
AAnnaallyyttiiccaall  SSoolluuttiioonnss  ffoorr  BBeeaarriinngg  CCaappaacciittyy  ooff  

  SSppeecciiaall  FFoooottiinnggss 

Submitted in Partial Fulfillment of the Requirement for the Award of Degree of 

MASTER OF ENGINEERING 

In 

CIVIL ENGINEERING  (STRUCTURAL ENGINEERING) 

Submitted by 
 
 

 SAURABH PRAKASH GUPTA 
(Roll No - 8814) 

 
UNDER THE GUIDANCE OF 

 
 
 
  

Prof. (Mrs) P. R. Bose                                            Prof. A. Trivedi 

Professor & HOD                                                                    Professor 
Department of Civil Engineering                                              Department of Civil Engineering 
Delhi College of Engineering                                                   Delhi College of Engineering 

 
 
 
 

 
 
 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 

DELHI COLLEGE OF ENGINEERING 

DELHI UNIVERSITY, DELHI 110042 

2004-2006 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Science is the topography of ignorance……    The best 
                          Part of our knowledge is that which teaches us where                 
                          knowledge leaves off and ignorance begins. 

 
                                                                   Oliver Wendell Holmes 

                                                                                  1809-1894 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CANDIDATE DECLARATION & CERTIFICATE 
 
 
 

This is certify that SAURABH PRAKASH GUPTA a student of final year M.E. Civil 

(Structural Engg.), Delhi College of Engineering, carried out his Thesis work on “Analytical 
Solutions for Bearing Capacity of Special Footings ” under the guidance of Prof. (Mrs) P.R. 

Bose, Professor & H.O.D and Prof. A. Trivedi, Professor, Department of Civil & Environmental 

Engineering, Delhi College of Engineering, Delhi, for the partial fulfillment of the requirement for the 

degree of Master of Engineering, Civil Engineering , specialization in Structural Engineering, from 

Delhi college of Engineering, Delhi. 

This is certified that the matter embodied in this Thesis has not been submitted elsewhere for 

the award of any other degree/diploma. 

 

 

Saurabh Prakash Gupta 

M.E. (Structural Engineering) 
Roll No. 8814 

 

This is to certify that above statement made by candidate is true to the best of our knowledge. 

 

 

Prof. (Mrs) P.R. Bose             Prof. A. Trivedi 

Professor & HOD                                                               Professor 
Dept. of Civil Engineering,                                             Dept. of Civil Engineering, 
Delhi College of Engineering.                                            Delhi College of Engineering. 
 
 
 
 
 



AKNOWLEDGEMENT 

 
I would like to take this opportunity to thanks all those who have been a constant source of inspiration 

and have helped in the exercise of preparing the present study. 

 

I express my sincere gratitude to Prof. (Mrs) P. R. Bose and Prof. A. Trivadi, my Project Guides, 

for their constant inspiration, encouragement, guidance and constructive criticism and judicious 

evaluation that led to the compilation of this Thesis work. It was due to their constant help and 

assistant that this thesis work achieved its present shape. 

I express my sincere thanks to all my friends and staff of Civil Engineering Department of Delhi 

College of Engineering, who left no stone unturned whenever I needed their assistance. 

 

 

 

Place: D.C.E., Delhi 

Date: 

                                                                              

SAURABH PRAKASH GUPTA 

M.E. (Structural Engineering) 

Roll No.-8814 

 

 

 
 
 
 
 
 



ABSTRACT 
 
 
   The analytical solutions for the bearing capacity of circular footing on sand are analyzed for two 

special types of footings, namely spudcan footing and skirted circular footing. 

 

    The bearing capacity solutions utilized limit-equilibrium method proposed by Terzaghi (1943) and 

numerical solutions found by Kumbhojkar (1993). The numerical values of the bearing capacity 

factor for special footings are based upon the failure surface restriction by spudcan footing and by 

the skirted footing. 

 

   The solutions are presented in the graphical form. The analysis of the result indicates that there is a 

significant improvement in the bearing capacity using spudcan and skirted footings with Kumbhojker 

assumptions. The experimental data of the skirted footings by other investigators also indicate an 

increase in ultimate bearing capacity but the magnitude differs. 

 

Further the extent of increase in bearing capacity factors using spudcan and skirted footing provides a 

scope for fresh look on the application of Terzaghi and Kumbhojker approaches and its assumptions. 
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NOMENCLATURE 
 
 

φ = Angle of internal friction of soil. 
 
δ = Angle of wall friction. 
 
γ = Unit weight of soil in KN/m3  

 
α = Angle of inclination of sides of wedge to the horizontal surface of foundation. 
 
θ = Angle of log-spiral. 
 
σ’ = Effective normal stress. 
 
ζγ = Shape factor for circular footing. 
 
Ω = Cone angle in Spudcan footing. 
 
β = Angle of inclination of the soil above the ground surface. 
 
c = Cohesion of soil. 
 
q = Surcharge. 
 
Nq, Nc, and Nγ = Dimensionless bearing capacity factor providing the contribution of c, q, and γ. 
 
B = Width of footing. 
 
D = Diameter of footing. 
 
h = Height of cylindrical shell. 
 
qu = Ultimate bearing capacity of footing. 
 
Qu = Ultimate bearing capacity of footing with soil confinement. 
 
qo = Average pressure over the footing contact area. 
 
r, r1, and ro = Radius of log-spiral. 
 
Df = Depth of foundation. 
 
Ppq, Ppc, and Ppγ = Passive force with contribution of q, c, and g respectively. 
 



Pp = Passive force. 
 
Kpγ = Passive force coefficient. 
 
d = diameter of cylindrical shell. 
 
Nc’, Nq’ and Nγ’ = Modified bearing capacity factors (for local shear faliur). 
 
L = Length of continuous footing. 
 
sγ, sc, and sq = Shape factor of footing 
 
dq, dγ, and dc = Depth factor of footing. 
 
ic, iq, and iγ = Inclination of footing. 
 
gc, gq, and gγ = Slope factor of footing. 
 
bc, bq, and bγ = Tilting factor of footing. 
 
dp = Differential reactive pressure on the element length ds of the failure surface. 
 
R = Resultant reaction on failure surface. 
 
d/D = Ratio of the diameter of cylindrical shell to the diameter of footing. 
 
h/D = Ratio of the height of cylindrical shell to the diameter of footing. 
 
BCR = Bearing capacity ratio, Qu/qu. 
 
Ka = Rankine and Coulomb active earth pressure coefficient. 
 
Kp = Rankine and Coulomb passive earth pressure coefficient. 
 
Pp(1), Pp(2), and Pp(3) = Rankine passive force. 
 
F = Resultant frictional resistant force. 
 
Hd = Height over which the Rankine Passive force acts. 
 
W = Weight of wedge. 
 
lp, lw, and lR = lever arms. 
qc, qq, and qγ = The ultimate load per unit area of foundation for a soil with cohesion , friction and 
weight. 
 
Dr = Relative density. 
 



Cu = Uniformity coefficient. 
 
Cc = Coefficient of curvature. 
 
UPVC = Unplasticized polyvinyl chloride. 
 
V = vertical load. 
 
Ap = Plane area of contact of Soudcan footing. 
 
Bp = Penitration diameter of Spudcan footing. 
 
γ’ = soil effective unit weight. 
 
Dp = Penetration depth of Spudcan footing. 
 
f = Circumferential tensile stress( or hoop stress). 
 
p = Internal pressure in shell. 
 
t = thickness of cylindrical shell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER-1 
 

INTRODUCTION 
 
 

 
        The bearing capacity of shallow footing during the last fifty years has been extensively studied by 

several investigators [Prandtl ,1920; Reissner, 1926; Terzaghi, 1943; Meyerhof, 1951; Caquot and 

Kerisel, 1953; De Beer, 1963; Baki and Beik, 1970; Hansen, 1970; Vesic, 1973; Chen, 1975; Ingra and 

Baecher, 1983; Kumbhojkar, 1993; Zadroga, 1994; Dewaiker and Mohapatro, 1994; Frydman and 

Burd, 1997; Michalowki, 1997; Paolcci and Pecker, 1997; Soubra, 1999; Perkins and Madson, 2000 

amongst others]. The bearing capacity solutions use the slip-line method, limit analysis method, finite 

element method, and limit equilibrium method. Limit equilibrium method, which is adopted by 

Terzaghi. Only numerical values of the bearing capacity factors differ accordingly to the specific 

assumption or approximation adopted in the solutions. Further more to account the original theory 

(e.g., footing shape; depth and tilts; rigidity and layering of solution of soil below a footing; inclination 

of applied loads.) a series of correction factors are applied to the Nc, Nq and Nγ terms. This trend of 

enhancing the accuracy of the bearing capacity calculation without altering the basic equation is a 

proof of overwhelming acceptance of Terzaghi’s approach regardless of the concern about its 

theoretical correctness. This thesis deals with the theoretical prediction of the ultimate bearing capacity 

of the special footings, 1. Spudcan footing and 2. Skirted footing. 

 

   In deep offshore water, the growing use of mobile Jackup units on Spudcan Footing has been raised a 

great deal of concern about the overall stability of jackup unit in hostile environmental forces. Mobile 

Jackup units consist of a floatable drilling platform supported on three or more legs, which can be 

raised or lowered. A detailed description of the installation procedure is given by Tan (1990). The 

platform legs can either be supported separately or they can be supported on a single shared mat. Most 

modern jackup platforms are of the former type and have approximately conical shaped footing with a 

protruding tip at the center. These are commonly referred as spudcan footing. 

 

 



 

 

 

 

 

The bearing capacity of spudcan footing increases with the depth of penetration below the seabed. The 

increase of bearing capacity with footing embedment is an important factor, since ever a small 

embedment can significantly increases the bearing capacity of such offshore footing. However this is 

not usually the case in coarse materials as penetration depth are typically very small. 

 

The bearing capacity solution of Meyerhof (1953), Hansen (1970) and Vesic (1975) are commonly 

used to determine the ultimate bearing capacity of plane strain footing. These soil are modify by 

introducing shape factors to cover circular geometries [ Hambly 1992; Dean et al. 1993]. In the case of 

spudcan footing, their embedded circular area in plane (i.e. plane area at ground surface) is used for the 

bearing capacity calculation. In order to investigate the applicability of the bearing capacity solutions 

to spudcan footing, analytical studied of conical shape footing using the Terzaghi’s approach has been 

presented in the chapter three, by changing the cone angle (e.g., 0o. 5o, 10o, 15o). Also it is shone in the 

study that spudcan footing can be treated as equal cones enclosing the same volume. As per the past 

studies the load-displacement response of a spudcan footing and equal volume cone is almost equal. 

 



Raft foundations are widely used in supporting structures for many reasons such as weak soil 

conditions or heavy columns loads. In many cases, some problems arise such as the construction is 

adjacent to an old building and/or the foundation depth is so great that the excavation needs to be 

braced during foundation construction (e.g., basement excavation). One of the available solutions is to 

sheet piles to support the excavation sides during construction. Due to the difficulty of removing these 

piles, they become part of the permanent structure and two problems arise. The first problem deals 

with the structural analysis of the raft if the piles are used as end supports for the raft. The second 

problem is the effect of these piles on the lateral movement of the soil underneath the raft and the 

effect of this confinement on the bearing capacity of the soil. While there are several solutions for the 

first problem, such as isolating the raft from the piles, the confining effect of these piles on the raft 

behavior is not clearly understood. Looking to the problem in a smaller scale, it can be modeled as a 

circular footing supported on a soil, which is surrounded by a confining cylinder. The strength of 

confined sand was studied by Rajagopal et al. (1999). They carried out a large number of triaxial 

compression tests to study the influence of geocell confinement on the strength and stiffness behavior 

of granular soils. Geocells fabricated by hand using different geotextiles were used to investigate the 

effect of the stiffness of the geocell on the overall performance of geocell–soil composite. 

 

Several investigators have reported significant effect of soil confinement by using horizontal soil 

reinforcement to increase the bearing capacity of supporting soils. This was achieved by placing layers 

of geogrid at different depths and widths under the footing. The soil reinforcement is not only placed 

horizontally but also can be placed vertically besides the footing to resist the lateral deformation of the 

soil. The use of vertical reinforcement along with horizontal reinforcement was investigated as well. 

The reinforcement consists of a series of interlocking cells, constructed from polymer geogrids, which 

contain and confine the soil within its pocket geogrid. Rea and Mitchell (1978) conducted a series of 

model plate loading tests on circular footing supported over sand-filled square-shaped paper grid cell 

to identify different modes of failure and arrive at optimum dimensions of the cell. Dash et al. 

(2001a,b) performed an experimental study on the bearing capacity of a strip footing supported by a 

sand bed reinforced with a geocell mattress. Critical dimensions of reinforcement and depth of 

placement for mobilizing maximum bearing capacity improvement were presented. 

 

 

 

 



The aim of this research is to investigate the effect of soil confinement by sheet piles on the behavior 

of soil foundation system. Also, the idea of improving the footing response by using confining cylinder 

around individual footing. To achieve this objective the analytical solution has been presented in the 

upcoming chapters four. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER –2 

 

LITERATURE REVIEW 

 

 

 
   Foundations, like the structures or equipment they support, are usually designed to meet certain 

serviceability and strength criteria. Serviceability conditions dictate that the foundation should 

perform such that under normal operating loads the structure or equipment it supports may fulfill its 

design purpose. These serviceability limitations are typically described by settlement or other motion 

limitations. The strength criteria have the purpose of ensuring that the foundation has sufficient 

reser4ve strength to resist the occasionally large load that may be experienced due to extreme 

environmental forces or other sources. In most, but not all cases, the serviceability or settlement 

criteria and the strength criteria may be treated as unrelated design tasks. Serviceability is a typically 

a long-term consideration for the foundation that may depend on time-dependent consolidation 

characteristics. Foundation strength, or bearing capacity, may be a short-termed problem such as an 

embankment construction on an untrained clay foundation or a long-term problem in which the 

maximum foundation load may appear at some unknown time. 

 

    A shallow foundation may be defined as one in which the embedment depth of the foundation is 

less than its least characteristic dimension. Usually, the bearing capacity of a foundation is 

determines by limit equilibrium, limit analysis, or slip-line solutions. The Varity of solutions 

available for a particular problem may lead to some uncertainty about which is the more appropriate 

procedure. In the following, the basic of these solution procedures will be summarized and method 

for their use presented. 

 

 



2.1 METHODS OF ANALYSIS 

At present time, the analysis of foundation can be made by employing one of the following four 

widely used methods: 

 

1. Slip-line method 

2. Limit equilibrium methods 

3. Limit analysis methods 

4. Finite-element methods 

 

The first three methods are used in association with stability problems where the bearing capacity is 

sought. If, instead, the foundation settlement or stress distribution or stress distribution within the 

soil mass are of prime interest, then the fourth method must be used. Brief description of the first 

three procedures are given here. 

 

The slip-line method involves construction of a family of shear or slip lines in the vicinity of footing 

load. These slip-lines, which represent the direction of maximum shear stress, form a network known 

as slip-line fields. The plastic slip-line fields are bounded by regions that are rigid. For plane 

equilibrium and one equation for the yield conditions available for solving for the three unknowns 

stresses. These equations are written with respect to curvilinear coordinates that coincide with slip-

lines. If the foundation boundary conditions are given only in terms of stresses, these equations are 

sufficient to give the stress distribution without any references to the stress-strain relationship. 

However, if displacement or velocity are specified over part of the boundary, then the constitutive 

relation must be used to relate the stresses to the strain and the problem becomes much more 

complicated. Although solutions may be obtained analytically, numerical and graphical methods are 

often found necessary (see Sokolovskii, 1965; Brinch Hansen, 1961, 1970). 

 

The method described in the well-known textbook by Terzaghi (1943) and by Taylor (1948), or the 

method developed by Meyerhof (1951) are all classified here as method of limit equilibrium. They 

can best be describing as approximate approach to constructing the slip-line fields. The solution 

requires that assumptions be made regarding the shape of the failure surface and the normal stress 

distribution along such a surface. The stress distribution usually satisfies the yield conditions and the 



equation of static equilibrium in an overall sense. By trial and error, it is possible to find a most 

critical location of the assumed slip surface from which the capacity of the footing can be calculated. 

 

In addition to the yield condition, the limit analysis methods consider the soil stress-strain 

relationship in an idealized manner. This idealization, termed normality or the flow rule establishes 

the limit theorem on which limit analysis is based. The methods offer an upper and lower bound to 

the true solution. The upper-bond solution is calculated from a kinematically admissible velocity 

field that satisfies the velocity boundary conditions and is continuous except at certain discontinuity 

surface where the normal velocity must be continuous, but the tangential velocity may undergo a 

jump on crossing a boundary. Similarly, the lower-bond solution is determined from a statically 

admissible stress field that satisfy the stress boundary conditions, is in equilibrium, and nowhere 

violates the failure condition. If the two solutions coincide, then the method give the true answer for 

the problem considered. A good treatment of the subject is given by Chen (1975) and Chen and Liu 

(1990). 

 

The method describe above are related in a manner. Most of the slip-line solution give kinematically 

admissible velocity fields and thus can be considered as an upper-bond solution provided that the 

velocity boundary conditions are satisfied. If the stress field within the plastic zone can be extended 

into the rigid region so that the equilibrium and yield conditions are satisfied, then the solutions may 

be the exact solutions. Shield (1995) has shown this for many cases. The extensive work that has 

been done on the stability analysis, including using the slip-line methods, is summarized in the book 

by Sokolovskii (1965). 

 

Limit equilibrium method utilized the basic philosophy of the upper-bound rule, that is, a failure 

surface is assumed and the least answer is sought. However, it gives no consideration to soil 

kinematics and the equilibrium conditions are satisfied only in limited sense. Therefore, limit 

equilibrium solutions are not necessarily an upper bound or lower bound. However, any upper-bound 

solution from limit analysis will obviously be a limit equilibrium solution. Nevertheless, the method 

has been the most widely used owing to its simplicity and reasonably good accuracy. 

 

The limit analysis method itself has many striking features that should appeal to researchers, as well 

as engineers. The problem formulation is generally simple and an analytically solution is always 

assured. In simple problems, it has been shown to yield reasonable answer when compared to limit 



equilibrium solutions. Its capability of providing a mean for bounding the true solution is 

noteworthy. Finally, the method is efficient and can be extended to solve more difficult footing 

problems for which other method is efficient and can be extended to solve more difficult footing 

problem for which other method have so far failed. 

 

2.2 SOIL GOVERNING PARAMETERS 
The bearing capacity of footing depends not only on the mechanical properties of the soil (cohesion c 

and friction angle φ), but also on the physical characteristics of the footing (width B, depth D, length 

L, and roughness δ). For a coulomb material, Cox (1962) has shown that for a smooth surface 

footing bearing on a soil subjected to no surcharge, the fundamental dimensionless parameters 

associated with the stress characteristics equations are φ and G = γB/2c, where γ is the unit weight of 

the soil. When G is small, the soil behaves essentially as a cohesive weightless medium. If G is 

large, soil weight rather than cohesion is a principal source of bearing strength. For most practical 

cases, one can expect that φ lies in the range of 0o to 40o and G will range from 0.1 to 1.0. These 

limits assume that c ranges from 500 to 1000 psf, and that the footing width ranges from 3 to 10 ft. 

the dimensionless bearing capacity q/c depends only on the angle of internal friction of the soil φ, the 

dimensionless soil weight parameter G, footing base friction angle δ, surcharge depth ratio D/B, and 

the base dimensions B and L. 

 

For the most part, the bearing capacity of footing on soils have in the past been calculated by a 

superposition method, suggested by Terzaghi (1943) in which the contributions to the bearing 

capacity from different soil and loading parameters are summed. These contributions are represented 

by the expression, qo = c Nc + qNq + γBNγ/2, where qo is the average pressure over the footing 

contact area A, q is the overburden or surcharge pressure at the foundation base and the bearing 

capacity factors Nc, Nq and Ng represents the effect due to soil cohesion, surface loading, and soil 

unit weight, respectively. Above equation is valid for strip footing subjected to vertical center loads. 

However, other geometries are common. The parameters N are all functions of the angle of internal 

friction φ. Terzaghi’s quasiempirical method assumed that these effects are directly superposable, 

where the soil behavior in the plastic region is nonlinear and thus superposition does not hold for 

general soil bearing capacities. The reason for using the simplified (superposition) method is largely 

the mathematical difficulties encountered when using conventional equilibrium method. 

 



2.3 TERZAGHI’S BEARING CAPACITY THEORY 
In 1948, Terzaghi proposed a well-conceived theory to determined the ultimate bearing capacity of 

shallow rough rigid continuous (strip) foundation supported by a homogeneous soil layer extending 

to a great depth. Terzaghi defined a shallow foundation as a foundation where the width, B, is equal 

to or less than its depth, Df. The failure surface in soil at ultimate load (that is, qu, per unit area of the 

foundation) assumed by Terzaghi is shown in Fig. 2.1. Referring to Fig. 2.1, the failure area in the 

soil under the foundation can be divided into three major zones. They are: 

1. Zone abc. This is a triangular elastic zone located immediately below the bottom of the 

foundation. The inclination of sides ac and bc of the wedge with the horizontal is α = φ (soil 

friction angle). 

2. Zone bcf. This zone is the Prandtl’s radial shear zone. 

3. Zone bfg. This zone is the Rankinr passive zone. This slip lines in this zone make angles of 

±(45-φ/2) with the horizontal. 

Note that a Prandtl’s radial shear zone and a Rankine passive zone are also located to the left of the 

elastic triangular zone abc; however, they are not shown in Fig. 2.2. 

Line cf is an arc of a log spiral, defined by the equation  

 r = ro eθ tanφ                    (2.1) 

Lines bf and fg are straight lines. Lines fg actually extends up to the ground surface. Terzaghi 

assumed that the soil located above the bottom of the foundation could be replaced by surcharge q = 

γ Df. 

    B 

 
 
 qu 
 q = γ Df 
 
a                                b 
                       φ                                    45-φ/2                                           45-φ/2 g 
  
               c 
 f               soil 
                                                                                                                             Unit weight = γ 
                                                                                                                             Cohesion = c 
                                                                                                                             Friction angle = φ 
 

Fig. 2.1, failure surface in soil at ultimate load for a continuous rough rigid foundation as 
assumed by Terzaghi 

 



 

The shear strength, s, of the soil can be given as  

s = σ’ tanφ + c                    (2.2) 

Where σ’ = effective normal stress 

            c = cohesion 

 

The ultimate bearing capacity, qu, of the foundation can be determined if we considered faces ac and 

bc of the triangle wedge abc and obtained the passive force on each face requires to cause failure. 

Note that the passive force Pp will be a function of the surcharge q = γ Df. Cohesion c, unit weight γ, 

and angle of friction of the soil φ. So, referring to Fig. 2.2. 

 
                        
 Ppc 
  
 
 q = γ Df 
 Ppq 
               Ppγc                 b  j 
                                                          45-φ/2                                           45-φ/2 g 
  
        h/2     h 
h/3       c                                                                   f                

φ 
 
 
 
 

Fig. 2.2, Passive force on the face bc of wedge abc shone in figure 2.1 
 

The passive force Pp on the face bc per unit length of the foundation at right to the cross section is  

Pp = Ppq + Ppc + Ppγ                         (2.3) 

Where  Ppq, Ppc and Ppγ = passive force contributions of q, c and γ, respectively. 



It is important to note that the directions of Ppq, Ppc and Ppγ  are vertical, since the face bc makes an 

angle φ with the horizontal, and Ppq, Ppc and Ppγ  must make an angle φ to the normal to bc. In order to 

obtain Ppq, Ppc and Ppγ , the method of superposition can be used; however, it will not be an exact 

solution. 

Using the equilibrium analysis, Terzaghi express the ultimate bearing capacity in the form  

qu = cNc + qNq + ½ γBNγ  (strip foundation)               (2.4) 

Where,   

           c = cohesion of soil 

           γ = unit weight of soil 

           q = γ Df 

           Nc, Nq and Nγ = bearing capacity factors that are Nondimensional and only               function 

of the soil friction angle, φ 

The bearing capacity factors, Nc, Nq and Nγ are defined by  

Nq =  e2(3π/4 – φ/2)tanφ   2 cos2 (45+φ/2)                                         (2.5) 

 
Nc =  cotφ (Nq – 1)                   (2.6) 
 
Nγ =  ½ (Kpγ /cos2φ – 1) tanφ   (2.7) 
 
 
Where , Kpγ  = passive pressure coefficient  

The variation of bearing capacity factors defined by Eqs. 2.5, 2.6 and 2.7 are given in Table-2.1 

 

 

 

 

 



Table- 2.1 

Bearing-capacity factor for Terzaghi equations 

Value of Nγ for f of 34 and 48o are orignal Terzaghi value and used to back-compute Kpγ 

φ, deg Nc Nq Nγ Kpγ 

0 

5 

10 

15 

20 

25 

30 

34 

35 

40 

45 

48 

50 

5.7 

7.3 

9.6 

12.9 

17.7 

25.1 

37.2 

52.6 

57.8 

95.7 

172.3 

258.3 

347.5 

1.0 

1.6 

2.7 

4.4 

7.4 

12.7 

22.5 

36.5 

41.4 

81.3 

173.3 

287.9 

415.1 

0.0 

0.5 

1.2 

2.5 

5.0 

9.7 

19.7 

36.0 

42.4 

100.4 

297.5 

780.1 

1153.2 

10.8 

12.2 

14.7 

18.6 

25.0 

35.0 

52.0 

59.5 

82.0 

141.0 

298.0 

650.6 

800.0 

 

 

For estimating the ultimate bearing capacity of square or circular foundation Eq. (2.4) may be 

modified to (square footing) (circular footing) 

 

qu = 1.3 cNc + q Nq + 0.4 γ B Nγ    (square footing)            (2.8) 

And 

                      qu = 1.3 cNc + q Nq + 0.4 γ B Nγ      (circular footing)       (2.9) 

 



In Eq.(2.8), B equals the dimensions of each side of the foundation; in Eq. (2.9), B equals the 

diameter of the foundation. 

For foundations that the local shear failure mode in soil, Terzaghi suggested modifications to Eqs. 

(2.4), (2.8) and (2.9) as follows: 

 

         qu = 2/3 cN’c + q N’q + ½  γ B N’γ            (strip foundation )              (2.10) 

         qu = 0.867 cN’c + q N’q + 0.4  γ B N’γ      (squar foundation)             (2.11) 

         qu = 0.867 cN’c + q N’q + 0.3  γ B N’γ      (circular footing)                (2.12) 

 

N’c,  N’q  and N’γ  are the modified bearing capacity factors. They can be calculated by using the 

bearing capacity factor equations (for   N’c,  N’q  and N’γ  ) by replacing φ by  

φ’ = tan-1 (2/3 tan φ). 

Terzaghi’s bearing capacity equation have now been modified to take into account the effects of the 

foundation shape (B/L), depth of embedment (Df), and the load inclination. This is given in tables in 

coming pages. Many design engineers, however, still use Terzaghi’s equation, which provides fairly 

good results considering the uncertainty of the soil conditions at various sites. 

 

2.3.1 ASSUMPTION AND LIMITATIONS IN TERZAGHI’S      ANALYSIS 

1. The soil is homogeneous and isotropic and its shear strength is represented by Coulomb’s 

equation. 

2. The strip footing has a rough base, and the problem is essentially two-dimensional. 

3. The elastic zone has straight boundaries inclined at α = φ to the horizontal, and the plastic 

zones fully develop. 



4. Pp consists of three components, which can be calculated separately and added, although the 

critical surface for these components are not identical. 

5. Failure zones do not extend the horizontal plane through the base of the footing, i.e. the shear 

resistance of soil above the base is neglected and the effect of soil around the footing is 

considered equivalent to a surcharge σ = γ D. 

