents of chapters are briefly outlined as indicated below: 

 

Chapter-1 provides the introduction of optimization and advantages of genetic 

algorithm. 

Chapter-2 Gives introduction about history of optimization techniques, 

biological background ,Covers the concept of genetic algorithm , 

principle of working and brief survey of previous work done on 

genetic algorithm. 

Chapter-3 Brief introduction of Power losses in Transmission and Distribution 

& various strategies concerned to the power losses. 

Chapter-4 The application of Genetic Algorithm(along with load flow studies) 

for reduction of losses in Distribution Systems.  

• Future Scope 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER-2 
Literature Review – Genetic Algorithms 

 

2.1. Introduction 
Genetic Algorithms are nondeterministic stochastic search/optimization 

methods that utilize the theories of evolution and natural selection to solve a problem 

within a complex solution space. They are computer-based problem solving systems 

which use computational models of some of the known mechanisms in evolution as key 

elements in their design and implementation. They are a member of a wider 

population of algorithm, Evolutionary Algorithms (EA). The major classes of EAs are: 

genetic algorithms, evolutionary programming, evolution strategies, classifier system, 

and genetic programming. They all share a common conceptual base of simulating the 

evolution of individual structures via processes of selection, mutation, and 

reproduction.The processes depend on the perceived performance of the individual 

structures as defined by an environment. Gases maintain a population of structures 

that evolve according to rules of selection and other operators that are referred to as 

"search operators" such as recombination and mutation. Each individual in the 

population receives a measure of it's fitness in the environment. Reproduction focuses 



attention on high fitness individuals, thus exploiting the available fitness information. 

Recombination and mutation perturb those individuals, providing general heuristics 

for exploration. Although simplistic from a biologist's viewpoint, these algorithms are 

sufficiently complex to provide robust and powerful adaptive search mechanisms. 

GAs are not guaranteed to reach the global optimum, but they are generally 

good at finding an acceptable solution during an acceptable amount of time. They are 

mainly designed to solve optimization problems. However, when cooperating with 

other techniques it can also deal with problems with constrains. It is so robust that it 

can be applied to a wide range of problem areas. It also has good performance when 

solving some difficult problems which no existing specialized techniques can perform 

well on. Even if such specialized techniques exist, improvements could be made by 

hybridizing them with a GA. 

 

2.1.1  History 
Idea of evolutionary computing was introduced in 1960s by I. Rechenberg in his 

work "Evolution strategies. His idea was then developed by other researchers. Genetic 

Algorithms (GAs) were invented by John Holland and developed by him and his 

students and colleagues. This lead to Holland's book "Adaptation in Natural and 
Artificial Systems" published in 1975. Holland was not so much interested in 

optimization, but in adaptation. He investigated the genetic algorithm with decision 

theory for discrete domains. Holland emphasized the importance of recombination in 

large populations. Simply said, solution to a problem solved by genetic algorithms is 

evolved. In 1992 John Koza has used genetic algorithm to evolve programs to perform 

certain tasks. He called his method "genetic programming" (GP). 

 

2.1.2  Biological Background 
All living organisms consist of cells. In each cell there is the same set of 

chromosomes. Chromosomes are strings of DNA and serves as a model for the whole 

organism. A chromosome's characteristic is determined by the genes. Each gene has 

several forms or alternatives which are called alleles, producing differences in the set 



of characteristics associated with that gene. The set of chromosome is called the 

genotype, which defines a phenotype (the individual) with a certain fitness. 

During reproduction, first occurs recombination (or crossover). Genes from parents 

form in some way the whole new chromosome. The new created offspring can then be 

mutated. Mutation means, that the elements of DNA are a bit changed. This changes 

are mainly caused by errors in copying genes from parents. The fitness of an organism 

is measured by success of the organism in its life. According to Darwinian theory the 

highly fit individuals are given opportunities to “reproduce” whereas the least fit 

members of the population are less likely to get selected for reproduction, and so “die 

out”. 

2.2.  Basic Principles and How They Work 
Based on a natural phenomenon called “the survival of the fittest”, only the 

fittest individuals survive and reproduce. The reproduction process happens in the 

gene pool. New combinations of genes are generated from previous ones by exchanging 

segments of genetic material among chromosomes (known as crossover”). Then a new 

gene pool is created. Repeated selection and crossover cause the continuous evolution 

of the gene pool and the generation of individuals that survive better in a competitive 

environment. 

 

 

 

 

2.2.1  Simple Genetic Algorithm and Basic Principles 
The first person who proposed genetic algorithms (GAs) as computer programs 

that mimic the evolutionary process in nature is Holland, in early 1970s. His genetic 

algorithm is commonly called the Simple Genetic Algorithm or SGA, shown in figure-

1. 

 



Simple Genetic Algorithm() 

{ 

       initialize population; 

       evaluate population; 

       while termination criterion not reached 

       { 

              select solution for next population; 

              perform crossover and mutation; 

              evaluate population; 

       } 

} 

 

Figure 1: Simple Genetic Algorithm 

 

GAs operate on encoded representations of the solutions, equivalent to those 

chromosomes of individuals in nature. It is assumed that a potential solution to a 

problem may be represented as  a set of parameters and encoded as a chromosome. In 

the SGA, Holland encoded the solutions as strings of bits from a binary alphabet. 

A fitness function must be provided for evaluating each string. Each solution is 

associated with a fitness value, based on the fitness function, to reflect how good it is. 

Selection models nature’s survival-of-the-fittest mechanism. In principle, 

individuals from the population are copied to a “mating pool”, with highly fit 

individuals being more likely to receive more than one copy, and unfit individuals 

being more likely to receive no copies. The size of the mating pool is equal to the size of 

the population. In the SGA, a fitter string receives a higher number of offspring and 

thus has a higher chance of surviving in the next generation. In the proportionate 

selection scheme, a string  fi with fitness value f /fi  is allocated offspring, where f is the 

average fitness value of the population. The SGA uses the roulette wheel selection 

scheme to implement proportionate selection. Each string is allocated a sector of a 

roulette wheel with the angle subtended by the sector at the center of the wheel 

equaling 2Пfi / f. 



A string is allocated an offspring if a randomly generated number in the rage 0 

to 2П falls in the sector corresponding to the string. 

The reproduction phase of GA is simulated through a crossover mechanism. The 

simplest method of crossover is to cut the chromosomes of two individuals at some 

randomly chosen position, and then exchange their “head” and “tail” segments, known 

as 1-point crossover. Usually not all pairs of individuals are selected for mating. The 

crossover rate being applied is typically between 0.6 and 1.0. If crossover is not 

applied, offspring are produced simply by duplicating the parents. Another operation, 

called mutation, causes sporadic and random alteration of the bits of strings, which is 

a direct analogy from nature and plays the role of regenerating lost genetic materials. 

It is applied to offspring after crossover. Another parameter, mutation rate, gives the 

probability that a bit will be flipped. Convergence is the progression towards 

increasing uniformity in the gene pool. A gene is said to have converged when 95% of 

the population share the same value . 

 

2.2.2   Pseudo-Code for Genetic Algorithms 
The following is a pseudo-code for general genetic algorithm approach: 

0. [Representation] Define a genetic representation of the system. 

1. [Start] Generate random population of n chromosomes (suitable solutions  

 for the problem) 

2. [Fitness] Evaluate the fitness of each chromosome in the population 

3. [New population] Create a new population by repeating following  

steps until the new population is complete 

3.1. [Selection] Select two parent chromosomes from a population according  

   to their fitness (the better fitness, the bigger chance to be selected) 

3.2. [Crossover] With a crossover probability cross over the parents to form     

   a new offspring (children). If no crossover was performed, offspring is  

   an exact copy of parents. 

3.3. [Mutation] With a mutation probability mutate new offspring at each  

   locus (position in chromosome). 

3.4. [Accepting] Place new offspring in a new population 



4.  [Replace] Use new generated population for a further run of algorithm 

5.   [Test] If the end condition is satisfied, stop, and return the best solution  

 in current population 

6.  [Loop] Go to step 2 As you can see, the pseudo-code very general. 

There are many things that can be implemented differently in various problems. 

First question is how to create chromosomes, what type of encoding to choose. In 

connection with this is the choice of the two basic operators of GA, which are crossover 

and mutation. Furthermore, selection of parents from the current solution is also to be 

clearly defined. 

 

2.2.3  Encoding 
The chromosome should in some way contain information about solution which 

it represents. The most used way of encoding is a binary string. In binary encoding 

every chromosome is a string of bits, 0 or 1. The chromosome then could look like this: 

 

Chromosome 1: 1101100100110110 

Chromosome 2: 1101111000011110 

Each chromosome has one binary string. Each bit in this string can represent 

some characteristic of the solution. Or the whole string can represent a number. 

Encoding depends on the problem and also on the size of instance of the 

problem. Of course, there are many other ways of encoding. Permutation encoding, 

value encoding, and tree encoding are among the many other encoding systems used 

in GA. These and many other encoding schemes are discussed in most of the 

references given at the end. 

 
2.2.4   Selection 

According to Darwin's evolution theory the best ones should survive and create 

new offspring. There are many methods how to select the best chromosomes, for 

example roulette wheel selection, Boltzman selection, tournament selection, rank 

selection, steady state selection and some others. Two of these are briefly given, 

namely, roulette wheel selection and rank selection: 



Roulette Wheel Selection : Parents are selected according to their fitness. The 

better the chromosomes are, the more chances to be selected they have. Imagine a 

roulette wheel (pie chart) where all chromosomes in the population are placed in 

according to their normalized fitness. Then a random number is generated which 

decides the chromosome to be selected. Chromosomes with bigger fitness values will be 

selected more times since they occupy more space on the pie.  

Rank Selection : The previous selection will have problems when the fitnesses 

differs very much. For example, if the best chromosome fitness is 90% of all the 

roulette wheel then the other chromosomes will have very few chances to be selected. 

Rank selection first ranks the population and then every chromosome receives fitness 

from this ranking. The worst will have fitness 1, second worst 2 etc. and the best will 

have fitness N (number of chromosomes in population). After this all the chromosomes 

have a chance to be selected. But this method can lead to slower convergence, because 

the best chromosomes do not differ so much from other ones. When creating new 

population by crossover and mutation, we have a big chance that we will loose the best 

chromosome. Elitism is a method, which first copies the best chromosome (or a few 

best chromosomes) to new population. The rest is done in classical way. Elitism can 

very rapidly increase performance of GA, because it prevents losing the best found 

solution. 

 
2.2.5   Crossover and Mutation 

Selection alone cannot introduce any new individuals into the population, i.e., it 

cannot find new points in the search space. These are generated by genetically-

inspired operators, of which the most well known are crossover and mutation. 

Crossover is sometimes referred to as recombination, too. The crossover and mutation 

are the most important part of a genetic algorithm. The performance of the algorithm 

is mainly influenced by these two operators. Usually, there is a predefined probability 

of procreation via each of these operators. Traditionally, these probability values are 

selected such that crossover is the most frequently used, with mutation being resorted 

to only relatively rarely. This is because the mutation operator is a random operator 

and serves to introduce diversity in the population. The kind of operator to be applied 



to each member of the gene pool is determined by random choice based on these 

probabilities. Of the two operators, mutation involves only a single parent and result 

in the creation of a single offspring. The standard crossover operator called simple 

crossover has numerous variants such as partially-mapped, position-based, order-

based, sub tour chunking, cyclic, acyclic, inversion, and edge-recombination crossovers. 

All of these involve two parents. Depending on operator and problem context, each 

generates either one or two offspring. Crossover takes two individuals, and cuts their 

chromosome strings at some randomly chosen position, to produce two “head” 

segments, and two “tail” segments. The tail segments are then swapped over to 

produce two new full-length chromosomes. The two offspring each inherit some genes 

from each parent. This is known as single point crossover. Crossover is not usually 

applied to all pairs of individuals selected for mating. A random choice is made, where 

the likelihood of crossover being applied is typically between 0.6 and 1.0. If the 

crossover is not applied, offspring are produced simply by duplicating the parents. 

This gives a chance of passing on its genes without the disruption of crossover. 

Mutation is applied to each child individually after crossover. It randomly alters each 

gene with a small probability (typically 0.001). The traditional view is that crossover is 

more important of the two techniques for rapidly exploring a search space. Mutation 

provides a small amount of random search, and helps ensure that no point in the 

search space has a zero probability of being examined. For binary encoding the 

crossover can look like this ( | is the crossover point): 

Chromosome 1 : 11011 | 00100110110 

Chromosome 2 : 11011 | 11000011110 

Offspring 1  : 11011 | 11000011110 

Offspring 2  : 11011 | 00100110110 

And mutation can produce the following offsprings: 

Offspring    1 : 1101111000011110 

Offspring    2 : 1101100100110110 

Mutated offspring 1 : 1100111000011110 

Mutated offspring 2 ::1101101100110110 

 



2.2.6  Introductory Example 
Let us consider the following simple example, demonstrating the genetic 

algorithm's workings. The population consists of 4 individuals, which are binary-

encoded strings (genomes) of length 8. The fitness value equals the number of ones in 

the bit string, with a crossover probability of 0.7, and a mutation probability of 

0.001. The initial (randomly generated) population might look like this: 

 

Chromosome Alleles Fitness 

A 00000110 2    C 00100000 1 

B 11101110 6    D 00110100 3 

 

Using fitness-proportionate selection we must choose 4 individuals (two sets of 

parents), with probabilities proportional to their relative fitness values. In our 

example, suppose that the two parent pairs are {B,D} and {B,C} (note that A 

did not get selected as our procedure is probabilistic). Once a pair of parents is 

selected, crossover is effected between them with probability 0.7, resulting in two 

offspring. Suppose, in our example, that crossover takes place between parents B and 

D at the (randomly chosen) first bit position, forming offspring E=10110100 and 

F=01101110, while no crossover is effected between parents B and C, forming 

offspring that are exact copies of B and C. Next, each offspring is subject to mutation 

with probability 0.001 per bit. For example, suppose offspring E is mutated at the 

sixth position to form E'=10110000, offspring B is mutated at the first bit position to 

form B'=01101110, and offspring F and C are not mutated at all. The next 

generation population, created by the above operators of selection, crossover, and 

mutation is therefore: 

Chromosome Alleles Fitness  

E' 10110000 3 

F 01101110 5 

C 00100000 1 

B' 01101110 5 

 



 

Note that in the new population, although the best individual with fitness 6 has 

been lost, the average fitness has increased. Iterating this procedure, the genetic 

algorithm will eventually find a perfect string, i.e., with maximal fitness value of 8. 

 
2.3  How GAs work 

While GAs have been applied for a large number of optimization problems, there 

is no accepted “general theory” which explains exactly why GAs have the properties 

they do. Although a very clear picture of the workings of GAs has not yet emerged, 

there are several hypotheses having been put forward which can partially capture the 

essence of GA mechanics[35] . 