 LIMITATIONS  

1. As the soil compressed, φ changes; slight downward movement of footing may not develop 

fully the plastic zones. 

2. Error due to assumption 4 is small and on the safe side. 

3. Error due to assumption 5 increases with depth of foundation, and hence the theory is suitable 

for shallow foundation only.  

 

2.4 MEYERHOF’S BEARING CAPACITY EQUATION 
Meyerhof (1951, 1963) proposed a bearing capacity equation similar to that of Terzaghi, but 

included a shape factor sq for the depth term Nq. He also included depth factor di and inclination 

factor ii for cases where the footing load is inclined from the vertical. This procedure equation of the 

general form shown on Table 2.1, with N factors in Table 2.4. 

 
Meyerhof obtained his N factor by making trials of the zone abd’ with arc ad’, which includes an 

approximate for shear along cd of Fig 2.3a. The shape, depth and inclination factors in Table 2.3 are 



from Meyerhof (1963) and are somehow different from his 1951 valued. The shape factors do not 

greatly differ from those given by Terzaghi except for the addition of sq. observing that the shear 

effect along cd of Fig. 2.3a was being somewhat ignored, Meyerhof proposed depth factor di. 

 

He also proposed using inclination factors to reduce the bearing capacity when the load resultant was 

inclined from the vertical by the angle θ. 

 

Up to about D = B of Fig. 2.3a Meyerhof’s qu is not greatly differ from the Terzaghi value. The 

difference is more pronounced at larger D/B ratios. 

Table 2.2 Bearing capacity equations by several authors indicated 

TERZAGHI : 

qu = cNc +qNq + 0.5γBNγ sγ 

                                                                               Nq = a2 / 2cos2(45+φ/2) 

                                                                                 a  = e(0.75π-φ/2)tanφ 

                                                                               Nc = (Nq – 1)cotφ 

                                                                               Nγ = tanφ/2 (Kpγ/cos2φ   - 1) 

   For:     strip     round      square 

        sc = 1.0        1.3          1.3  

        sγ = 1.0        0.6          0.8 

 

MEYERHOF : 

Vertical load : qu = cNc sc dc + qNq sq dq + 0.5γBNγ sγ dγ 

Inclined load: qu = cNc dc ic + qNq dq iq + 0.5γBNγ dγ iγ 

                                                                             Nq = eπtanφ tan2 (45+φ/2) 

                                                                             Nc = (Nq – 1) cotφ 

                                                                             Nγ = (Nq – 1) tan (1.4φ) 

 



HANSEN : 

   General :   qu = cNc sc dc ic gc bc + qNq sq dq iq gq bq + 0.5γBNγ sγ dγ iγ gγ bγ 

           When   φ = 0 

             Use    qu 5.14su(1 + s’c + d’c – I’c –b’c – g’c ) + q 

                                                                          Nq = same as Meyerhof above 

                                                                          Nc = same as Meyerhof above 

                                                                          Nγ = 1.5 (Nq – 1) tan φ 

VESIC: 
Use Hansen’s equation above 

           Nq = same as Meyerhof above 

           Nc = same as Meyerhof above 

           Nγ = 2(Nq + 1) tan φ 

 

Table 2.3 Shape, Depth and inclination factors for the Meyerhof  

bearing –capacity equation of Table –2.2 
 

Factors           value      for  

Shape :                     sc = 1 + 0.2 Kp B/L      Any φ  

                                            sq = s = 1 + 0.1 Kp B/L                    φ > 10o 

                                            sq = sγ = 1                                         φ = 0 

Depth:                                dc = 1 + 0.2 (Kp)1/2   D/B                  Any φ 

                                            dq = dγ = 1 + 0.1 (Kp)1/2 D/B             φ > 10 

                                            dq = dγ = 1                                         φ = 0 

Inclination:                         ic = iq = ( 1 – θo/90o)2                       Any φ 

                                             iγ = ( 1 – θo/φo)2                               φ>0 

                                             iγ = 0                                                 φ = 0 

Kp = tan2 (45 + φ/2) 

θ = angle of resultant measured from vertical without a sign 

 

 

 



2.5 HANSENE’S BEARING CAPACITY METHOD 

 

Hansen (1970) proposed the general bearing capacity case and N factor equation shown in Table 2.2. 

It can be readily seen that this equation is a further extension of the earlier Meyerhof (1951) work. 

Hansene’s shape, depth, and other factors making up the general bearing capacity equation proposal 

in 1957 and 1961. The extension includes a factor for the footing being tilted from the horizontal bi 

and for the possibility of the footing being on a slope gi. Table 2.4 give selected N values for the 

Hansen equation together with the more difficult shape and depth factor aids. 

 

Any of the equation not subscripted with a (V) may be used as appropriate (limitations and 

restriction are noted in the Table). When the value used in the inclination equation has the horizontal 

load component H parallel to B one should use B’ with the Nγ term in the bearing capacity equation 

and if H is parallel to L use L’ with Nγ. A further restriction is ii>0 since a value of ii ≤ 0 is an 

unstable footing that requires resizing before proceeding. For a footing on clay with φ = 0 compute ic 

using H parallel to B and/or L as appropriate and note it is a subtractive constant in the modified 

bearing capacity equation. 

We note that when the base is tilted V and H are perpendicular and parallel, respectively, to the base 

as compared with when it is horizontal. 

 

For footing on a slope gi factor are used to reduce the bearing capacity, however, these- as with the 

factor of Table 2.5 should be used cautiously as here is little experimental data available other than 

the work of Shields et. al. (1977) who used model footing on a sand box slope. It is difficult to see a 

field case where one would use a spread footing in a cohesionless soil slope unless the slope angle β 

is very and the footing depth D very large. In any case, since there are already shear stresses in the 



slop soil (holding the slop in place) one should not adjust any φtr to the large plane strain value and, 

additionally, one should use a large safety factor. 

 

The Hansen equation implicitly allows ant D/B and thus can be used for both shallow (footing) and 

deep (piles, drill caisson) bases. Inspection of the qNq term implies a great increase in qult with great 

depth. To place modest limits on this Hansen used 

 
dc = 1 + 0.4D/B 
 D/B ≤ 1 
dq = 1 + 2tanφ(1 – sinφ)2 D/B 
 
dc = 1 + 0.4 tan-1 D/B 
     D/B > 1 
dq = 1 + 2tanφ(1 – sinφ)2 tan-1D/B 
 
 

This gives a discontinuity at D/B = 1; however, note the use of ≤ and>. For f = 0, we have 

D/B =      0             1           1.1          2          5          10         20          100 
dc’   =      0          0.40         0.33      0.44     0.55      0.59      0.61        0.62 
 
 
We can see that use of tan-1 D/B for D/B > 1 controls the increase in dc and dq in line with 

observation that qult appears to reach some limiting value at some depth ratio D/B where this value of 

D is often termed the critical depth.  

 

2.6 VESIC’S BEARING CAPACITY EQUATIONS 

The Vesic (1973, 1974) procedure that is essentially the Hansen method will be briefly noted. 

Essentially differences in this method are in using a slight difference Nγ (see table 2.4) and a 

variation on some of Hansen’s ii, bi, and gi factor as noted with the subscript (V) in Table 2.5. Any of 

the factor not subscribed with an (H) can be used for a Vesic solution. Note that some of the Vesic 



factors are less conservative than those of Hansen and since none of the methods have been 

extensively verified with full-scale field test one should exercise caution in their use. 

 

Table 2.4  

Bearing-capacity factors for the Meyerhof, 1951; Hansen, 1970; and Vesic, 1973  

Bearing-capacity equations 

Note that Nc and Nq are same for all three methods; subscript identify auther for Nγ 

φ Nc Nq Nγ(H) Nγ(M) Nγ(V)

0 

5 

10 

15 

20 

25 

26 

28 

30 

32 

34 

36 

38 

40 

45 

50 

5.14 

6.49 

8.34 

10.97 

14.83 

20.71 

22.25 

25.79 

30.13 

35.47 

42.14 

50.55 

61.31 

75.25 

133.73 

266.50 

1.0 

1.6 

2.5 

3.9 

6.4 

10.7 

11.8 

14.7 

18.4 

23.2 

29.4 

37.7 

48.9 

64.1 

134.7 

318.5 

0.0 

0.1 

0.4 

1.2 

2.9 

6.8 

7.9 

10.9 

15.1 

20.8 

28.7 

40.0 

56.1 

79.4 

200.5 

567.4 

0.0 

0.1 

0.4 

1.1 

2.9 

6.8 

8.0 

1.2 

5.7 

22.0 

31.1 

44.4 

64.0 

93.6 

262.3 

871.7 

0.0 

0.4 

1.2 

2.6 

5.4 

10.9 

12.5 

16.7 

22.4 

30.2 

41.0 

56.2 

77.9 

109.3 

271.3 

761.3 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
2.7 NUMERICAL EVALUATION OF TERZAGHI’S Nγ  
 
      
While developing the solution, Eq.2.4 and Fig.2.4, Terzaghi (1943) makes a series of assumptions 

(e.g., replacement of the soil located above the base of the footing by a uniform surcharge, limit 

equilibrium), separates contributions of c, q, and γ, and calculates q, by superposition. Key details of 

his procedure relevant to the present paper are briefly summarized here. Fig. 2.5(a) (after Terzaghi 

1943) shows a shallow, strip footing with rough base resting on a horizontal surface. The soil below 

the footing is in a state of plastic equilibrium under general shear failure. Terzaghi uses Prandtl's 

mechanism to divide the body of soil iecdh into an elastic zone abc, I, and symmetric radial shear, II, 

and passive Rankine zones, III, and assumes that the radial shear zone is bounded by a log-spiral, r = 

roeθtanφ (cd in Fig. 2.5) failure surface. While calculating Arc and Nq, the log spiral is unique. 

 

It is centered at the footing edge (point a in Fig. 2.5) and spans between ac and ad, which, respectively, 

make angles φ and 45 - φ/2 with the horizontal. Closed-form expressions for Nc and Nq are therefore 

easily obtained by taking moments of the forces acting on the block acdf about a. This log spiral 

proves unsatisfactory for calculating Nγ. Terzaghi therefore assumes that the center of the unknown 

failure surface spanning between ac and ad lies on ad. From the family of log spirals, he finds the 

critical failure surface, one which yields minimum passive pressure Pγ on the wedge acdf, Fig. 2.5(c), 

graphically by trial and error for a series of φ values, and provides a φ versus Nγ (Fig. 2.4) relation. The 

procedure, although tedious, is logical, since mathematical expression for obtaining the critical surface 

and its solution become formidable. Modifications to the original solution that enhance accuracy of 

(2.4) in many respects, still use the trial-and-error procedure for calculating Nγ. Graphical procedures 

in general have inherent limitations regarding accuracy and, the extent of accuracy of Terzaghi's 

solution is not known. The objective of this technical note is to present explicit analytical expressions 

for calculating Nγ, to provide results of their numerical solution and compare them with those of the 

graphical method. 

 

 

 



 

 



2.7.1 NUMERICAL SOLUTION FOR Nγ (by kumbhojkar) 

The condition for finding a log spiral that gives minimum Pγ can be easily described as ∂Pγ /∂ν = O, 

where v is any characteristic variable related to the log-spiral geometry such as a coordinate of the 

center of the log spiral or θ. Fig. 2.5, shows a trial log spiral cd with center O(x1,y1) and angle doc = θ. 

The wedge acdf is in equilibrium under the forces W1, W2, W3, Pd, F, and Pγ (per unit length of the 

footing) where 

 

W1 = weight of the block ocd = γ r1
2 – ro

2 / 4. tan φ                                         (2.13) 

 

W2 = weight of the triangle afd = γ (r1
2cosφ + 4 r1x1sinθ* + 2x1

2tanθ*)/4      (2.14) 

 

W3 = weight of the triangle aco = γ (tanφ + tanθ*)x1 B/2                                (2.15) 

 

Pd = Rankine passive earth pressure = γ (x1 + r1cosθ*)2 / 2                             (2.16) 

 

F = resultant reaction of frictional force acting along the arc cd, which passes through O. Pγ = 

passive force component due to γ. 

 

Taking moment about O, one gets Pγ as 

 

Pγ = (W1 l1 + W2l2 – W3l3 + Pdld) / lp                                                                (2.17) 

 

Where the lever arm l1(Das 1987), l2, l3, ld, and lp are given by  

 

l1 = 4tanφ{r1
3(3tanφ cosθ* - sinθ*)  

        + ro
3[sin(θ+θ*) – 3tanφcos(θ* +θ)]}  / 3(9tan2φ +1)(r12 –ro

2)                 (2.18) 

 

l2 = 2r1cosθ* - x1 / 3                                                                                          (2.19) 



 

l3 = x1 – 2/3 (x1 – B)/2  = 2x1 + B/3                                                                  (2.20) 

ld = 2r1 sinθ* - x1 tanθ* / 3                                                      (2.21) 

 

lp = x1 + 2B/3                                                                          (2.22) 

 

All the quantities on the right-hand side of (2.17) are a function of variables x1, the x-coordinate of the 

center of the log spiral, and ro and rl, the radii of the log spiral for θ = 0 and θ = 0. The quantities x1, r0, 

and rl, in turn, can be expressed as a function of θ using geometrical relations. 

 

x1 = -B/2 – (1+sinφ)cotθB/2cosφ                                          (2.23a) 

 

r1 = (tanφ cosθ* + sinθ*)B eθtanφ  / sinθ                                (2.23b) 

 

Substituting these values in (2.17) and rearranging the terms we get the following explicit expression: 

 

Pγ / γB2  = ∑ci ti / c8 t6 + c9 t7                                                 (2.24) 

 

∂Pg/∂q  = γB2/(c8 t6 + c9 t7)2 sin3θ  ∑di ui                     (2.25) 

 

Coefficient ci and terms ti and terms di and ui are respectively given in Table 2.6 and 2.7. The equations 

∂Pγ/∂q = 0 is solved numerically to obtained θ for Pγmin Pγ / γB2 is obtained from (2.24) and Ng 

using Terzaghi;s equation  

 

Nγ = Pγmin / γ B2  - tanφ / 2                                                     (2.26) 

 

Tables 2.8 and 2.9 provide values of Nγ along with the coordinates of the center and angles of the log-

spiral for φ = 0o to 53o When φ becomes larger, Nγ becomes highly sensitive to φ; for φ > 35o results are 

therefore given with an increment of 0.5o. 

 

Table 2.6, Terms and their Coefficients in Eq. (2.24) 



Solution 

number 

(1) 

Coefficient Ci 

(2) 

Term ti 

(3) 

1 c1 = 3tanφ cos4θ* - sinθ* cos3θ* / 3(8sin2φ + 1)  + cos4θ*/3 cosφ t1 = e3θtanφ/ sin2θ 

2 c2 = - cos2θ* /4 t2 = e2θtanφ/sinθ 

3 c3 = -(1 + sinφ) cos2θ* / 4cosφ t3 = 

e2θtanφ cosθ/sin2θ 

4 c4 = 2 cos 4θ* + 3 sin φ cos2θ*/ 6(8sin2φ + 1)  + (1+sinφ)/8  - 

(1+sinφ)2/12cos2φ 

t4 = 1/ sinθ 

5 c5 = sinθ* cos3θ* - 3 tanφ cos4θ* / 3(8 sin2φ + 1)  + (1+sinφ)2/ 24 

cosφ 

t5 = cosθ/sin2θ 

6 c6 = (1+ sinφ)2 / 12 cos2φ  + cos2φ / 24(1+sinφ)  - (1+sinφ)/8 t6 = sinθ 

7 c7 = - (1+sinφ)/12 cosφ + cosφ/8 – (1+sinφ)2/ 24cosφ  

t7 = cosθ 

8 c8 = cosφ/6 - 

9 c9 = - (1+sinφ)/2 - 

 

Table- 2.7, Coefficients and Terms in Equation ∑di ui 

Solution no. 

(1) 

Coefficient di 

(2) 

Term ui 

(3) 

1 d1 = 3c1 c8 tanφ + c1 c9 u1 = sin2θ e3θtanφ 

2 d2 = 3 c1 c9 tanφ – 3 c1 c8 u2 = sinθ cosθ e3θtanφ 

3 d3 = -2 c1 c9 u3 = cos2θ e3θtanφ 

4 d4 = 2 c2c8 tanφ – c3c8 + c2c9 u4 = sin3θ e2θtanφ 

5 d5 = 2c3c8 tanφ + 2 c2 c9 tanφ – 2 c2c8 u5 = sin2θ cosθ e2θtanφ 

6 d6 = 2c3 c8 tanφ – c2 c9 – 3 c3c8 u6 = sinθ cos2θ e2θtanφ 

7 d7= -2 c3 c9 u7 = cos3θ e2θtanφ 

8 d8 = 2c4 c9 + 2c5 c8 – c7 c8 + c6 c9 u8 = sin3θ 

9 d9 = -3c5 c8 – c4 c9 u9 = sinθ 

10 d10 = -2 c4 c8 u10 = cosθ 

11 d11 = 2 c4 c8 – 2 c5 c9 u11 = cos3θ 



2.7.2 COMMENTS 

The values given in Tables 2.8 and 2.9 match the plot in Fig. 2.4 exactly over its entire range: φ = 0o to 

39o It is, however, a crude way of comparing since precision of this plot is lower than that of the 

numerical solution. With the exception of Nγ = 36, 260, and 780, respectively, for φ = 34o, 44o and 48o 

(Terzaghi 1943), it is not known whether explicit numerical values of Nγ used to plot Fig. 2.4 exist. 

The results presented in the present paper, therefore, can be compared with only these three values. For 

φ = 34o (38o versus 36o) and 44o, the difference 261 versus 260 is negligibly small and accuracy of the 

graphical solution is excellent. The large difference, 650 versus 780, in Nγ for φ = 48o is probably due 

to some small error in the graphical analysis magnified by the sensitivity of Nγ to φ since the angle that 

gives Nγ = 780 is about 48.6oAny interpolation between φ = 44o and 48o and extrapolation beyond φ = 

48o in Fig. 2.4 on the basis of Nγ = 780 are likely to include relatively large errors. Use of approximate 

methods similar to the graphical method to obtain Nγ are also likely to provide only approximately 

accurate answers. Bowles (1968), using a curve-fitting method, provides the only other set of 

numerical values of Terzaghi's Nγ for φ = 5o, 10o . . . 50o For φ< 20o his values are approximately 

double of those given in Table 2.9 and for φ> 35 they become smaller than those given in Table 4, 

although their accuracy is comparable to that of Fig. 2.4. Beyond providing explicit values and 

enhancing accuracy of Nγ, the analysis given here provides another distinct benefit: it defines log 

spirals demarking the radial shear zone for each qb. 

A numerical solution for Terzaghi's bearing-capacity factor Nγ was presented. In addition to providing 

values of Nγ up to φ) = 53o it also defined the geometry of the log spiral for each value of φ. The results 

showed that within the limits of accuracy of graphical method, Terzaghi's Nγ calculations agree with 

the almost-exact numerical results. 

 

 

 

 

 

 

 

 

 



Table 2.8, Bearing Capacity Factor Nγ and Geometry Details of Log-Spiral Providing for φ = 0o 

to 35o 

 

Solution Friction Log-spiral Coordinate of center of log-spiral 
Number Angle φ Angle θ x1/B y1/B Nγ 

1 0.0 - -   0 
2 1.0 88.833 -0.510 -0.502 0.014 
3 2.0 90.910 -0.492 -0.475 0.035 
4 3.0 92.494 -0.477 -0.453 0.063 
5 4.0 93.753 -0.465 -0.434 0.099 
6 5.0 94.782 -0.454 -0.416 0.144 
7 6.0 95.637 -0.445 -0.401 0.200 
8 7.0 96.356 -0.437 -0.387 0.267 
9 8.0 96.966 -0.430 -0.374 0.348 
10 9.0 97.486 -0.423 -0.361 0.444 
11 10.0 97.931 -0.417 -0.350 0.559 
12 11.0 98.311 -0.411 -0.339 0.694 
13 12.0 98.637 -0.406 -0.329 0.854 
14 13.0 98.916 -0.401 -0.319 1.041 
15 14.0 99.152 -0.397 -0.310 1.262 
16 15.0 99.352 -0.393 -0.301 1.520 
17 16.0 99.519 -0.389 -0.293 1.822 
18 17.0 99.656 -0.385 -0.285 2.175 
19 18.0 99.768 -0.382 -0.277 2.589 
20 19.0 99.855 -0.378 -0.270 3.074 
21 20.0 99.921 -0.375 -0.263 3.641 
22 21.0 99.968 -0.372 -0.256 4.305 
23 22.0 99.996 -0.369 -0.249 5.085 
24 23.0 100.009 -0.367 -0.243 6.000 
25 24.0 100.006 -0.364 -0.237 7.076 
26 25.0 99.989 -0.362 -0.231 8.342 
27 26.0 99.960 -0.360 -0.225 9.836 
28 27.0 99.918 -0.357 -0.219 11.602 
29 28.0 99.866 -0.355 -0.214 13.636 
30 29.0 99.804 -0.353 -0.208 16.175 
31 30.0 99.732 -0.352 -0.203 19.129 
32 31.0 99.652 -0.350 -0.198 22.653 
33 32.0 99.563 -0.348 -0.193 26.871 
34 33.0 99.467 -0.346 -0.188 31.035 
35 34.0 99.363 -0.345 -0.183 38.035 
36 35.0 99.253 -0.344 -0.179 45.410 

 

 

 

 

 

 



Table 2.9, Bearing Capacity Factor Nγ and Geometry Details of Log-Spiral Providing for φ = 

35.5o to 53o 

 

Solution Friction Log-spiral Coordinate of center of log-spiral 
Number Angle φ Angle θ x1/B y1/B Nγ 

1 35.5 99.196 -0.343 -0.177 49.666 
2 36.0 99.137 -0.342 -0.174 54.360 
3 36.5 99.077 -0.342 -0.172 59.541 
4 37.0 99.015 -0.341 -0.170 65.266 
5 37.5 98.952 -0.340 -0.168 71.599 
6 38.0 98.888 -0.340 -0.166 78.614 
7 38.5 98.822 -0.339 -0.164 86.392 
8 39.0 98.755 -0.338 -0.162 95.028 
9 39.5 98.687 -0.338 -0.159 104.627 
10 40.0 98.618 -0.337 -0.157 115.311 
11 40.5 98.548 -0.337 -0.155 127.219 
12 41.0 98.477 -0.336 -0.153 140.509 
13 41.5 98.404 -0.336 -0.151 155.363 
14 42.0 98.331 -0.335 -0.149 171.990 
15 42.5 98.257 -0.335 -0.148 190.628 
16 43.0 98.181 -0.334 -0.146 211.556 
17 43.5 98.105 -0.334 -0.144 235.091 
18 44.0 98.028 -0.334 -0.142 261.603 
19 44.5 97.951 -0.333 -0.140 291.521 
20 45.0 97.872 -0.333 -0.138 325.342 
21 45.5 97.793 -0.332 -0.136 363.647 
22 46.0 97.712 -0.332 -0.134 407.113 
23 46.5 97.632 -0.332 -0.133 456.532 
24 47.0 97.550 -0.332 -0.131 512.836 
25 47.5 97.468 -0.331 -0.129 577.119 
26 48.0 97.385 -0.331 -0.127 650.673 
27 48.5 97.302 -0.331 -0.125 735.026 
28 49.0 97.218 -0.331 -0.124 831.990 
29 49.5 97.133 -0.330 -0.122 943.723 
30 50.0 97.048 -0.330 -0.120 1072.797 
31 50.5 96.962 -0.330 -0.119 1222.294 
32 51.0 96.876 -0.330 -0.117 1395.915 
33 51.5 96.790 -0.330 -0.115 1598.120 
34 52.0 96.703 -0.329 -0.113 1834.301 
35 52.5 96.615 -0.329 -0.112 2111.003 
36 53.0 96.528 -0.329 -0.110 2436.199 

 

 

 

 
 
 



2.8 COMPUTATION OF BEARING CAPACITY FACTOR Nγ BY USING 
KOTTERS EQUATION 
 
The analysis is primarily based on the computation of vertical (RV) and horizontal (RH) components of 

reaction R that acts on the curved part CD of the failure surface [Fig. 1(a)]. For this purpose, Kotter’s 

equation (1903) is used. 

 
2.8.1 KOTTER’S EQUATION 

For a cohesionless soil medium, in passive state of equilibrium, Kotter’s equation gives a solution for 

determining the distribution of soil reaction pressure p along the arc of the failure surface in the 

following form (Fig.2): 

 

dp/ds + 2p tan φ dα/ds - γ sin(α+φ) = 0                   (2.27)   
 

in which dp = differential reactive pressure on the elemental length ds of the failure surface; α = angle 

made by the tangent to the failure surface at the point of interest with the horizontal; and φ = angle of 

soil internal friction. The applicability of Kotter’s equation to the analysis of limit equilibrium 

problems has been demonstrated for a retaining wall problem (Coulomb’s mechanism) for the case of a 

ponderable cohesionless soil by Dewaikar and Halkude (2002). 

 

 

 
Fig. 2.6, Failure mecanisum-Terzaghi’s analysis 

 



 
(b) 

Fig. 2.7, Free body diagram of wedge CDFB 
 
 
2.8.2 OUTLINE OF PROPOSED ANALYSIS 
 
As shown in Fig.2.7, the known forces that act on the failure wedge CDFB are RH, RV, Pγ  (passive 

Rankine thrust), W (weight of wedge CDFB), and unknown is only one force, i.e., the passive thrust 

Ppγ . Now, if the pole of the log spiral CD is correctly located, the calculated forces Pγ and RH will be 

exactly equal to each other so as to satisfy horizontal force equilibrium, otherwise, they will be 

different. If they are different, the trial location of the pole along the line BD is changed and for this 

new location of the pole, RH, RV, W, and Pγ are again computed. Iterations are thus continued until the 

horizontal force equilibrium condition is satisfied to a specified decimal accuracy. After satisfying this 

condition, vertical force equilibrium condition is used to compute the desired value of Ppγ, from which 

Nγ  is calculated. 

 
 

Fig. 2.8, Kotter’s equation for cohesionless soil in passive state of equilibrium 
 



 
 

Fig. 2.9, Geometrical relationships for pole above footing. 
 
 

2.8.3 INTEGRATION OF KOTTER’S EQUATION 
As seen earlier [Fig. 2.6], the failure surface has two parts, namely, CD being part of the log spiral and 

DE its tangent. 

 

2.8.3.1 INTEGRATION OVER PART DE OF FAILURE SURFACE 

This part of the failure surface being straight, dα/ds = 0 and Eq.(2.27) reduces to the following form:  

dp/ds = γ sin(α+φ)               (2.28) 

Integration of the above equation gives the pressure distribution over the plane failure plane DE and 

the value of p at point D is calculated as 

pD = γ sin(45+φ/2)DE          (2.29) 

The distance DE depends upon the location of pole of the log spiral as shown in Fig. 2.6. Referring 

to Figs. 2.7 and 2.9, DE is calculated from the geometry of the failure wedge. With this substitution, 

Eq. (2.29) becomes 

 

pD = γ sin(45+φ/2) Kroeθm tan φ            (2.30) 

 

in which, ro , θm , and θv are as shown in Fig. 3 and K is as given by the following expression: 

K = [1 - sin θv /sin (45+f/2) eθm tan φ ]      (2.31) 

 



2.8.3.2 COMPUTATION OF VERTICAL AND HORIZONTAL COMPONENTS OF REACTION 
R ON CURVED FAILURE SURFACE CD 
For this purpose, wedge CDFB as shown in Fig. 2.7 is referred. The magnitude of passive Rankine 

thrust Pγ is given as 

Pγ =1/2 γ(DF)2  (1+sin φ/1-sin φ)    (2.32) 

The forces, RH and RV are calculated using Kotter’s equation for a curved failure surface. For this 

purpose, Fig. 2.9 is referred.  

Integration of Kotter’s equation [Eq. (2.27)] gives the pressure distribution on the curved failure 

surface (Mohapatro 2001) and is given as  

 

p = {γroK sin(45+φ)e(3θm-2θtan φ)}+ 

       +{(γro sec φeθtan φ /1+ 9 tan2 φ) [3 tan φ sin (θ -θL+φ) - cos (θ - θL+φ)]} 

       -{γro sec φe (3θm-2θ) tan φ/ (1 + 9 tan2 φ)  

       X {3 tan φ sin (θ -θL+φ)-cos (θ -θL+φ)}]                     (2.33) 

 

Where θL=(90-θv) and θ is as shown in Fig. 2.9. In deriving the above expression, reactive pressure at 

point D as given by Eq. (2.30) is used as a boundary condition. 

 

2.8.3.3 COMPONENTS OF RESULTANT REACTION ON FAILURE SURFACE 

 
The resultant reaction R on the failure surface is given as 

R =  ∫ p ds                                              (2.34) 

The vertical component RV of the reaction is obtained as (Fig. 2.9) 

RV = ∫ p cos (θ -θL+φ) ds                       (2.35) 

After substituting the value of p from Eq. (2.33) and value of ds from Fig. 2.9, RV is obtained in the 

following form: 

RV = f 1+ f 2+ f 3                                    (2.36) 

Similarly, the horizontal component RH of the resultant reaction is given as (Fig. 2.9) 

RH = ∫  p sin (θ -θL+φ) ds 

After substituting the value of p from Eq. (2.33) and performing integration RH is obtained as 

RH = f 4+ f 5+ f 6                                   (2.37) 

 



Where, f1, f2, f3, f4, f5, and f6 are – 

 

 
 

2.8.4 SELF WEIGHT OF WEDGE CDFB 

 
This is obtained by calculating weight, W1 of part OCD, W2 of part OCB, and W3 of part BDF as 

shown in Fig. 2.9. The required weight W (of part CDFB) is given as 

W = (W1-W2  + W3)                                           (2.38) 

In which                                                                                

W1 = ( γ ro
2 / 4 tan φ) [e2θm tan φ − 1]                  (39a) 

 

W2 = 1/2 γro
2 sinθv sin θm / sin (45+φ/2)    and (39b)     

 



 
Fig. 2.10, Free body diagram of triangular wedge ABC for the determination of Nγ 

 

W3 = 1/4 γro
2 K2e2θm tanφ cosφ                                       (39c) 

 

2.8.5 COMPUTATION OF PASSIVE THRUST PPγ 
The passive thrust is obtained by using the two equations of force equilibrium (Fig.3) Vertical force 

equilibrium 

RV – Ppγ - W = 0                                                         (40a) 

Horizontal force equilibrium 

-RH - Pγ  = 0                                                               (40b) 

 

The procedure of obtaining the desired value of Ppγ has been described in the outline of the proposed 

analysis. The iterations were carried out till the computed values of Pγ and RH matched with each other 

up to four decimal places. The computed values of Ppγ and Nγ are therefore correct up to four decimal 

places. The computation further showed that the pole of the log spiral was located very close to the 

footing edge. 

 

2.8.6 COMPUTATION OF Nγ 

For this computation, Fig. 2.10 is referred, which shows the free body diagram of triangular wedge 

ABC (of Fig.2.6), subjected to forces Qu (ultimate load), Ws (weight of the triangular soil wedge ABC), 

and Ppγ, the passive thrust.  

The vertical force equilibrium gives 

 



Q  + W  = 2 P                                                (2.41) u s pγ

After substituting the value of  W , Eq. (2.41) becomes s

Q  = 2 P  - γB  tan φ                                      (2.42) u pγ
2

Dividing the above expression throughout by 2B (footing width) yields the ultimate bearing pressure 

q , which is given as u

q  =  P  /B - γ B/2  tan φ                                (2.43) u pγ

On comparing Eq. (19) with Eq. q  = γ B N , the bearing capacity factor N  is finally obtained as u γ γ

N  =  P / γB  -  tan φ /2                                 (2.44) γ pγ 
2

 

2.8.7 THE FOLLOWING MAIN CONCLUSIONS ARE DRAWN FROM THE PROPOSED 

ANALYSIS: 

1. The concept of force equilibrium condition coupled with Kotter’s equation identifies the unique 

failure surface, consistent with the specified failure mechanism. 

2. Application of Kotter’s equation makes the analysis statically determinate. 

3. The Nγ values that are obtained from the proposed analysis based on Terzaghi’s failure mechanism 

with the limit equilibrium approach are the unique values since; no other simplifying assumptions are 

made to evaluate them. 

4. The Nγ values as obtained from the proposed analysis show a good agreement with experimental 

values and this establishes reliability of the proposed method of analysis. 

 
 
Table – 2.10, Comparision of bearing capacity Factor, N with other theories and Experimental 

results. 
γ 

φ 
 

Proposed 
analysis 

Ingra 
& 

becher 
(1983) 

Zadroga 
 

(1994) 

Meyerhof 
 

(1963) 

Baki & 
Beik 

(1970) 

Hansen 
 

(1970) 

Chen 
 

(1975) 

Kumbh-
ojkar 
(1993) 

Frydman 
& Burd 
(1997) 

Michal
-owski 
(1997) 

 
 

Soubra 
 

(1999) 
 
 

25 
30 
35 
40 
45 

8.363 
21.404 
53.844 
141.32 
407.14 

14.570 
34.605 
82.187 
195.19 
463.58 

22.307 
45.147 
91.371 

184.921 
374.251 

6.764 
15.676 
37.168 
93.712 

262.793 

12.8 
27 
60 

149 
400 

6.758 
15.069 
33.920 
79.54 
200.81 

12.409 
26.702 
60.236 
146.76 
400.47 

8.342 
19.129 
45.410 
115.311 
325.342 

-NA- 
21.7 
54.2 
147.0 
422.0 

9.765 
21.394 
58.681 
118.827 
322.835 

9.81 
21.51 
49.00 
119.81 
326.59 

 
 

 

 

 



2.9 BEHAVIOR OF CIRCULAR FOOTINGS RESTING ON    CONFINED 

GRANULAR SOIL 
      Raft foundations are widely used in supporting structures form any reasons such as weak soil 

conditions or heavy columns loads. In many cases, some problems arise such as the construction is 

adjacent to an old building and/or the foundation depth is so great that the excavation needs to be 

braced during foundation construction (e.g., basement excavation). One of the available solutions is to 

use sheet piles to support the excavation sides during construction. Due to the difficulty of removing 

these piles, they become part of the permanent structure and two problems arise. The first problem 

deals with the structural analysis of the raft if the piles are used as end supports for the raft. The second 

problem is the effect of these piles on the lateral movement of the soil underneath the raft and the 

effect of this confinement on the bearing capacity of the soil. While there are several solutions for the 

first problem, such as isolating the raft from the piles, the confining effect of these piles on the raft 

behavior is not clearly understood. Looking to the problem in a smaller scale, it can be modeled as a 

circular footing supported on a soil, which is surrounded by a confining cylinder. The strength of 

confined sand was studied by Rajagopal et al. (1999). They carried out a large number of triaxial 

compression tests to study the influence of geocell confinement on the strength and stiffness behavior 

of granular soils. Geocells fabricated by hand using different geotextiles were used to investigate the 

effect of the stiffness of the geocell on the overall performance of geocell soil composite. 

The aim of this research is to model and investigate the effect of soil confinement by piles on the 

behavior of soil foundation system. Also, we studied the idea of improving the footing response by 

using confining cylinders around each individual footing. To achieve that objective, more than 35 tests 

were carried out with a wide range of variables as detailed in Table 2.11. 

Table 2.11, Model Test Program 

Test series Constant parameter Varible parameters 
A 

B 

C 

D 

E 

F 

G 

H 

I 

Test on unconfined sand 

d/D = 0.66 and u/D = 0.0 

d/D = 1.07 and u/D = 0.0 

d/D = 1.33 and u/D = 0.0 

d/D = 1.60 and u/D = 0.0 

d/D = 2.00 and u/D = 0.0 

d/D = 2.66 and u/D = 0.0 

d/D = 1.33 and h/D = 1.0 

d/D = 1.33 and h/D = 1.5 

Test is repeated three times 

h/D = 0.5, 1.00, 1.5, 2.00 

h/D = 0.5, 1.00, 1.5, 2.00 

h/D = 0.5, 1.00, 1.5, 2.00 

h/D = 0.5, 1.00, 1.5, 2.00 

h/D = 0.5, 1.00, 1.5, 2.00 

h/D = 0.5, 1.00, 1.5, 2.00 

u/D = 0..0, 0.07, 0.13, 0.50, 1.0 

z/D = 0.0, 0.17, 0.33, 0.50, 0.67 

 



2.9.1 LABORATORY MODEL TESTS 

 
Model Box and Footing 

 

Nine series of laboratory model tests were conducted in a test box, having inside dimensions of 0.90m 

x 30.50m in plan and 0.5 m in depth. The tank is made from steel with the front wall made of 20 mm 

thick glass and is supported directly on two steel columns as shown in Fig. 2.11. These columns are 

firmly fixed in two horizontal steel beams, which are firmly clamped in the lab ground using four pins. 

The loading system is mounted by a horizontal Standard I beam steel beam supported on the two 

columns. It consists of a hand-operated hydraulic jack and precalibrated load ring. Since the sand 

raining technique is used to deposit the sand inside the tank, the beam was designed to swing about one 

end. Therefore, the beam can be swung out during deposition of the sand from the sand raining box 

and returned back, when sand deposition is completed, to the original loading position above the tank. 

The sand-raining box is made from wood and is 0.85 m 30.38 m in plan and 0.10 m in depth. The sand 

particles rain from the box through a square grid of holes (4 mm diameter and 20 mm spacing) in the 

base plate. The height of sand raining, measured from the bottom of the box to sand surface in the tank, 

can be changed up or down by using a manual winch. A circular model footing made of steel with a 

hole at its top center was used. The footing is 75 mm in diameter and 10 mm in thickness. A rough 

base condition was achieved by fixing a thin layer of sand onto the base of the model footing with 

epoxy glue. The load is transferred to the footing through a ball bearing, which was placed, between 

the footing and the proving ring. Such an arrangement produced a hinge, which allowed the footing to 

rotate freely as it approached failure and eliminated any potential moment transfer from the loading 

fixture. An overall view of the apparatus is illustrated in Fig. 2.11. 



 
Fig.2.11, Schematic view of the experimental apparatus 

 
 

2.9.2 TEST MATERIAL 

The sand used in this research is medium to coarse sand, washed, Dried, and sorted by particle size. It 

is composed of rounded-to sub rounded particles. The specific gravity of the soil particles was 

determined by the gas jar method. Three tests were carried out producing an average value of 2.654. 

The maximum and the minimum dry densities of the sand were found to be 19.95 and 16.34 kN/m3 and 

the corresponding values of the minimum and the maximum void ratios are 0.305 and 0.593, 

respectively. The particle size distribution was determined using the dry sieving method and the results 

are shown in Fig. 2.12. The effective size (D10), uniformity coefficient (Cu), and coefficient of 

curvature (Cc) for the sand were 0.152 mm, 4.071, and 0.771, respectively. In order to set up a sample, 

the sand was poured in 50 mm in height layers by raining technique in which sand is allowed to rain 

through air at a controlled discharge rate and height of fall to give uniform densities. A series of tests 

were carried out to check the relative density obtained and uniformity of the sand samples by using 

three density molds placed at different locations in the test box. After pouring, each mold was carefully 

excavated and the density of the sample calculated. The raining technique adopted in this study 



provided a uniform relative density of approximately 75.8% with a unit weight of 18.94 kN/m3. The 

results also showed that the obtained relative densities from the three samples did not depend on the 

position of the mold. A series of direct shear tests were performed at the same relative density of the 

sand and the estimated internal friction angle was approximately 42°. 

 

 
Fig. 2.12, Grain size distribution of the sand 

 

 

The confining elements were made of unplasticized polyvinylchloride (UPVC) Cylinders with 

different diameters and heights. The used diameters were 50, 80, 100, 120, 150, and 200 mm. UPVC is 

produced from the polymerization of a vinyl chloride monomer with certain additives including heat 

stabilizers and lubricants. Its actual strength for any situation depends on the wall thickness uniformity, 

the rate of loading, and the temperature of plastic materials. The interior and exterior surfaces of the 

cylinders were made very smooth. The thickness of the cylinder wall is 2.5 mm and its properties as 

given by the manufacturer are shown in Table 2.12. Some of the tests were carried out by introducing 

the UPVC cylinders initially in position and then a sand bed was placed by raining. The ultimate loads 

were determined and compared with those of tests performed with cylinders installed vertically after 

setting sand samples. The difference of the ultimate loads in the two cases was found to be less than 

1.5% and load–settlement relationships were approximately of the same pattern. Therefore, it was 

decided to carry out the entire test program using only one method by installing the cylinders vertically 

after setting sand beds, and considering the difference in the relative densities of the samples resulting 

from installing cells with different diameters and heights to be small and negligible. 

 

 

 



Table 2.12, Properties of the Unplasticized Polyvinyle Chloride Cylinder 
Maximum hydraulic pressure for 1 h at 23oC Bar 

Specific gravity  

Tensile strength, 103 Kpa 

Tensile modulus, 105 Kpa 

Water adsorption at 100oC for 24 h, mg/cm2 

23 

1.4 

55 

28 

4 

 
 
2.9.3 EXPERIMENTAL SETUP AND TEST PROGRAM 
 
 
After the sand surface was set up, the cells were pushed vertically into the sand at the design place, the 

footing was placed on position, and the load was applied on it by the hydraulic jack. The load was 

applied in small increments until reaching failure. Each load increment was maintained constant until 

the footing settlement had stabilized. The settlements of the footing were measured using two dial 

gauges placed on opposite sides of the footing. The geometry of the soil, model footing, and confining 

cylinder are shown in Fig. 2.13. The test program consisted of carrying out nine series of tests on the 

circular model footing to study the effect of soil confinement on the soil–foundation response as shown 

in Table 1. Initially, the behavior of the footing supported on the unconfined conditions was 

determined. Then, each series of the tests was carried out to study the effect of one parameter while the 

other variables were kept constant. The studied variables are the cell height (h) and cell diameter (d) 

for cases when the cells are placed under the foundation level and the embedded depth (z) for cases 

when the foundation level is lower than the cell top. Several tests were repeated at least twice to verify 

the repeatability and the consistency of the test data.  

 

 

 
Fig. 2.13, Geometric parameters of confined sand-foundation model 

 
 
 



2.9.4 RESULTS AND DISCUSSION 

 
The load–settlement relationship and the ultimate bearing capacity of the footing with and 

without confinement were obtained. The bearing capacity improvement due to the soil 

confinement is represented using a nondimensional factor, called the bearing capacity ratio 

(BCR). This factor is defined as the ratio of the footing ultimate load with soil confinement to 

the footing ultimate load in tests without confinement. The footing settlement (S) is also 

expressed in nondimensional form in terms of the footing diameter (D) as the ratio (S/D,%). 

The measured ultimate load and the associated ultimate displacement for the nonconfined 

case are 250 N and 5.24 mm, respectively. The theoretical ultimate bearing capacity can be 

calculated from the equation qo = 0.5 γ D ζγ N. Using the shape factor proposed for circular 

footing by De Beer (1970) (ζγ=0.6) and the values of the bearing capacity factor Nγ taken 

from Meyerhof (1963) (Nγ=139.3) or Hansen (1968) (Nγ =136.7), the theoretical bearing 

capacities are 59.36 kPa (262 N) and 58.25 kPa (257 N), respectively. These data show a 

close agreement between both the theoretical values and the experimental results. Typical 

variations of bearing pressure with footing settlement ratios (S/D) with and without soil 

confinement for different heights of confining cells are presented in Fig. 2.14. It can be seen 

that the installation of confining cylinders appreciably improves the bearing capacity of the 

footing as well as the stiffness of the foundation bed. It is apparent from the curves that the 

mode of failure is a general shear failure in which a pronounced peak can be observed in the 

load–settlement curve, after which the footing collapses and the load decreases (Vesic 

1973). Also, the value of the settlement ratio S/D at the ultimate load in the confined tests 

varied from about 12% to 18%. The observed improvement in the bearing capacity loads due 

to soil confinement along with the increase in the settlement ratio was reported by many 

investigators when using soil reinforcement (Omar et al. 1993a,b; Das et al. 1996). 

Comparing the curves of Fig. 4 at the ultimate S/D ratio of the unconfined case (the values 

across the dotted line, S/D = 7%), it can be seen that soil confinement improved the bearing 

load from 56.59 kPa for the unconfined case to 562.5 kPa for the confined soil using cells 

with a d/D ratio of 1.33 and h/D ratio of 2.0. Therefore, it can be concluded that, in cases 

when the excessive settlement is the controlling factor in determining the allowable bearing 

capacity, using confining cells may significantly decrease the settlement ratio for the same 

level of bearing load. 



 

 

 
Fig. 2.14, Variation of bearing pressure with (S/D) ratio for different cell heights (Series D) 

 
 
 
2.9.5 EFFECT OF CELL DIAMETER 
 
 
In order to investigate the effect of cell diameter on the footing behavior, six cells with diameters of 

50, 80, 100, 120, 150, and 200 mm were used. Fig. 5 shows the variation of BCR with normalized cell 

diameter for different cell heights with a constant footing diameter of 75 mm. A significant increase in 

the bearing capacity of the model footing supported on confined sand with the increase of normalized 

cell diameter d/D is observed until a specific value of d/D after which the BCR decreases with an 

increase in the d/D ratio. While conducting the model tests, it was observed that as failure approached 

in tests carried out with small cell diameters, sand inside the cell and the cell behaved as one unit 

(when the load was increased, the cell, sand, and footing settled altogether). In tests carried out with 

large cell diameters, this behavior was noticed initially,  



 
Fig. 2.15, Variation of bearing capacity ratio with normalized cell diameter (d/D) 

for different cell height. 

 

But as the load was increased it was no longer observed (the footing settled down while the cell was 

unaffected with the increase of the load). Fig. 2.15 also shows that using soil confinement could result 

in an improvement in bearing capacity as high as 17 times more than that without soil confinement. It 

is clear that the best benefit of soil confinement could be obtained with a (d/D) ratio between 1.0 to 2.0 

with the maximum improvement in the bearing capacity at a ratio of about 1.4 for different heights of 

confining cells. This significant increase in the bearing capacity of the footing can be explained with 

the aid of Fig. 6 as follows. When the footing is loaded, such confinement resists the lateral 

displacements of soil particles underneath the footing and confines the soil leading to a significant 

decrease in the vertical settlement and hence improving the bearing capacity. For small cell diameters, 

as the pressure is increased, the plastic state is developed initially around the edges of the footing and 

then spreads downward and outward. The mobilized vertical frictions between the sand and the inside 

wall of the cylinder increase with the increase of the acting active earth pressure until the point when 

the system (the cylinder, sand, and footing) starts to behave as one unit. The behavior is similar to that 

observed in deep foundations (piles and caissons) in which the bearing load increases due to the shear 

resistance of cell surface. This illustrates the increase of the bearing load with the increase of the cell 

diameter and cell height. Based on tests performed with cells made with very smooth surfaces, it can 

be concluded that increased surface roughness results in greater bearing load improvement. In 

comparison to this response, sand beds at relative density of 70% and reinforced with a geocell 

mattress carried out by Dash et al. (2001b) mobilized bearing capacity pressure as high as eight times 

the ultimate capacity of the unreinforced sand. Also, tests on sand beds at a relative density of 75% and 



reinforced with planar reinforcement carried out by Omar et al. (1993a,b) and Khing et al. (1993) 

failed with clearly pronounced peak loads of about five times the ultimate capacity of unreinforced soil 

at settlements equal to about 20% of the footing width.  

 

 

 
Fig. 2.16, Interaction of failure surface with the cylinder 

 
 

2.9.6 EFFECT OF CELL HEIGHT 

 
In order to investigate the effect of cell height on the footing response, tests were carried out using four 

different heights for each cell diameter. The variation of BCR with normalized cell height (h/D) is 

shown in Fig. 7 for different normalized cell diameters (d/D). The figure shows the same pattern of 

behavior for the different cell diameters. Increasing cell heights results in a greater improvement in the 

BCR. This increase in cell height results in the enlargement in the surface area of the cell–model 

footing leading to a higher bearing capacity load. The slope of the BCR versus h/D curves for d/D 

ratios of 0.67 and 2.67 are less than the comparable slopes for d/D ratios of 1.33 and 1.6. This trend 

confirms the previous conclusion that the greatest benefit of cell confinement can be obtained at a d/D 

ratio of about 1.4. 

 



 
Fig. 2.17, Variation of bearing capacity ratio with normalized cell height (h/D) 

for different cell diameter(d) 
 
2.9.7 EFFECT OF THE SOIL PRESSURE ON THE CELL 
 
One of the proposed parameters to be investigated was the thickness of the cell wall to study the effect 

of the cell rigidity on the footing–cell system behavior and also to study the hoop tension in the cell 

wall due to the pressure under the footing. However, according to the manufacturer data, the supplied 

cell with a wall thickness of 2.5 mm can withstand internal hydraulic pressure of 23 bars (2,300 kPa) 

with maximum tensile strength of the wall of 55,000 kPa. In the model tests, the most critical case 

occurs with h/D=2 and d/D=1.33 at failure vertical pressure of 950 kPa. The horizontal pressure acting 

on the sidewall of the cell is equal to the vertical pressure multiplied by the coefficient of lateral earth 

pressure. It can be seen that the maximum estimated horizontal earth pressures on the sidewalls of the 

cell are very small in comparison to the allowable hydraulic pressure. Another point is that the given 

allowable value is the net inside pressure while the cell in the model is subjected to both internal and 

external pressures. Checks were performed after each test to observe any change in the cell wall and 

measurements were taken to check the internal diameter as well as the thickness of the cell wall. There 

was no noticeable change in the cell or its dimension. Therefore, it was concluded that for the given 

model and dimensions, the pressures under the footing have no disturbing effects on the cell wall and, 

therefore, it was decided to use them again. 

 

2.9.8 CONCLUSIONS 

   Soil confinement has a significant effect on improving the behavior of circular footing supported on 

granular soil. The ultimate capacity was found to increase by a factor of 17 as compared to the 

unreinforced case. Therefore, it can be concluded that the piles (or sheet piles) used to brace cuts have 



a significant effect on improving the bearing capacity of soils under raft foundations. However, more 

research in this area is required to study cases in which piles are constructed only on one, two, or three 

sides. Also, theoretical analysis is needed to modify the bearing capacity equation to consider the 

effect of pile confinement. Based on the experimental results, soil confinement could be considered as 

a method to improve the bearing capacity of isolated footings bearing on medium to dense sand. 

UPVC cells with different heights, diameters, and thickness could be easily manufactured and placed 

around the individual footings leading to a significant improvement in their response. 

 

 

 

2.10 BEARING CAPACITY OF A JACKUP SPUDCAN FOOTING 

 
The ultimate bearing capacity of a flat surface footing, as discussed in the previous articles is depend 

upon the footing soil interaction under vertical, horizontal and inclined loading which governs the 

stability of the footing. In this article we shall consider the stability of jackup spudcan footing and 

calculate its ultimate bearing capacity. 

The growing use of mobile jackup units on spudcan footing in deep offshore waters has raised a 

great deal of concern about the overall stability of jackup unit in hostile environmental forces. The 

stability of a jackup unit is greatly influenced by the performance of a typical spudcan footing under 

storm loading conditions. Therefore, as a result, much research has been focused towards the study 

of a spudcan footing behavior subjected to combined vertical and horizontal loading. Recently, over 

a period of several years, a joint industry study coordinated by Noble Denton Association has been 

considered many aspects of jackup stability including the soil-structure interaction (Houlsby and 

James, 1991). 

Mobile jackup units consist of a floatable drilling platform, supported on three or more legs, which 

can be raised or lowered (see figure 2.18). A detailed description of the installation procedure is 

given by Tan (1990). The platform legs can either be supported separately as shown in Figure 8.1a or 

they can be supported on a single shared mat. 

 

 

 



 

Most modern jackup unit platforms are former type and have approximately conical shaped footing 

with a protruding tip at the center. These are commonly referred to as ‘spudcan’ footings (see Fig. 

2.18 b) 

The mobility of jackup units allows for relocating and reuse of platforms. Before actual oil and gas 

exploration activity begins, the legs of the platform are preloaded to almost twice the working load. 

During this loading operation, spudcan footing moves into the seabed to a depth of almost twice its 

diameter. In soft clays, a 30m penetration of a 15m-diameter spudcan is not uncommon. The bearing 

capacity with footing embedment is an important factor, since even a small embedment can 

significantly increase the bearing capacity of such offshore footing (Houlsby and Martin (1993)). 

However, this is not usually the case in coarse material as penetration depths are typically very small 

(see e.g. Dean et al. (1993)). 

In addition to the vertical load of the jackup structure, a spudcan footing is also subjected to large 

horizontal forces due to severe environmental conditions reaching, in stormy weather, up to 30% of 

the total vertical load and thereby producing a corresponding large moment (Poulos (1988)). 

In this article we are making a conventional assumption, that a jackup leg is pinned at the foundation 

level and that therefore a spudcan footing offers no moment restraint to the leg (see Fig. 2.19a). This 

means that, only the interaction between horizontal and vertical loading need to be studied. 

Although, in recent studies moment restraint at the footing has also been considered which would 

reduce the bending moment in the lower leg guide (see Fig. 2.19b), which is often a critical feature 

of the structure in extreme loading conditions: a full interaction between vertical, horizontal and 



moment loading has been studied by e.g. Houlsby and Martin (1993) for clays, and Dean et al. 

(1993) for sands. 

We discuss here the ultimate bearing capacity of a partially penetrated spudcan footing subjected to 

combined vertical and horizontal loading.   

 

 
2.10.1 BACKGROUND 

 

The bearing capacity solution of Meyerhof (1953), Hansen (1970) and Vesic (1975) are commonly 

used to determine the ultimate bearing capacity pf plan strain footing. These solutions are modified 

by introducing shape factors to cover circular geometries (see e.g. (1992), Dean et al. (1993)). In the 

case of spudcan footings, their embedded circular area in plane (i.e. plan area at ground surface) is 

used for the bearing capacity solutions to spudcan footings, theoretical and experimental studies of 

conical shaped footings (based on centrifuge model tests) have been undertaken by Cambridge 

University Engineering Department over a several years. In this study, a series of test of cone angle 

Oo (flat), 13o, 20o, 25o and 35o was conducted on sand at 28.3mm diameter model footing at 56.6g, 

repressing 1.6m prototype in the drum centrifuge. It is shown in the study that spudcan footing can 

be treated as equivalent cones enclosing the same volume. The load displacement response of a 



spudcan footing and an equal volume cone is almost identical. The ultimate bearing capacity of these 

footings for vertical loading only, combined horizontal-vertical (inclined) loading, vertical-moment 

(eccentric) loading and lateral-moment loading has been determined. The results are compared with 

existing bearing capacity theories and analytical solutions were possible. The study show that the 

vertical bearing capacity does not vary much for cone angles between Oo-20o. However, foe flat 

circular footings under combined vertical – horizontal loading (referred as shear sidewipe tests at 

constant penetration), most of the experimental data lies outside the curve proposed by Meyerhof 

(1953), Hansen (1970) and Dean et al. (1993). 