 

2.3.1  Schemata and the Schema Theorem 
A schema is a pattern describing a subset of strings with the same gene value at 

certain positions. For example, a schema 11*** represents strings with 1s in the first 

two positions, and 11000 is an instance of this schema. The order of a schema is the 

number of fixed positions it contains. The defining length of a schema is the distance 

between the outmost fixed positions. For example, the order of **1*0 is 2, and the 

defining length is 3. If an individual has high fitness, it is due to the fact that it 

contains good schemata. It is more likely to find better solutions by passing good 

schemata to the next generation. Thus, Holland showed that the best way to explore 

the search space is to allocate reproductive trials to individuals in proportion to their 

fitness value relative to the rest of the population, so that good schemata receive an 

exponentially increasing number of trials in successive generations. This is called 

schema theorem. He also showed that the number of schemata being processed in each 

generation is of the order 3 n , where n is the population size. This capacity of GAs, 

known as implicit parallelism, arises from the fact that a string simultaneously 

represents l 2 (where l is the number of bit positions in a string) different schemata 

(because for each position, it can be fixed or not). 

 

2.3.2  Building Block Hypothesis 



Try to visualize the GA’s search for the optimal string as a simultaneous 

competition among schemata to increase the number of their instances in the 

population. We can describe the optimal string as the juxtaposition of schemata with 

short defining lengths and high average fitness values. Such schemata are called 

building blocks. According to Goldberg[21] , the power of GAs lies in their ability to 

find good building blocks. Building-block hypothesis assumes that strings with high 

fitness values can be located by sampling building blocks with high fitness values and 

combining the building blocks effectively, and this is most done by crossover operation. 

However it is not always true that the juxtaposition of good building blocks yields good 

strings. Depending on the objective function, very bad strings can be generated when 

good building blocks are combines. Such objective functions are called GA-deceptive 

functions. It happens when there is interaction (often referred to as epistasis) between 

genes. That is, the contribution of a gene to the fitness depends on the value of other 

genes in the chromosome. Thus, a successful coding scheme encourages the formation 

of building blocks by ensuring that related genes are close together on the 

chromosome, while there is little interaction between genes. 

 

 

 

 

2.3.2  Exploration and Exploitation 
A good search algorithm must use two techniques to find a global optimum: 

exploration for new and unknown areas in the search space, and exploitation to make 

use of knowledge found at visited points. However these two techniques are 

contradictory, and a good search algorithm must find a tradeoff between them. 

Holland[27]  showed that GAs combine both exploration and exploitation at the 

same time in an optimal way. This may be theoretically true, but in practice there are 

inevitably problems, because Holland made certain simplifying assumptions: infinite 

population, the fitness function accurately reflecting the utility of a solution, and no 

interaction between genes. However the first assumption can never be satisfied in 

practice, and thus GAs are doomed to have stochastic errors. One such problem, which 



is also found in nature, is that of genetic drift[6]. For the second and third 

assumptions, they may be satisfied in a laboratory test, but are harder to satisfied for 

real world problems. 

 

2.4  Practical Aspects 
When theories go into practice, we need to consider far more than those 

theoretical aspects described above. Besides, most of the steps in the traditional GA 

can be implemented using a number of different algorithms. 

 

2.4.1 Initial Population 
The initial population may be generated randomly, or through some heuristic 

methods[25]. 

 

2.4.2 Fitness Function 
The fitness function is the most crucial aspect of GAs, along with the coding 

scheme used. Grefenstette[24] sought an ideal set of parameters for a GA but 

concluded that within fairly wide margins, parameter settings were not critical. What 

is critical in the performance of a GA is the fitness function and the coding scheme 

used. A general rule to construct a fitness function is that it should be able to reflect 

the value of a chromosome in a real way. However, the “real” value of a chromosome is 

usually not good enough for guiding a genetic search. When coming up with a 

combinatorial optimization problem, where there are many constraints, most points in 

the search space represent invalid chromosome and hence have the real value zero. In 

this case, a better fitness function should be defined in terms of how good it is at 

leading us towards valid chromosomes. 

 Cramer [Cra85] suggested that if the natural goal of the problem is all or 

nothing, better results could be obtained if we invent meaningful subgoals and reward 

them. 

 Another approach is to use penalty function, which represents how poor the 

chromosome is, and construct the fitness as (constant – penalty). Richardson et al[30] 

states that those that represent the amount by which the  



constraints are violated are better than those simply based on the number of 

constraints violated. Good penalty functions can be constructed from the expected 

completion cost, which is how much an invalid chromosome will “cost” to turn it into a 

valid one. We will talk about more on this issue later when applying GAs to constraint 

satisfaction problems. 

 

2.4.3 Fitness Range Problems 
As the population converges during the process of a genetic algorithm, so the 

range of fitness in the population reduces. Similar to some other search algorithms, it 

is also possible for GAs to converge on a local maximum: when the genes from a few 

comparatively highly fit but not optimal individuals rapidly come to dominate the 

population. Only mutation remains to explore new space. However it simply performs 

a slow, random search[22] . This phenomenon is known as premature convergence, 

and is mainly because the population is not infinite. The basic idea to deal with this 

problem is to control the number of reproductive opportunities each individual gets, to 

prevent any “super-fit” individuals from suddenly taking over. The converse problem 

to premature convergence is slow fishing. It is due to insufficient gradient in the 

fitness function to push the GA towards the maximum. 

 

2.4.4 Parent Selection Techniques  
We have already seen the parent selection method in SGA. In order to avoid 

those problems mentioned in the previous section, several selection techniques have  

been proposed[2]. We can categorize them into two groups: explicit and implicit fitness 

remapping. 

Explicit fitness remapping includes fitness scaling, windowing, and ranking. In 

fitness scaling, the maximum number of reproductive trials allocated to an individual 

is set to a certain value, typically 2.0. This is achieved by subtracting a suitable value 

from the raw fitness score, then dividing by the average of the adjusted fitness values. 

However, the presence of just one super fit individual can lead to over compression. 

Besides, if the fitness function is too flat, genetic drift will become a problem. 



 Fitness windowing is used in Grefenstette’s GENESIS GA package [23] . This is 

similar to fitness scaling, except that the amount to be subtracted is chosen 

differently. The minimum fitness in each generation is recorded, and the amount to be 

subtracted is the minimum fitness in the previous n generations, where n is typically 

10. 

 In fitness ranking, individuals are sorted in order of raw fitness, and then new 

fitness values are assigned according to rank. This may be done either linearly[2]  or 

exponentially[9] . Fitness ranking can cease over compression problem. In general, 

several experiments have shown fitness ranking is superior to fitness scaling[2]. 

In implicit fitness remapping, it fills the mating pool without passing through 

the intermediate stage of remapping the fitness. Tournament selection [8] is a typical 

method of implicit fitness remapping. The simplest form is binary tournament 

selection. We randomly pick pairs of individuals from the population, and copy the one 

with higher fitness into the mating pool. Another related replace method is steady-

state replacement [9,11,37] . Instead of replacing the whole population between 

generations, only a few (typically two) individuals are replaced. This model may be 

more similar to what happens in nature, by giving rise to competition between parents 

and their children. 

 Goldberg & Deb[19] compare 4 different schemes: proportionate selection, 

fitness ranking, tournament selection, and steady state selection, and conclude that by 

suitable adjustment of parameters, they will give similar performances. 

 

2.5  Variants and Current Research Topics 
Several variants of GAs have been proposed and some problems have also been 

raised [5] . In this section we will explore some main research topics of GAs. 

 

2.5.1  Crossover Techniques 
As mentioned above, SGA uses 1-point crossover, where mating chromosomes 

are cut once. Other crossover techniques have also been devised, often involving more 

than one cut point. In 2-point crossover, chromosomes are regarded as loops by 

connecting the ends together. Two cut points decide a segment, and two chromosomes 



exchange the segment. It performs the same task as 1-point cross over, but more 

general. Researchers now agree that 2-point crossover is generally better than 1-point 

crossover, because a looped chromosome may contain more building blocks. More-then-

two-point crossover may be possible, but DeJong[14] concluded[2]  that 2-point 

crossover gives an improvement, but adding further crossover points reduces the 

performance of the GA. However, an advantage of having more crossover points is that 

the problem space can be searched more thoroughly. 

 In uniform crossover, each gene in the offspring is created by copying the 

corresponding gene from either parent, according to a randomly generated crossover 

mask. Syswerda [37] argues that uniform crossover is the best crossover method, 

because under uniform crossover, schemata of a particular order are equally likely to 

be disrupted, irrespective of their defining lengths. Therefore the total amount of 

schemata disruption is lower. For example, the performance of GAs using 2-point 

crossover drops dramatically if the recommendations of the building block 

hypothesis[3] are not adhered to. However, uniform crossover still performs well in 

this case. 

 Researchers have done several experiments in order to prove which is the best 

crossover method. Eshelman el al[17] showed that no overall winner emerged. Spears 

and DeJong[31] say that 2-point crossover will perform poorly when the population 

has largely converged, because the segments exchanged are likely to be identical. A 

possible way to deal with this problem is to choose two new cross points again when 

identical offspring are produced. DeJong and Spears [16] conclude that this modified 

2-point crossover is best for large populations, but the increased disruption of uniform 

crossover is beneficial if the population size is small. Many other crossover techniques 

have been suggested. One is that the GA adaptively learns which sites should be 

favored for crossover. This information is recorded in a punctuation string, which is 

part of the chromosome and can be passed on to the offspring[12,28] . Another one is 

called partially matched crossover (PMX) for use in order-based problems[21] (such as 

the traveling salesperson problem). In PMX the order of genes are crossed instead of 

values. 

 



2.5.2  Inversion and Reordering 
The order of genes on a chromosome is critical for the building block hypothesis 

to work effectively. Thus techniques for reordering the positions of genes have been 

suggested.  

Inversion [27] is one of such techniques and works by reversing the order of 

genes between two randomly chosen potions within the chromosome. In fact, 

reordering is inspired by nature. There are many mechanisms by which the 

arrangement of the chromosomes may evolve (known as karyotypic evolution) [MS89] 

so that organisms can easily adapt to new conditions as the environment changes. 

However, for the majority of GA applications, the environment is static. Hence 

reordering is of little importance in these cases. 

 

2.5.3  Epistasis 
Epistasis is the interaction between different genes in a chromosome. When 

there is little interaction between genes, tasks can be solved efficiently by simple 

techniques, such as hill-climbing, and do not require a GA. When there is strong 

interaction, GAs can outperform simple techniques. However, according to the 

building block hypothesis, one of the basic requirements of GAs to be successful is low 

epistasis. Thus we need to know whether we can either avoid it, or develop a GA which 

works well with high epistasis. 

 In a GA, if schemata which are not contained in the global optimum increase 

more rapidly than those which are, the GA will be mislead away from the global 

optimum. This is known as deception, which is a special case of epistasis, and is 

difficult to solve. It can be tackled in two ways: as a coding problem or a GA theory 

problem. In the theory part, Davis and Coombs point [13] out that GAs have been 

made to work even in domain of high epistasis. Davidor[10] also points out that 

present-day GAs are only suitable for problems of medium epistasis. If the epistasis is 

too high, GAs will not be effective; if it is too low, GAs will be outperformed by simpler 

techniques. In the coding part, Beasley, Bull, and Martin [5] presented a technique 

called expansive coding for designing reduced-epistasis representations. 

 



2.5.4  Hamming Cliffs and Gray Codes 
Most optimization problems have continuous variables that assume real values. 

A common way for encoding continuous variables in the binary alphabet is to encode 

each variable with a fixed number of binary bits, and concatenate all strings together. 

A drawback of it is the presence of Hamming cliffs – the hamming distances between 

the binary codes of adjacent integers. For example, 01111 and 10000 are the integer 

representations of 15 and 16 respectively, but have a hamming distance of 5. Gray 

codes suggested alleviating the problem by ensuring that the codes for adjacent 

integers always have a Hamming distance of 1. However, the Hamming distance 

does not monotonously increase with the difference in integer values, and it introduces 

Hamming cliffs at other levels. 

 

2.5.5   Mutation and Naive Evolution 
Do we really need to do crossover in GA? Actually, biologists see mutation as the 

main source for evolutionary change [26]. Schaffer et al [31] suggest that “naive 

evolution” (just selection and mutation) performs a hill climb-like search which can be 

powerful without crossover. Later in another paper [32] they found that crossover 

gives much faster 15 evolution than a mutation only population, but mutation 

generally finds better solutions than a crossover-only regime. Spears [36] further 

suggests a suitable modified mutation operator can do everything that crossover can 

do. Eshelman [18]  also states “the key to naive evolution’s success is the use of Gray 

coded parameters, making search much less susceptible to amming cliffs”. He believes 

that naive evolutions is a much more powerful algorithm than many people in the GA 

community have been willing to admit. 

 

 

2.5.6  Adaptation 
Using dynamically variable crossover or mutation rate (operator probabilities) 

might help adaptation. Davis[9,11] describes an adaptive technique that a weighting 

figure is allocated to each operator, based on its performance over the past 50 matings. 

Credits are given to those operators which can produce better offspring. However it 



may reward operators which simply locate local optimum. Some researchers vary the 

mutation probability by decreasing it exponentially during a run[1,7]. Unfortunately 

there is no clear reason why this should lead to an improvement. 

 

2.5.7 Distributed and parallel GAs 
Distributed GAs distributed a large population into a number of weakly 

interacting subpopulations, and each evolves independently. To ensure global 

competition, the best chromosomes of the subpopulations are exchanged. Parallel GAs 

are parallel implementations of the sequential GA to speed execution. 

 

2.5.8  Knowledge-based Techniques 
Some researchers have advocated designing new operators using domain 

knowledge[11] to make each GA more task-specific. For example, Davidor  designed 

“analogous crossover” for his task in robotic trajectory generation. It used local 

information in the chromosome to decide which crossover sites would yield unfit 

offspring. Domain knowledge can also be applied in designing local improvement 

operators[34], or performing heuristic initialization of the population to make search 

begins with some reasonably good point[25]. Goldberg[21] described techniques of 

knowledge–directed crossover and mutation, and the hybridization of GAs with other 

search techniques[11] . 

 

2.5.9 Redundant Value Mapping 
If a binary representation is used, and the number of values of a gene is not a 

power of 2, some of the binary codes are redundant and not correspond to any valid 

gene value. A number of solutions are briefly mentioned by DeJong[15] : 

• Discard the chromosome as illegal. 

• Assign the chromosome low fitness. 

• Map the invalid code to a valid one. (remapping) 

There are several ways of achieving remapping: fixed remapping (an invalid gene is 

always mapped to another specific valid gene), random remapping, or probabilistic 



remapping (every gene value is remapped to one of the valid values in a probabilistic 

way). 

 

2.6  Comparison with Other Techniques 
Most research into GAs has so far concentrated on finding empirical rules for 

getting them to perform well. There is no accepted “general theory” which explains 

exactly why GAs have the properties they do. Nevertheless, several hypotheses have 

been put forward which can partially explain the success of GAs. Holland’s Schema 

theorem was the first rigorous explanation of how GAs work. 

According to Goldberg, the power of the GAs lies in it being able to find good 

building blocks. However, both theorems have been criticized in recent time. 

There are three main types of traditional or conventional search method: calculus-

based, enumerative, and random. Calculus-based methods are also referred to as 

gradient methods. These methods use the information about the gradient of the 

function to guide the direction of search. If the derivative of the function cannot be 

computed, because it is discontinuous, for example, these methods often fail. Such 

methods are generally referred to as hill climbing. Enumerative methods work within 

a finite search space, or at least a discredited infinite search space. The algorithm 

then starts looking at objective function values at every point in the space, one at a 

time. 

Random search methods are strictly random walks through the search space while 

saving the best. 

GAs differ from conventional optimization/ search procedures in that: 

1. They work with a coding of the parameter set, not the parameters themselves. 

2. They search from a population of points in the problem domain, not a  

    singular point. 

3. They use a payoff information as the objective function rather than    

    derivatives of the problem or auxiliary knowledge. 

4. They utilize probabilistic transition rules based on fitness rather than  

   deterministic one. 



We can see that both the enumerative and random methods are not efficient 

when you have a significantly large search space or significantly difficult problem, as 

in the realm of NP-Complete problems. The calculus-based method are inadequate 

when you are searching a "noisy" search space (one with numerous peaks). 

Calculus-based methods also depend upon the existence of derivatives or well-defined 

slope values. But, "the real world of search is fraught with discontinuities, vast 

multimodal noisy searchspaces."  

Simulated Annealing: This technique was invented by Kirkpatrick in 1982. Starting 

from a random point in the search space, a random move is made. If this move tales us 

to a higher point, it is accepted. If it takes us to a lower point, it is accepted only with 

probability p(t), where t is time. The function p(t) begins close to 1, but gradually 

reduces towards zero. 

A genetic algorithm, as a search process, differs in one important aspect from 

simulated annealing and tabu-search. At each iterative step a number of different 

solutions are generated and carried over to the next step. In simulated annealing and 

tabu-search, only a single solution is carried over from one iteration to the next. 

Hence simulated annealing and tabu-search may be regarded as special cases of 

genetic algorithms with a population size equal to 1. 

 

2.6 Genetic Algorithm Operators 
        The third decision to make in implementing a genetic algorithm is what genetic 

operator to use. The decision depends greatly on the encoding strategy. Here I will 

discuss crossover and mutation mostly in the context of bit-string encoding and I will 

mention a number of other operators that have been proposed in GA literature. 

(1)   Crossover 

      It could be said that the main distinguishing feature of a GA is the use of 

crossover. Single point crossover is the simplest form: a single cross-over position is 

chosen at random and the parts of two parents after the crossover position are 

exchanged to form two offspring. The idea here is, off course, to recombine building 

blocks (schemas) on different strings.  Single point crossover has some shortcomings, 

though. For one thing, it cannot combine all possible schemas. For example, it cannot 



in general, combine instances of 11*****1 and *****11** to form an instance of 

11**11*1. Likewise, schemas with long define lengths are likely to be destroyed in the 

single point crossover.  Eshelman,Caruana, and Schaffer(1989) call this " position 

bias"  : the schemas that can be created or destroyed by the crossover depend strongly 

on the location  of the bits in  the chromosomes. Single-point crossover assumes that 

short low order schemas are the functional building blocks of strings but one generally 

does not in advanced what ordering will group functionally related bits together.  This 

was the purpose of inversion operator and other adaptive operators above. Eshelman,  

Caruana, and Schaffer also point out that there may not be any way to put all 

functionally related bits close together on a string since particular bits might be more 

crucial in more than one schema.  They point out further that the tendency of a single 

point crossover to keep short intact can lead to preservation of hitchhikers- bits that 

are not part of the desired schema but which, by being closed to the string hitchhike 

along with the beneficial schema as it reproduces. (This was seen in "Royal Road" 

experiments, described above in chapter 4) Many people have also noted that single 

point crossover treats some loci preferentially the segments exchanged between two 

parents always contain the end points of the string. 

    To reduce positional bias and this end point effect many GA practitioners use 

two point crossover in which two positions are chosen at random and the segments 

between them are exchanged. Two point crossover is less likely to disrupt schemas 

with large defining lengths and can combine more schemas than single point 

crossover.  In addition, the segments are exchanged that do not necessarily contain the 

end points of the strings.  Again, there are schemas that two point crossovers cannot 

combing.  GA practitioners have experimented  with different number of crossover 

points (in one method, the number of crossover points for each parents is chosen from 

a Poisson distribution whose mean is the function of length of chromosome).  Some 

practitioners believe strongly in the superiority of "parameterized uniform crossover" 

in which an exchange happens at each bit position with probability  p (typically  0.5 <=  

p  <=0.8). Parameterized uniform crossover has no position bias.  Any schemas 

contained at different positions in the parents can potentially be recombined in the 

offspring.  However, this lack of position bias can prevent co adapted alleles from ever 



forming in the population, since parameterized uniform crossover can be highly 

disruptive of any schema. 

       Given these (any the many other variants of crossover found in the GA 

literature), which one should you use? There is no simple answer, the success or 

failure of a particular crossover operator depends in complicated ways on the 

particular fitness function, encoding and other details of the GA.  It is still a very 

important open problem to fully understand these interactions. There are many 

papers in GA literature quantifying aspects of various crossover operation (Position 

bias , disruption potential, ability to create different schemas in one step, and so 

on),but these do not  gibe definitive guidance on when to use which type of crossover. 

There are also many papers in which the usefulness of different types of crossover is 

empirically compared, but all these studies produce conflicting results. Again, it si 

hared to glean general conclusions. It is common in recent GA applications to use 

either two point crossover or parameterized uniform crossover with p=0.7-0.8. 

      For the most part, the comments and references above deal with crossover in the 

context of bit-string encoding, through some of them apply to other types of encoding 

as well.  Some types of encoding require especially require especially defined crossover 

and mutation operators- for example, the tree encoding used in genetic programming, 

or encoding for problems like the Traveling Salesman problems (in which the task is to 

find correct ordering for allocation of object) 

   Most of the comments above also assume that crossover' stability to recombine 

highly fit schemas is the reason it should be useful. Giben some of the challenges we 

have seen to the relevance of schemas as an analyst tool for understanding  GAs, one 

might ask if we should not consider  the possibility that crossover is actually useful for 

some entirely different reason (e.g. it is in sense a "macro mutation" operator that 

simply allows for large jumps in the search space ). I must leave this question as an 

open area of GA research for interested readers to explore. (Terry Jones (1995) has 

performed some interesting, though preliminary, experiments attempting to tease out 

the different possible roles of crossover in Gas).   

             Its answer must shed light on the question of why recombination is useful for 

real organisms (if indeed it is) -controversial  and still open question in revolutionary 



biology. 

 

(2). Mutation 

A common view in the GA community, dating back to Hollan's book Adaptation 

in Natural and Artificial Systems, is that crossover is the major instrument of 

variation and innovation in GA’s, with mutation insertion the population against 

permanent fixation at any particular locus and thus playing more of a background 

role.  This differs from the traditional positions of other evolutionary computation 

methods, such as evolutionary programming and early versions of evolution strategies, 

in which random mutation is the only source of variations.(later versions of evolution 

strategies have included a form of crossover.) 

                  However, the appreciation of the role of mutation is growing as the GA 

community attempts to understand how GA’s solve complex problems.  Some 

comparative studies have been performed how GA’s solve complex problems.  Some 

comparative studies have been performed on the power of mutation versus mutation 

and crossover have the same ability for "disruption" of existing schemas, crossover is a 

more robust "constructor" of new schemas. Muhlenbein(1992, p. 15), on the other 

hand, argues that in many cases a hill climbing strategy will work better than a GA 

with crossover and that  " the power of mutation has been underestimated in 

traditional genetic algorithms."  AS we saw in the Royal Road experiments, it is not a 

choice between crossover , mutation and selection that is all important. The correct 

balance also depends on details of the fitness function and the encoding.  Furthermore, 

crossover and mutation vary in relative usefulness over the course of a run. Precisely 

how all this happens still needs to be elucidated. In my opinion the most promising 

aspect for producing the right balances over the course of a run is to find ways for the 

GA  to adapt its own mutation and crossover rated during a search. Some attempts at 

this will be described below. 

 

 

2.8 Other Operators and Mating Strategies  
Though most GA applications use only crossover and mutation, many other 



operators and strategies for applying them have been exploded in the GA literature. 

These include inversion and gene doubling (discussed above) and several operators for 

preserving diversity in the population. 

    For example,  De Jong(1975) experimented with a "crowding" operator in which 

a newly formed offspring replaced the existing individual most similar to itself. This 

prevented too many similar individual ("crowds") from being in the population at the 

same time. Gold Berg and Richardson(1987) accomplished a similar result using an 

explicit "fitness sharing function: each individual's fitness was decreased by the 

presence of other population members, where the amount of decrease due to each 

other population member was an explicit increasing function of similarity between two 

individuals. Thus, the individual that were similar to many other individuals were 

punished and the individuals that were different were rewarded.,  Goldberg and 

Richardson showed that in some cases this could include appropriate "speciation" 

allowing the population members to converge on several peaks in the fitness landscape 

rather than a similar effect could be obtained without the presence of an explicit 

sharing function. 

        A differ way to promote diversity is to put restrictions on mating. For example if 

only sufficiently individual are allowed to mate, distinct “species"(mating groups) will 

tend to form. This approach has been studied by Deb and Goldberg(1989). 

Eshelman(1991)and Eshelman Schaffer(1991) used to opposite tack:  they disallowed 

mating between sufficiently similar individuals ("incest"). Their desire was not to form 

species but to keep entire population as diverse as possible. Holland (1975)and 

Booker(1985) have suggested using "mating tags"-only those individual's with atching  

tags are allowed to mate (a kind of "sexual selection" procedure). Theses tags would. in 

a principle, evolve along with the test of the chromosomes to adaptively implement 

appropriate restriction on mating. Finally, there have been some experiments with 

spatially restricted mating (see, e.g.,  Hills  1992): the population evolves on a spatial 

lattice, and individuals are likely to mate only with  individuals in their spatial 

neighborhood. Hills found that such a scheme helped preserve diversity by 

maintaining spatially isolated species, with innovations largely occurring at the 

boundaries between species. 



 

 2.9 Parameters for Genetic Algorithm 

     The fourth decision to make in implementing the genetic algorithm is how to 

set the values for various parameters, such as population size, crossover rate and 

mutation rate. These parameters typically interact  with one another nonlinearly so 

that they cannot be optimized one at a time. There is a great deal of discussion of 

parameters settings and approaches to a parameters adaptation in the evolutionary 

computation literature- too much to study or even list. There are no conclusive results 

on what is the best, most people use what has worked well in previously reported 

cases. Here I will review some of the experimental approaches people have taken to 

find the "best" parameter setting.   

     De Jong (1975) performed on early systematic study of how varying parameters 

affected the GA's on-line and  off-line search performances on a small suite of test 

functions. "on-line" performance at time ‘t’ is the average fitness of all the individuals 

that have been evaluated over the t evaluations steps.  The off-line performance at 

time t si the average value over t evaluation steps, of the best fitness that has been 

setup to each evaluation step. De Jong's experiments indicated that the best 

population size was 50-500 individual's, the best single point cross-over rate was ~0.6 

per pair of parents, and the best mutation rate was 0.001 per bit. These settings (along 

with De Jong's test suite) became widely used in the GA community, even though it 

was not clear how well the GA would perform with theses setting on problems outside 

De Jong's test suite. Any guidance was gratefully accepted. 

    Somewhat later, Grefenstette(1986)noted that , since the GA could be used as an 

optimization procedure , it could be used to optimize the parameters for another GA!(A 

similar study was done by Bramlette(1991). In Grefenstette's experiments, th e"meta-

leve GA 'evolved a population of 50 GA parameter sets for the problems in De Longs 

test suite. Each individual encoded six GA parameters: population size, Crossover 

rate, mutation rate, generation gap, scaling window, and selection strategy (enlist or 

non-enlist). The fitness of an individual was a function of the on-line or off-line 

performance of GA using the parameters encoded by that individual. The meta-level 

GA itself used De Jong's parameter settings.  The fittest individual for on- line  



Performances set the population size to 30, the crossover rate to 0.95 , the mutation 

rate to 0.01  ,and the generation gap to 1, and  used enlist selection. These parameters 

gave a small but significant improvement in on-line performance over De Jong's 

settings.  Notice that Grefenstette's results call for a smaller population and higher 

crossover and mutation rates than De Jong's for off-line performance. This was an 

interesting experiment, but again,  in view of the specialized test suite,  it is not clear 

how generally these recommendations hold.  Others have shown that there are many 

fitness functions for which these parameters settings are not optimal. 

      Scaffer, Caruana, Eshelman, and das(1989) spent over a year of CPU time 

systematically testing a wide range of parameters set was the on-line performance of a 

GA with those parameters on a small set of numerical optimization problems 

(including some of De Jong's functions) encoded with gray coding. Scaffer et al. found 

that the best settings for population size, crossover rate, and mutation rate were 

independent of the problem in their test suite. These settings were similar to those 

found by Grefenstette: population size 20-30, crossover rate 0.75-0.95, and a mutation 

rate 0.005-0.01. It may be surprising that a very small population size was better, 

especially in light of their studies that have argued for larger population sized(e.g, 

Goldberg 1989d), but this may be due to the on- line performance measure : since each 

individual ever evaluated contributes to the on- line performance , there is a large cost 

for evaluating a large population. 

          Although Grefenstette and Scaffer et al.  found that a particular setting of 

parameters worked best for on-line performance on their test suites,  it seems unlikely 

that any general principles about parameter setting can be formulated o prori,  in view 

of the variety of problem types, encodings, and performance criteria that are possible 

in different applications.  Moreover, the optimal population size, crossover rate, and 

mutation rate likely change over the course of a single run. Many people feel that the 

most promising approach is to have the parameters values adapt in real time to the 

outgoing search. There have been several approaches to self-adaptation of GA 

parameters. For example, this has long been a focus of research in the evolution 

strategies community, in which parameters such as mutation rate are encoded as part 

of the chromosome. Here I will describe Lawrence Davis's approach to self adaptation 



of operator rates( Davis 1989,1991). 

Davis assigns to each operator a "fitness” which is a function of how many 

highly fit individuals that operator has contributed to created over the last several 

generations. Operators gain high fitness both for directly creating good individuals 

and for “setting the stage" for good individuals to be created (that is creating ancestors 

of good individuals). Davis tested this method in the context of a steady- state GA. 