 

Hambly (1992) carried out laboratory tests in sand on two model footing – flat and spudcan. The 

purpose of this investigation was to compare the ultimate bearing capacity of flat and spudcan 

footing. In the series of test performed by Hambely (1992), the footing were preloaded until the 

penetration for the flat footing was 10% of its diameter (Vesic (1975)) and for the spudcan footing, a 

penetration of its bearing area at the ground surface equivalent to the bearing capacity of the sand 

under the flat circular footing was insufficient to mobilized the ultimate bearing capacity of the sand 

under the spudcan footing. Hambly (1992) showed that the ultimate bearing capacity of a partially 

penetrated spudcan footing is twice the preload forces required for the flat footing. He obtained 

enhanced sliding resistance of the spudcan footing using twice the preload force for the flat footing 

with Hansen’s (1970) theory. He attributed the difference between the preload and the ultimate 

bearing capacity to the much greater volume of sand displacement by flat footing mobilization 

ultimate bearing resistance, as compared to the volume displaced by partially penetrated cone of the 

spudcan. He suggested ‘partial penetration factor’ to determined the ultimate bearing capacity from 

the vertical preload force. He concluded in his study that a further laboratory investigation is needed 

to validate his results. Although, in the absence of such an investigation it is difficult to comprehend 

Hambly’s (1992) results, the experimental results described by Tan (1990) resembles more closely 



the actual preload operation of the spudcan footing. The footing penetrates into the seabed as the 

load is applied and continues to penetrate until there is no further penetration into the seabed as the 

load is applied and continues to penetrate until there is no further penetration i.e. the footing is 

locked vertically. The final value of the load, thus, represents the ultimate bearing capacity of the 

footing.                  

 

2.10.2 VERTICAL BEARING CAPACITY OF A SPUDCAN FOOTING          

 

The bearing capacity solution for a circular footing, given by Hansen (1970) can be simplified (for 

vertical loading only), and written as presented by Dean et al. (1993): 

V = Ap (1/2 Nγ γ’ Bp)              (2.45) 

 

Where Bp is the penetrated diameter, Ap is the plan contact area, γ’ is the soil effective (buoyant) unit 

weight, and Nγ is an axi-symmetric self-weight bearing capacity factor. Bp can be written in term of 

penetration depth Dp as: 

 

Bp = 2 Dp cot Ω                    (2.46) 

Where Ω is the cone angle (see Fig. 8.7 a) 

Substituting Bp in the bearing capacity solution, we get the following equation: 

 

V = p Nγ γ’ cot3 Ω Dp
3            (2.47) 

 

 

 



 

 



 

 



Thus for a given angle Ω, V is directly related to the Dp
3, if Nγ is approximately constant then V and 

Dp
3 relationship is a straight line. Such a straight relationship is shown in figure 2.20c for a 60o cone 

(Tan 1990) on fine Leighton Buzzard sand tested in the drum centrifuge at 56.6g. However, for a 

given depth of penetration, the value of Nγ varies with the cone angle and the variation depends on 

the surface roughness of the footing. The theoretical variation of Nγ with the cone angle using the 

method of characteristics is shone in Figure 2.21a. Figure 2.21b shows the same variation of Nγ with 

the cone angle calculated from the centrifuge test results using equation (2.45) and the comparison 

with the theoretical results. The results agree well in the region φ = 31o and δ = 17o for loose sand 

(void ratio 0.95) and φ = 34o and δ = 19o for medium dense send (void ratio 0.8). (In these figures 

φ is the friction angle and d represents the degree of roughness of the cone.). it can be seen from the 

Figures 2.21 a that for a fully rough footing (as is the case here in this chapter) the value of Nγ  stays 

almost the same for cone angles between Oo-20o. But for cone angles greater than 25o there is a 

significant increase in the value of Ng. These results show that a conical footing with cone angle Ω = 

13.46o has a slight higher ultimate load compared to a footing with Ω = Oo (flat). But there is a need 

for further experimental investigation in order to prove that the load is 100% higher as we learn from 

Hambly (1992). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER –3 
 

ANALYTICAL SOLUTION FOR BEARING CAPACITY OF 

SPUDCAN FOOTING  

 

 

 

    Since Terzaghi’s founding work, numerous experimental studies to estimate the ultimate bearing 

capacity of shallow foundation have been conducted. Based on these studies, it appears that Terzaghi’s 

assumption of the failure surface in soil at ultimate load is essentially correct. However, the angle α 

that the sides ac and bc of the wedge (Fig. 3.1) make with the horizontal is closer to 45 + φ/2 and not φ 

as assumed by Terzaghi. (In actual practice, α has been found to vary from 45 – φ/2 for perfectly 

smooth base to 45 + φ/2 for perfectly rough base. Since footings are normally rough, α has been found 

closer to 45 + φ/2 than to φ ). 

 

So, I am Deriving the equations for bearing capacity factors Nc, Nq, and Nγ, by assuming the wedge 

angle = α. (angle that the sides ac and bc make with the horizontal surface see Fig. 3.1) The remaining 

assumption are same as assumed by Terzaghi (see page no. -    ). 

         B 
 
 
 qu 
 q = γ Df 
 
a                                b 
                      α                                    45-φ/2                                           45-φ/2 g 
  
               c 
                                                                       f                
 
 
 
 

Fig. 3.1, failure surface in soil at ultimate load for a continuous rough rigid foundation as 
assumed by Terzaghi 



The ultimate bearing capacity, qu, of the foundation can be determined if we considered faces ac and 

bc of the triangle wedge abc and obtained the passive force on each face requires to cause failure. 

Note that the passive force Pp will be a function of the surcharge q = γ Df. Cohesion c, unit weight γ, 

and angle of friction of the soil φ. So, referring to Fig. 3.2. The passive force Pp on the face bc per 

unit length of the foundation at right to the cross section is  

Pp = Ppq + Ppc + Ppγ                                     (3.1) 

Where  Ppq, Ppc and Ppγ = passive force contributions of q, c and γ, respectively. 

 

It is important to note that the directions of Ppq, Ppc and Ppγ  are vertical, since the face bc makes an 

angle φ with the horizontal, and Ppq, Ppc and Ppγ  must make an angle φ to the normal to bc. In order to 

obtain Ppq, Ppc and Ppγ , the method of superposition can be used. 

                          Ppc 
  
 
 q = γ Df 
 Ppq 
               Ppγc                 b  j 
                                                           45-φ/2                                           45-φ/2 g 
  
        h/2     h 
h/3       c                                                                   f                

φ 
 
 
 
 

Fig. 3.2, Passive forceon the face bc of wedge abc shone in figure 3.1 
 
 

3.1 RELATIONSHIP FOR Ppq (φ ≠ 0, γ = 0, q ≠ 0, c = 0) 
Considered the free body diagram of the soil wedge bcfj shown in Fig. 3.2 (also shown in Fig. 
3.3). For this case the center of the log spiral, of which cf is an arc, will be at point b. the 
forces per unit length of the wedge bcfj due to the surcharge q only are shown in Fig.3.3a, 
and they are: 

1. Ppq 

2. Surcharge, q 



3. The Rankine passive force, Pp(1) 

4. The frictional resistance force alone the arc cf, F 

The Rankine passive force, Pp(1), can be expressed as 

 

Pp(1) = q Kp Hd = q Hd tan2 (45 + φ/2)                               (3.2) 

Where,  Hd = fj 

             Kp = Rankine passive earth pressure coefficient = tan2 (45 + φ/2) 
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Fig. 3.3 Determination of Ppq (φ ≠ 0, γ = 0, q ≠ 0, c = 0) 



According to the property of a log spiral defined by the equation r = ro eθtanφ, the radial line at any point 

makes an angle φ with the normal. Hence, the lines of action of the friction force F will pass through b, 

the center of the log spiral (as shown in Fig. 3.3a). Taking the moment about point b 

 

Ppq(B/4) = q(bj) (bj/2) + Pp(1) Hd/2                        (3.3) 

Let 

bc = ro = (b/2) secα                                              (3.4) 

       bf = r1 = ro e(3π/4 –α + φ/2)                                  (3.5) 

So 

     bj = r1 cos (45 – φ/2)                                        (3.6) 

And 

  Hd = r1 sin (45 -φ/2)                                           (3.7) 

 

Combining Eqs. (3.2), (3.3), (3.6) and (3.7) 
 

Ppq B/4 =q r1
2 cos2 (45-φ/2)/2 + qr1

2 sin2 (45-φ/2) tan2 (45+φ/2) /2 

Or 

Ppq = 4/B [q r1
2 cos2 (45-φ/2)]                                                   (3.8) 

 

Now combining Eqs. (3.4), (3.5), and (3.8) 

 

Ppq = qB e2(3π/4 – α +φ/2)tanφ cos2(45-φ/2) / cos2α                          (3.9) 

Considering the stability of the elastic wedge abc under the foundation as shown in Fig. 3.3b. 
qq (B x 1) = 2 Ppq 

Where, qq = load per unit area on the foundation, or 

 

qq = 2Ppq/B = q [2 e2(3π/4 –α+φ/2)tanφ cos2(45-φ/2) / cos2α] = q Nq              (3.10) 
Nq = 2 e2 (3π/4 –α +φ/2)tanφ cos2(45-φ/2)/cos2α                         (3.11) 

 

 

 

 



3.2 RELATIONSHIP FOR Ppc (φ ≠ 0, γ = 0, q = 0, c ≠ 0) 
 
Figure 3.4 shows the free body diagram for the wedge bcfj  (also refer to Fig. 3.2). As in the case of 

Ppq, the center of arc of the log spiral will be located at point b. the forces on the wedge which are due 

to cohesion c are also shown in Fig. 3.4, and they are 

 

1. Passive force, Ppc 

2. Cohesive force, C = c(bc x 1) 

3. Rankine passive force due to cohesion, 

 

Pp(2) = 2c (Kp)1/2 Hd = 2 c Hd tan (45 +φ/2)                                (3.12) 
 
4. Cohesive force per unit area along arc cf, c. 
 
 
Taking the moment of all the forces about point b 
 

Ppc (B/4) = Pp(2) [ r1 sin(45 –φ/2) /2] + M                             (3.13) 
 

Where    Mc = moment due to cohesion c along arc cf 
 
                    = c/2 tanφ  (r1

2 – ro
2)                                                          (3.14) 
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Fig. 3.4 Determination of Ppc (φ ≠ 0, γ = 0, q = 0, c ≠ 0) 
 

 
 

Ppc (B/4) = [2c Hd tan (45+φ/2)] [r1 sin (45-φ/2)/2] + (c/2 tanφ)(r1
2-ro

2)                (3.15) 

 

The relationship for Hd, ro, and r1 in terms of B and φ given in Eqs. (3.7), 

(3.4) and (3.5), respectively. Combining Eqs. (3.4), (3.5), (3.7), and (3.15), and 

noting that sin2(45-φ/2) x tan (45 +φ/2) = ½ cosφ 

 

Ppc = Bc(sec2α){[e2(3π/4 – α+φ/2)tanφ  ½ cosφ ] + [(e2(3π/4 –α+φ/2)tanφ  - 1) / 2 tanφ]}      (3.16) 

 

Considering the equilibrium of the soil wedge abc (Fig.3.4b) 

 

                          qc(B x 1) = 2 C sinα + 2Ppc 

Or 

qc B = cB secα sinα + 2Ppc                                                (3.17) 

 

      Where  qc = load per unit area of the foundation combining Eqs.(3.16) and (3.17) 



 

 

qc = c[ tanα + 2sec2α{( e2(3π/4 – α +φ/2)tanφ ½ cosφ  + (e2(3π/4 –α+φ/2)tanφ  -   1)/2tanφ}]      (3.18) 

 

 

Nc = [ tanα + 2sec2α{( e2(3π/4 – α +φ/2)tanφ ½ cosφ  

                             + (e2(3π/4 –α+φ/2)tanφ  -   1)/2tanφ}                                 (3.19) 

 

 
3.3 RELATIONSHIP FOR Ppγ (φ ≠ 0, γ ≠ 0, q = 0, c = 0) 

Figure 3.5a shows the free body diagram of wedge bcfj. Unlike the free body diagram shown in Figs. 

3.3 and 3.4, the center of the log spiral of which bf is an arc is at a point O along line bf and not at b. 

this is because the minimum value of Ppγ has to be determined by several trials. Point O is only one 

trail center. The forces per unit length of the wedge that need to be considered are: 

 

1. Passive force, Ppγ 

2. The weight of wedge bcfj, W 

3. The resultant of the frictional resistance force acting along arc cf, F 

4. The Rankine passive force, Pp(3) 

 

The Rankine passive force Pp(3) can be given the relation  

 

Pp(3) = ½ γ Hd
2 tan2(45+φ/2)                                               (3.20) 

 

Also note the line of action of force F will pass through O. taking the moment about O 

 

Ppγ lp = W lw + Pp(3) lR                                                                                        (3.21) 

 

Also note that the line of action of force F will pass through O.  

Taking the moment about O. 
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Fig. 3.5 Determination of Ppγ (φ ≠ 0, γ ≠ 0, q = 0, c = 0) 
 

 

                          Ppγ lp = W lp + Pp(3) lR 

Or 

Ppγ = 1/lp [W lw + Pp(3) lR]                                          (3.22) 

 

If numbers of trail of this type are made by changing the location at the center of log spiral O along 

line bf, then the minimum value of Ppγ can be determined 

Considered the stability of wedge abc as shown in Fig. 3.5, we can write that  



 

qγ B = 2 Ppγ – Ww                                                                              (3.23) 

 

Where,    qγ = force per unit area of the foundation 

             Ww = weight of wedge abc 

 

However, 

Ww = B2/4 γ tanα                                              (3.24) 

So 

qγ = 1/B ( 2 Ppγ - B2/4 γ tanα)                         (3.25) 

The passive force Ppγ can be expressed in the form 

Ppγ = ½ γ h2 Kpγ  = ½ γ  (B tanα/2) 2 Kpγ = 1/8 γ B2 Kpγ tan2α                  (3.26) 

 

Where Kpγ = passive earth pressure coefficient 

 

Substituting Eq. (2.28) into Eq. (2.27) 
 

              qγ   = 1/B (1/4 γ B2 Kpγ tan2α – B2/4 g tanα) 

 

           = ½ γ B (½ Kpγ tan2α – tanα/2)  = ½ γ B Nγ                                                      (3.27) 

 

Nγ  = (½ Kpγ tan2α – tanα/2)                                                    (3.28) 

So, the new ultimate bearing capacity factors for angle of wedge = α are  

 
                  Nq = 2 e2 (3π/4 –α +φ/2)tanφ cos2(45-φ/2)/cos2α 

  
                    Nc = [ tanα + 2sec2α{( e2(3π/4 – α +φ/2)tanφ ½ cosφ  

                + (e2(3π/4 –α+φ/2)tanφ  -   1)/2tanφ}] 
 

                   Nγ  = (½ Kpγ tan2α – (tanα)/2) 
 
 

 



• Now the bearing capacity factors for α = φ, are same as given by Trezaghi (see page no    ). 

 

• If we take α = 45 + φ/2 (as assumed by Meyerhof bearing capacity theory) see the difference in 

values of bearing capacity factors Nq, Nc and Nγ in comparison to Terzaghi’s values, shown in 

TABLES and in FIGURES. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
TABLE-1, COMPARISION OF BEARING CAPACITY FACTOR Nq 

 

ANGLE OF INTERNAL FRICTION  TERZAGHI MEYERHOF 

φ φ Nq Nq 
DEGREE RADIANS FOR α = φ FOR α = 45+φ/2 

1 0.0175 1.10 2.19 
2 0.0349 1.22 2.39 
3 0.0524 1.35 2.62 
4 0.0698 1.49 2.87 
5 0.0873 1.64 3.14 
6 0.1047 1.81 3.43 
7 0.1222 2.00 3.76 
8 0.1396 2.21 4.12 
9 0.1571 2.44 4.51 
10 0.1745 2.69 4.94 
11 0.1920 2.98 5.42 
12 0.2094 3.29 5.95 
13 0.2269 3.63 6.53 
14 0.2443 4.02 7.17 
15 0.2618 4.45 7.88 
16 0.2793 4.92 8.67 
17 0.2967 5.45 9.54 
18 0.3142 6.04 10.52 
19 0.3316 6.70 11.60 
20 0.3491 7.44 12.80 
21 0.3665 8.26 14.14 
22 0.3840 9.19 15.64 
23 0.4014 10.23 17.32 
24 0.4189 11.40 19.21 
25 0.4363 12.72 21.32 
26 0.4538 14.21 23.71 
27 0.4712 15.90 26.40 
28 0.4887 17.81 29.44 
29 0.5061 19.98 32.89 
30 0.5236 22.46 36.80 
31 0.5411 25.28 41.26 
32 0.5585 28.52 46.35 
33 0.5760 32.23 52.18 
34 0.5934 36.50 58.88 
35 0.6109 41.44 66.59 
36 0.6283 47.16 75.50 
37 0.6458 53.80 85.84 
38 0.6632 61.55 97.87 
39 0.6807 70.61 111.91 
40 0.6981 81.27 128.39 
41 0.7156 93.85 147.79 
42 0.7330 108.75 170.75 
43 0.7505 126.50 198.03 
44 0.7679 147.74 230.62 
45 0.7854 173.29 269.75 
46 0.8029 204.19 317.00 
47 0.8203 241.80 374.41 
48 0.8378 287.85 444.60 
49 0.8552 344.64 530.99 
50 0.8727 415.15 638.11 

 



 
TABLE-2, COMPARISION OF BEARING CAPACITY FACTOR Nc 

 
ANGLE OF INTERNAL FRICTION TERZAGHI MEYERHOF 

φ φ Nc Nc 
DEGREE RADIANS FOR α = φ FOR α = 45+φ/2 

1 0.0175 5.997 9.741 
2 0.0349 6.300 10.228 
3 0.0524 6.624 10.746 
4 0.0698 6.968 11.298 
5 0.0873 7.337 11.886 
6 0.1047 7.730 12.515 
7 0.1222 8.151 13.186 
8 0.1396 8.602 13.904 
9 0.1571 9.086 14.673 
10 0.1745 9.605 15.498 
11 0.1920 10.163 16.383 
12 0.2094 10.763 17.334 
13 0.2269 11.410 18.358 
14 0.2443 12.108 19.460 
15 0.2618 12.861 20.650 
16 0.2793 13.676 21.935 
17 0.2967 14.559 23.325 
18 0.3142 15.517 24.831 
19 0.3316 16.558 26.465 
20 0.3491 17.690 28.241 
21 0.3665 18.925 30.175 
22 0.3840 20.272 32.283 
23 0.4014 21.746 34.586 
24 0.4189 23.361 37.107 
25 0.4363 25.135 39.871 
26 0.4538 27.085 42.908 
27 0.4712 29.236 46.252 
28 0.4887 31.612 49.942 
29 0.5061 34.242 54.023 
30 0.5236 37.162 58.547 
31 0.5411 40.411 63.575 
32 0.5585 44.036 69.176 
33 0.5760 48.090 75.435 
34 0.5934 52.637 82.447 
35 0.6109 57.754 90.326 
36 0.6283 63.528 99.208 
37 0.6458 70.067 109.254 
38 0.6632 77.495 120.653 
39 0.6807 85.966 133.637 
40 0.6981 95.663 148.482 
41 0.7156 106.807 165.522 
42 0.7330 119.669 185.167 
43 0.7505 134.580 207.915 
44 0.7679 151.950 234.383 
45 0.7854 172.285 265.333 
46 0.8029 196.219 301.720 
47 0.8203 224.549 344.741 
48 0.8378 258.285 395.913 
49 0.8552 298.718 457.173 
50 0.8727 347.509 531.016 

 
 



FIG. 3.6, COMPARISION OF BEARING CAPACITY FACTOR Nq 

FOR α  = φ AND α  = 45 + φ/2
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FIG. 3.7, COMPARISON OF BEARING CAPACITY FACTOR Nc 

FOR α = φ AND α = 45 + φ/2
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TABLE-3, COMPARISION OF BEARING CAPACITY FACTOR Nγ 

ANGLE OF INTERNAL

FRICTION θ MINIMUM 
VALUE TERZAGHI

θ MINIMUM 
VALUE MEYERHOF 

φ φ FOR α = Φ Nγ FOR α = 45+Φ/2 Nγ 
DEGREE RADIANS DEGREE FOR α = Φ DEGREE FOR α = 45+Φ/2

1 0.0175 88.833 0.014 96.950 115.162 
2 0.0349 90.910 0.035 96.944 133.327 
3 0.0524 92.494 0.063 96.932 154.466 
4 0.0698 93.753 0.099 96.912 179.101 
5 0.0873 94.782 0.144 96.882 207.857 
6 0.1047 95.637 0.200 96.856 241.479 
7 0.1222 96.356 0.267 96.821 280.861 
8 0.1396 96.966 0.348 96.781 327.076 
9 0.1571 97.486 0.444 96.736 381.415 

10 0.1745 97.931 0.559 96.688 445.440 
11 0.1920 98.311 0.694 96.636 521.042 
12 0.2094 98.637 0.854 96.580 610.518 
13 0.2269 98.916 1.041 96.522 716.668 
14 0.2443 99.152 1.262 96.461 842.918 
15 0.2618 99.352 1.520 96.397 993.471 
16 0.2793 99.519 1.822 96.330 1173.503 
17 0.2967 99.656 2.175 96.262 1389.411 
18 0.3142 99.768 2.589 96.191 1649.132 
19 0.3316 99.855 3.074 96.119 1962.557 
20 0.3491 99.921 3.641 96.044 2342.052 
21 0.3665 99.968 4.305 95.968 2803.157 
22 0.3840 99.996 5.085 95.890 3365.481 
23 0.4014 100.009 6.000 95.812 4053.881 
24 0.4189 100.006 7.076 95.731 4900.029 
25 0.4363 99.989 8.342 95.650 5944.474 
26 0.4538 99.960 9.836 95.567 7239.218 
27 0.4712 99.918 11.602 95.484 8852.421 
28 0.4887 99.866 13.693 95.400 10871.438 
29 0.5061 99.804 16.175 95.314 13411.662 
30 0.5236 99.732 19.129 95.229 16624.905 
31 0.5411 99.652 22.653 95.142 20712.570 
32 0.5585 99.563 26.871 95.055 25943.690 
33 0.5760 99.467 31.935 94.967 32680.244 
34 0.5934 99.363 38.035 94.879 41412.971 
35 0.6109 99.253 45.410 94.790 52812.471 
36 0.6283 99.137 54.360 94.701 67802.810 
37 0.6458 99.015 65.266 94.612 87668.530 
38 0.6632 98.888 78.614 94.523 114211.831 
39 0.6807 98.755 95.028 94.433 149985.865 
40 0.6981 98.618 115.311 94.343 198644.894 
41 0.7156 98.477 140.509 94.253 265476.022 
42 0.7330 98.331 171.990 94.162 358216.664 
43 0.7505 98.181 211.556 94.072 488327.751 
44 0.7679 98.028 261.603 93.982 673004.157 
45 0.7854 97.872 325.342 93.891 938395.634 
46 0.8029 97.712 407.113 93.801 1324847.070 
47 0.8203 97.550 512.836 93.711 1895564.156 
48 0.8378 97.385 650.673 93.620 2751193.652 
49 0.8552 97.218 831.990 93.530 4054810.739 
50 0.8727 97.048 1072.797 93.440 6075589.081 



FIG.3.8, VARIATION OF TERZAGHI Nγ WITH φ , FOR α = φ
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FIG. 3.9, VARIATION OF Nγ WITH φ, FOR α = 45 + φ/2
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FIG. 3.10, VARIATION OF TERZAGHI'S NγWITH MINIMUM ANGLE OF 
LOG SPIRAL θ
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FIG. 3.11, VARIATION OF Nγ FOR MINMUM ANGLE OF LOG SPIRAL θ,
 IF α = 45 + φ/2
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• Now applying the Terzaghi’s modified bearing capacity factors formulas (Eq. 3.11, 3.19, and 

3.28) for calculating the value of Nq, NC, and Nγ for “SPUDCAN footing”. 

 

• SPUDCAN footing is type of conical shaped footing with protruding tip at the center (see 

Fig.3.12). It is use in the Mobile jackup units of a floatable platform (use in offshore 

structures). For details see Literature review page no.- 

 
 

 
 
 

 

 

                                                                  Spudcan footing  Ω 

 
 
 
 
 
 
 

    20m 
 
 

           Fig. 3.12 
 

• In the SPUDCAN footings, their embedded circular area in plane is used for the bearing 

capacity calculations. The SPUDCAN footing is treated as equivalent cone enclosing the same 

volume.  

 

In my study the series of cone angles Ω = 0o (Flat), 5o, 10o, and 15o is use for calculating the bearing 

capacity factors Nq, Nc, and Nγ. 

Also two approaches is used 

1. The wedge angle, α = Ω + φ. 

2. And, α = Ω + [45+φ/2].  See Fig. 3.13 
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 Fig. 3.13 Failure surface in soil at ultimate load for spudcan footing 

 as assumed in the proposed analysis 
 

 

All the values of bearing capacity factors Nq, Nc, and Nγ are calculated in the Tables for different cone 

angles, Ω = 5o, 10o, and 15o and there variation are shown in the Figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE-3.4, COMPARISION OF BEARING CAPACITY FACTOR Nq FOR SPUDCAN 
FOOTING FOR α = Ω + φ AND  Ω = 5o, 10o, AND 15o. 

 
ANGLE OF INTERNAL FRICTION TERZAGHI Ω=5o Ω =10o Ω =15o 

φ φ Nq Nq Nq Nq 
DEGREE RADIANS IF α = φ IF α = Ω+ φIF α = Ω+ φ IF α = Ω+ φ

1 0.0175 1.10 1.11 1.14 1.18 
2 0.0349 1.22 1.23 1.26 1.31 
3 0.0524 1.35 1.36 1.39 1.45 
4 0.0698 1.49 1.50 1.53 1.60 
5 0.0873 1.64 1.65 1.69 1.76 
6 0.1047 1.81 1.83 1.87 1.95 
7 0.1222 2.00 2.02 2.06 2.15 
8 0.1396 2.21 2.23 2.28 2.38 
9 0.1571 2.44 2.46 2.52 2.62 
10 0.1745 2.69 2.72 2.78 2.90 
11 0.1920 2.98 3.00 3.07 3.21 
12 0.2094 3.29 3.31 3.40 3.54 
13 0.2269 3.63 3.66 3.76 3.92 
14 0.2443 4.02 4.05 4.16 4.34 
15 0.2618 4.45 4.48 4.60 4.81 
16 0.2793 4.92 4.96 5.09 5.33 
17 0.2967 5.45 5.50 5.64 5.91 
18 0.3142 6.04 6.09 6.26 6.55 
19 0.3316 6.70 6.76 6.94 7.28 
20 0.3491 7.44 7.50 7.71 8.09 
21 0.3665 8.26 8.34 8.57 9.00 
22 0.3840 9.19 9.27 9.54 10.03 
23 0.4014 10.23 10.33 10.63 11.18 
24 0.4189 11.40 11.51 11.85 12.48 
25 0.4363 12.72 12.84 13.23 13.95 
26 0.4538 14.21 14.35 14.79 15.61 
27 0.4712 15.90 16.05 16.56 17.50 
28 0.4887 17.81 17.99 18.57 19.65 
29 0.5061 19.98 20.19 20.86 22.10 
30 0.5236 22.46 22.69 23.46 24.90 
31 0.5411 25.28 25.56 26.44 28.10 
32 0.5585 28.52 28.83 29.86 31.79 
33 0.5760 32.23 32.60 33.79 36.04 
34 0.5934 36.50 36.93 38.32 40.95 
35 0.6109 41.44 41.93 43.55 46.64 
36 0.6283 47.16 47.73 49.63 53.27 
37 0.6458 53.80 54.48 56.71 61.01 
38 0.6632 61.55 62.34 64.98 70.09 
39 0.6807 70.61 71.56 74.69 80.78 
40 0.6981 81.27 82.39 86.12 93.42 
41 0.7156 93.85 95.18 99.64 108.44 
42 0.7330 108.75 110.35 115.72 126.36 
43 0.7505 126.50 128.42 134.91 147.87 
44 0.7679 147.74 150.06 157.95 173.81 
45 0.7854 173.29 176.12 185.76 205.30 
46 0.8029 204.19 207.66 219.52 243.76 
47 0.8203 241.80 246.07 260.76 291.04 
48 0.8378 287.85 293.15 311.47 349.59 
49 0.8552 344.64 351.25 374.26 422.64 
50 0.8727 415.15 423.47 452.61 514.56 

 
 



TABLE-3.5, COMPARISION OF BEARING CAPACITY FACTOR N FOR SPUDCAN 
FOOTING FOR α = Ω + φ AND  Ω = 5 , 10 , AND 15 . 