Each operator (e.g., crossover, mutation) starts out with the same initial fitness. At 

each time step a single operator is chosen probabilistically ( on the basis of its current 

fitness) to create anew individuals, which replaces allow fitness member of the 

population. Each individual I keep a record of which operator created it. If I has 

fitness better than the current  best fitness, then i receives some created for the 

operator that created it, as do 1's parents, grandparents, and so on, back to a 

prescribed level of ancestor. The fitness of each operator over a given time interval is a 

function of its previous fitness and the sum of the credits received by all the 

individuals  created by the operator during that time period.  (The frequency with 

which operator fitness are updated is parameter of the method). In principle, the 

dynamically changing to keep up with the actual usefulness at different stages of the 

search, causing the GA to use them at appropriate rates at different times. As far as I 

know , this ability for the operator fitness to keep up with the actual usefulness of the 

operator has not been tested directly in any way, though Davis showed that this 

method improved the performance of a GA an some problems (including , it turns out, 

Montana and Davis's project on evolving weights for neutral networks). 

      A big question then, for any adaptive approach to setting parameters- including 

Davis's- is this: How well does the rate adaptation of parameter settings match the 

rate of adaptation in the GA population? The feedback for settings parameters comes 

from the population's success or the failure fitness function, but it might be difficult 

for this information to travel fast enough for the parameter settings to stay up to date 

with the population's current state. Very little work has been done on the measuring 

these different rates of adaptation and how well they match in different parameter- 

adaptation experiments. The most important to be done in order to get self-adaptation 

methods to work well.  



 
2.10 PREVIOUS WORK ON GENETIC ALGORITHM 
 Linear programming is an optimization method applicable for the solution of the 

problems in which the objective function and the constraints appear as linear 

functions of the decision variables. At least four nobel prizes were awarded for 

contributions related to linear programming. When the Nobel Prize in economics was 

awarded in 1975 jointly to L.V. Kantorovich of the former Soviet Union and T.C. 

Koopmans of the United states, the citation of the prize mentioned there contributions 

on the application of linear programming to the economic problem of allocating 

resources. 

 Although genetic algorithms were first presented systematically by Holland the 

basic idea of analyses and design based on the concept of biological evolution is found 

in the work of Rechenberg. 

 In design optimization of electric motors by genetic algorithm is discussed. Anup 

Kumar et. Al. has analyzed the technique based on genetic algorithm for file allocation 

on the distributed system. in the use of genetic algorithms in search and optimization 

is given. Ramarathnam et. Al. deals with the comparative study of minimization 

techniques for optimization of induction motor design. gives the details of genetic 

algorithms have investigated the future paths for integer programming and links to 

artificial intelligence. Liepins et. Al. deals with the genetic algorithm foundations and 

applications. Based on modern control theory Fosha and Elgard have developed an 

optimal controller that provides better transient response.  Gupta have used GA for 

the minimization of total intracell moves in cellular manufacturing. 

 

2.11 FUTURE SCOPE OF WORK 
 

 The extensive study carried out create a thrust to augment the scope into the 

field of  

 1. Multiple criteria optimization. 

 2. Design of genetic algorithm based on fuzzy logic controllers and systems,    

  where the membership function can be optimized using this technique. 



 3. Development of user friendly software of optimization of single and  

  Multi-objective problems using genetic algorithms 

 

 

2.12 Conclusion 
 

Genetic algorithms are original systems based on the supposed functioning of 

the Living. The method is very different from classical optimization algorithms. 

 

1. Use of the encoding of the parameters, not the parameters themselves. 

2. Works on a population of points, not a unique one. 

3. Use the only values of the function to optimize, not their derived function or 

other auxiliary knowledge. 

4. Use probabilistic transition not determinist ones. 

It's important to understand that the functioning of such an algorithm does not 

guarantee success. we are in a stochastic system and a genetic pool may be too far 

from the solution, or for example, a too fast convergence may halt the process of 

evaluation. these algorithms are nevertheless extremely efficient, and are used in 

fields as diverse as stock exchange. Production scheduling or programming of 

assembly robots in the automotive industry. 
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CHAPTER-3 
 

 

 

POWER LOSSES IN TRANSMISSION AND DISTRIBUTION 

3.1 Introduction  

In India, average T & D (Transmission & Distribution) losses, have been 

officially indicated as 23 percent of the electricity generated. However, as per 

sample studies carried out by independent agencies including TERI, these 

losses have been estimated to be as high as 50 percent in some states. In a 

recent study carried out by SBI Capital Markets for DVB, the T&D losses have 

been estimated as 58%. This is contrary to claims by DVB that their transmission and 

distribution losses are between 40 and 50 percent. With the setting up of State 

Regulatory Commissions in the country, accurate estimation of T&D Losses has 

gained importance as the level of losses directly affects the sales and power purchase 

requirements and hence has a bearing on the determination of electricity tariff of a 

utility by the commission. 

 

3.2 Components of T&D losses 

 Energy losses occur in the process of supplying electricity to consumers due to 

technical and commercial losses. The technical losses are due to energy dissipated in 

the conductors and equipment used for transmission, transformation, sub- 

transmission and distribution of power. These technical losses are inherent in a 

system and can be reduced to an optimum level. The losses can be further sub grouped 

depending upon the stage of power transformation & transmission system as 

Transmission Losses (400kV/220kV/132kV/66kV), as Sub transmission losses (33kV 

/11kV) and Distribution losses (11kV/0.4kv). The commercial losses are caused by 

pilferage, defective meters, and errors in meter reading and in estimating unmetered 

supply of energy. 

 



3.3 Level of T& D Losses   

The officially declared transmission and distribution losses in India have gradually 

risen from about 15 percent up to the year 1966-67 to about 23 percent in 1998-99. The 

continued rising trend in the losses is a matter of serious concern and all out efforts 

are required to contain the them. According to a study carried out by Electric Power 

Research Institute (EPRI) of the USA some time back, the losses in various elements 

of the T&D system usually are of the order as indicated below: - 

Power losses (%) System Elements 

Minimum Maximum 

Step-up transformers & EHV transmission 

system  

0.5 1.0 

Transformation to intermediate voltage 

level, transmission system & step down 

to sub-transmission voltage level  

1.5 3.0 

Sub-transmission system & step-down to 

distribution voltage level  

2.0 4.5 

Distribution lines and service connections  3.0 7.0 

Total Losses  7.0 15.5 

 

The losses in any system would, however, depend on the pattern of energy use, 

intensity of load demand, load density, and capability and configuration of the 

transmission and distribution system that vary for various system elements. 

According to CEA vide its publication (July 1991) ‘Guidelines for Reduction of 

Transmission and Distribution Losses’ it should be reasonable to aim for total energy 

losses in the range of 10-15% in the different states in India. The enclosed Annexure-B 

indicates the rising trend of T&D losses in the various states in the past. This can be 

compared with T&D losses in the other countries indicated in the enclosed Annexures-

A. A glimpse of this Annexure indicates that in most developed countries the T&D 

losses are less than 10 percent. 

 

3.4 Reasons for or high T&D Losses 



Experience in many parts of the world demonstrates that it is possible to reduce 

the losses in a reasonably short period of time and that such investments have a high 

internal rate of return. A clear understanding on the magnitude of technical and 

commercial losses is the first step in the direction of reducing T&D losses. This can be 

achieved by putting in place a system for accurate energy accounting. This system is 

essentially a tool for energy management and helps in breaking down the total energy 

consumption into all its components. It aims at accounting for energy generated and 

its consumption by various categories of consumers, as well as, for energy required for 

meeting technical requirement of system elements. It also helps the utility in bringing 

accountability and efficiency in its working. 

 

 

 

3.5 Reasons for high technical losses 

The following are the major reasons for high technical losses in our country: - 

• Inadequate investment on transmission and distribution, particularly in 

sub-transmission and distribution. While the desired investment ratio between 

generation and T&D should be 1:1, during the period 1956 -97 it decreased to 

1:0.45. Low investment has resulted in overloading of the distribution system 

without commensurate strengthening and augmentation. 

• Haphazard growths of sub-transmission and distribution system with the 

short-term objective of extension of power supply to new areas. 

• Large scale rural electrification through long 11kV and LT lines. 

• Too many stage of transformations. 

• Improper load management. 

• Inadequate reactive compensation 

• Poor quality of equipment used in agricultural pumping in rural areas, 

cooler air-conditioners and industrial loads in urban areas. 

 

3.6 Reasons for or commercial losses 



Theft and pilferage account for a substantial part of the high transmission and 

distribution losses in India. Theft / pilferage of energy is mainly committed by two 

categories of consumers i.e. non-consumers and bonafide consumers. Antisocial 

elements avail unauthorized/unrecorded supply by hooking or tapping the bare 

conductors of L.T. feeder or tampered service wires. Some of the bonafide consumers 

willfully commit the pilferage by way of damaging and / or creating disturbances to 

measuring equipment installed at their premises.Some of the modes for illegal 

abstraction or consumption of electricity are given below: 

• Making unauthorized extensions of loads, especially those having “H.P.” 

tariff. 

• Tampering the meter readings by mechanical jerks, placement of powerful 

magnets or disturbing the disc rotation with foreign matters. 

• Stopping the meters by remote control. 

• Willful burning of meters. 

• Changing the sequence of terminal wiring. 

• Bypassing the meter. 

• Changing C.T.ratio and reducing the recording. 

• Errors in meter reading and recording. 

• Improper testing and calibration of meters. 

 

3.7 T&D losses in restructure SEBs 

Some states have embarked on programs of power sector reforms and have 

taken steps to restructure their SEBs (State Electricity Boards). The reforming states 

that were reporting T&D losses of around twenty percent before restructuring process 

suddenly reported higher losses after carrying out detailed studies of their system. For 

example, before restructuring its power sector, Orissa reported 23 percent loss, after 

restructuring, T&D loss were shown to be 51 percent. In AP where these losses were of 

the order of about 25 percent before restructuring, it is now estimated to be around 45 

percent after restructuring. Haryana has now estimated its losses at 40 percent and 

Rajasthan at 43 percent against earlier level of 32 percent and 26 percent respectively. 

 



3.8 Regulatory concerns  

In the absence of a realistic estimate of T&D losses, it is not possible for the 

regulatory commissions to correctly estimate the revenue requirements and also avoid 

the situation where the consumers pay for the inefficiencies of the utilities. 

In order to determine an appropriate tariff, the first step is to determine the 

justified cost incurred by the entity. This would provide an indication of the 

revenue requirement, which in turn is the basis of any tariff design. The regulator has 

therefore to be very careful about how losses are worked out. 

The aim of the regulator must be to encourage the utility to make every effort to 

reduce losses while at the same time ensuring that those conditions applied 

which threaten the viability of the utility are not applied.  

 

 

 

 

 

3.9 Barriers in private  sector participation  

The lack of realistic estimates of T& D losses acts as a disincentive for private 

sector participation in power distribution as the party can not have an idea of the 

realistic revenue potential of the area being privatized. 

 

3.10 Unmetered supply 

Unmetered supply to agricultural pumps and single point connections to small 

domestic consumers of weaker sections of the society is one of the major reasons for 

commercial losses. In most states, the agricultural tariff is based on the unit 

horsepower (H.P.) of the motors. Such power loads get sanctioned at the low load 

declarations. Once the connections are released, the consumers get into the habit of 

increasing their connected loads, without obtaining necessary sanction, for increased 

loading, from the utility. Further estimation of the energy consumed in unmetered 

supply has a great bearing on the estimation of T&D losses on account of inherent 

errors in estimation. Most of the utilities deliberately overestimate the unmetered 



agricultural consumption to get higher subsidy from the State Govt.and also project 

reduction in losses. In other words higher the estimates of the unmetered 

consumption, lesser the T&D loss figure and viceversa. Moreover the correct 

estimation of unmetered consumption by the agricultural sector greatly depends upon 

the cropping pattern, ground water level, seasonal variation, hours of operation etc. 

To increase the food output, almost all the State Governments show benevolence 

to farmers and arrange supply of electric power for irrigation to the farmers at a 

nominal rate, and in some States, without charges at all. In view of this, most 

Electricity Boards supply power to agriculture sector and claim subsidy from the State 

Govt. based on energy consumption. 

Since the energy supplied to the agriculture sector is a generous gesture by the 

State Govt., all the electricity boards have eliminated energy meters for agriculture 

sector services. The absence of energy meters provides ample opportunities to SEBs to 

estimate average consumption in agriculture sector at a much higher value than the 

actual. In the absence of energy meters, most of the SEBs resort to fudging 

consumption figures to include not only the under estimated T&D Losses but also 

energy theft from their system. The extent of fudging is more in the States where 

agricultural activity is high. The benefit derived by these boards is not only the extent 

of subsidy from the respective States but also self praise, by showing much less T&D 

losses. Further the boards are ignoring the inefficiency in operating the distribution 

system by blaming the agricultural supply for all ills and raising the tariff of other 

consumers. 

Most of the methods being employed by SEBs for estimating the unmetered 

energy consumption are as follows: - 

• Load factor based estimation. 

• Estimation based on feederwise theoretical calculation of losses. 

• Estimation based on readings of meters installed at all the Distribution 

Transformers located on a feeder. 

However, none of the these methods provide correct estimation of unmetered 

consumption. 

 



3.11 Measures for reducing technical losses 

3.11.1  Short term measures 

• Identification of the weakest areas in the distribution system and 

strengthening /improving them so as to draw the maximum benefits of 

the limited resources. 

• Reducing the length of LT lines by relocation of distribution sub stations/ 

installations of additional distribution transformers (DTs). 

• Installation of lower capacity distribution transformers at each consumer 

premises instead of cluster formation and substitution of DTs with those 

having lower no load losses such as amorphous core transformers. 

• Installation of shunt capacitors for improvement of power factor. 

 

3.11.2  Long term measures 

• Mapping of complete primary and secondary distribution system clearly 

depicting the various parameters such as conductor size line lengths etc. 

• Compilation of data regarding existing loads, operating conditions, 

forecast of expected loads etc. 

• Carrying out detailed distribution system studies considering the 

expected load development during the next 8-10 years. 

• Preparation of long-term plans for phased strengthening and 

improvement of the distribution systems along with associated 

transmission system. 

• Estimation of the financial requirements for implementation of the 

different phases of system improvement works. 

• Formulation of comprehensive system improvement schemes with 

detailed investment program so as to meet system requirement for first 5 

years period. 

 

3.12   Measures for reducing non-technical losses 

According to the International Utilities Revenue Protection Association. 

(IURPA), research carried out on utilities worldwide indicates that service 



quality, customer relationships, and overall service satisfaction can minimize 

revenue losses. This has been demonstrated in Pakistan where rampant power theft 

has contributed financial crisis for WAPDA (Water & Power Development Authority). 

The World Bank and Asian Development Bank which had supplied the bulk of 

WAPDA’s development loans wanted the authority to recover its unpaid dues, cut 

power theft and reduce its T&D Losses. Accordingly WAPDA was forced to raise power 

rates. 

But instead of improving the financial situation, this action resulted in 

increased financial crisis of WAPDA due to increased incidence of theft and 

unpaid bills. In view of this, the authority applied extreme measures to curb 

power theft. The Chairman of the authority (a serving army officer) deployed 

35,000 troops to tackle the crisis. The troops were instructed to identify and 

arrest people responsible for power theft. As a result of this more than 36 military 

courts began trying cases of power theft. There are a range of methods being employed 

by utilities the world over to mitigate power theft. Some of these measures are given 

below. 

• Set up vigilance squads to check and prevent pilferage of energy. 

• Severe penalties may be imposed on those tampering with the meter seals 

etc. 

• Energy audits should be introduced and personal responsibility should be 

fixed on the district officers (executive engineers) for energy received and 

energy sales in each area. 

• Installation of tamper-proof meter boxes and use of tamper-proof 

numbered seals. 

• Providing adequate meter testing facilities. A time bound program should 

be chalked out for checking the meters, and replacement of defective 

meters with tested meters. 

 

 

 

 



 

3.13 Initiatives required  

Keeping the above in view it is very essential that immediate steps are initiated 

to have an assessment of the realistic T &D losses in each of the states and that 

immediate steps are taken to reduce the same in a systematic manner by all the 

players in the field. 

• The central or the state governments should draw plans to provide 

financial support to the utilities for installations of meters on at least all 

the distribution transformers in a phased manner. 

• It should be made obligatory for all the big industries as well as the 

utilities to carry out energy audit of their system to identify high loss 

areas and take remedial measures to reduce the same. 

• Schemes for incentive awards to utilities who are able to reduce T&D 

losses beyond a certain pre-fixed limit. 

• The financial institutions should be encouraged to provide easy loans to 

utilities for taking remedial measures to reduce the T&D losses. 

• Publicity campaigns should be carried out to make the consumer aware of 

the high penalties on the unauthorized use of electricity. 

• Utilities should prepare realistic power Master Plans for their systems to 

develop a strategy to meet the growing electricity demands of the different 

sectors of the state’s economy over the next 15 years. 

3.14   Issues for discussion 

1.  Status of metering and steps required for early installation of the same  

In view of the financial assistance being provided by the Central 

government for installation of meters, the feasibility of achieving the 

proposed targets can be an important issue for discussion. 

2. Mitigating power theft  

Indian Electricity Act 1910 has been amended through Sections 39 and 

39A to make theft of energy and its abetment as a cognizable offence with 

deterrent punishment of upto 3 years imprisonment. 



Theft of electric power is a problem experienced in varying degrees 

by all electric utilities. The impact of theft is not limited to loss of revenue, 

it also effects power quality resulting in low voltage and voltage dips. 

Adequacy of the existing measures to curb power theft could be an 

issue for discussion. 

3.  Implementation of energy audits schemes 

It should be obligatory for all big industries and utilities to carry out 

Energy Audits of their system. Further time bound action for initiating 

studies for realistic assessment of the total T&D Losses into technical and 

non-technical losses has also to be drawn by utilities for identifying high 

loss areas to initiate remedial measures to reduce the same. The realistic 

assessment of T&D Loss of a utility greatly depends on the chosen sample 

size which in turn has a bearing on the level of confidence desired and the 

tolerance limit of variation in results. In view of this it is very essential to 

fix a limit of the sample size for realistic quick estimates of losses. 

4.  Setting of bench marks for yearly reduction of T&D losses (technical and 

non-technical) 
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CHAPTER-4 
 

APPLICATION OF GENETIC ALGORITHM FOR LOSS 

REDUCTION IN DISTRIBUTION SYSTEMS 
 

4.1 Introduction 
  Distribution Systems are the networks that transport the electric energy from 

bulk substations or sources to many services or loads. In most cases distribution 

system is radially structured because it has some advantages over meshed network , 

such that lower short circuit and simpler switching and protecting equipment . On the 

other hand, it provides lower reliability. Generally, network reconfiguration is needed 

to provide service to as many consumers as possible following fault condition, or 

during planned outages for maintenance purposes, reduce system losses and balance 

the loads to avoid overloading of network elements.  During normal operating 

conditions, networks are reconfigured for two  purposes: 

(a)  Loss reduction to reduce overall system power loss 

(b) load balancing to relieve network  overloads. 

Many techniques have been proposed for solving feeder reconfiguration problem 

through switching operation. For example,  Goswami et al. [1] presented a heuristic 



algorithm utilizing the concept of optimal flow pattern for the minimum loss 

configuration of distribution feeders. Jin-Cheng et al. [2] proposed a solution algorithm 

,based on a loss reduction  formula and a line flow updating formula for the network 

reconfiguration problem. In [3], the developed algorithm is based on partitioning the 

distribution network into groups of load buses, such that the line 

section losses between the groups of nodes are minimized. M.S. Kandil et al. [4] 

presented an approach based on heuristic search strategies to determine the switching 

actions for minimum loss configuration and/or transformers load balancing. The 

authors of [5] proposed a network reconfiguration algorithm based on branch  

exchange for load balancing. S.I.Mohamed et al. [6] used artificial neural network  

(ANN) to reconfigure the feeder that reduces the active power losses.  

Feeder reconfiguration through switching operation is a complicated 

combinatorial optimization problem. Genetic algorithms have recently been used to 

solve many difficult engineering problems and are particularly effective for 

combinatorial optimization problems with large and complex search spaces. In this 

paper, a G.A is presented for multi-objective programming to solve the reconfiguration 

problem. Five objectives are considered in conjunction with network constraints.  

The G.A is basically a stochastic searching algorithm. It is capable of solving 

non-smooth, non-continuous and non-differentiable problems for parallel computation 

to find global or near global optimal solutions. The results of the case studies 

demonstrate the effectiveness of the solution algorithm and proved that the G.A is 

suitable to solve this kind of problems.  

 

4.2 Introduction-Load Flow Analysis 
Load flow (or power flow) analysis is the determination of current , voltage, 

active power and reactive voltamperes  at various points in the power system 

operating under normal steady state or static conditions. Load flow studies are made 

to plan the best operation and control of the existing system as well as to plan the 

future expansion to keep pace with the load growth .Such studies help in ascertain the 

effects of new loads , new generating stations, new lines and new interconnections 



before they are installed. The prior information serves to minimize the system losses 

and to provide a check on the system stability. 

The mathematical formulation of load flow problem results in a set of algebraic 

non-linear equations . A lot of calculation work is involved in the solution of these 

equation of these equations.Hand computations are very tedious and time consuming. 

Now a days digital computers, because of greater flexibility, economy accuracy and 

quiker operation, have practically replaced network analysers for the solution of load 

flow problems. 

 

4.3 Problem Formulation 

Distribution feeders contain a number of switches that are normally closed and  

others that are normally open. Under normal operating conditions, distribution  

engineers periodically reconfigure distribution feeders by opening and closing 

of switches in order to increase networks reliability and/or reduce line losses. In this 

section, the feeder reconfiguration problem is formulated as a multi-objective 

optimization problem, which can be solved  efficiently using load flow studies and G.A 

[7].  

Objective Functions 

      

 (a)       Minimize the Total Power Loss(in lines) in the sample system: 

            Min 

         n   
 TPℓoss  =    Σ      {(Ppq-jQpq)+( Pqp-jQqp) }    
        p,q=1 
 p≠q 
where: 
 n is the number of buses, pq depict the line connecting bus p& q. 
 P is the real power flow & Q is the reactive power flow. 
    

 

4.4 Solution Algorithm For Feeder Reconfiguration 

The selection of an optimum configuration among discrete numerous switching 

options requires solution of a complicated combinatorial optimization problem. Load 

flow studies along with G.A have recently proved as an effective tool for solving this 



type of problems with large and complex search spaces. The search of any G.A starts 

with a random generation of a population of strings. Each string is divided into a 

number of sub strings equals the number of the problem variables. Each sub string 

consists of a number of genes to present one of the variables in a certain coding 

system. Fig.(1) depicts the flow chart of the proposed G.A approach. 

 

4.5 Application 

To show the validity, and efficiency of the load flow studies along with proposed 

G.A, it is tested on the distribution system shown in Fig.(2). This system includes Two 

generators, five buses including one slack bus ,7 branches and 14 switches. The 

system data are 

illustrated in tables (1) and (2). The Gauss-Seidal method is used using YBUS, with 

acceleration factor of 1.4 and 1.4 and tolerances of 0.0001 and 0.0001 per unit for the 

real and imaginary components of voltage. 
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Fig.(2) Sample system (Network) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Flow Chart of the Gauss-Seidal iterative method 

 START 

 
Form the admittance matrix YBUS

 

 
Assume bus voltages EP

(0)

Where p=1,2,….n    
p≠s(slack bus) 

 



 

 

 

  

  

Form parameters of voltage equations 
KLp and YLpq 
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Set  maximum voltage change 
max∆EK =0 
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Calculate the change in voltage 
∆Ep

k = Ep
k+1  - Ep

k

Solve voltage equation for bus p 
                                           P-1                          n 
Ep

k+1 = KLp/(Ep
k)* - ∑  YLpqEq

k+1 - ∑  YLpqEq
k   

                                          q-1                         q=p+1 

Test for maximum 
change in voltage 

│∆Ep
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Replace Ep
k by Ep

k+1  
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Test for end of iteration 
p : n 

Advance iteration 
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and power at slack bus 
and in each line. 

Test for convergence 
 max∆Ek  : € 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-1  

(Impedances and line charging for sample system) 
 



Bus Code(p-q) Impedance(Zpq) Line 

Charging(y΄pq/2) 
1-2 0.02+j0.06 0.0+j0.030 

1-3 0.08+j0.24 0.0+j0.025 

2-3 0.06+j0.18 0.0+j0.020 

2-4 0.06+j0.18 0.0+j0.020 

2-5 0.04+j0.12 0.0+j0.015 

3-4 0.01+j0.03 0.0+j0.010 

3-5 0.08+j0.24 0.0+j0.025 

 

 

 

 

Table(2)  

(Scheduled generation and loads and assumed bus voltages for sample system) 
 

Generation Load Bus 

Code(p) 

Assumed 

Bus Voltage 
P(Kw) Q(Mvar) P(Kw) Q(Mvar) 

1 1.06+j0.0 0 0 0 0 

2 1.0+j0.0 40 30 20 10 

3 1.0+j0.0 0 0 45 15 

4 1.0+j0.0 0 0 40 5 

5 1.0+j0.0 0 0 60 10 

 

 

 

 

 

 

4.7 Flow Chart of the proposed genetic algorithm application 
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4.8 RESULT 

 
The selection of a particular system has numerous losses in the lines , when all of 

them are connected. It is being thought that, the lines connected in the system, 

somehow if withdrawn by using some technique(G.A), then the effect of that on the 

losses, bus voltages, solution time is compared. The table-(3) shows all the possible 

combinations and the losses in the line. It shows that the fitness value= 1/[error]2 is 

22.12 in iteration No.0 , when all the lines are connected . 

The fitness value is maximum i.e  28.94743  in the iteration No.25 , when the 

bus lines connecting 3-4, 4-5 are removed. Though the losses have been reduced but 

only consideration is to have line loading with in limits. 

 

 

4.9 Conclusion 
 A load flow studies along with Genetic algorithm approach has been 

presented to solve the above problem of reducing line losses. Numerical results of two 

generators, five buses including one slack bus ,7 branches and 14 switches distribution 

system showed the efficiency and capability of load flow studies along with Genetic 

algorithm in solving this type of problem.The algorithm can be directed easily by the 

experience of the operator to minimize the total active power losses in bus lines. 
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FUTURE SCOPE OF THE WORK DONE 
 

Many techniques have been proposed for solving feeder reconfiguration 

problem through switching operation. Genetic algorithm have recently been used to 

solve many different engineering problems with large and complex search spaces and 

hence can be presented for multi-objective programming to solve the feeders 

reconfiguration problem . The G.A is basically a stochastic searching algorithm. It is 

capable of solving non-smooth, non-continuous and non-differentiable problems for 

parallel computation to find global or near global optimal solutions. 

 In this work load flow studies along with genetic algorithm is applied on five bus 

radial distribution network for feeder reconfiguration for reducing the line losses and 

it can be extended for large number of busses. 

The genetic algorithm can further be applied to minimize the total active power 

losses and at the same time improving or minimizing total complex power, average 

voltage drop, neutral current of the transformer and total voltage unbalance factor 

which are a major sign of better power quality.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Table (3) – Value of the Fitness function under different switching conditions. 
 

Iter
atio

n 
No. 

Bus Code No. 
Out 

Switching Condition
(Population 
condition) 

Total 
Line 

Loss(MW
) 

Error = 
(Losses/gen

eration) 

 
F(x) = 

[error]2

Fitness 
function 

=1/f(x) 

0 Nil 11 11 11 11 11 11 11 8.4453 0.2111325 0.04457 22.4331 
1 1-2 00 11 11 11 11 11 11 24.24159 0.60603 0.3672 2.7226 
2 1-3 11 00 11 11 11 11 11 11.49377 0.287344 0.08256 12.1114 
3 2-3 11 11 00 11 11 11 11 8.66023 0.21650 0.046874 21.3334 
4 2-4 11 11 11 00 11 11 11 8.87871 0.221967 0.04926 20.2964 
5 2-5 11 11 11 11 00 11 11 14.67087 0.36677 0.134521 7.4337 
6 3-4 11 11 11 11 11 00 11 8.64845 0.216211 0.046747 21.3916 
7 4-5 11 11 11 11 11 11 00 7.45505 0.18367625 0.034736 28.788848 
8 1-2 & 2-3 00 11 00 11 11 11 11 23.42726 0.5856815 0.343022 2.9152 
9 1-2 & 2-4 00 11 11 00 11 11 11 23.04726 0.57618 0.33198 3.01218 
10 1-2 & 2-5 00 11 11 11 00 11 11 29.06147 0.726536 0.527855 1.8944 
11 1-2 & 3-4 00 11 11 11 11 00 11 35.75294 0.89382 0.7989 1.25168 
12 1-2 & 4-5 00 11 11 11 11 11 00 23.4573 0.5864325 0.534390 2.9077 
13 1-3 & 2-3 11 00 00 11 11 11 11 13.7196 0.34299 0.11764 8.5002 
14 1-3 & 2-4 11 00 11 00 11 11 11 13.5102 0.337755 0.11407 8.7658 
15 1-3 & 2-5 11 00 11 11 00 11 11 21.38612 0.53465 0.28585 3.4982 
16 1-3 & 3-4 11 00 11 11 11 00 11 11.05464 0.276366 0.07637 13.0927 
17 1-3 & 4-5 11 00 11 11 11 11 00 10.1760 0.2544 0.06471 15.4512 
18 2-3 & 2-4 11 11 00 00 11 11 11 10.65631 0.26640 0.07097 14.0898 
19 2-3 & 2-5 11 11 00 11 00 11 11 17.70669 0.44266 0.19595 5.1032 
20 2-3 & 3-4 11 11 00 11 11 00 11 8.47305 0.21182 0.044870 22.28642 
21 2-3 & 4-5 11 11 00 11 11 11 00 7.59496 0.1898 0.036052 27.73760 
22 2-4 & 2-5 11 11 11 00 00 11 11 19.81572 0.495393 0.245414 4.0747 
23 2-4 & 3-4 11 11 11 00 11 00 11 12.45372 0.31134 0.09693 10.3162 
24 2-4 & 4-5 11 11 11 00 11 11 00 7.78433 0.1946 0.037872 26.4044 
25 3-4 & 4-5 11 11 11 11 1100 00 7.43495 0.18587 0.03454 28.94743 
26 1-2 , 2-3 & 2-4 00 11 00 00 11 11 11 23.06087 0.57652 0.332377 3.0086 



27 1-2 , 2-3 & 2-5 00 11 00 11 00 11 11 28.94309 0.723577 0.523564 1.90998 
28 1-3, 3-4 & 2-5 11 00 11 11 00 00 11 25.58099 0.63952 0.40899 2.445036 
29 1-2, 2-3 & 4-5 00 11 00 11 11 11 00 23.7110 0.5927 0.351383 2.8458 

 

 

 

 

 

 

 

 

 

 

 
Iteration 

No. 
Bus Code No. 