C 
o o o

 
ANGLE OF INTERNAL FRICTION TERZAGHI Ω=5  o Ω =10  o Ω =15  o

φ φ Nc Nc Nc Nc 
DEGREE RADIANS IF α = φ IF α = Ω+ φIF α = Ω+ φIF α = Ω+ φ

1 0.0175 5.997 5.954 5.999 6.133 
2 0.0349 6.300 6.260 6.311 6.457 
3 0.0524 6.624 6.585 6.644 6.803 
4 0.0698 6.968 6.932 6.999 7.172 
5 0.0873 7.337 7.303 7.378 7.567 
6 0.1047 7.730 7.699 7.784 7.989 
7 0.1222 8.151 8.123 8.218 8.441 
8 0.1396 8.602 8.578 8.683 8.927 
9 0.1571 9.086 9.065 9.182 9.448 

10 0.1745 9.605 9.588 9.718 10.008 
11 0.1920 10.163 10.150 10.295 10.611 
12 0.2094 10.763 10.754 10.915 11.261 
13 0.2269 11.410 11.406 11.585 11.963 
14 0.2443 12.108 12.109 12.307 12.721 
15 0.2618 12.861 12.869 13.088 13.542 
16 0.2793 13.676 13.691 13.933 14.431 
17 0.2967 14.559 14.582 14.850 15.396 
18 0.3142 15.517 15.548 15.845 16.445 
19 0.3316 16.558 16.598 16.927 17.588 
20 0.3491 17.690 17.740 18.106 18.834 
21 0.3665 18.925 18.986 19.392 20.196 
22 0.3840 20.272 20.347 20.797 21.687 
23 0.4014 21.746 21.835 22.336 23.321 
24 0.4189 23.361 23.467 24.025 25.118 
25 0.4363 25.135 25.259 25.881 27.096 
26 0.4538 27.085 27.230 27.925 29.279 
27 0.4712 29.236 29.405 30.182 31.693 
28 0.4887 31.612 31.808 32.678 34.370 
29 0.5061 34.242 34.469 35.447 37.344 
30 0.5236 37.162 37.425 38.524 40.657 
31 0.5411 40.411 40.714 41.954 44.359 
32 0.5585 44.036 44.386 45.786 48.505 
33 0.5760 48.090 48.494 50.080 53.163 
34 0.5934 52.637 53.104 54.905 58.413 
35 0.6109 57.754 58.293 60.345 64.348 
36 0.6283 63.528 64.152 66.497 71.082 
37 0.6458 70.067 70.790 73.477 78.748 
38 0.6632 77.495 78.335 81.427 87.508 
39 0.6807 85.966 86.944 90.513 97.560 
40 0.6981 95.663 96.804 100.941 109.142 
41 0.7156 106.807 108.143 112.957 122.547 
42 0.7330 119.669 121.238 126.866 138.133 
43 0.7505 134.580 136.430 143.040 156.349 
44 0.7679 151.950 154.139 161.942 177.750 
45 0.7854 172.285 174.887 184.148 203.035 
46 0.8029 196.219 199.327 210.381 233.091 
47 0.8203 224.549 228.281 241.556 269.048 
48 0.8378 258.285 262.792 278.839 312.362 
49 0.8552 298.718 304.194 323.727 364.924 
50 0.8727 347.509 354.209 378.165 429.216 

 



FIG. 3.14, Comparision of Nq for diffrent Spudcan footing angles(5o, 
10o, & 15o) FOR α = Ω +φ
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FIG. 3.15, COMPARISION OF Nc FOR DIFFERENT SPUDCAN FOOTING ANGLES (5o, 
10o, & 15o) FOR α = Ω + φ
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TABLE- 3.6, COMPARISION OF BEARING CAPACITY FACTOR Nγ FOR 
SPUDCAN FOOTING FOR α = Ω + φ AND Ω = 5o, 10o, AND 15o. 

 
 
 

φ Ω α = Ω + φ θ Νγ  
1 5 6.000 93.486 0.076 
5 5 10.000 97.572 0.358 

10 5 15.000 99.015 1.161 
15 5 20.000 99.487 2.985 
20 5 25.000 99.455 7.115 
25 5 30.000 99.089 16.750 
30 5 35.000 98.526 40.543 
35 5 40.000 97.823 104.559 
40 5 45.000 96.162 298.868 
50 5 55.000 95.856 2548.325 

     

1 10 11.000 85.919 0.244 
5 10 15.000 94.849 0.831 

10 10 20.000 97.822 2.375 
15 10 25.000 98.864 5.953 
20 10 30.000 99.100 14.453 
25 10 35.000 98.895 35.754 
30 10 40.000 98.419 93.779 
35 10 45.000 97.765 271.817 
40 10 50.000 96.995 917.546 
50 10 60.000 95.259 9856.548 

     

1 15 16.000 91.903 0.699 
5 15 20.000 96.168 1.815 

10 15 25.000 98.076 4.868 
15 15 30.000 98.680 12.267 
20 15 35.000 98.664 31.111 
25 15 40.000 98.292 83.136 
30 15 45.000 97.699 244.436 
35 15 50.000 96.962 836.397 
40 15 55.000 96.134 3586.521 
50 15 65.000 94.347 12456.363 

 
 
 



FIG. 3.16, COMPARISION OF Ng FOR DIFFERENT SPUDCAN 
FOOTING ANGLES(5o, 10o, 15o) FOR α =Ω + φ
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TABLE- 3.7, COMPARISION OF BEARING CAPACITY FACTOR Nq FOR SPUDCAN 
FOOTING FOR α = Ω + 45+ φ/2 AND Ω = 5o, 10o, 15o 

 
ANGLE OF INTERNAL FRICTION

TERZAGHI Ω=5o Ω =10o Ω =15o 
φ φ Nq Nq Nq Nq 

DEGREE RADIANS IF α = φ IF α = Ω+45+φ/2 IF α = Ω+45+φ/2 IF α = Ω+45+φ/2
1 0.0175 1.10 2.65 3.33 4.39 
2 0.0349 1.22 2.90 3.65 4.82 
3 0.0524 1.35 3.17 4.00 5.30 
4 0.0698 1.49 3.47 4.38 5.83 
5 0.0873 1.64 3.80 4.81 6.41 
6 0.1047 1.81 4.17 5.28 7.06 
7 0.1222 2.00 4.56 5.79 7.77 
8 0.1396 2.21 5.00 6.36 8.56 
9 0.1571 2.44 5.49 6.99 9.45 

10 0.1745 2.69 6.02 7.68 10.43 
11 0.1920 2.98 6.61 8.45 11.52 
12 0.2094 3.29 7.26 9.30 12.74 
13 0.2269 3.63 7.98 10.25 14.10 
14 0.2443 4.02 8.77 11.30 15.62 
15 0.2618 4.45 9.66 12.48 17.34 
16 0.2793 4.92 10.64 13.78 19.26 
17 0.2967 5.45 11.73 15.24 21.42 
18 0.3142 6.04 12.94 16.88 23.86 
19 0.3316 6.70 14.29 18.71 26.62 
20 0.3491 7.44 15.81 20.76 29.75 
21 0.3665 8.26 17.50 23.07 33.30 
22 0.3840 9.19 19.39 25.68 37.35 
23 0.4014 10.23 21.52 28.62 41.97 
24 0.4189 11.40 23.92 31.95 47.26 
25 0.4363 12.72 26.62 35.72 53.33 
26 0.4538 14.21 29.67 40.02 60.33 
27 0.4712 15.90 33.12 44.91 68.42 
28 0.4887 17.81 37.04 50.51 77.81 
29 0.5061 19.98 41.49 56.92 88.74 
30 0.5236 22.46 46.58 64.30 101.52 
31 0.5411 25.28 52.39 72.80 116.52 
32 0.5585 28.52 59.05 82.64 134.21 
33 0.5760 32.23 66.72 94.07 155.17 
34 0.5934 36.50 75.56 107.39 180.15 
35 0.6109 41.44 85.80 122.97 210.06 
36 0.6283 47.16 97.69 141.27 246.09 
37 0.6458 53.80 111.55 162.86 289.79 
38 0.6632 61.55 127.77 188.45 343.13 
39 0.6807 70.61 146.83 218.93 408.74 
40 0.6981 81.27 169.33 255.41 490.10 
41 0.7156 93.85 195.99 299.32 591.86 
42 0.7330 108.75 227.74 352.48 720.39 
43 0.7505 126.50 265.76 417.24 884.45 
44 0.7679 147.74 311.52 496.68 1096.33 
45 0.7854 173.29 366.91 594.79 1373.55 
46 0.8029 204.19 434.36 716.92 1741.61 
47 0.8203 241.80 517.05 870.20 2238.36 
48 0.8378 287.85 619.11 1064.30 2921.52 
49 0.8552 344.64 746.01 1312.45 3881.55 
50 0.8727 415.15 905.06 1633.03 5265.14 

 
 



TABLE- 3.8, COMPARISION OF BEARING CAPACITY FACTOR NC FOR SPUDCAN 
FOOTING FOR α = Ω + 45+ φ/2 AND Ω = 5o, 10o, 15o 

 
ANGLE OF INTERNAL FRICTION  TERZAGHIS Ω=5o Ω =10o Ω =15o 

φ φ Nc Nc Nc Nc 
DEGREE RADIANS IF α = φ IF α = Ω+45+φ/2 IF α = Ω+45+φ/2 IF α = Ω+45+φ/2

1 0.0175 5.997 11.342 13.647 17.131 
2 0.0349 6.300 11.927 14.386 18.127 
3 0.0524 6.624 12.551 15.177 19.198 
4 0.0698 6.968 13.218 16.024 20.351 
5 0.0873 7.337 13.930 16.933 21.595 
6 0.1047 7.730 14.691 17.908 22.938 
7 0.1222 8.151 15.507 18.956 24.390 
8 0.1396 8.602 16.381 20.084 25.963 
9 0.1571 9.086 17.320 21.299 27.668 
10 0.1745 9.605 18.328 22.611 29.521 
11 0.1920 10.163 19.414 24.027 31.536 
12 0.2094 10.763 20.583 25.560 33.733 
13 0.2269 11.410 21.844 27.221 36.131 
14 0.2443 12.108 23.206 29.024 38.753 
15 0.2618 12.861 24.679 30.982 41.627 
16 0.2793 13.676 26.276 33.115 44.783 
17 0.2967 14.559 28.007 35.440 48.254 
18 0.3142 15.517 29.889 37.980 52.082 
19 0.3316 16.558 31.936 40.759 56.312 
20 0.3491 17.690 34.169 43.806 60.997 
21 0.3665 18.925 36.607 47.153 66.200 
22 0.3840 20.272 39.274 50.838 71.992 
23 0.4014 21.746 42.198 54.903 78.458 
24 0.4189 23.361 45.409 59.397 85.697 
25 0.4363 25.135 48.942 64.377 93.826 
26 0.4538 27.085 52.839 69.909 102.983 
27 0.4712 29.236 57.146 76.070 113.332 
28 0.4887 31.612 61.918 82.950 125.070 
29 0.5061 34.242 67.218 90.654 138.433 
30 0.5236 37.162 73.118 99.305 153.707 
31 0.5411 40.411 79.704 109.051 171.237 
32 0.5585 44.036 87.075 120.065 191.447 
33 0.5760 48.090 95.351 132.553 214.857 
34 0.5934 52.637 104.670 146.765 242.112 
35 0.6109 57.754 115.195 162.998 274.017 
36 0.6283 63.528 127.125 181.614 311.581 
37 0.6458 70.067 140.693 203.051 356.088 
38 0.6632 77.495 156.181 227.848 409.176 
39 0.6807 85.966 173.930 256.666 472.965 
40 0.6981 95.663 194.354 290.323 550.222 
41 0.7156 106.807 217.958 329.840 644.603 
42 0.7330 119.669 245.362 376.500 761.003 
43 0.7505 134.580 277.331 431.927 906.062 
44 0.7679 151.950 314.819 498.191 1088.934 
45 0.7854 172.285 359.019 577.958 1322.454 
46 0.8029 196.219 411.433 674.691 1624.975 
47 0.8203 224.549 473.973 792.933 2023.316 
48 0.8378 258.285 549.085 938.712 2557.655 
49 0.8552 298.718 639.933 1120.113 3289.942 
50 0.8727 347.509 750.639 1348.121 4318.943 

 



FIG. 3.17, COMPARISION OF Nq FOR DIFFERENT 
SPUDCAN FOOTING ANGLE (5o, 10o, AND 15o) FOR α = Ω 

+ 45+φ/2
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FIG. 3.18, COMPARISION OF Nc FOR DIFFERENT SPUDCAN FOOTING 
ANGLES (5o, 10o, AND 15o) FOR α = Ω+45+φ/2
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TABLE- 3.9, COMPARISION OF BEARING CAPACITY FACTOR Nγ FOR 
SPUDCAN FOOTING FOR α = Ω + 45+φ/2 AND Ω = 5o, 10o, AND 15o. 

 
 

φ Ω α = Ω + 45 + φ/2 θ Νγ  
1 5 50.500 96.460 371.240 
5 5 52.500 96.279 727.028 
10 5 55.000 95.973 1765.905 
12 5 56.000 95.833 2565.796 
15 5 57.500 95.608 4604.157 
20 5 60.000 95.205 13196.229 
25 5 62.500 94.778 42882.508 
30 5 65.000 94.337 50845.244 
40 5 70.000 93.439 63258.334 
45 5 72.500 92.992 72458.107 
50 5 75.000 92.549 84582.025 

     
1 10 55.500 95.814 1525.784 
5 10 57.500 95.551 3388.915 
10 10 60.000 95.173 9592.506 
15 10 62.500 94.761 24580.265 
20 10 65.000 94.328 48584.356 
25 10 67.500 93.885 62466.128 
30 10 70.000 93.438 78480.652 
40 10 75.000 92.549 88155.699 
50 10 80.000 91.992 93254.111 

     
1 15 60.500 95.053 9074.841 
5 15 62.500 94.737 19256.365 
10 15 65.000 94.316 29248.316 
15 15 67.500 93.879 46586.215 
20 15 70.000 93.435 55879.100 
25 15 72.500 92.991 65482.322 
30 15 75.000 92.549 86265.215 
40 15 80.000 92.115 98125.125 
50 15 85.000 91.987 112485.321 

 
 
 
 
 
 
 
 



 
 
 

FIG. 3.19, COMPARISION OF Nγ FOR DIFFERENT SPUDCAN 
FOOTING ANGLES(5o, 10o, AND 15o) FOR α = 45+φ/2
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CHAPTER –4 
 

ANALYTICAL SOLUTION FOR BEARING CAPACITY OF 

SKIRTED FOOTING  

 
 
 
4.1 INTRODUCTION 
 

This chapter presents the results of Analytical solutions for the influence of soil confinement on the 

behavior of circular footing resting on granular soil. Skirts with different heights and diameters were 

used to confine the sand. The ultimate bearing capacity of circular footing supported on confining sand 

bed was studied. The studied parameter includes the skirt height and skirt diameter. Initially, the 

response of a nonconfined case (bearing capacity by using Terzaghi’s formulation) was determined 

and then compared with that of confined soil. The results were than analyzed to study the effect of 

each parameter. The results indicate that the bearing capacity of circular footing can be appreciably 

increased by soil confinement. It was concluded that such reinforcement (skirts) resist lateral 

displacement of soil underneath the footing leading to a significant improvement in the response of the 

footing. For small skirt diameters, the skirt-soil footing behaves as one unit (deep foundation), while 

this pattern of behavior was no longer observed with large skirt diameters. The recommended skirt 

heights, depth and diameter that give the maximum bearing capacity improvement are presented and 

discussed. 

 

4.2 MODELING DETAILS 
The geometry of the soil, model footing, and confining cylindrical skirt are shown in the Fig. (4.1). 

The confining cylindrical skirt is assumed to be made of the steel shell with different diameters and 

heights. The used diameters are 100, 107, 133, 160 and 200 centimeter and heights of 50, 100, 150, 

250 and 300 centimeters. The interior and exterior surfaces of the cylindrical skirt are assumed to be 

very smooth and rough (by considering the angle of wall friction) for studying both the cases for 



calculating bearing capacity. The thickness of the cylindrical skirt wall is assumed to be 1 centimeter. 

The model footing is circular with diameter of 100 centimeter. 

 

The analytical solution is carrying out to study the effect of soil confinement on bearing capacity of 

foundation by varying height and diameters of cylindrical skirts as shown in Table 4.1. 

 D 

 Circular footing 

 

 

 

 h                            cylindrical steel shell 

 

 

 

 d  

fig. 4.1 

 

 
    TABLE 4.1 

      Constant parameters                           variables parameter 
                   1.             d/D = 1.00                        h/D = 0.5, 1.00, 1.50, 2.00, 2.50, 3.00 
                   2.             d/D = 1.07                        h/D = 0.5, 1.00, 1.50, 2.00, 2.50, 3.00 

•  

                   3.             d/D = 1.33                        h/D = 0.5, 1.00, 1.50, 2.00, 2.50, 3.00 
                   4.             d/D = 1.60                        h/D = 0.5, 1.00, 1.50, 2.00, 2.50, 3.00 
                   5.             d/D = 2.00                        h/D = 0.5, 1.00, 1.50, 2.00, 2.50, 3.00 
 
 
4.3 PROPERTIES OF THE MATERIAL 
 
COHESIONLESS SOIL (SAND) 

Medium to coarse having 
• Unit weight (γ)                       = 18 N/m3 
• Void ratio                               = 0.35 to 0.45 
• Angle of internal friction(φ)  = 42, 38, and 34 degree 
• Angle of wall friction (δ)       = 0, 22, and 25 degree 

 
THIN CYLINDRICAL STEEL SHELL 

• Thickness, t                         = 1 cm 
• Height, h                              = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 meter 



• 

First, the cylindrical skirts of different diameter and heights as shown in Table-3.1 above is 
used for calculating the bearing capacity (see Fig. 4.2). It is called NORMAL APPROACH. 

 

 

Diameter, d                         = 1.00, 1.07, 1.33, 1.60, and 2.00 meter 
• Permissible tensile stress for the steel shell = 100 N/mm2 = 100000 Kpa 
 

 
4.4 PROPOSED ANALYSIS & FORMULATION  
 
In calculation of bearing capacity of skirted foundation two approaches are PROPOSED  
 

 
Second, as per Terzaghi’s theory of bearing capacity (as explained in literature review) the 
path of the log-spiral has taken as the boundary for the height of the cylindrical shell. Means 
at every change of diameter the height is also varies with path of log-spiral. If we provide the 
height beyond the line of log-spiral this will acts as factor of safety for calculating bearing 
capacity (see Fig.4.3). It is called TERZAGH’S APPROACH. 
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                                                                                                          Steel  
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     Granular material (sand) 

 
 
                                                                             D 
 

Fig. 4.2, This figure shows Normal approach. The h & d varies as shown in  
Table-4.1, used for calculating bearing capacity of footing 
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 Fig. 4.3 This figure shows Terzaghi’s approach, the height of the shell varies from  bO1 to a5f as 

per the path of the Log-spiral. If the height is provide beyond the  
Path of log-spiral it will acts as the factor of safety. 

 
The analysis here is done for the cylindrical shell of very smooth surface (δ =0) (exterior and 
interior both) and also for rough surface (δ ≠ 0).  

For very smooth surface of cylindrical shell the angle of wall friction (δ) = 0, as 
assumed by Rankine in his theory of earth pressure for calculating the Active and 
Passive (Ka & Kp) earth pressure. So, I will call the smooth surface cylindrical shell as 
RANKINE WALL.  

• And for the rough surface of cylindrical shell the angle of wall friction (δ) ≠ 0, for that 
the Coulomb has given the formulas for calculating the active and passive earth 
pressure for cohesionless soil (Ka & Kp) in his wedge theory. so, I will call the rough 
surface cylindrical shell as COULOMB WALL. 

4.4.1 CACULATION OF Ka AND Kp 

• Ka & Kp FOR RANKINE WALL (δ = 0)  
 

 

Ka = tan2 (45-φ/2) 
Kp = tan2 (45+φ/2) 

• Ka & Kp FOR COULOMB WALL (δ ≠ 0) 
 
                                           sin2 (α+φ)  
Ka  =                2 
            sin2α sin(α-δ)     1 +  sin(φ+δ) sin(φ-β) 
 
 sin(α-δ) sin(α+β)  

 



 
 

For 
δ = 25

                                           sin2 (α-φ)  
Kp  =                2 
            sin2α sin(α+δ)     1 -  sin(φ+δ) sin(φ+β) 
 
 sin(α+δ) sin(α+β)  

 
 
Where, 
φ = angle of internal friction of wall. 
δ = angle of wall friction. 
β = angle of inclination of the soil above the ground surface, in our case it is zero degree. 
α = angle of inclination of wall, in our case it is 90 degree. 
All the values of Ka and Kp are given in Table- 4.2, for different values of φ and δ. 

 
 
 
 

TABLE – 4.2 
φ Ka 

For 
δ = 0ο 

Ka 
For 

δ = 22ο

Ka 
For 

δ = 25ο

Kp 
For 

δ = 0ο

Kp 
For 

δ = 22ο

Kp 

ο 
42 0.198 0.183 0.183 5.044 15.776 19.758 
38 0.238 0.217 0.217 4.204 11.466 13.901 
34 0.238 0.254 0.254 3.537 8.641 10.193 

 
 
 
 
 
 
 

4.4.2 FORMULATION FOR RANKINE AND COULOMB WALL 
 

• Active earth pressure, Pa  = ½ Ka γ h2 
• Passive earth pressure, Pp  = ½ Kp γ h2  
• Circumferential tensile stress (or hoop stress),  
 
                                             f = p.d /2. 
                              So,         p = f.2.t /d 

        
Where , p = internal pressure. 
             D = diameter of shell. 
             T = thickness of shell. 

 
 



 
4.4.2.1 RANKINE WALL (δ = 0) 
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 D  
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 h/2 Pa Pp  

 

 

Fig. 4.4 

Taking moment of all the forces about the center line of the footing  

qu.Ka.h.h/2 + ½ Ka.γ.h2.2/3 .h = (f.2.t.h/d) . (h/2) + ½ Kp.γh2).(2/3 .h) 

So from this we get 

qu = 2.f.t/d.Ka + 2/3 γ.h(Kp – Ka)/Ka 
 

 

4.4.2.2 COULOMB WALL (δ ≠ 0) 
 d/2 

 D  

 Footing  

   

  Pa h/3 h/2 

 qu.Ka.h Pasinδ   

 δ Ppcosδ p.h  

 Pacosδ δ Ppsinδ 

 Pp  
Fig. 4.5 



Taking moment of all the forces about the center line of the footing  

 

 

 

 

 

(f.2.t.h/d) (h/2)+1/2 Kp.γ.h2.cosδ(2/3.h)+1/2 Ka.γ.h2.sinδ.d/2  

                                                 = ½ Ka.γ.h2.cosδ(2/3.h) + ½ Kp.γ.h2.sinδ.d/2 + qu.Ka.h.h/2 

qu = (2.f.t/d.Ka)  +  (2.γ.Kp/Ka)x(cosδ.h/3 – sinδ.d/4)  

            + 2.γ (sinδ.d/4 – cosδ.h/3) 
 

 
 
4.4.2.3 BEARING CAPACITY OF THE FOOTING WITHOUT CONFINEMENT 
 
The ultimate bearing capacity of the footing can be calculated by the formula: 

qu = ½ γ D ζγ Nγ 
 

Where, 

Unit weight of soil,  γ = 18.00 KN/m3 

Bearing capacity factor Nγ for different φ as given by Kumbhojkar are, Nγ = 171.99 for φ = 42o, Nγ = 

78.61 for φ = 38o, and Nγ = 38.04 for φ = 34o. 

Diameter of the footing = 1m 

Shape factor ζγ = 0.6 as given by Terzaghi for circular footing. 

 

qu = 928.75 KN/m3 for Nγ = 171.99 & φ = 42o 

qu = 424.50 KN/m3 for Nγ = 78.610 & φ = 38o 

qu = 205.42 KN/m3 for Nγ = 38.040 & φ = 34o   

 

 

 

 



4.4.2.4 BEARING CAPACITY RATIO 

 

 

4.5 EFFECT OF THE SOIL PRESSURE ON THE CYLLINDRICAL SHELL 

 

The bearing capacity improvement due to the soil confinement is represented using a nondimensional 

factor, called the bearing capacity ratio (BCR). This is defined as the ratio of the footing ultimate load 

with soil confinement (Qu) to the footing ultimate load without confinement (qu). 

BCR = Qu / qu 
 

 

One of the proposed parameter to be investigated was the thickness of the shell wall to study 
the effect of the shell rigidity on the footing shell system behavior and also to study the hoop 
tension in the shell sue to the pressure under the footing. The horizontal pressure acting on 
the side wall of the shell is equal to the vertical pressure multiplied by the coefficient of lateral 
earth pressure. It can be seen that the maximum estimated horizontal earth pressure on the 
side walls of the shell are very small in comparison to the allowable hydraulic pressure, 
another point is that the given allowable value is the net inside pressure while the shell in the 
model is subjected to both internal and external pressure. 
 

 

4.6 RESULTS AND DISCUSSION 

 

4.6.1 EFFECT OF CYLINDRICAL SHELL DIAMETER 

In order to investigate the effect of shell diameter on the footing behavior, different diameter 
of cylindrical shell 100, 107, 133, 160, and 200 cm were used. 
 

Tables and Figures show the variation of BCR with normalized cylindrical shell diameter (d/D) for 

different shell heights (h/D) with a constant footing diameter (D) of 1 meter.  A significant increase of 

bearing capacity of model footing supported on confined sand has observed, but also found that the 

BCR decreases with an increase in the d/D ratio.  

The coming figures show (for tables see APPINDEX) for different Proposed Approaches as explained 

in above articles 4.4. E.g. Normal approach and Terzaghi’s approach, also for the Rankine wall and 



Coulomb wall for different value of φ (34o, 38o, and 42o) and angle of wall friction (δ = 0o, 22o, and 

25o). 

 

The significant increase in the bearing capacity of the footing can be explained as follows, when the 

footing is loaded, such confinement resist the lateral displacement of soil piratical underneath the 

footing and confines the soil leading to a significant decrease in the vertical settlement and hence 

improving the bearing capacity. For small cylindrical shell diameters, as the pressure is increased, the 

plastic state is developed initially around the edges of the footing and then spreads initially around the 

edges of the footing and then spread downward and outward. The mobilized vertical friction between 

the sand and the inside wall of the cylinder increases with the increase of the active earth pressure until 

the point when the system (the cylinder, sand and footing) starts behave as one unit. The behavior is 

similar to that observed in deep foundations (piles and caissons) in which the bearing load increases 

due to the shear resistance of shell surface. This illustrate the increase of the bearing load with the 

increase of the shell diameter and shell height, based on tests performed with shell made with very 

smooth surfaces, it can be concluded that increased surface roughness results in greater bearing load 

improvement. 