Out 
Switching Condition

(Population 
condition) 

Total 
Line 

Loss(MW
) 

Error = 
(Losses/ge
neration) 

 
F(x) = 

[error]2

Fitness 
function 
=1/f(x) 

30 1-2, 2-4 & 2-5 00 11 11 00 00 11 11 30.13966 0.75349 0.567749 1.76134 
31 1-2, 2-4 & 3-4 00 11 11 00 11 00 11 123.99255 3.0998 9.6088 0.104 
32 1-2, 2-4 & 4-5 00 11 11 00 11 11 00 23.09618 0.57740 0.3333 2.9994 
33 1-3, 2-3 & 2-4 11 00 00 00 11 11 11 24.5678 0.61419 0.37723 2.6508 
34 1-3, 2-3 & 2-5 11 00 00 11 00 11 11 38.99766 0.9749 0.95051 1.0520 
35 1-3, 2-3 & 4-5 11 00 00 11 11 11 00 12.3635 0.323408 0.10459 9.5608 
36 1-3, 2-4 & 2-5 11 00 11 00 00 11 11 43.803 1.0950 1.1992 0.83387 
37 1-3, 2-4 & 4-5 11 00 11 00 11 11 00 12.8254 0.32063 0.1028 9.7269 
38 2-3, 2-4 & 2-5 11 11 00 00 00 11 11 53.682 1.3420 1.8011 0.55521 
39 2-3, 2-4 & 3-4 11 11 00 00 11 00 11 12.24169 .30604 0.09366 10.6767 
40 2-3, 2-4 & 4-5 11 11 00 00 11 11 00 10.70789 0.26769 0.07166 13.9544 
41 1-3, 3-4 & 4-5 11 00 11 11 11 00 00 9.72739 0.24318 0.05913 16.909366 
42 2-5 & 3-4 11 11 11 11 00 00 11 21.38728 0.5346 0.285884 3.4979119 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

Case-0(When all Lines in) 



 
 
 

Case-1(When Line 1-2 is out) 



 
 

Case-2(When Line 1-3 is out) 
  



 
Case-3(When Line 2-3 is out) 

 



 
Case-4(When Line 2-4 is out) 



 
 



Case-5(When Line 2-5 is out) 

 
 
 

Case-6(When Line 3-4 is out) 



 
 

Case-7(When Line 4-5 is out) 



 
Case-8(When Lines 1-2 & 2-3 are out) 



 
 
 

Case-9(When Lines 1-2 & 2-4 are out) 



 
 

Case-10(When Lines 1-2 & 2-5 are out) 



 
 
 

Case-11(When Lines 1-2 & 3-4 are out) 



 
 
 



Case-12(When Lines 1-2 & 4-5 are out) 

 
Case-13(When Lines 1-3 & 2-3 are out) 



 
 
 

Case-14(When Lines 1-3 & 2-4 are out) 



 
  

Case-15 (When Lines 1-3 & 2-5 are out) 



 
 
 
 

Case-16(When Lines 1-3 & 3-4 are out) 



 
 
 
 
 

Case-17(When Lines 1-3 & 4-5 are out) 



 
 
 

Case-18(When Lines 2-3 & 2-4 are out) 



 
 

Case-19(When Lines 2-3 & 2-5 are out) 



 
 
 

Case-20(When Lines 2-3 & 3-4 are out) 



 
 
 

 Case-21(When Lines 2-3 & 4-5 are out) 



 
 
 

Case-22(When Lines 2-4 & 2-5 are out) 



 
 
  

Case-23(When Lines 2-4 & 3-4 are out) 



 
 
  

Case-24(When Lines 2-4 & 4-5 are out) 



 
 
  

Case-25(When Lines 3-4 & 4-5 are out) 



 
 
 

Case-26(When Lines  1-2  ,2-3  &  2-4 are out) 



 
 
 

Case-27(When Lines  1-2  ,2-3  &  2-5 are out) 



 
 
 
 



Case-29(When Lines  1-2  ,2-3  &  4-5 are out) 

 
 
 



Case-30(When Lines  1-2  ,2-4  &  2-5 are out) 

 
 
 
 



Case-31(When Lines  1-2  ,2-4  &  3-4 are out) 

 
 



Case-32(When Lines  1-2  ,2-4  &  4-5 are out) 

 
 
 



Case-33(When Lines  1-3  ,2-3  &  2-4 are out) 

 
 
 
 



Case-34(When Lines  1-3  ,2-3  &  2-5 are out) 

 
 
 



Case-35(When Lines  1-3  ,2-3  &  4-5 are out) 

 
 
 



Case-36(When Lines  1-3  ,2-4  &  2-5 are out) 

 
 
 
 



Case-37(When Lines  1-3  ,2-4  &  4-5 are out) 

 
 
 



Case-38(When Lines  2-3  ,2-4  &  2-5 are out) 

 
 
  
 



Case-39(When Lines  2-3  ,2-4  &  3-4 are out) 

 
 
 
 



Case-40(When Lines  2-3  ,2-4  &  4-5 are out) 

 
 

 
 



Case-41(When Lines  1-3  ,3-4  &  4-5 are out) 

 
 
 
 



Case-28(When Lines  1-3  ,3-4  &  2-5 are out) 

 
 

 
 



Case-42(When Lines  2-5 &  3-4  are out) 

 
 
 

 



Annexure B: Transmission and distribution losses as a percentage of availability in state electricity 

departments: 1991/92 to 1999/2000 

State        1991/92  1992/93    1993/94       1994/95       1995/96       1996/97        1997/98a      1998/99b     1999/00c

Andhra Pradesh             20.3     19.2    19.1     18.9          18.9         33.1   32.5     31.9         31.1 

Arunachal Pradesh        28.2     34.9  31.6     31.0          36.0         32.6    31.0     31.1         31.5 

Assam      22.7   21.0     20.8      24.9          26.2        26.0    30.1     23.0         30.0 

Bihar     18.3      20.5    19.0     24.0          25.9        25.3       25.4     39.5         36.0 

Daman and Diu   15.9      0      0       0            0  0     0       0           0 

Goa     23.8       20.8    21.8     26.2           28.5       23.5   23.4    29.1          23.0 

Gujarat    23.6        21.1    21.3     20.0         18.3         21.4   21.7    20.1        18.0 

Haryana   26.8         25.4     25.5     28.5         31.4        32.8  33.4    29.6        29.5 

Himachal Pradesh  19.2         18.5    17.3     17.4         17.5        18.4  19.2    18.5       18.1 

Jammu and Kashmir 50.1         45.3   47.7     46.9         48.6        50.0  47.5    43.8       46.5 

Karnataka   19.3         18.7    18.6     18.9        18.5         18.9  18.6      17       18.3 

Kerala    22.5        21.0   20.2     20.1        20.1        21.4  17.9    17.5       17.0 

Lakshadweep   17.4           0     0      0         0            0     0     0         0 

Madhya Pradesh  25.8        22.2  20.2    20.1       19.5         20.6  19.7  17.8      18.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



State   1991/92     1992/93    1993/94  1994/95     1995/96    1996/97  1997/98a    1998/99b   1999/00c

Maharashtra  18.6         16.4           15.8    15.3          15.4  17.7     17.1       17.3           17.0 

Manipur  24.4        22.5  22.5    22.0            21.5  23.0    21.8       19.7          20.0 

Meghalaya 11.7        12.2  10.7   18.7          17.8   19.5     17.9       18.9            19.0 

Mizoram  34.9       28.1  28.0  28.0          27.0  34.4     25.7        42.0          43.0 

Nagaland  23.1       32.4               31.6  30.8           30.0  26.8      29.5        29.0          28.5 

Orissa   25.3        23.5  23.4  23.8           46.9  50.4      46.0        42.0         36.0 

Punjab  21.8        18.7 18.5  18.3            18.2  18.9      17.8        17.1         17.7 

Rajasthan  23.1       24.5  25.2  25.0            28.5  25.9       26.5      29.5          22.0 

Sikkima  25.9       21.8  21.5  21.2             21.0  29.2       20.1      20.0          19.8 

Tamil Nadu 18.4       17.5  17.3  16.9             17.0  17.2       16.8      16.6          16.5 

Tripura  32.0       30.5  30.0  30.0             30.0  30.1        29.3      28.5         28.0 

Uttar Pradesh  26.1      24.1  23.2  22.6             22.8  25.1        25.5     26.3          22.9 

West Bengal  19.7       23.7  22.4  21.1             20.7  20.1       20.0      19.5          19.0 

All-India (utilities) 22.8    19.8               20.2  20.3             22.2  24.5       23.9      23.2          22.0 

a provisional; b revised ; c estimate 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
BLOCK DIAGRAM-GENERAL 

 

 
 

 
 
 



BLOCK DIAGRAM-SELECTION STRATEGY 
 

 
 
  
 
 
 
 
 
 
 
 



 
 

BLOCK DIAGRAM-CROSS OVER STRATEGY 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
  

BLOCK DIAGRAM-MUTATION STRATEGY 
 
 
 

 
 
 
  
 
 
 
 



 
 
 
 
 

BLOCK DIAGRAM-OPTIMIZATION STRATEGY 
 
 

 
 
 
 
 



 
 
 
 
  

BLOCK DIAGRAM SHOWING COMPLETE PROCEDURE FOLLOWED IN G.A 
 
 

 
 

 

 



SOFTWARE FOR LOAD FLOW STUDIES USING GUASS SEIDEL METHOD  
 
‘Defining the Variables used in the program 
 
Dim jz12, jz13, jz23, jz24, jz25, jz34, jz45 As Long 
Dim E1(20) As String, E2(20) As String, _ 
    E3(20) As String, E4(20) As String, E5(20) As String 
Dim DE1(20) As String, DE2(20) As String, _ 
    DE3(20) As String, DE4(20) As String, DE5(20) As String 
Dim E01, E02, E03, E04, E05 As String 
Dim E1new, E2new, E3new, E4new, E5new As String 
Dim L1, L2, L3, L4, L5 As String 
Dim p1, p2 As Double 
Dim tolerlim As Integer 
Dim alpha As Double 
Public Sub Form_Load() 
txttol = 0.0001 
txtalpha = 1.4 
 
busno = 5 
' impedance Zpq 
Z12 = "-0.02 + j0.06" 
Z13 = "0.08 + j0.24" 
Z23 = "0.06 + j0.18" 
Z24 = "0.06 + j0.18" 
Z25 = "0.04 + j0.12" 
Z34 = "0.01 + j0.03" 
Z45 = "0.08 + j0.24" 
 
' Line charging Ypq 
ylc12 = "0.0 + j0.0300" 
ylc13 = "0.0 + j0.0250" 
ylc23 = "0.0 + j0.0200" 
ylc24 = "0.0 + j0.0200" 
ylc25 = "0.0 + j0.0150" 
ylc34 = "0.0 + j0.0100" 
ylc45 = "0.0 + j0.02500" 
 
 
' Assumed bus voltage 
E01 = "1.06 + j0.0" 
E02 = "1.0 + j0.0" 
E03 = "1.0 + j0.0" 
E04 = "1.0 + j0.0" 
E05 = "1.0 + j0.0" 
E1(0) = E01 
E2(0) = E02 
E3(0) = E03 
E4(0) = E04 
E5(0) = E05 
 
 
' Generation in MW an MVA and Load at the Bus 



G1MW = 0 
G1MV = 0 
L1MW = 0 
L1MV = 0 
G2MW = 40 / 100 
G2MV = 30 / 100 
L2MW = 20 / 100 
L2MV = 10 / 100 
G3MW = 0 
G3MV = 0 
L3MW = 45 / 100 
L3MV = 15 / 100 
G4MW = 0 
G4MV = 0 
L4MW = 40 / 100 
L4MV = 5 / 100 
G5MW = 0 
G5MV = 0 
L5MW = 60 / 100 
L5MV = 10 / 100 
 
L1 = (G1MW - L1MW) & " - j" & (G1MV - L1MV) 
If G1MV < L1MV Then L1 = (G1MW - L1MW) & " + j" & (L1MV - G1MV) 
L2 = (G2MW - L2MW) & " - j" & (G2MV - L2MV) 
If G2MV < L2MV Then L2 = (G2MW - L2MW) & " + j" & (L2MV - G2MV) 
L3 = (G3MW - L3MW) & " - j" & (G3MV - L3MV) 
If G3MV < L3MV Then L3 = (G3MW - L3MW) & " + j" & (L3MV - G3MV) 
L4 = (G4MW - L4MW) & " - j" & (G4MV - L4MV) 
If G4MV < L4MV Then L4 = (G4MW - L4MW) & " + j" & (L4MV - G4MV) 
L5 = (G5MW - L5MW) & " - j" & (G5MV - L5MV) 
If G5MV < L5MV Then L5 = (G5MW - L5MW) & " + j" & (L5MV - G5MV) 
 
 
 
End Sub 



Private Sub Cmdbusvolt_Click() 
lbe2.Clear 
lbe3.Clear 
lbe4.Clear 
lbe5.Clear 
 
For i = 0 To 15 
If i > tolerlim Then Exit For 
If Len(Trim(E2(i))) <> 0 And Len(Trim(E3(i))) <> 0 And Len(Trim(E4(i))) <> 0 And Len(Trim(E5(i))) <> 
0 Then 
  lbe2.AddItem E2(i) 
  lbe3.AddItem E3(i) 
  lbe4.AddItem E4(i) 
  lbe5.AddItem E5(i) 
End If 
Next i 
 
End Sub 
 



Private Sub Cmdchbusv_Click() 
lbe2.Clear 
lbe3.Clear 
lbe4.Clear 
lbe5.Clear 
 
For i = 1 To 15 
   If i > tolerlim Then Exit For 
        dn = E1(0) 
        dnt = minuscal(CStr(dn)) 
        DE1(i) = addcal(CStr(E1(0)), CStr(dnt)) 
        dn = E2(i - 1) 
        dnt = minuscal(CStr(dn)) 
        DE2(i) = addcal(CStr(E2(i)), CStr(dnt)) 
        dn = E3(i - 1) 
        dnt = minuscal(CStr(dn)) 
        DE3(i) = addcal(CStr(E3(i)), CStr(dnt)) 
        dn = E4(i - 1) 
        dnt = minuscal(CStr(dn)) 
        DE4(i) = addcal(CStr(E4(i)), CStr(dnt)) 
        dn = E5(i - 1) 
        dnt = minuscal(CStr(dn)) 
        DE5(i) = addcal(CStr(E5(i)), CStr(dnt)) 
 
If Len(Trim(DE2(i))) <> 0 And Len(Trim(DE3(i))) <> 0 And Len(Trim(DE4(i))) <> 0 And 
Len(Trim(DE5(i))) <> 0 Then 
    lbe2.AddItem DE2(i) 
    lbe3.AddItem DE3(i) 
    lbe4.AddItem DE4(i) 
    lbe5.AddItem DE5(i) 
End If 
 
 
Next i 
 
 
End Sub 
 
 



Private Sub cmdcurrent_Click() 
frameasmp.Visible = True 
FrameW.Visible = False 
framepower.Visible = False 
If Len(Trim(E1new)) = 0 And Len(Trim(E2new)) = 0 Then 
If Len(Trim(E3new)) = 0 And Len(Trim(E4new)) = 0 And Len(Trim(E5new)) = 0 Then 
    MsgBox "Please calculate the Bus Voltage first" 
    Cmditerate.SetFocus 
    Exit Sub 
End If 
End If 
 
i0 = addcal(CStr(E1new), minuscal(CStr(E2new))) 
i1 = mcal(CStr(i0), CStr(y12)) 
i2 = mcal(CStr(E1new), CStr(ylc12)) 
i12 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E1new), minuscal(CStr(E3new))) 
i1 = mcal(CStr(i0), CStr(y13)) 
i2 = mcal(CStr(E1new), CStr(ylc13)) 
i13 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E2new), minuscal(CStr(E3new))) 
i1 = mcal(CStr(i0), CStr(y23)) 
i2 = mcal(CStr(E2new), CStr(ylc23)) 
i23 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E2new), minuscal(CStr(E4new))) 
i1 = mcal(CStr(i0), CStr(y24)) 
i2 = mcal(CStr(E2new), CStr(ylc24)) 
i24 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E2new), minuscal(CStr(E5new))) 
i1 = mcal(CStr(i0), CStr(y25)) 
i2 = mcal(CStr(E2new), CStr(ylc25)) 
i25 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E3new), minuscal(CStr(E4new))) 
i1 = mcal(CStr(i0), CStr(y34)) 
i2 = mcal(CStr(E3new), CStr(ylc34)) 
i34 = addcal(CStr(i1), CStr(i2)) 
 
i0 = addcal(CStr(E4new), minuscal(CStr(E5new))) 
i1 = mcal(CStr(i0), CStr(y45)) 
i2 = mcal(CStr(E4new), CStr(ylc45)) 
i45 = addcal(CStr(i1), CStr(i2)) 
framecurrent.Visible = True 
End Sub 



Private Sub CmdKLP_Click() 
If Len(Trim(YB11)) = 0 And Len(Trim(YB22)) = 0 And Len(Trim(YB33)) = 0 Then 
If Len(Trim(YB44)) = 0 And Len(Trim(YB55)) = 0 Then 
    MsgBox "Please calculate the Line admittances" 
    Cmdlinead.SetFocus 
    Exit Sub 
End If 
End If 
 
framecurrent.Visible = False 
tt = divcal(YB11) 
KL1 = mcal(CStr(L1), CStr(tt)) 
tt = divcal(YB22) 
KL2 = mcal(CStr(L2), CStr(tt)) 
tt = divcal(YB33) 
KL3 = mcal(CStr(L3), CStr(tt)) 
tt = divcal(YB44) 
KL4 = mcal(CStr(L4), CStr(tt)) 
tt = divcal(YB55) 
KL5 = mcal(CStr(L5), CStr(tt)) 
 
 
End Sub 
 
Private Sub CMDMWMVA_Click() 
cmdpower_Click 
frameasmp.Visible = False 
framecurrent.Visible = False 
framepower.Visible = False 
FrameW.Visible = True 
 
End Sub 
 



Private Sub cmdpower_Click() 
 
If Len(Trim(E1new)) = 0 And Len(Trim(E2new)) = 0 Then 
If Len(Trim(E3new)) = 0 And Len(Trim(E4new)) = 0 And Len(Trim(E5new)) = 0 Then 
    MsgBox "Please calculate the Bus Voltage first" 
    Cmditerate.SetFocus 
    Exit Sub 
End If 
End If 
 
frameasmp.Visible = True 
framecurrent.Visible = False 
framepower.Visible = True 
FrameW.Visible = False 
 
'1-2 
i1 = addcal(CStr(E1new), minuscal(CStr(E2new))) 
i2 = mcal(CStr(i1), CStr(y12)) 
i3 = mcal(conjcal(CStr(E1new)), CStr(i2)) 
i4 = mcal(CStr(E1new), CStr(ylc12)) 
i5 = mcal(CStr(E1new), CStr(i4)) 
p12 = addcal(CStr(i3), CStr(i5)) 
 
'1-3 
i1 = addcal(CStr(E1new), minuscal(CStr(E3new))) 
i2 = mcal(CStr(i1), CStr(y13)) 
i3 = mcal(conjcal(CStr(E1new)), CStr(i2)) 
i4 = mcal(CStr(E1new), CStr(ylc13)) 
i5 = mcal(CStr(E1new), CStr(i4)) 
p13 = addcal(CStr(i3), CStr(i5)) 
 
 
'2-1 
i1 = addcal(CStr(E2new), minuscal(CStr(E1new))) 
i2 = mcal(CStr(i1), CStr(y12)) 
i3 = mcal(conjcal(CStr(E2new)), CStr(i2)) 
i4 = mcal(CStr(E2new), CStr(ylc12)) 
i5 = mcal(CStr(E2new), CStr(i4)) 
p21 = addcal(CStr(i3), CStr(i5)) 
 
'2-3 
i1 = addcal(CStr(E2new), minuscal(CStr(E3new))) 
i2 = mcal(CStr(i1), CStr(y23)) 
i3 = mcal(conjcal(CStr(E2new)), CStr(i2)) 
i4 = mcal(CStr(E2new), CStr(ylc23)) 
i5 = mcal(CStr(E2new), CStr(i4)) 
p23 = addcal(CStr(i3), CStr(i5)) 
 
pl13 = addcal(CStr(p13), CStr(p31)) 
'2-4 
i1 = addcal(CStr(E2new), minuscal(CStr(E4new))) 
i2 = mcal(CStr(i1), CStr(y24)) 
i3 = mcal(conjcal(CStr(E2new)), CStr(i2)) 



i4 = mcal(CStr(E2new), CStr(ylc24)) 
i5 = mcal(CStr(E2new), CStr(i4)) 
p24 = addcal(CStr(i3), CStr(i5)) 
 
'2-5 
i1 = addcal(CStr(E2new), minuscal(CStr(E5new))) 
i2 = mcal(CStr(i1), CStr(y25)) 
i3 = mcal(conjcal(CStr(E2new)), CStr(i2)) 
i4 = mcal(CStr(E2new), CStr(ylc25)) 
i5 = mcal(CStr(E2new), CStr(i4)) 
p25 = addcal(CStr(i3), CStr(i5)) 
 
'3-1 
i1 = addcal(CStr(E3new), minuscal(CStr(E1new))) 
i2 = mcal(CStr(i1), CStr(y13)) 
i3 = mcal(conjcal(CStr(E3new)), CStr(i2)) 
i4 = mcal(CStr(E3new), CStr(ylc13)) 
i5 = mcal(CStr(E3new), CStr(i4)) 
p31 = addcal(CStr(i3), CStr(i5)) 
'3-2 
i1 = addcal(CStr(E3new), minuscal(CStr(E2new))) 
i2 = mcal(CStr(i1), CStr(y23)) 
i3 = mcal(conjcal(CStr(E3new)), CStr(i2)) 
i4 = mcal(CStr(E3new), CStr(ylc23)) 
i5 = mcal(CStr(E3new), CStr(i4)) 
p32 = addcal(CStr(i3), CStr(i5)) 
 
'3-4 
i1 = addcal(CStr(E3new), minuscal(CStr(E4new))) 
i2 = mcal(CStr(i1), CStr(y34)) 
i3 = mcal(conjcal(CStr(E3new)), CStr(i2)) 
i4 = mcal(CStr(E3new), CStr(ylc34)) 
i5 = mcal(CStr(E3new), CStr(i4)) 
p34 = addcal(CStr(i3), CStr(i5)) 
 
'4-2 
i1 = addcal(CStr(E4new), minuscal(CStr(E2new))) 
i2 = mcal(CStr(i1), CStr(y24)) 
i3 = mcal(conjcal(CStr(E4new)), CStr(i2)) 
i4 = mcal(CStr(E4new), CStr(ylc24)) 
i5 = mcal(CStr(E4new), CStr(i4)) 
p42 = addcal(CStr(i3), CStr(i5)) 
 
'4-3 
i1 = addcal(CStr(E4new), minuscal(CStr(E3new))) 
i2 = mcal(CStr(i1), CStr(y34)) 
i3 = mcal(conjcal(CStr(E4new)), CStr(i2)) 
i4 = mcal(CStr(E4new), CStr(ylc34)) 
i5 = mcal(CStr(E4new), CStr(i4)) 
p43 = addcal(CStr(i3), CStr(i5)) 
 
'4-5 
i1 = addcal(CStr(E4new), minuscal(CStr(E5new))) 



i2 = mcal(CStr(i1), CStr(y45)) 
i3 = mcal(conjcal(CStr(E4new)), CStr(i2)) 
i4 = mcal(CStr(E4new), CStr(ylc45)) 
i5 = mcal(CStr(E4new), CStr(i4)) 
p45 = addcal(CStr(i3), CStr(i5)) 
 
 
'5-2 
i1 = addcal(CStr(E5new), minuscal(CStr(E2new))) 
i2 = mcal(CStr(i1), CStr(y25)) 
i3 = mcal(conjcal(CStr(E5new)), CStr(i2)) 
i4 = mcal(CStr(E5new), CStr(ylc25)) 
i5 = mcal(CStr(E5new), CStr(i4)) 
p52 = addcal(CStr(i3), CStr(i5)) 
 
'5-4 
i1 = addcal(CStr(E5new), minuscal(CStr(E4new))) 
i2 = mcal(CStr(i1), CStr(y45)) 
i3 = mcal(conjcal(CStr(E5new)), CStr(i2)) 
i4 = mcal(CStr(E5new), CStr(ylc45)) 
i5 = mcal(CStr(E5new), CStr(i4)) 
p54 = addcal(CStr(i3), CStr(i5)) 
 
pl12 = addcal(CStr(p12), CStr(p21)) 
pl13 = addcal(CStr(p13), CStr(p31)) 
pl23 = addcal(CStr(p23), CStr(p32)) 
pl34 = addcal(CStr(p34), CStr(p43)) 
pl24 = addcal(CStr(p24), CStr(p42)) 
pl25 = addcal(CStr(p25), CStr(p52)) 
pl45 = addcal(CStr(p45), CStr(p54)) 
 
plmw12 = cal(CStr(pl12)) * 100 
plmva12 = calmj(CStr(pl12)) * 100 
plmw13 = cal(CStr(pl13)) * 100 
plmva13 = calmj(CStr(pl13)) * 100 
plmw23 = cal(CStr(pl23)) * 100 
plmva23 = calmj(CStr(pl23)) * 100 
plmw24 = cal(CStr(pl24)) * 100 
plmva24 = calmj(CStr(pl24)) * 100 
plmw25 = cal(CStr(pl25)) * 100 
plmva25 = calmj(CStr(pl25)) * 100 
plmw34 = cal(CStr(pl34)) * 100 
plmva34 = calmj(CStr(pl34)) * 100 
plmw45 = cal(CStr(pl45)) * 100 
plmva45 = calmj(CStr(pl45)) * 100 
 
 
MW12 = cal(CStr(p12)) * 100 
MVA12 = calmj(CStr(p12)) * 100 
MW13 = cal(CStr(p13)) * 100 
MVA13 = calmj(CStr(p13)) * 100 
mw21 = cal(CStr(p21)) * 100 
mva21 = calmj(CStr(p21)) * 100 



MW23 = cal(CStr(p23)) * 100 
MVA23 = calmj(CStr(p23)) * 100 
MW24 = cal(CStr(p24)) * 100 
MVA24 = calmj(CStr(p24)) * 100 
MW25 = cal(CStr(p25)) * 100 
MVA25 = calmj(CStr(p25)) * 100 
 
 
mw31 = cal(CStr(p31)) * 100 
mva31 = calmj(CStr(p31)) * 100 
mw32 = cal(CStr(p32)) * 100 
mva32 = calmj(CStr(p32)) * 100 
MW34 = cal(CStr(p34)) * 100 
MVA34 = calmj(CStr(p34)) * 100 
mw42 = cal(CStr(p42)) * 100 
mva42 = calmj(CStr(p42)) * 100 
mw43 = cal(CStr(p43)) * 100 
mva43 = calmj(CStr(p43)) * 100 
MW45 = cal(CStr(p45)) * 100 
MVA45 = calmj(CStr(p45)) * 100 
mw52 = cal(CStr(p52)) * 100 
mva52 = calmj(CStr(p52)) * 100 
mw54 = cal(CStr(p54)) * 100 
mva54 = calmj(CStr(p54)) * 100 
 
End Sub 
 
 



Public Sub CmdLinead_Click() 
 
 
' LINE ADMITTANCES 
y12.Text = odivcal(CStr(Z12)) 
y13.Text = odivcal(CStr(Z13)) 
y23.Text = odivcal(CStr(Z23)) 
y24.Text = odivcal(CStr(Z24)) 
y25.Text = odivcal(CStr(Z25)) 
y34.Text = odivcal(CStr(Z34)) 
y45.Text = odivcal(CStr(Z45)) 
 
y1.Text = addcal(CStr(ylc12), CStr(ylc13)) 
y2.Text = addcal(addcal(addcal(CStr(ylc23), CStr(ylc24)), CStr(ylc25)), CStr(ylc12)) 
y3.Text = addcal(addcal(CStr(ylc13), CStr(ylc23)), CStr(ylc34)) 
y4.Text = addcal(addcal(CStr(ylc24), CStr(ylc34)), CStr(ylc45)) 
y5.Text = addcal(CStr(ylc25), CStr(ylc45)) 
 