 

 

 

 

 

 

 



Normal approach for Rankine wall 

FIG.4.6,  VARIATION OF BCR WITH NORMALIZED SHELL DIAMETER 
(d/D) FOR DIFFRENT SHELL HEIGHT & for Rankine wall(φ =34o & δ 

=0o)
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FIG. 4.7, VARIATION OF BCR WITH NORMALIZED SHELL DIAMETER 
(d/D) FOR DIFFRENT SHELL HEIGHT &FOR RANKINE WALL(φ = 38o & 

δ =0o)
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FIG. 4.8 VARIATION OF BCR WITH NORMALIZED SHELL DIAMETER (d/D) 
FOR DIFFRENT SHELL HEIGHT & FOR RANKINE WALL(φ = 42o & δ =0o)
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Normal approach for Coulomb wall 

FIG. 4.9, VARIATION OF BCR WITH NORMALIZED SHELL DIAMETER (d/D) FOR 
DIFFRENT SHELL HEIGHT & FOR COULOMB WALL (φ = 34o & δ =22o)
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FIG.4.10, The variation of BCR with normalized shell diameter (d/D) for different 
shell heights, for Coulomb wall(φ = 38o and δ = 22o) 
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FIG.4.11, The variation of BCR with normalized shell diameter (d/D) for 
different shell heights & for Coulomb wall (φ = 42o & δ = 22o)
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Fig.4.12, The variation of BCR with normalized shell diameter (d/D) for different 
shell heights & for Coulomb wall ( φ = 34o & δ = 25o)
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Fig.4.13, The variation of BCR with normalized shell diameter (d/D) for 
different shell heights & for Coulomb wall ( φ = 38o & δ = 25o)
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FIG. 4.14, VARIATION OF BCR WITH NORMALIZED SHELL DIAMETER 
(d/D) FOR DIFFRENT SHELL HEIGHT& FOR COLOUMB WALL( φ = 42o & δ 

= 25o)
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Terzaghi’s approach for Rankine wall 
 
 
 

 

Fig. 4.15, Variation of BCR with normalized shell diameter (d/D) 
for different shell heights (h/D)(For φ = 42o, 38o, and 34o)
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Terzaghi’s approach for Coulomb’s wall 

 
 
 
 

Fig. 4.16, Variation of BCR with normalized shell diameter (d/D) for 
different height (h/D). ( φ = 42o, 38o, 34o and δ = 22o)
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Fig. 4.17, Variation of BCR with normalized shell diameter (d/D) for 
different height (h/D), ( φ = 42o, 38o, 34o, and δ = 25o)
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4.6.2 EFFECT OF CYLINDRICAL SHELL HEIGHT 

 
   In order to investigate the effect of shell height on the footing response, analysis has been done by 

using six different heights for each shell diameters. The variation of BCR with normalized shell height 

(h/D) is shown in the Table (see appendix) and figures for Normal approach and Terzaghi approach for 

different angles of internal friction of soil  (φ = 42, 38, and 34 degree) and angle d wall friction (δ = 0, 

22, and 25 degree). 

 

For different normalized shell diameter) d/D). The figures show the same pattern of behavior 
for the different shell diameter, increase in shell height result in an improvement in BCR. This 
increase in shell height results in   the enlargement in the surface area of the cylindrical shell- 
model footing leading to the higher bearing capacity load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 



Normal approach for Rankine wall 
 

FIG.4.18, VARIATION OF BCR WITH NORMALIZED SHELL 
HEIGHT (h/D) FOR DIFFRENT SHELL DIAMETER(d), ( φ = 34o and 

δ = 0o)
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Fig.4.19, The variation of BCR with normalized shell height (h/D) for 
different shell diameter,(FOR φ = 38o and δ = 0o) 
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Fig. 4.20, The variation of BCR with normalized shell height (h/D) for 
different shell diameterl (FOR φ = 42o and δ = 0o)
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 Normal approach for Coulomb wall 

 

Fig. 4.21, The variation of BCR with normalized shell height (h/D) for 
different shell diameter (FOR φ = 34o and δ = 22o)
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Fig. 4.22, The variation of BCR with normalized shell height (h/D) for 
different shell diameter (FOR φ = 38o and δ = 22o)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.5 1 1.5 2 2.5 3 3.5h/D

BC

d/D = 1.00
d/D = 1.07
d/D = 1.33
d/D = 1.60
d/D = 2.00

 

Fig. 4.23, The variation of BCR with normalized shell height (h/D) for different 
shell diameter ( φ = 42ο and δ = 22o)
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Fig. 4.24, The variation of BCR with normalized shell height (h/D) for 
different shell diameter(FOR φ = 38o and δ = 25o)
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Fig. 4.25, The variation of BCR with normalized shell height (h/D) for 
different shell diameter (FOR φ = 34o and δ = 25o)
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Fig. 4.26, The variation of BCR with normalized shell height (h/D) for 
different shell diameter (FOR φ = 42o and δ = 25o)
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Terzaghi approach for Rankine wall 
 
 
 
 

Fig. 4.27, Variation of BCR with normalized shell height (h/D) 
for different shell diameters (d/D),( φ = 42o, 38o, and 34o)
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Terzaghi approach for Coulomb wall 
 

Fig. 4.28, Variation of BCR with Normalized shell height (h/D) for different 
shell diameter (d/D), ( φ= 42o, 38o, 34o and δ  = 22o)
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CHAPTER-5 
 

CONCLUSIONS AND SCOPE OF FURTHER STUDY 

 

 
5.1 CONCLUSIONS 

 
The objective of this thesis is to study the effect of special type of footings on improvement of bearing 

capacity of shallow foundations using the extension of Terzaghi (1943) and Kumbhojkar (1993) 

approach. 

 

The first case was considered for a spudcan footing supported on soil. 

Since the spudcan footing uses a cone at the base, the log-spiral tends to grow downward and outward 

to increase the bearing capacity factor Nc, Nq, and Nγ , this represents the angle of a spudcan (Ω) has 

got a significant effect that can be observed for the values of bearing capacity at φ = 30o. The Nc, Nq, 

and Nγ  for spudcan footing with cone angle (Ω) of 15o are 40.6, 24.9, and 244.4, compared to 

Terzaghi’s values of 37.1, 22.4, and 19.1 respectively. 

 

In second case the circular footing supported on dry sand and surrounded from all sides by skirts 

(cylindrical steel shell) with very smooth and rough surfaces (δ≥ 0). Based on the analytical solutions 

the following conclusions can be drawn for skirted footing. 

 

1. Soil confinement has a significant effect on improving the behavior of circular footing 

supported on granular soil. The ultimate bearing capacity was 43 times as compared to 

unconfined case. Therefore it can be concluded that the sheet piles used to brace cuts have a 

significant effect on improving the bearing capacity of soils under raft foundation. 

2. Based on the analytical results, soil confinement could be considered as a method to improve 

the bearing capacity of isolated footing bearing on sand. Steel shells of different heights, 



diameters, and thickness could be easily manufactured and placed and the individual footing 

leading to a significant improvement in there response. 

3. In case where structures are very sensitive to settlement, soil confinement can used to obtain 

the same allowable bearing capacity at much lower settlement. 

4. 

7. 

The BCR is highly depends on the d/D ratio (shell diameter/footing diameter ratio) the 

optimum ratio is about one, beyond which the improvement decreases as the ratio increases. 

5. The two following approaches are used Normal approach and Terzaghi approach with 

Rankine’s wall and Coulomb’s wall (δ = 22o & 25o). It was observed that maximum BCR in all 

cases are decreases as the angle of internal friction increases from 34o to 42o. Also the BCR is 

decreases as the d/D (shell diameter/ footing diameter ratio) increases and BCR increases as the 

h/D (shell height/footing diameter) increases. 

6. Increase the height of the cylindrical shell results in increasing the surface area of the shell-

model footing, which transfers loads to deep depths and lead to improving the BCR. 

At the time of design of the foundation by calculating the upcoming loads the thickness and 

height of the cylindrical shell can be economically decided. 

8. The permissible value of circumferential tensile stress (or hoop stress) has considered 

100N/mm2 . If it is increases the thickness of the shell is reduces. 

9. In Terzaghi’s approach the height of the shell varies as the path of the log-spiral varies if the 

height provides beyond the path of log-spiral it will acts as the factor of safety for unpredictable 

settlement and loading. 

10. As I considered steel as the material of cylindrical shell, it can be replaced by some other 

material, which is corrosion resistance and economical, compared to steel, like polyvinyl 

chloride cylinders. 

 

 

 

5.2 SCOPE OF FURTHER STUDY 

 
Behavior of other footings, square and rectangular along with the influence of the roughness and the 

stiffness of shell material were not studied. Therefore it is recommended that further work is 

investigates the effect of these parameter for both dry and wet sand conditions. 



 

Studying the effect of soil confinement on the behavior of footing bearing on weak type of soil such as 

loose sand and soft clay is also the scope of further study. 

 

This analytical solution can be further extent for studying it by using Finite Element Modeling so 

that it can incorporates all the variability of the soil, shell and footing material properties which 

otherwise becomes difficult. 
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APPENDIX 
Table-1, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Rankine wall and φ = 34o. 
h/D Kp Ka Kp-K  a d Q  u BCR 

            Q /q  u u
0.5 3.537 0.283 3.254 1 7143.33 34.8 
0.5 3.537 0.283 3.254 1.07 6680.53 32.5 
0.5 3.537 0.283 3.254 1.33 5388.06 26.2 
0.5 3.537 0.283 3.254 1.6 4490.48 21.9 

0.5 3.537 0.283 3.254 2 3606.20 17.6 
1 3.537 0.283 3.254 1 7212.40 35.1 
1 3.537 0.283 3.254 1.07 6749.60 32.9 
1 3.537 0.283 3.254 1.33 5457.13 26.6 
1 3.537 0.283 3.254 1.6 4559.55 22.2 

1 3.537 0.283 3.254 2 3675.27 17.9 
1.5 3.537 0.283 3.254 1 7281.47 35.4 
1.5 3.537 0.283 3.254 1.07 6818.67 33.2 
1.5 3.537 0.283 3.254 1.33 5526.20 26.9 
1.5 3.537 0.283 3.254 1.6 4628.62 22.5 

1.5 3.537 0.283 3.254 2 3744.34 18.2 
2 3.537 0.283 3.254 1 7350.54 35.8 
2 3.537 0.283 3.254 1.07 6887.73 33.5 
2 3.537 0.283 3.254 1.33 5595.27 27.2 
2 3.537 0.283 3.254 1.6 4697.69 22.9 
2 3.537 0.283 3.254 2 3813.40 18.6 

 
Table-2, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Rankine wall and φ = 38 . o

h/D Kp Ka Kp-K  a d/D Q  u BCR 
            Q /q  u u

0.5 4.204 0.238 3.966 1 8507.52 20.0 
0.5 4.204 0.238 3.966 1.07 7957.50 18.7 
0.5 4.204 0.238 3.966 1.33 6421.45 15.1 
0.5 4.204 0.238 3.966 1.6 5354.71 12.6 

0.5 4.204 0.238 3.966 2 4303.77 10.1 
1 4.204 0.238 3.966 1 8607.55 20.3 
1 4.204 0.238 3.966 1.07 8057.53 19.0 
1 4.204 0.238 3.966 1.33 6521.48 15.4 
1 4.204 0.238 3.966 1.6 5454.74 12.8 

1 4.204 0.238 3.966 2 4403.80 10.4 
1.5 4.204 0.238 3.966 1 8707.58 20.5 
1.5 4.204 0.238 3.966 1.07 8157.56 19.2 
1.5 4.204 0.238 3.966 1.33 6621.51 15.6 
1.5 4.204 0.238 3.966 1.6 5554.77 13.1 

1.5 4.204 0.238 3.966 2 4503.83 10.6 
2 4.204 0.238 3.966 1 8807.61 20.7 
2 4.204 0.238 3.966 1.07 8257.58 19.5 
2 4.204 0.238 3.966 1.33 6721.54 15.8 
2 4.204 0.238 3.966 1.6 5654.80 13.3 



 
Table-3, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Rankine wall and φ = 42o. 

h/D Kp Ka Kp-Ka D/D Qu BCR 
            Qu/qu 

0.5 5.045 0.198 4.846 1 10236.06 11.0 
0.5 5.045 0.198 4.846 1.07 9576.00 10.3 
0.5 5.045 0.198 4.846 1.33 7732.68 8.3 
0.5 5.045 0.198 4.846 1.6 6452.54 6.9 
0.5 5.045 0.198 4.846 2 5191.37 5.6 
1 5.045 0.198 4.846 1 10382.75 11.2 
1 5.045 0.198 4.846 1.07 9722.70 10.5 
1 5.045 0.198 4.846 1.33 7879.37 8.5 
1 5.045 0.198 4.846 1.6 6599.24 7.1 
1 5.045 0.198 4.846 2 5338.07 5.7 

1.5 5.045 0.198 4.846 1 10529.44 11.3 
1.5 5.045 0.198 4.846 1.07 9869.39 10.6 
1.5 5.045 0.198 4.846 1.33 8026.07 8.6 
1.5 5.045 0.198 4.846 1.6 6745.93 7.3 
1.5 5.045 0.198 4.846 2 5484.76 5.9 
2 5.045 0.198 4.846 1 10676.13 11.5 
2 5.045 0.198 4.846 1.07 10016.08 10.8 
2 5.045 0.198 4.846 1.33 8172.76 8.8 
2 5.045 0.198 4.846 1.6 6892.62 7.4 
2 5.045 0.198 4.846 2 5631.45 6.1 

 
Table-4, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Coulomb wall and φ = 34o and δ = 22o. 

h/D Ka Kp Kp-Ka δ d/D Qu BCR 
              Qu/qu 

0.5 0.254 8.641 8.387 0.384 1 7946.38 38.9 
0.5 0.254 8.641 8.387 0.384 1.07 7423.47 36.3 
0.5 0.254 8.641 8.387 0.384 1.33 5955.94 29.1 
0.5 0.254 8.641 8.387 0.384 1.6 4926.83 24.1 
0.5 0.254 8.641 8.387 0.384 2 3898.05 19.1 
1 0.254 8.641 8.387 0.384 1 8130.08 39.8 
1 0.254 8.641 8.387 0.384 1.07 7607.16 37.2 
1 0.254 8.641 8.387 0.384 1.33 6139.63 30.0 
1 0.254 8.641 8.387 0.384 1.6 5110.52 25.0 
1 0.254 8.641 8.387 0.384 2 4081.74 20.0 

1.5 0.254 8.641 8.387 0.384 1 8313.77 40.7 
1.5 0.254 8.641 8.387 0.384 1.07 7790.85 38.1 
1.5 0.254 8.641 8.387 0.384 1.33 6323.33 30.9 
1.5 0.254 8.641 8.387 0.384 1.6 5294.22 25.9 
1.5 0.254 8.641 8.387 0.384 2 4265.43 20.9 
2 0.254 8.641 8.387 0.384 1 8497.46 41.6 
2 0.254 8.641 8.387 0.384 1.07 7974.54 39.0 
2 0.254 8.641 8.387 0.384 1.33 6507.02 31.8 
2 0.254 8.641 8.387 0.384 1.6 5477.91 26.8 
2 0.254 8.641 8.387 0.384 2 4449.13 21.8 



Table-5, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 
for Coulomb wall and φ = 38o and δ = 22o. 

h/D Ka Kp Kp-Ka δ d/D Qu BCR 
              Qu/qu 

0.5 0.217 11.466 11.249 0.384 1 9330.20 22.0 
0.5 0.217 11.466 11.249 0.384 1.07 8715.01 20.5 
0.5 0.217 11.466 11.249 0.384 1.33 6985.70 16.5 
0.5 0.217 11.466 11.249 0.384 1.6 5769.12 13.6 
0.5 0.217 11.466 11.249 0.384 2 4547.13 10.7 
1 0.217 11.466 11.249 0.384 1 9618.59 22.7 
1 0.217 11.466 11.249 0.384 1.07 9003.40 21.2 
1 0.217 11.466 11.249 0.384 1.33 7274.09 17.1 
1 0.217 11.466 11.249 0.384 1.6 6057.50 14.3 
1 0.217 11.466 11.249 0.384 2 4835.52 11.4 

1.5 0.217 11.466 11.249 0.384 1 9906.97 23.3 
1.5 0.217 11.466 11.249 0.384 1.07 9291.78 21.9 
1.5 0.217 11.466 11.249 0.384 1.33 7562.47 17.8 
1.5 0.217 11.466 11.249 0.384 1.6 6345.89 14.9 
1.5 0.217 11.466 11.249 0.384 2 5123.90 12.1 
2 0.217 11.466 11.249 0.384 1 10195.35 24.0 
2 0.217 11.466 11.249 0.384 1.07 9580.17 22.6 
2 0.217 11.466 11.249 0.384 1.33 7850.86 18.5 
2 0.217 11.466 11.249 0.384 1.6 6634.27 15.6 
2 0.217 11.466 11.249 0.384 2 5412.29 12.7 

 
Table-6, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Coulomb wall and φ = 42o and δ = 22o. 

h/D Ka Kp Kp-Ka δ d/D Qu BCR 
              Qu/qu 

0.5 0.183 15.726 15.543 0.384 1 11115.11 12.0 
0.5 0.183 15.726 15.543 0.384 1.07 10380.08 11.2 
0.5 0.183 15.726 15.543 0.384 1.33 8308.91 8.9 
0.5 0.183 15.726 15.543 0.384 1.6 6844.94 7.4 
0.5 0.183 15.726 15.543 0.384 2 5364.27 5.8 
1 0.183 15.726 15.543 0.384 1 11587.61 12.5 
1 0.183 15.726 15.543 0.384 1.07 10852.58 11.7 
1 0.183 15.726 15.543 0.384 1.33 8781.41 9.5 
1 0.183 15.726 15.543 0.384 1.6 7317.43 7.9 
1 0.183 15.726 15.543 0.384 2 5836.77 6.3 

1.5 0.183 15.726 15.543 0.384 1 12060.11 13.0 
1.5 0.183 15.726 15.543 0.384 1.07 11325.08 12.2 
1.5 0.183 15.726 15.543 0.384 1.33 9253.91 10.0 
1.5 0.183 15.726 15.543 0.384 1.6 7789.93 8.4 
1.5 0.183 15.726 15.543 0.384 2 6309.27 6.8 
2 0.183 15.726 15.543 0.384 1 12532.60 13.5 
2 0.183 15.726 15.543 0.384 1.07 11797.58 12.7 
2 0.183 15.726 15.543 0.384 1.33 9726.41 10.5 
2 0.183 15.726 15.543 0.384 1.6 8262.43 8.9 
2 0.183 15.726 15.543 0.384 2 6781.77 7.3 

 



 
Table-7, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Coulomb wall and φ = 34o and δ = 25o. 

h/D Ka Kp Kp-Ka δ D Qu BCR 
              Qu/qu 

0.5 0.254 10.193 9.939 0.436 1 7937.97 38.6 
0.5 0.254 10.193 9.939 0.436 1.07 7412.42 36.1 
0.5 0.254 10.193 9.939 0.436 1.33 5935.15 28.9 
0.5 0.254 10.193 9.939 0.436 1.6 4895.91 23.8 
0.5 0.254 10.193 9.939 0.436 2 3852.12 18.8 
1 0.254 10.193 9.939 0.436 1 8150.75 39.7 
1 0.254 10.193 9.939 0.436 1.07 7625.21 37.1 
1 0.254 10.193 9.939 0.436 1.33 6147.93 29.9 
1 0.254 10.193 9.939 0.436 1.6 5108.69 24.9 
1 0.254 10.193 9.939 0.436 2 4064.91 19.8 

1.5 0.254 10.193 9.939 0.436 1 8363.53 40.7 
1.5 0.254 10.193 9.939 0.436 1.07 7837.99 38.2 
1.5 0.254 10.193 9.939 0.436 1.33 6360.71 31.0 
1.5 0.254 10.193 9.939 0.436 1.6 5321.47 25.9 
1.5 0.254 10.193 9.939 0.436 2 4277.69 20.8 
2 0.254 10.193 9.939 0.436 1 8576.31 41.8 
2 0.254 10.193 9.939 0.436 1.07 8050.77 39.2 
2 0.254 10.193 9.939 0.436 1.33 6573.49 32.0 
2 0.254 10.193 9.939 0.436 1.6 5534.26 26.9 
2 0.254 10.193 9.939 0.436 2 4490.47 21.9 

 

D 

Table-8, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 
for Coulomb wall and φ = 38o and δ = 25o. 

h/D Ka Kp Kp-Ka δ Qu BCR 
              Qu/qu 

0.5 0.217 13.901 13.684 0.436 1 9319.65 22.0 
0.5 0.217 13.901 13.684 0.436 1.07 8699.90 20.5 
0.5 0.217 13.901 13.684 0.436 1.33 6953.67 16.4 
0.5 0.217 13.901 13.684 0.436 1.6 5719.51 13.5 
0.5 0.217 13.901 13.684 0.436 2 4471.50 10.5 
1 0.217 13.901 13.684 0.436 1 9662.56 22.8 
1 0.217 13.901 13.684 0.436 1.07 9042.81 21.3 
1 0.217 13.901 13.684 0.436 1.33 7296.58 17.2 
1 0.217 13.901 13.684 0.436 1.6 6062.43 14.3 
1 0.217 13.901 13.684 0.436 2 4814.41 11.3 

1.5 0.217 13.901 13.684 0.436 1 10005.47 23.6 
1.5 0.217 13.901 13.684 0.436 1.07 9385.72 22.1 
1.5 0.217 13.901 13.684 0.436 1.33 7639.49 18.0 
1.5 0.217 13.901 13.684 0.436 1.6 6405.34 15.1 
1.5 0.217 13.901 13.684 0.436 2 5157.32 12.1 
2 0.217 13.901 13.684 0.436 1 10348.38 24.4 
2 0.217 13.901 13.684 0.436 1.07 9728.63 22.9 
2 0.217 13.901 13.684 0.436 1.33 7982.40 18.8 
2 0.217 13.901 13.684 0.436 1.6 6748.25 15.9 
2 0.217 13.901 13.684 0.436 2 5500.23 13.0 



 
Table-9, The variation of BCR with normalized shell diameter (d/D) for different shell heights, 

for Coulomb wall and φ = 42o and δ = 25o. 
 

h/D Ka Kp Kp-Ka δ D Qu BCR 
              Qu/qu 

0.5 0.183 19.758 19.575 0.436 1 11103.78 12.0 
0.5 0.183 19.758 19.575 0.436 1.07 10360.32 11.2 
0.5 0.183 19.758 19.575 0.436 1.33 8257.82 8.9 
0.5 0.183 19.758 19.575 0.436 1.6 6761.30 7.3 
0.5 0.183 19.758 19.575 0.436 2 5232.44 5.6 
1 0.183 19.758 19.575 0.436 1 11685.45 12.6 
1 0.183 19.758 19.575 0.436 1.07 10941.99 11.8 
1 0.183 19.758 19.575 0.436 1.33 8839.49 9.5 
1 0.183 19.758 19.575 0.436 1.6 7342.97 7.9 
1 0.183 19.758 19.575 0.436 2 5814.11 6.3 

1.5 0.183 19.758 19.575 0.436 1 12267.12 13.2 
1.5 0.183 19.758 19.575 0.436 1.07 11523.66 12.4 
1.5 0.183 19.758 19.575 0.436 1.33 9421.16 10.1 
1.5 0.183 19.758 19.575 0.436 1.6 7924.64 8.5 
1.5 0.183 19.758 19.575 0.436 2 6395.78 6.9 
2 0.183 19.758 19.575 0.436 1 12848.79 13.8 
2 0.183 19.758 19.575 0.436 1.07 12105.33 13.0 
2 0.183 19.758 19.575 0.436 1.33 10002.83 10.8 
2 0.183 19.758 19.575 0.436 1.6 8506.32 9.2 
2 0.183 19.758 19.575 0.436 2 6977.45 7.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Table-10, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Rankine wall (FOR φ = 34o and δ = 0o) 

 
h/D Kp Ka Kp-Ka d/D Qu BCR 

            Qu/qu 
0.5 3.537 0.283 3.254 1 7143.33 34.8 
1 3.537 0.283 3.254 1 7212.40 35.1 

1.5 3.537 0.283 3.254 1 7281.47 35.4 
2 3.537 0.283 3.254 1 7350.54 35.8 

2.5 3.537 0.283 3.254 1 7419.60 36.1 
3 3.537 0.283 3.254 1 7488.67 36.5 

0.5 3.537 0.283 3.254 1.07 6680.53 32.5 
1 3.537 0.283 3.254 1.07 6749.60 32.9 

1.5 3.537 0.283 3.254 1.07 6818.67 33.2 
2 3.537 0.283 3.254 1.07 6887.73 33.5 

2.5 3.537 0.283 3.254 1.07 6956.80 33.9 
3 3.537 0.283 3.254 1.07 7025.87 34.2 

0.5 3.537 0.283 3.254 1.33 5388.06 26.2 
1 3.537 0.283 3.254 1.33 5457.13 26.6 

1.5 3.537 0.283 3.254 1.33 5526.20 26.9 
2 3.537 0.283 3.254 1.33 5595.27 27.2 

2.5 3.537 0.283 3.254 1.33 5664.33 27.6 
3 3.537 0.283 3.254 1.33 5733.40 27.9 

0.5 3.537 0.283 3.254 1.6 4490.48 21.9 
1 3.537 0.283 3.254 1.6 4559.55 22.2 

1.5 3.537 0.283 3.254 1.6 4628.62 22.5 
2 3.537 0.283 3.254 1.6 4697.69 22.9 

2.5 3.537 0.283 3.254 1.6 4766.75 23.2 
3 3.537 0.283 3.254 1.6 4835.82 23.5 

0.5 3.537 0.283 3.254 2 3606.20 17.6 
1 3.537 0.283 3.254 2 3675.27 17.9 

1.5 3.537 0.283 3.254 2 3744.34 18.2 
2 3.537 0.283 3.254 2 3813.40 18.6 

2.5 3.537 0.283 3.254 2 3882.47 18.9 
3 3.537 0.283 3.254 2 3951.54 19.2 

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 

d 

Table-4.11, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Rankine wall (FOR φ = 38o and δ = 0o) 

 
h/D Kp Ka Kp-Ka Qu BCR 

            Qu/qu 
0.5 4.204 0.238 3.966 1 8507.52 20.0 
1 4.204 0.238 3.966 1 8607.55 20.3 

1.5 4.204 0.238 3.966 1 8707.58 20.5 
2 4.204 0.238 3.966 1 8807.61 20.7 

2.5 4.204 0.238 3.966 1 8907.64 21.0 
3 4.204 0.238 3.966 1 9007.66 21.2 

0.5 4.204 0.238 3.966 1.07 7957.50 18.7 
1 4.204 0.238 3.966 1.07 8057.53 19.0 

1.5 4.204 0.238 3.966 1.07 8157.56 19.2 
2 4.204 0.238 3.966 1.07 8257.58 19.5 

2.5 4.204 0.238 3.966 1.07 8357.61 19.7 
3 4.204 0.238 3.966 1.07 8457.64 19.9 

0.5 4.204 0.238 3.966 1.33 6421.45 15.1 
1 4.204 0.238 3.966 1.33 6521.48 15.4 

1.5 4.204 0.238 3.966 1.33 6621.51 15.6 
2 4.204 0.238 3.966 1.33 6721.54 15.8 

2.5 4.204 0.238 3.966 1.33 6821.57 16.1 
3 4.204 0.238 3.966 1.33 6921.60 16.3 

0.5 4.204 0.238 3.966 1.6 5354.71 12.6 
1 4.204 0.238 3.966 1.6 5454.74 12.8 

1.5 4.204 0.238 3.966 1.6 5554.77 13.1 
2 4.204 0.238 3.966 1.6 5654.80 13.3 

2.5 4.204 0.238 3.966 1.6 5754.83 13.6 
3 4.204 0.238 3.966 1.6 5854.86 13.8 

0.5 4.204 0.238 3.966 2 4303.77 10.1 
1 4.204 0.238 3.966 2 4403.80 10.4 

1.5 4.204 0.238 3.966 2 4503.83 10.6 
2 4.204 0.238 3.966 2 4603.86 10.8 

2.5 4.204 0.238 3.966 2 4703.89 11.1 
3 4.204 0.238 3.966 2 4803.92 11.3 

 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 

Table-12, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Rankine wall (FOR φ = 42o and δ = 0o) 

 
h/D Kp Ka Kp-Ka d Qu BCR 

            Qu/qu 
0.5 5.045 0.198 4.846 1 10236.06 11.0 
1 5.045 0.198 4.846 1 10382.75 11.2 

1.5 5.045 0.198 4.846 1 10529.44 11.3 
2 5.045 0.198 4.846 1 10676.13 11.5 

2.5 5.045 0.198 4.846 1 10822.83 11.7 
3 5.045 0.198 4.846 1 10969.52 11.8 

0.5 5.045 0.198 4.846 1.07 9576.00 10.3 
1 5.045 0.198 4.846 1.07 9722.70 10.5 

1.5 5.045 0.198 4.846 1.07 9869.39 10.6 
2 5.045 0.198 4.846 1.07 10016.08 10.8 

2.5 5.045 0.198 4.846 1.07 10162.77 10.9 
3 5.045 0.198 4.846 1.07 10309.47 11.1 

0.5 5.045 0.198 4.846 1.33 7732.68 8.3 
1 5.045 0.198 4.846 1.33 7879.37 8.5 

1.5 5.045 0.198 4.846 1.33 8026.07 8.6 
2 5.045 0.198 4.846 1.33 8172.76 8.8 

2.5 5.045 0.198 4.846 1.33 8319.45 9.0 
3 5.045 0.198 4.846 1.33 8466.14 9.1 

0.5 5.045 0.198 4.846 1.6 6452.54 6.9 
1 5.045 0.198 4.846 1.6 6599.24 7.1 

1.5 5.045 0.198 4.846 1.6 6745.93 7.3 
2 5.045 0.198 4.846 1.6 6892.62 7.4 

2.5 5.045 0.198 4.846 1.6 7039.32 7.6 
3 5.045 0.198 4.846 1.6 7186.01 7.7 

0.5 5.045 0.198 4.846 2 5191.37 5.6 
1 5.045 0.198 4.846 2 5338.07 5.7 

1.5 5.045 0.198 4.846 2 5484.76 5.9 
2 5.045 0.198 4.846 2 5631.45 6.1 

2.5 5.045 0.198 4.846 2 5778.15 6.2 
3 5.045 0.198 4.846 2 5924.84 6.4 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 

 

Table-13, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 34o and δ = 22o) 

 
h/D Ka Kp Kp-Ka δ d Qu BCR 

             Qu/qu 
0.5 0.254 8.641 8.387 0.384 1 7946.38 38.7 
1 0.254 8.641 8.387 0.384 1 8130.08 39.6 

1.5 0.254 8.641 8.387 0.384 1 8313.77 40.5 
2 0.254 8.641 8.387 0.384 1 8497.46 41.4 

2.5 0.254 8.641 8.387 0.384 1 8681.15 42.3 
3 0.254 8.641 8.387 0.384 1 8864.84 43.2 

0.5 0.254 8.641 8.387 0.384 1.07 7423.47 36.1 
1 0.254 8.641 8.387 0.384 1.07 7607.16 37.0 

1.5 0.254 8.641 8.387 0.384 1.07 7790.85 37.9 
2 0.254 8.641 8.387 0.384 1.07 7974.54 38.8 

2.5 0.254 8.641 8.387 0.384 1.07 8158.24 39.7 
3 0.254 8.641 8.387 0.384 1.07 8341.93 40.6 

0.5 0.254 8.641 8.387 0.384 1.33 5955.94 29.0 
1 0.254 8.641 8.387 0.384 1.33 6139.63 29.9 

1.5 0.254 8.641 8.387 0.384 1.33 6323.33 30.8 
2 0.254 8.641 8.387 0.384 1.33 6507.02 31.7 

2.5 0.254 8.641 8.387 0.384 1.33 6690.71 32.6 
3 0.254 8.641 8.387 0.384 1.33 6874.40 33.5 

0.5 0.254 8.641 8.387 0.384 1.6 4926.83 24.0 
1 0.254 8.641 8.387 0.384 1.6 5110.52 24.9 

1.5 0.254 8.641 8.387 0.384 1.6 5294.22 25.8 
2 0.254 8.641 8.387 0.384 1.6 5477.91 26.7 

2.5 0.254 8.641 8.387 0.384 1.6 5661.60 27.6 
3 0.254 8.641 8.387 0.384 1.6 5845.29 28.5 

0.5 0.254 8.641 8.387 0.384 2 3898.05 19.0 
1 0.254 8.641 8.387 0.384 2 4081.74 19.9 

1.5 0.254 8.641 8.387 0.384 2 4265.43 20.8 
2 0.254 8.641 8.387 0.384 2 4449.13 21.7 

2.5 0.254 8.641 8.387 0.384 2 4632.82 22.6 
3 0.254 8.641 8.387 0.384 2 4816.51 23.4 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

Table-14, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 38o and δ = 22o) 

 
h/D Ka Kp Kp-Ka δ d Qu BCR 

             Qu/qu 
0.5 0.217 11.466 11.249 0.384 1 9330.20 22.0 
1 0.217 11.466 11.249 0.384 1 9618.59 22.7 

1.5 0.217 11.466 0.384 11.249 1 9906.97 23.3 
2 0.217 11.466 11.249 0.384 1 10195.35 24.0 

2.5 0.217 11.466 11.249 0.384 1 10483.74 24.7 
3 0.217 11.466 11.249 0.384 1 10772.12 25.4 

0.5 0.217 11.466 11.249 0.384 1.07 8715.01 20.5 
1 0.217 11.466 11.249 0.384 1.07 9003.40 21.2 

1.5 0.217 11.466 11.249 0.384 1.07 9291.78 21.9 
2 0.217 11.466 11.249 0.384 1.07 9580.17 22.6 

2.5 0.217 11.466 11.249 0.384 1.07 9868.55 23.2 
3 0.217 11.466 11.249 0.384 1.07 10156.93 23.9 

0.5 0.217 11.466 11.249 0.384 1.33 6985.70 16.5 
1 0.217 11.466 11.249 0.384 1.33 7274.09 17.1 

1.5 0.217 11.466 11.249 0.384 1.33 7562.47 17.8 
2 0.217 11.466 11.249 0.384 1.33 7850.86 18.5 

2.5 0.217 11.466 11.249 0.384 1.33 8139.24 19.2 
3 0.217 11.466 11.249 0.384 1.33 8427.62 19.9 

0.5 0.217 11.466 11.249 0.384 1.6 5769.12 13.6 
1 0.217 11.466 11.249 0.384 1.6 6057.50 14.3 

1.5 0.217 11.466 11.249 0.384 1.6 6345.89 14.9 
2 0.217 11.466 11.249 0.384 1.6 6634.27 15.6 

2.5 0.217 11.466 11.249 0.384 1.6 6922.65 16.3 
3 0.217 11.466 11.249 0.384 1.6 7211.04 17.0 

0.5 0.217 11.466 11.249 0.384 2 4547.13 10.7 
1 0.217 11.466 11.249 0.384 2 4835.52 11.4 

1.5 0.217 11.466 11.249 0.384 2 5123.90 12.1 
2 0.217 11.466 11.249 0.384 2 5412.29 12.7 

2.5 0.217 11.466 11.249 0.384 2 5700.67 13.4 
3 0.217 11.466 11.249 0.384 2 5989.06 14.1 

 
 
 
 
 

 
 



 
 
 

 

Table-15, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 42o and δ = 22o) 

 
h/D Ka Kp Kp-Ka δ d Qu BCR 

             Qu/qu 
0.5 0.183 15.726 15.543 0.384 1 11115.11 12.0 
1 0.183 15.726 15.543 0.384 1 11587.61 12.5 

1.5 0.183 15.726 15.543 0.384 1 12060.11 13.0 
2 0.183 15.726 15.543 0.384 1 12532.60 13.5 

2.5 0.183 15.726 15.543 0.384 1 13005.10 14.0 
3 0.183 15.726 15.543 0.384 1 13477.60 14.5 

0.5 0.183 15.726 15.543 0.384 1.07 10380.08 11.2 
1 0.183 15.726 15.543 0.384 1.07 10852.58 11.7 

1.5 0.183 15.726 15.543 0.384 1.07 11325.08 12.2 
2 0.183 15.726 15.543 0.384 1.07 11797.58 12.7 

2.5 0.183 15.726 15.543 0.384 1.07 12270.08 13.2 
3 0.183 15.726 15.543 0.384 1.07 12742.58 13.7 

0.5 0.183 15.726 15.543 0.384 1.33 8308.91 8.9 
1 0.183 15.726 15.543 0.384 1.33 8781.41 9.5 

1.5 0.183 15.726 15.543 0.384 1.33 9253.91 10.0 
2 0.183 15.726 15.543 0.384 1.33 9726.41 10.5 

2.5 0.183 15.726 15.543 0.384 1.33 10198.91 11.0 
3 0.183 15.726 15.543 0.384 1.33 10671.41 11.5 

0.5 0.183 15.726 15.543 0.384 1.6 6844.94 7.4 
1 0.183 15.726 15.543 0.384 1.6 7317.43 7.9 

1.5 0.183 15.726 15.543 0.384 1.6 7789.93 8.4 
2 0.183 15.726 15.543 0.384 1.6 8262.43 8.9 

2.5 0.183 15.726 15.543 0.384 1.6 8734.93 9.4 
3 0.183 15.726 15.543 0.384 1.6 9207.43 9.9 

0.5 0.183 15.726 15.543 0.384 2 5364.27 5.8 
1 0.183 15.726 15.543 0.384 2 5836.77 6.3 

1.5 0.183 15.726 15.543 0.384 2 6309.27 6.8 
2 0.183 15.726 15.543 0.384 2 6781.77 7.3 

2.5 0.183 15.726 15.543 0.384 2 7254.27 7.8 
3 0.183 15.726 15.543 0.384 2 7726.77 8.3 

 
 
 
 
 
 
 
 
 
 
 
 

 
 



Table-16, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 34o and δ = 25o) 

 
h/D Ka Kp Kp-Ka δ d/D Qu BCR 

             Qu/qu 
0.5 0.254 10.193 9.939 0.4363 1 7937.97 38.6 
1 0.254 10.193 9.939 0.4363 1 8150.75 39.7 

1.5 0.254 10.193 9.939 0.4363 1 8363.53 40.7 
2 0.254 10.193 9.939 0.4363 1 8576.31 41.8 

2.5 0.254 10.193 9.939 0.4363 1 8789.10 42.8 
3 0.254 10.193 9.939 0.4363 1 9001.88 43.8 

0.5 0.254 10.193 9.939 0.4363 1.07 7412.42 36.1 
1 0.254 10.193 9.939 0.4363 1.07 7625.21 37.1 

1.5 0.254 10.193 9.939 0.4363 1.07 7837.99 38.2 
2 0.254 10.193 9.939 0.4363 1.07 8050.77 39.2 

2.5 0.254 10.193 9.939 0.4363 1.07 8263.55 40.2 
3 0.254 10.193 9.939 0.4363 1.07 8476.34 41.3 

0.5 0.254 10.193 9.939 0.4363 1.33 5935.15 28.9 
1 0.254 10.193 9.939 0.4363 1.33 6147.93 29.9 

1.5 0.254 10.193 9.939 0.4363 1.33 6360.71 31.0 
2 0.254 10.193 9.939 0.4363 1.33 6573.49 32.0 

2.5 0.254 10.193 9.939 0.4363 1.33 6786.28 33.0 
3 0.254 10.193 9.939 0.4363 1.33 6999.06 34.1 

0.5 0.254 10.193 9.939 0.4363 1.6 4895.91 23.8 
1 0.254 10.193 9.939 0.4363 1.6 5108.69 24.9 

1.5 0.254 10.193 9.939 0.4363 1.6 5321.47 25.9 
2 0.254 10.193 9.939 0.4363 1.6 5534.26 26.9 

2.5 0.254 10.193 9.939 0.4363 1.6 5747.04 28.0 
3 0.254 10.193 9.939 0.4363 1.6 5959.82 29.0 

0.5 0.254 10.193 9.939 0.4363 2 3852.12 18.8 
1 0.254 10.193 9.939 0.4363 2 4064.91 19.8 

1.5 0.254 10.193 9.939 0.4363 2 4277.69 20.8 
2 0.254 10.193 9.939 0.4363 2 4490.47 21.9 

2.5 0.254 10.193 9.939 0.4363 2 4703.25 22.9 
3 0.254 10.193 9.939 0.4363 2 4916.04 23.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 

 

 

Table-17, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 38o and δ = 25o) 

 
h/D Ka Kp Kp-Ka δ d/D Qu BCR 

             Qu/qu 
0.5 0.217 13.901 13.684 0.4363 1 9319.65 22.0 
1 0.217 13.901 13.684 0.4363 1 9662.56 22.8 

1.5 0.217 13.901 13.684 0.4363 1 10005.47 23.6 
2 0.217 13.901 13.684 0.4363 1 10348.38 24.4 

2.5 0.217 13.901 13.684 0.4363 1 10691.29 25.2 
3 0.217 13.901 13.684 0.4363 1 11034.20 26.0 

0.5 0.217 13.901 13.684 0.4363 1.07 8699.90 20.5 
1 0.217 13.901 13.684 0.4363 1.07 9042.81 21.3 

1.5 0.217 13.901 13.684 0.4363 1.07 9385.72 22.1 
2 0.217 13.901 13.684 0.4363 1.07 9728.63 22.9 

2.5 0.217 13.901 13.684 0.4363 1.07 10071.54 23.7 
3 0.217 13.901 13.684 0.4363 1.07 10414.45 24.5 

0.5 0.217 13.901 13.684 0.4363 1.33 6953.67 16.4 
1 0.217 13.901 13.684 0.4363 1.33 7296.58 17.2 

1.5 0.217 13.901 13.684 0.4363 1.33 7639.49 18.0 
2 0.217 13.901 13.684 0.4363 1.33 7982.40 18.8 

2.5 0.217 13.901 13.684 0.4363 1.33 8325.31 19.6 
3 0.217 13.901 13.684 0.4363 1.33 8668.22 20.4 

0.5 0.217 13.901 13.684 0.4363 1.6 5719.51 13.5 
1 0.217 13.901 13.684 0.4363 1.6 6062.43 14.3 

1.5 0.217 13.901 13.684 0.4363 1.6 6405.34 15.1 
2 0.217 13.901 13.684 0.4363 1.6 6748.25 15.9 

2.5 0.217 13.901 13.684 0.4363 1.6 7091.16 16.7 
3 0.217 13.901 13.684 0.4363 1.6 7434.07 17.5 

0.5 0.217 13.901 13.684 0.4363 2 4471.50 10.5 
1 0.217 13.901 13.684 0.4363 2 4814.41 11.3 

1.5 0.217 13.901 13.684 0.4363 2 5157.32 12.1 
2 0.217 13.901 13.684 0.4363 2 5500.23 13.0 

2.5 0.217 13.901 13.684 0.4363 2 5843.14 13.8 
3 0.217 13.901 13.684 0.4363 2 6186.05 14.6 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 

Table-18, The variation of BCR with normalized shell height (h/D) for different shell diameter, 
for Coulomb wall (FOR φ = 42o and δ = 25o) 

 
h/D Ka Kp Kp-Ka δ d/D Qu BCR 

             Qu/qu 
0.5 0.183 19.758 19.575 0.4363 1 11103.78 12.0 
1 0.183 19.758 19.575 0.4363 1 11685.45 12.6 

1.5 0.183 19.758 19.575 0.4363 1 12267.12 13.2 
2 0.183 19.758 19.575 0.4363 1 12848.79 13.8 

2.5 0.183 19.758 19.575 0.4363 1 13430.46 14.5 
3 0.183 19.758 19.575 0.4363 1 14012.13 15.1 

0.5 0.183 19.758 19.575 0.4363 1.07 10360.32 11.2 
1 0.183 19.758 19.575 0.4363 1.07 10941.99 11.8 

1.5 0.183 19.758 19.575 0.4363 1.07 11523.66 12.4 
2 0.183 19.758 19.575 0.4363 1.07 12105.33 13.0 

2.5 0.183 19.758 19.575 0.4363 1.07 12687.00 13.7 
3 0.183 19.758 19.575 0.4363 1.07 13268.67 14.3 

0.5 0.183 19.758 19.575 0.4363 1.33 8257.82 8.9 
1 0.183 19.758 19.575 0.4363 1.33 8839.49 9.5 

1.5 0.183 19.758 19.575 0.4363 1.33 9421.16 10.1 
2 0.183 19.758 19.575 0.4363 1.33 10002.83 10.8 

2.5 0.183 19.758 19.575 0.4363 1.33 10584.50 11.4 
3 0.183 19.758 19.575 0.4363 1.33 11166.17 12.0 

0.5 0.183 19.758 19.575 0.4363 1.6 6761.30 7.3 
1 0.183 19.758 19.575 0.4363 1.6 7342.97 7.9 

1.5 0.183 19.758 19.575 0.4363 1.6 7924.64 8.5 
2 0.183 19.758 19.575 0.4363 1.6 8506.32 9.2 

2.5 0.183 19.758 19.575 0.4363 1.6 9087.99 9.8 
3 0.183 19.758 19.575 0.4363 1.6 9669.66 10.4 

0.5 0.183 19.758 19.575 0.4363 2 5232.44 5.6 
1 0.183 19.758 19.575 0.4363 2 5814.11 6.3 

1.5 0.183 19.758 19.575 0.4363 2 6395.78 6.9 
2 0.183 19.758 19.575 0.4363 2 6977.45 7.5 

2.5 0.183 19.758 19.575 0.4363 2 7559.12 8.1 
3 0.183 19.758 19.575 0.4363 2 8140.80 8.8 

 
 
 
 
 
 
 
 
 
 

 



Table-19, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Rankine wall (φ = 34 and δ = 0 ) o o

ANGLE OF  RADIUS OF LOG-SPIRAL               
LOG-SPIRAL ro r  1 45-φ/2 d/D h/D Kp Ka Qu BCR 

θ                 Q /q  u u
56 0.603 1.166 90 1.000 1.166 3.537 0.283 7228.02 35.19 
57 0.603 1.180 89 1.041 1.180 3.537 0.283 6950.38 33.83 
58 0.603 1.194 88 1.083 1.193 3.537 0.283 6688.17 32.56 
59 0.603 1.208 87 1.126 1.206 3.537 0.283 6440.33 31.35 
60 0.603 1.222 86 1.171 1.219 3.537 0.283 6205.85 30.21 
61 0.603 1.237 85 1.216 1.232 3.537 0.283 5983.82 29.13 
62 0.603 1.251 84 1.262 1.245 3.537 0.283 5773.42 28.11 
63 0.603 1.266 83 1.309 1.257 3.537 0.283 5573.87 27.13 
64 0.603 1.281 82 1.357 1.269 3.537 0.283 5384.47 26.21 
65 0.603 1.296 81 1.406 1.280 3.537 0.283 5204.56 25.34 
66 0.603 1.312 80 1.456 1.292 3.537 0.283 5033.55 24.50 
67 0.603 1.327 79 1.506 1.303 3.537 0.283 4870.88 23.71 
68 0.603 1.343 78 1.558 1.314 3.537 0.283 4716.03 22.96 
69 0.603 1.359 77 1.611 1.324 3.537 0.283 4568.54 22.24 
70 0.603 1.375 76 1.665 1.334 3.537 0.283 4427.95 21.56 
71 0.603 1.391 75 1.720 1.344 3.537 0.283 4293.86 20.90 
72 0.603 1.408 74 1.776 1.353 3.537 0.283 4165.89 20.28 
73 0.603 1.424 73 1.833 1.362 3.537 0.283 4043.68 19.68 
74 0.603 1.441 72 1.891 1.371 3.537 0.283 3926.91 19.12 
75 0.603 1.458 71 1.950 1.379 3.537 0.283 3815.26 18.57 
76 0.603 1.476 70 2.009 1.387 3.537 0.283 3708.45 18.05 
77 0.603 1.493 69 2.070 1.394 3.537 0.283 3606.21 17.56 
78 0.603 1.511 68 2.132 1.401 3.537 0.283 3508.29 17.08 
79 0.603 1.529 67 2.195 1.407 3.537 0.283 3414.46 16.62 
80 0.603 1.547 66 2.258 1.413 3.537 0.283 3324.49 16.18 
81 0.603 1.565 65 2.323 1.418 3.537 0.283 3238.19 15.76 
82 0.603 1.584 64 2.388 1.423 3.537 0.283 3155.35 15.36 
83 0.603 1.602 63 2.455 1.428 3.537 0.283 3075.81 14.97 
84 0.603 1.621 62 2.522 1.432 3.537 0.283 2999.38 14.60 
85 0.603 1.640 61 2.591 1.435 3.537 0.283 2925.91 14.24 
86 0.603 1.660 60 2.660 1.438 3.537 0.283 2855.25 13.90 
87 0.603 1.680 59 2.730 1.440 3.537 0.283 2787.25 13.57 
88 0.603 1.699 58 2.801 1.441 3.537 0.283 2721.79 13.25 
89 0.603 1.720 57 2.873 1.442 3.537 0.283 2658.74 12.94 
90 0.603 1.740 56 2.946 1.442 3.537 0.283 2597.98 12.65 
91 0.603 1.761 55 3.020 1.442 3.537 0.283 2539.39 12.36 
92 0.603 1.781 54 3.094 1.441 3.537 0.283 2482.87 12.09 
93 0.603 1.803 53 3.170 1.440 3.537 0.283 2428.33 11.82 
94 0.603 1.824 52 3.246 1.437 3.537 0.283 2375.66 11.56 
95 0.603 1.845 51 3.323 1.434 3.537 0.283 2324.78 11.32 
96 0.603 1.867 50 3.401 1.430 3.537 0.283 2275.60 11.08 
97 0.603 1.889 49 3.479 1.426 3.537 0.283 2228.05 10.85 
98 0.603 1.912 48 3.558 1.421 3.537 0.283 2182.04 10.62 
99 0.603 1.934 47 3.639 1.415 3.537 0.283 2137.50 10.41 

100 0.603 1.957 46 3.719 1.408 3.537 0.283 2094.37 10.20 
101 0.603 1.981 45 3.801 1.400 3.537 0.283 2052.58 9.99 
102 0.603 2.004 44 3.883 1.392 3.537 0.283 2012.07 9.79 
103 0.603 2.028 43 3.966 1.383 3.537 0.283 1972.77 9.60 
104 0.603 2.052 42 4.049 1.373 3.537 0.283 1934.64 9.42 
105 0.603 2.076 41 4.134 1.362 3.537 0.283 1897.62 9.24 
106 0.603 2.101 40 4.218 1.350 3.537 0.283 1861.66 9.06 
107 0.603 2.125 39 4.304 1.338 3.537 0.283 1826.71 8.89 
108 0.603 2.151 38 4.389 1.324 3.537 0.283 1792.72 8.73 
109 0.603 2.176 37 4.476 1.310 3.537 0.283 1759.66 8.57 
110 0.603 2.202 36 4.563 1.294 3.537 0.283 1727.47 8.41 
111 0.603 2.228 35 4.650 1.278 3.537 0.283 1696.12 8.26 
112 0.603 2.254 34 4.738 1.261 3.537 0.283 1665.57 8.11 

 



Table-20, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Rankine wall (φ = 38o and δ = 0o) 
ANGLE OF  RADIUS OF LOG-SPIRAL               

LOG-SPIRAL ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 
θ                 Qu/qu 
52 0.635 1.289 90 1.000 1.289 4.204 0.238 8661.20 20.40 
53 0.635 1.307 89 1.046 1.307 4.204 0.238 8298.03 19.55 
54 0.635 1.325 88 1.092 1.324 4.204 0.238 7956.76 18.74 
55 0.635 1.343 87 1.141 1.341 17.99 4.204 0.238 7635.73 
56 0.635 1.362 86 1.190 1.358 4.204 0.238 7333.45 17.28 
57 0.635 1.380 85 1.241 1.375 4.204 0.238 7048.53 16.60 
58 0.635 1.399 84 1.293 1.392 4.204 0.238 6779.73 15.97 
59 0.635 1.419 83 1.346 1.408 4.204 0.238 6525.91 15.37 
60 0.635 1.438 82 1.400 1.424 4.204 0.238 6286.03 14.81 
61 0.635 1.458 81 1.456 1.440 4.204 0.238 6059.12 14.27 
62 0.635 1.478 80 1.513 1.455 4.204 0.238 5844.31 13.77 
63 0.635 1.498 79 1.572 1.471 4.204 0.238 5640.78 13.29 
64 0.635 1.519 78 1.631 1.485 4.204 0.238 5447.81 12.83 
65 0.635 1.539 77 1.693 1.500 4.204 0.238 5264.69 12.40 
66 0.635 1.561 76 1.755 1.514 4.204 0.238 5090.80 11.99 
67 0.635 1.582 75 1.819 1.528 4.204 0.238 4925.55 11.60 
68 0.635 1.604 74 1.884 1.542 4.204 0.238 4768.40 11.23 
69 0.635 1.626 73 1.951 1.555 4.204 0.238 4618.86 10.88 
70 0.635 1.648 72 2.019 1.567 4.204 0.238 4476.45 10.55 
71 0.635 1.671 71 2.088 1.580 4.204 0.238 4340.75 10.23 
72 0.635 1.694 70 2.159 1.592 4.204 0.238 4211.35 9.92 
73 0.635 1.717 69 2.231 1.603 4.204 0.238 4087.88 9.63 
74 0.635 1.740 68 2.304 1.614 4.204 0.238 3970.00 9.35 
75 0.635 1.764 67 2.379 1.624 4.204 0.238 3857.38 9.09 
76 0.635 1.789 66 2.455 1.634 4.204 0.238 3749.73 8.83 
77 0.635 1.813 65 2.533 1.643 4.204 0.238 3646.75 8.59 
78 0.635 1.838 64 2.611 1.652 4.204 0.238 3548.18 8.36 
79 0.635 1.863 63 2.692 1.660 4.204 0.238 3453.79 8.14 
80 0.635 1.889 62 2.774 1.668 4.204 0.238 3363.33 7.92 
81 0.635 1.915 61 2.857 1.675 4.204 0.238 3276.60 7.72 
82 0.635 1.941 60 2.941 1.681 4.204 0.238 3193.38 7.52 
83 0.635 1.968 59 3.027 1.687 4.204 0.238 3113.49 7.33 
84 0.635 1.995 58 3.114 1.692 4.204 0.238 3036.75 7.15 
85 0.635 2.022 57 3.203 1.696 4.204 0.238 2962.98 6.98 
86 0.635 2.050 56 3.293 1.699 4.204 0.238 2892.04 6.81 
87 0.635 2.078 55 3.384 1.702 4.204 0.238 2823.77 6.65 
88 0.635 2.107 54 3.476 1.704 4.204 0.238 2758.03 6.50 
89 0.635 2.136 53 3.570 1.705 4.204 0.238 2694.69 6.35 
90 0.635 2.165 52 3.666 1.706 4.204 0.238 2633.62 6.20 
91 0.635 2.195 51 3.762 1.705 4.204 0.238 2574.70 6.07 
92 0.635 2.225 50 3.860 1.704 4.204 0.238 2517.83 5.93 
93 0.635 2.255 49 3.959 1.702 4.204 0.238 2462.89 5.80 
94 0.635 2.286 48 4.060 1.699 4.204 0.238 2409.78 5.68 
95 0.635 2.318 47 4.161 1.695 4.204 0.238 2358.42 5.56 
96 0.635 2.349 46 4.264 1.690 4.204 0.238 2308.70 5.44 
97 0.635 2.382 45 4.368 1.684 4.204 0.238 2260.54 5.33 
98 0.635 2.414 44 4.473 1.677 4.204 0.238 2213.86 5.22 
99 0.635 2.447 43 4.580 1.669 4.204 0.238 2168.59 5.11 