 
 
 
YB11.Text = addcal(addcal(CStr(y12), CStr(y13)), CStr(y1)) 
t22 = addcal(addcal(CStr(y12), CStr(y23)), addcal(CStr(y24), CStr(y25))) 
YB22.Text = addcal(CStr(t22), CStr(y2)) 
YB33.Text = addcal(addcal(CStr(y13), CStr(y23)), addcal(CStr(y34), CStr(y3))) 
YB44.Text = addcal(addcal(CStr(y24), CStr(y34)), addcal(CStr(y45), CStr(y4))) 
YB55.Text = addcal(addcal(CStr(y25), CStr(y45)), CStr(y5)) 
 
YB12.Text = minuscal(CStr(y12.Text)) 
YB21.Text = minuscal(CStr(y12.Text)) 
YB13.Text = minuscal(CStr(y13.Text)) 
YB31.Text = minuscal(CStr(y13.Text)) 
YB43.Text = minuscal(CStr(y34.Text)) 
YB34.Text = minuscal(CStr(y34.Text)) 
YB24.Text = minuscal(CStr(y24.Text)) 
YB42.Text = minuscal(CStr(y24.Text)) 
YB25.Text = minuscal(CStr(y25.Text)) 
YB52.Text = minuscal(CStr(y25.Text)) 
YB23.Text = minuscal(CStr(y23.Text)) 
YB32.Text = minuscal(CStr(y23.Text)) 
YB45.Text = minuscal(CStr(y45.Text)) 
YB54.Text = minuscal(CStr(y45.Text)) 
YB14.Text = Space(10) 
YB41.Text = Space(10) 
YB15.Text = Space(10) 
YB51.Text = Space(10) 
YB35.Text = Space(10) 
YB53.Text = Space(10) 
 
YL12.Text = mcal(CStr(YB12), divcal(CStr(YB11))) 
YL13.Text = mcal(CStr(YB13), divcal(CStr(YB11))) 
YL21.Text = mcal(CStr(YB21), divcal(CStr(YB22))) 
YL23.Text = mcal(CStr(YB23), divcal(CStr(YB22))) 



YL24.Text = mcal(CStr(YB24), divcal(CStr(YB22))) 
YL25.Text = mcal(CStr(YB25), divcal(CStr(YB22))) 
YL31.Text = mcal(CStr(YB31), divcal(CStr(YB33))) 
YL32.Text = mcal(CStr(YB32), divcal(CStr(YB33))) 
YL34.Text = mcal(CStr(YB34), divcal(CStr(YB33))) 
YL42.Text = mcal(CStr(YB42), divcal(CStr(YB44))) 
YL43.Text = mcal(CStr(YB43), divcal(CStr(YB44))) 
YL45.Text = mcal(CStr(YB45), divcal(CStr(YB44))) 
YL52.Text = mcal(CStr(YB52), divcal(CStr(YB55))) 
YL54.Text = mcal(CStr(YB54), divcal(CStr(YB55))) 
 
 
End Sub 
 



Private Sub Cmditerate_Click() 
 
    Dim i As Integer 
 
If Len(Trim(KL2)) = 0 And Len(Trim(KL3)) = 0 Then 
If Len(Trim(KL4)) = 0 And Len(Trim(KL5)) = 0 Then 
    MsgBox "Please calculate the Line admittances and KLp's first" 
    Cmdlinead.SetFocus 
    Exit Sub 
End If 
End If 
lbe2.Clear 
lbe3.Clear 
lbe4.Clear 
lbe5.Clear 
 
     
    For i = 0 To 15 
' BUS 2 
        ss = conjcal(E2(i)) 
        tt = divcal(CStr(ss)) 
        ntt = mcal(CStr(KL2), CStr(tt)) 
        ntt2 = mcal(CStr(YL21), CStr(E1(0))) 
        ntt3 = mcal(CStr(YL23), CStr(E3(i))) 
        ntt4 = mcal(CStr(YL24), CStr(E4(i))) 
        ntt5 = mcal(CStr(YL25), CStr(E5(i))) 
     
        nt2 = addcal(CStr(ntt2), CStr(ntt3)) 
        nt4 = addcal(CStr(ntt4), CStr(ntt5)) 
        nt = addcal(CStr(nt2), CStr(nt4)) 
        ntm = minuscal(CStr(nt)) 
        ntt = addcal(CStr(ntt), CStr(ntm)) 
' NEW VOLTAGE 
        E2(i + 1) = ntt 
'CHANGE IN VOLTAGE 
        dn = E2(i) 
        dnt = minuscal(CStr(dn)) 
        DE2(i + 1) = addcal(CStr(ntt), CStr(dnt)) 
 ' accelerated value of bus voltage 
        aa = mcal(CStr(txtalpha), CStr(DE2(i + 1))) 
        E2(i + 1) = addcal(CStr(E2(i)), CStr(aa)) 
  
 
' BUS 3 
        tt = divcal(conjcal(E3(i))) 
        ntt = mcal(CStr(KL3), CStr(tt)) 
        ntt2 = mcal(CStr(YL31), CStr(E1(0))) 
        ntt3 = mcal(CStr(YL32), CStr(E2(i + 1))) 
        ntt4 = mcal(CStr(YL34), CStr(E4(i))) 
     
        nt2 = addcal(CStr(ntt2), CStr(ntt3)) 
        nt = addcal(CStr(nt2), CStr(ntt4)) 
        ntm = minuscal(CStr(nt)) 



        ntt = addcal(CStr(ntt), CStr(ntm)) 
' NEW VOLTAGE 
        E3(i + 1) = ntt 
'CHANGE IN VOLTAGE 
        dn = E3(i) 
        dnt = minuscal(CStr(dn)) 
        DE3(i + 1) = addcal(CStr(ntt), CStr(dnt)) 
 ' accelerated value of bus voltage 
        aa = mcal(CStr(txtalpha), CStr(DE3(i + 1))) 
        E3(i + 1) = addcal(CStr(E3(i)), CStr(aa)) 
     
     
' BUS 4 
        tt = divcal(conjcal(E4(i))) 
        ntt = mcal(CStr(KL4), CStr(tt)) 
        ntt2 = mcal(CStr(YL42), CStr(E2(i + 1))) 
        ntt3 = mcal(CStr(YL43), CStr(E3(i + 1))) 
        ntt4 = mcal(CStr(YL45), CStr(E5(i))) 
     
        nt2 = addcal(CStr(ntt2), CStr(ntt3)) 
        nt = addcal(CStr(nt2), CStr(ntt4)) 
        ntm = minuscal(CStr(nt)) 
        ntt = addcal(CStr(ntt), CStr(ntm)) 
' NEW VOLTAGE 
        E4(i + 1) = ntt 
'CHANGE IN VOLTAGE 
        dn = E4(i) 
        dnt = minuscal(CStr(dn)) 
        DE4(i + 1) = addcal(CStr(ntt), CStr(dnt)) 
 ' accelerated value of bus voltage 
        aa = mcal(CStr(txtalpha), CStr(DE4(i + 1))) 
        E4(i + 1) = addcal(CStr(E4(i)), CStr(aa)) 
     
      
' BUS 5 
        tt = divcal(conjcal(E5(i))) 
        ntt = mcal(CStr(KL5), CStr(tt)) 
        ntt2 = mcal(CStr(YL52), CStr(E2(i + 1))) 
        ntt3 = mcal(CStr(YL54), CStr(E4(i + 1))) 
     
        nt = addcal(CStr(ntt2), CStr(ntt3)) 
        ntm = minuscal(CStr(nt)) 
        ntt = addcal(CStr(ntt), CStr(ntm)) 
' NEW VOLTAGE 
        E5(i + 1) = ntt 
'CHANGE IN VOLTAGE 
        dn = E5(i) 
        dnt = minuscal(CStr(dn)) 
        DE5(i + 1) = addcal(CStr(ntt), CStr(dnt)) 
  
 ' accelerated value of bus voltage 
        aa = mcal(CStr(txtalpha), CStr(DE5(i + 1))) 
        E5(i + 1) = addcal(CStr(E5(i)), CStr(aa)) 



 
  ' Variations 
   
        dn = E1(i) 
        dnt = minuscal(CStr(dn)) 
        DE1(i + 1) = addcal(CStr(E1(i + 1)), CStr(dnt)) 
        dn = E2(i) 
        dnt = minuscal(CStr(dn)) 
        DE2(i + 1) = addcal(CStr(E2(i + 1)), CStr(dnt)) 
        dn = E3(i) 
        dnt = minuscal(CStr(dn)) 
        DE3(i + 1) = addcal(CStr(E3(i + 1)), CStr(dnt)) 
        dn = E4(i) 
        dnt = minuscal(CStr(dn)) 
        DE4(i + 1) = addcal(CStr(E4(i + 1)), CStr(dnt)) 
        dn = E5(i) 
        dnt = minuscal(CStr(dn)) 
        DE5(i + 1) = addcal(CStr(E5(i + 1)), CStr(dnt)) 
 
If i > 1 Then 
If Abs(cal(DE1(i + 1))) < Val(txttol.Text) And Abs(calj(DE1(i + 1))) < Val(txttol.Text) Then 
If Abs(cal(DE2(i + 1))) < Val(txttol.Text) And Abs(calj(DE2(i + 1))) < Val(txttol.Text) Then 
If Abs(cal(DE3(i + 1))) < Val(txttol.Text) And Abs(calj(DE3(i + 1))) < Val(txttol.Text) Then 
If Abs(cal(DE4(i + 1))) < Val(txttol.Text) And Abs(calj(DE4(i + 1))) < Val(txttol.Text) Then 
If Abs(cal(DE5(i + 1))) < Val(txttol.Text) And Abs(calj(DE5(i + 1))) < Val(txttol.Text) Then 
tolerlim = i 
MsgBox "Tolerance limit reached at Iteration  " & i 
   Exit For 
End If 
End If 
End If 
End If 
End If 
End If 
 
lbe2.AddItem E2(i) 
lbe3.AddItem E3(i) 
lbe4.AddItem E4(i) 
lbe5.AddItem E5(i) 
 
        
    Next 
E1new = E1(0) 
E2new = E2(i) 
E3new = E3(i) 
E4new = E4(i) 
E5new = E5(i) 
 
 
End Sub 
 



Private Function cal(zvalue) As Double 
    cal = Val(zvalue) 
End Function 
Public Function calj(zvalue) As Double 
    calj = 0 
    If InStr(zvalue, "j") > 0 Then 
      calj = Val(Mid(zvalue, InStr(zvalue, "j") + 1, Len(zvalue) - InStr(zvalue, "j"))) 
    End If 
    If InStr(Mid(zvalue & Space(20), 3, 30), "-") > 0 Then 
      calj = Val(-1 * Val(calj)) 
    End If 
End Function 
Public Function calmj(zvalue) As Double 
    calmj = 0 
    If InStr(zvalue, "j") > 0 Then 
      calmj = Val(Mid(zvalue, InStr(zvalue, "j") + 1, Len(zvalue) - InStr(zvalue, "j"))) 
    End If 
    If InStr(Mid(zvalue & Space(20), 3, 30), "-") > 0 Then 
      calmj = Val(-1 * Val(calmj)) 
    End If 
      calmj = Val(-1 * Val(calmj)) 
     
End Function 



Public Function divcal(zvalue As String) As String 
Dim p1, p2, p1new, p2new As Double 
 
    p1 = cal(zvalue) 
    p1new = p1 
    If p1 < 0 Then p1 = Val(-1 * Val(p1)) 
    p2 = calj(zvalue) 
    p2new = Val(-1 * Val(p2)) 
    If p2 < 0 Then p2 = Val(-1 * Val(p2)) 
    DD = Round(Val((p1 * p1) + (p2 * p2)), 7) 
     
    If DD <> 0 Then 
       p1 = Round(Val(p1new / DD), 7) 
       p2 = Round(Val(p2new / DD), 7) 
    End If 
    divcal = p1 & " + j" & p2 
    If p2 < 0 Then 
       p2 = Val(-1 * Val(p2)) 
       divcal = p1 & " - j" & p2 
    End If 
 
End Function 
 
 
 
 
 
Public Function odivcal(zvalue As String) As String 
    p1 = cal(zvalue) 
    If p1 < 0 Then p1 = Val(-1 * Val(p1)) 
    p2 = calj(zvalue) 
    If p2 < 0 Then p2 = Val(-1 * Val(p2)) 
    DD = Val((p1 * p1) + (p2 * p2)) 
    If DD <> 0 Then 
       p1 = Round(Val(p1 / DD), 4) 
       p2 = Val(p2 / DD) 
    End If 
    odivcal = p1 & " - j" & p2 
End Function 



Public Function addcal(zvalue As String, yvalue As String) As String 
    p1 = cal(zvalue) 
    p2 = calj(zvalue) 
    q1 = cal(yvalue) 
    q2 = calj(yvalue) 
    v1 = Round(Val(p1 + q1), 7) 
    v2 = Round(Val(p2 + q2), 7) 
    addcal = v1 & " + j" & v2 
    If v2 < 0 Then 
       v2 = Val(-1 * Val(v2)) 
       addcal = v1 & " - j" & v2 
    End If 
End Function 
 
 
 
 
Public Function minuscal(zvalue As String) As String 
    p1 = Val(-1 * cal(zvalue)) 
    p2 = Val(-1 * calj(zvalue)) 
    minuscal = p1 & " + j" & p2 
    If p2 < 0 Then 
       p2 = Val(-1 * Val(p2)) 
       minuscal = p1 & " - j" & p2 
    End If 
End Function 
 
 
 
Public Function conjcal(zvalue As String) As String 
    p1 = Val(cal(zvalue)) 
    p2 = Val(-1 * calj(zvalue)) 
    conjcal = p1 & " + j" & p2 
    If p2 < 0 Then 
       p2 = Val(-1 * Val(p2)) 
       conjcal = p1 & " - j" & p2 
    End If 
End Function 
 



Public Function mcal(zvalue As String, yvalue As String) As String 
    p1 = cal(zvalue) 
    p2 = calj(zvalue) 
    q1 = cal(yvalue) 
    q2 = calj(yvalue) 
    v1 = Round(Val(p1 * q1) - Val(p2 * q2), 7) 
    v2 = Round(Val(Val(p1 * q2) + Val(p2 * q1)), 7) 
    mcal = v1 & " + j" & v2 
    If v2 < 0 Then 
       v2 = Val(-1 * Val(v2)) 
       mcal = v1 & " - j" & v2 
    End If 
End Function 
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