100 0.635 2.481 42 4.688 1.660 4.204 0.238 2124.65 5.01 
101 0.635 2.515 41 4.796 1.650 4.204 0.238 2081.97 4.90 
102 0.635 2.550 40 4.906 1.639 4.204 0.238 2040.48 4.81 
103 0.635 2.585 39 5.017 1.627 4.204 0.238 2000.12 4.71 
104 0.635 2.620 38 5.129 1.613 4.204 0.238 1960.83 4.62 
105 0.635 2.656 37 5.243 1.599 4.204 0.238 1922.55 4.53 
106 0.635 2.693 36 5.357 1.583 4.204 0.238 1885.23 4.44 
107 0.635 2.730 35 5.472 1.566 4.204 0.238 1848.81 4.36 
108 0.635 2.767 34 5.588 1.547 4.204 0.238 1813.24 4.27 

 
 



Table-21, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Rankine wall (φ = 42o and δ = 0o) 
ANGLE OF  RADIUS OF LOG-SPIRAL               

LOG-SPIRAL ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 
θ                 Qu/qu 
48 0.673 1.431 90 1.000 1.431 5.0447 0.198 10510.58 11.32 
49 0.673 1.453 89 1.051 1.453 5.0447 0.198 10030.03 10.80 
50 0.673 1.476 88 1.103 1.475 5.0447 0.198 9581.11 10.32 
51 0.673 1.500 87 1.157 1.498 5.0447 0.198 9161.23 9.86 
52 0.673 1.523 86 1.213 1.520 5.0447 0.198 8768.06 9.44 
53 0.673 1.547 85 1.270 1.542 5.0447 0.198 8399.50 9.04 
54 0.673 1.572 84 1.329 1.563 5.0447 0.198 8053.64 8.67 
55 0.673 1.597 83 1.389 1.585 5.0447 0.198 7728.74 8.32 
56 0.673 1.622 82 1.452 1.606 5.0447 0.198 7423.25 7.99 
57 0.673 1.648 81 1.516 1.628 5.0447 0.198 7135.71 7.68 
58 0.673 1.674 80 1.581 1.649 5.0447 0.198 6864.84 7.39 
59 0.673 1.700 79 1.649 1.669 5.0447 0.198 6609.42 7.12 
60 0.673 1.727 78 1.718 1.690 5.0447 0.198 6368.38 6.86 
61 0.673 1.755 77 1.789 1.710 5.0447 0.198 6140.70 6.61 
62 0.673 1.783 76 1.862 1.730 5.0447 0.198 5925.47 6.38 
63 0.673 1.811 75 1.937 1.749 5.0447 0.198 5721.85 6.16 
64 0.673 1.839 74 2.014 1.768 5.0447 0.198 5529.05 5.95 
65 0.673 1.869 73 2.093 1.787 5.0447 0.198 5346.36 5.76 
66 0.673 1.898 72 2.173 1.805 5.0447 0.198 5173.13 5.57 
67 0.673 1.928 71 2.256 1.823 5.0447 0.198 5008.73 5.39 
68 0.673 1.959 70 2.340 1.841 5.0447 0.198 4852.60 5.22 
69 0.673 1.990 69 2.426 1.858 5.0447 0.198 4704.22 5.07 
70 0.673 2.021 68 2.514 1.874 5.0447 0.198 4563.11 4.91 
71 0.673 2.053 67 2.605 1.890 5.0447 0.198 4428.81 4.77 
72 0.673 2.086 66 2.697 1.906 5.0447 0.198 4300.90 4.63 
73 0.673 2.119 65 2.791 1.920 5.0447 0.198 4178.99 4.50 
74 0.673 2.152 64 2.887 1.935 5.0447 0.198 4062.72 4.37 
75 0.673 2.187 63 2.985 1.948 5.0447 0.198 3951.76 4.25 
76 0.673 2.221 62 3.086 1.961 5.0447 0.198 3845.77 4.14 
77 0.673 2.256 61 3.188 1.973 5.0447 0.198 3744.48 4.03 
78 0.673 2.292 60 3.292 1.985 5.0447 0.198 3647.60 3.93 
79 0.673 2.328 59 3.398 1.996 5.0447 0.198 3554.86 3.83 
80 0.673 2.365 58 3.507 2.006 5.0447 0.198 3466.04 3.73 
81 0.673 2.403 57 3.617 2.015 5.0447 0.198 3380.90 3.64 
82 0.673 2.441 56 3.730 2.024 5.0447 0.198 3299.22 3.55 
83 0.673 2.480 55 3.844 2.031 5.0447 0.198 3220.81 3.47 
84 0.673 2.519 54 3.961 2.038 5.0447 0.198 3145.47 3.39 
85 0.673 2.559 53 4.080 2.043 5.0447 0.198 3073.03 3.31 
86 0.673 2.599 52 4.200 2.048 5.0447 0.198 3003.31 3.23 
87 0.673 2.640 51 2936.17 4.323 2.052 5.0447 0.198 3.16 
88 0.673 2.682 0.198 50 4.448 2.055 5.0447 2871.44 3.09 
89 0.673 2.725 49 4.575 2.056 5.0447 0.198 2808.99 3.02 
90 0.673 2.768 48 4.704 2.057 5.0447 0.198 2748.67 2.96 
91 0.673 2.812 47 4.835 2.056 5.0447 0.198 2690.37 2.90 
92 0.673 2.856 46 4.968 2.055 5.0447 0.198 2633.96 2.84 
93 0.673 2.901 45 5.103 2.052 5.0447 0.198 2579.33 2.78 
94 0.673 2.947 44 5.240 2.047 5.0447 0.198 2526.37 2.72 
95 0.673 2.994 43 5.379 2.042 5.0447 0.198 2474.97 2.66 
96 0.673 3.042 42 5.521 2.035 5.0447 0.198 2425.04 2.61 
97 0.673 3.090 41 5.664 2.027 5.0447 0.198 2376.47 2.56 
98 0.673 3.139 40 5.809 2.017 5.0447 0.198 2329.19 2.51 
99 0.673 3.188 39 5.956 2.006 5.0447 0.198 2283.10 2.46 

100 0.673 3.239 38 6.104 1.994 5.0447 0.198 2238.12 2.41 
101 0.673 3.290 37 6.255 1.980 5.0447 0.198 2194.18 2.36 
102 0.673 3.342 36 6.408 1.965 5.0447 0.198 2151.20 2.32 
103 0.673 3.395 35 6.562 1.947 5.0447 0.198 2109.11 2.27 
104 0.673 3.449 34 6.719 1.929 5.0447 0.198 2067.83 2.23 

 
 



Table-22, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 34o and δ = 22o) 
Angle of  Radius of log-spiral               
log-spiral ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 

θ                 Qu/qu 
56 0.603 1.166 90 1.000 1.166 8.641 0.254 8191.07 39.87 
57 0.603 1.180 89 1.041 1.180 8.641 0.254 7880.05 38.36 
58 0.603 1.194 88 1.083 1.193 8.641 0.254 7586.09 36.93 
59 0.603 1.208 87 1.126 1.206 8.641 0.254 7307.96 35.58 
60 0.603 1.222 86 1.171 1.219 8.641 0.254 7044.58 34.29 
61 0.603 1.237 85 1.216 1.232 8.641 0.254 6794.91 33.08 
62 0.603 1.251 84 1.262 1.245 8.641 0.254 6558.03 31.92 
63 0.603 1.266 83 1.309 1.257 8.641 0.254 6333.08 30.83 
64 0.603 1.281 82 1.357 1.269 8.641 0.254 6119.26 29.79 
65 0.603 1.296 81 1.406 1.280 8.641 0.254 5915.86 28.80 
66 0.603 1.312 80 1.456 1.292 8.641 0.254 5722.20 27.86 
67 0.603 1.327 79 1.506 1.303 8.641 0.254 5537.65 26.96 
68 0.603 1.343 78 1.558 1.314 8.641 0.254 5361.64 26.10 
69 0.603 1.359 77 1.611 1.324 8.641 0.254 5193.64 25.28 
70 0.603 1.375 76 1.665 1.334 8.641 0.254 5033.15 24.50 
71 0.603 1.391 75 1.720 1.344 8.641 0.254 4879.72 23.75 
72 0.603 1.408 74 1.776 1.353 8.641 0.254 4732.91 23.04 
73 0.603 1.424 73 1.833 1.362 8.641 0.254 4592.34 22.36 
74 0.603 1.441 72 1.891 1.371 8.641 0.254 4457.62 21.70 
75 0.603 1.458 71 1.950 1.379 8.641 0.254 4328.42 21.07 
76 0.603 1.476 70 2.009 1.387 8.641 0.254 4204.41 20.47 
77 0.603 1.493 69 2.070 1.394 8.641 0.254 4085.29 19.89 
78 0.603 1.511 68 2.132 1.401 8.641 0.254 3970.78 19.33 
79 0.603 1.529 67 2.195 1.407 8.641 0.254 3860.62 18.79 
80 0.603 1.547 66 2.258 1.413 8.641 0.254 3754.55 18.28 
81 0.603 1.565 65 2.323 1.418 8.641 0.254 3652.36 17.78 
82 0.603 1.584 64 2.388 1.423 8.641 0.254 3553.82 17.30 
83 0.603 1.602 63 2.455 1.428 8.641 0.254 3458.72 16.84 
84 0.603 1.621 62 2.522 1.432 8.641 0.254 3366.88 16.39 
85 0.603 1.640 61 2.591 1.435 8.641 0.254 3278.12 15.96 
86 0.603 1.660 60 2.660 1.438 8.641 0.254 3192.26 15.54 
87 0.603 1.680 59 2.730 1.440 8.641 0.254 3109.15 15.14 
88 0.603 1.699 58 2.801 1.441 8.641 0.254 3028.63 14.74 
89 0.603 1.720 57 2.873 1.442 8.641 0.254 2950.57 14.36 
90 0.603 1.740 56 2.946 1.442 8.641 0.254 2874.83 13.99 
91 0.603 1.761 55 3.020 1.442 8.641 0.254 2801.28 13.64 
92 0.603 1.781 54 3.094 1.441 8.641 0.254 2729.80 13.29 
93 0.603 1.803 53 3.170 1.440 8.641 0.254 2660.29 12.95 
94 0.603 1.824 52 3.246 1.437 8.641 0.254 2592.63 12.62 
95 0.603 1.845 51 3.323 1.434 8.641 0.254 2526.72 12.30 
96 0.603 1.867 50 3.401 1.430 8.641 0.254 2462.46 11.99 
97 0.603 1.889 49 3.479 1.426 8.641 0.254 2399.78 11.68 
98 0.603 1.912 48 3.558 1.421 8.641 0.254 2338.56 11.38 
99 0.603 1.934 47 3.639 1.415 8.641 0.254 2278.75 11.09 

100 0.603 1.957 46 3.719 1.408 8.641 0.254 2220.26 10.81 
101 0.603 1.981 45 3.801 1.400 8.641 0.254 2163.00 10.53 
102 0.603 2.004 44 3.883 1.392 8.641 0.254 2106.93 10.26 
103 0.603 2.028 43 3.966 1.383 8.641 0.254 2051.96 9.99 
104 0.603 2.052 42 4.049 1.373 8.641 0.254 1998.04 9.73 
105 0.603 2.076 41 4.134 1.362 8.641 0.254 1945.10 9.47 
106 0.603 2.101 40 4.218 1.350 8.641 0.254 1893.09 9.22 
107 0.603 2.125 39 4.304 1.338 8.641 0.254 1841.96 8.97 
108 0.603 2.151 38 4.389 1.324 8.641 0.254 1791.64 8.72 
109 0.603 2.176 37 4.476 1.310 8.641 0.254 1742.10 8.48 
110 0.603 2.202 36 4.563 1.294 8.641 0.254 1693.27 8.24 
111 0.603 2.228 35 4.650 1.278 8.641 0.254 1645.13 8.01 
112 0.603 2.254 34 4.738 1.261 8.641 0.254 1597.63 7.78 

 
 



Table-23, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 38 and δ = 22 ) o o

Angle of  Radius of log-spiral               
log-spiral ro r  1 45-φ/2 d/D h/D Kp Ka Qu BCR 

θ                 Q /q  u u
52 0.635 1.289 90 1.000 1.289 11.466 0.217 9785.50 23.05 
53 0.635 1.307 89 1.046 1.307 11.466 0.217 9385.47 22.11 
54 0.635 1.325 88 1.092 1.324 11.466 0.217 9009.18 21.22 
55 0.635 1.343 87 1.141 1.341 11.466 0.217 8654.81 20.39 
56 0.635 1.362 86 1.190 1.358 11.466 0.217 8320.71 19.60 
57 0.635 1.380 85 1.241 1.375 11.466 0.217 8005.35 18.86 
58 0.635 1.399 84 1.293 1.392 11.466 0.217 7707.38 18.16 
59 0.635 1.419 83 1.346 1.408 11.466 0.217 7425.53 17.49 
60 0.635 1.438 82 1.400 1.424 11.466 0.217 7158.64 16.86 
61 0.635 1.458 81 1.456 1.440 11.466 0.217 6905.66 16.27 
62 0.635 1.478 80 1.513 1.455 11.466 0.217 6665.62 15.70 
63 0.635 1.498 79 1.572 1.471 11.466 0.217 6437.62 15.17 
64 0.635 1.519 78 1.631 1.485 11.466 0.217 6220.84 14.65 
65 0.635 1.539 77 1.693 1.500 11.466 0.217 6014.53 14.17 
66 0.635 1.561 76 1.755 1.514 11.466 0.217 5817.98 13.71 
67 0.635 1.582 75 1.819 1.528 11.466 0.217 5630.55 13.26 
68 0.635 1.604 74 1.884 1.542 11.466 0.217 5451.63 12.84 
69 0.635 1.626 73 1.951 1.555 11.466 0.217 5280.66 12.44 
70 0.635 1.648 72 2.019 1.567 11.466 0.217 5117.14 12.05 
71 0.635 1.671 71 2.088 1.580 11.466 0.217 4960.58 11.69 
72 0.635 1.694 70 2.159 1.592 11.466 0.217 4810.53 11.33 
73 0.635 1.717 69 2.231 1.603 11.466 0.217 4666.59 10.99 
74 0.635 1.740 68 2.304 1.614 11.466 0.217 4528.36 10.67 
75 0.635 1.764 67 2.379 1.624 11.466 0.217 4395.47 10.35 
76 0.635 1.789 66 2.455 1.634 11.466 0.217 4267.60 10.05 
77 0.635 1.813 65 2.533 1.643 11.466 0.217 4144.43 9.76 
78 0.635 1.838 64 2.611 1.652 11.466 0.217 4025.66 9.48 
79 0.635 1.863 63 2.692 1.660 11.466 0.217 3911.01 9.21 
80 0.635 1.889 62 2.774 1.668 11.466 0.217 3800.22 8.95 
81 0.635 1.915 61 2.857 1.675 11.466 0.217 3693.06 8.70 
82 0.635 1.941 60 2.941 1.681 11.466 0.217 3589.28 8.46 
83 0.635 1.968 59 3.027 1.687 11.466 0.217 3488.68 8.22 
84 0.635 1.995 58 3.114 1.692 11.466 0.217 3391.04 7.99 
85 0.635 2.022 57 3.203 1.696 11.466 0.217 3296.19 7.76 
86 0.635 2.050 56 3.293 1.699 11.466 0.217 3203.93 7.55 
87 0.635 2.078 55 3.384 1.702 11.466 0.217 3114.10 7.34 
88 0.635 2.107 54 3.476 1.704 11.466 0.217 3026.54 7.13 
89 0.635 2.136 53 3.570 1.705 11.466 0.217 2941.10 6.93 
90 0.635 2.165 52 3.666 1.706 11.466 0.217 2857.62 6.73 
91 0.635 2.195 51 3.762 1.705 11.466 0.217 2775.98 6.54 
92 0.635 2.225 50 3.860 1.704 11.466 0.217 2696.04 6.35 
93 0.635 2.255 49 3.959 1.702 11.466 0.217 2617.68 6.17 
94 0.635 2.286 48 4.060 1.699 11.466 0.217 2540.79 5.99 
95 0.635 2.318 47 4.161 1.695 11.466 0.217 2465.26 5.81 
96 0.635 2.349 46 4.264 1.690 11.466 0.217 2390.98 5.63 
97 0.635 2.382 45 4.368 1.684 11.466 0.217 2317.84 5.46 
98 0.635 2.414 44 4.473 1.677 11.466 0.217 2245.77 5.29 
99 0.635 2.447 43 4.580 1.669 11.466 0.217 2174.66 5.12 

100 0.635 2.481 42 4.688 1.660 11.466 0.217 2104.43 4.96 
101 2035.00 0.635 2.515 41 4.796 1.650 11.466 0.217 4.79 
102 0.635 2.550 40 4.906 1.639 11.466 0.217 1966.28 4.63 
103 0.635 2.585 39 5.017 1.627 11.466 0.217 1898.21 4.47 
104 0.635 2.620 38 5.129 1.613 11.466 0.217 1830.72 4.31 
105 0.635 2.656 37 5.243 1.599 11.466 0.217 1763.73 4.15 
106 0.635 2.693 36 5.357 1.583 11.466 0.217 1697.19 4.00 
107 0.635 2.730 35 5.472 1.566 11.466 0.217 1631.02 3.84 
108 0.635 2.767 34 5.588 1.547 11.466 0.217 1565.18 3.69 

 
 



Table-24, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 42o and δ = 22o) 
Angle of  Radius of log-spiral               
log-spiral ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 

θ                 Qu/qu 
48 0.673 1.431 90 1.000 1.431 15.726 0.183 11994.45 12.91 
49 0.673 1.453 89 1.051 1.453 15.726 0.183 11473.54 12.35 
50 0.673 1.476 88 1.103 1.475 15.726 0.183 10986.36 11.83 
51 0.673 1.500 87 1.157 1.498 15.726 0.183 10530.10 11.34 
52 0.673 1.523 86 1.213 1.520 15.726 0.183 10102.22 10.88 
53 0.673 1.547 85 1.270 1.542 15.726 0.183 9700.43 10.44 
54 0.673 1.572 84 1.329 1.563 15.726 0.183 9322.64 10.04 
55 0.673 1.597 83 1.389 1.585 15.726 0.183 8966.97 9.65 
56 0.673 1.622 82 1.452 1.606 15.726 0.183 8631.68 9.29 
57 0.673 1.648 81 1.516 1.628 15.726 0.183 8315.22 8.95 
58 0.673 1.674 80 1.581 1.649 15.726 0.183 8016.15 8.63 
59 0.673 1.700 79 1.649 1.669 15.726 0.183 7733.15 8.33 
60 0.673 1.727 78 1.718 1.690 15.726 0.183 7465.04 8.04 
61 0.673 1.755 77 1.789 1.710 15.726 0.183 7210.70 7.76 
62 0.673 1.783 76 1.862 1.730 15.726 0.183 6969.11 7.50 
63 0.673 1.811 75 1.937 1.749 15.726 0.183 6739.36 7.26 
64 0.673 1.839 74 2.014 1.768 15.726 0.183 6520.58 7.02 
65 0.673 1.869 73 2.093 1.787 15.726 0.183 6311.97 6.80 
66 0.673 1.898 72 2.173 1.805 15.726 0.183 6112.79 6.58 
67 0.673 1.928 71 2.256 1.823 15.726 0.183 5922.38 6.38 
68 0.673 1.959 70 2.340 1.841 15.726 0.183 5740.08 6.18 
69 0.673 1.990 69 2.426 1.858 15.726 0.183 5565.33 5.99 
70 0.673 2.021 68 2.514 1.874 15.726 0.183 5397.58 5.81 
71 0.673 2.053 67 2.605 1.890 15.726 0.183 5236.30 5.64 
72 0.673 2.086 66 2.697 1.906 15.726 0.183 5081.04 5.47 
73 0.673 2.119 65 2.791 1.920 15.726 0.183 4931.36 5.31 
74 0.673 2.152 64 2.887 1.935 15.726 0.183 4786.82 5.15 
75 0.673 2.187 63 2.985 1.948 15.726 0.183 4647.06 5.00 
76 0.673 2.221 62 3.086 1.961 15.726 0.183 4511.70 4.86 
77 0.673 2.256 61 3.188 1.973 15.726 0.183 4380.41 4.72 
78 0.673 2.292 60 3.292 1.985 15.726 0.183 4252.87 4.58 
79 0.673 2.328 59 3.398 1.996 15.726 0.183 4128.77 4.45 
80 0.673 2.365 58 3.507 2.006 15.726 0.183 4007.83 4.32 
81 0.673 2.403 57 3.617 2.015 15.726 0.183 3889.78 4.19 
82 0.673 2.441 56 3.730 2.024 15.726 0.183 3774.38 4.06 
83 0.673 2.480 55 3.844 2.031 15.726 0.183 3661.37 3.94 
84 0.673 2.519 54 3.961 2.038 15.726 0.183 3550.55 3.82 
85 0.673 2.559 53 4.080 2.043 15.726 0.183 3441.68 3.71 
86 0.673 2.599 52 4.200 2.048 15.726 0.183 3334.58 3.59 
87 0.673 2.640 51 4.323 2.052 15.726 0.183 3229.04 3.48 
88 0.673 2.682 50 4.448 2.055 15.726 0.183 3124.88 3.36 
89 0.673 2.725 49 4.575 2.056 15.726 0.183 3021.93 3.25 
90 0.673 2.768 48 4.704 2.057 15.726 0.183 2920.03 3.14 
91 0.673 2.812 47 4.835 2.056 15.726 0.183 2819.01 3.04 
92 0.673 2.856 46 4.968 2.055 15.726 0.183 2718.71 2.93 
93 0.673 2.901 45 5.103 2.052 15.726 0.183 2619.01 2.82 
94 0.673 2.947 44 5.240 2.047 15.726 0.183 2519.76 2.71 
95 0.673 2.994 43 5.379 2.042 15.726 0.183 2420.82 2.61 
96 0.673 3.042 42 5.521 2.035 15.726 0.183 2322.08 2.50 
97 0.673 3.090 41 5.664 2.027 15.726 0.183 2223.40 2.39 
98 0.673 3.139 40 5.809 2.017 15.726 0.183 2124.67 2.29 
99 0.673 3.188 39 5.956 2.006 15.726 0.183 2025.79 2.18 

100 0.673 3.239 38 6.104 1.994 15.726 0.183 1926.63 2.07 
101 0.673 3.290 37 6.255 1.980 15.726 0.183 1827.10 1.97 
102 0.673 3.342 36 6.408 1.965 15.726 0.183 1727.11 1.86 
103 0.673 3.395 35 6.562 1.947 15.726 0.183 1626.54 1.75 
104 0.673 3.449 34 6.719 1.929 15.726 0.183 1525.31 1.64 

 
 



Table-25, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 34o and δ = 25o) 
Angle of  Radius of log-spiral               
log-spiral ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 

θ                 Qu/qu 
56 0.603 1.166 90 1.000 1.166 10.193 0.254 8221.40 40.02 
57 0.603 1.180 89 1.041 1.180 10.193 0.254 7909.63 38.50 
58 0.603 1.194 88 1.083 1.193 10.193 0.254 7614.87 37.07 
59 0.603 1.208 87 1.126 1.206 10.193 0.254 7335.90 35.71 
60 0.603 1.222 86 1.171 1.219 10.193 0.254 7071.61 34.43 
61 0.603 1.237 85 1.216 1.232 10.193 0.254 6821.00 33.21 
62 0.603 1.251 84 1.262 1.245 10.193 0.254 6583.12 32.05 
63 0.603 1.266 83 1.309 1.257 10.193 0.254 6357.11 30.95 
64 0.603 1.281 82 1.357 1.269 10.193 0.254 6142.19 29.90 
65 0.603 1.296 81 1.406 1.280 10.193 0.254 5937.63 28.90 
66 0.603 1.312 80 1.456 1.292 10.193 0.254 5742.76 27.96 
67 0.603 1.327 79 1.506 1.303 10.193 0.254 5556.94 27.05 
68 0.603 1.343 78 1.558 1.314 10.193 0.254 5379.61 26.19 
69 0.603 1.359 77 1.611 1.324 10.193 0.254 5210.23 25.36 
70 0.603 1.375 76 1.665 1.334 10.193 0.254 5048.31 24.58 
71 0.603 1.391 75 1.720 1.344 10.193 0.254 4893.38 23.82 
72 0.603 1.408 74 1.776 1.353 10.193 0.254 4745.03 23.10 
73 0.603 1.424 73 1.833 1.362 10.193 0.254 4602.84 22.41 
74 0.603 1.441 72 1.891 1.371 10.193 0.254 4466.45 21.74 
75 0.603 1.458 71 1.950 1.379 10.193 0.254 4335.52 21.11 
76 0.603 1.476 70 2.009 1.387 10.193 0.254 4209.71 20.49 
77 0.603 1.493 69 2.070 1.394 10.193 0.254 4088.74 19.90 
78 0.603 1.511 0.254 68 2.132 1.401 10.193 3972.31 19.34 
79 0.603 10.193 1.529 67 2.195 1.407 0.254 3860.17 18.79 
80 0.603 1.547 66 2.258 1.413 10.193 0.254 3752.06 18.27 
81 0.603 1.565 65 2.323 1.418 10.193 0.254 3647.76 17.76 
82 0.603 1.584 64 2.388 1.423 10.193 0.254 3547.04 17.27 
83 0.603 1.602 63 2.455 1.428 10.193 0.254 3449.70 16.79 
84 0.603 1.621 62 2.522 1.432 10.193 0.254 3355.56 16.34 
85 0.603 1.640 61 2.591 1.435 10.193 0.254 3264.42 15.89 
86 0.603 1.660 60 2.660 1.438 10.193 0.254 3176.13 15.46 
87 0.603 1.680 59 2.730 1.440 10.193 0.254 3090.51 15.04 
88 0.603 1.699 58 2.801 1.441 10.193 0.254 3007.42 14.64 
89 0.603 1.720 57 2.873 1.442 10.193 0.254 2926.71 14.25 
90 0.603 1.740 56 2.946 1.442 10.193 0.254 2848.26 13.87 
91 0.603 1.761 55 3.020 1.442 10.193 0.254 2771.92 13.49 
92 0.603 1.781 54 3.094 1.441 10.193 0.254 2697.60 13.13 
93 0.603 1.803 53 3.170 1.440 10.193 0.254 2625.16 12.78 
94 0.603 1.824 52 3.246 1.437 10.193 0.254 2554.50 12.44 
95 0.603 1.845 51 3.323 1.434 10.193 0.254 2485.53 12.10 
96 0.603 1.867 50 3.401 1.430 10.193 0.254 2418.14 11.77 
97 0.603 1.889 49 3.479 1.426 10.193 0.254 2352.24 11.45 
98 0.603 1.912 48 3.558 1.421 10.193 0.254 2287.75 11.14 
99 0.603 1.934 47 3.639 1.415 10.193 0.254 2224.58 10.83 

100 0.603 1.957 46 3.719 1.408 10.193 0.254 2162.67 10.53 
101 0.603 1.981 45 3.801 1.400 10.193 0.254 2101.92 10.23 
102 0.603 2.004 44 3.883 1.392 10.193 0.254 2042.27 9.94 
103 0.603 2.028 43 3.966 1.383 10.193 0.254 1983.66 9.66 
104 0.603 2.052 42 4.049 1.373 10.193 0.254 1926.03 9.38 
105 0.603 2.076 41 4.134 1.362 10.193 0.254 1869.30 9.10 
106 0.603 2.101 40 4.218 1.350 10.193 0.254 1813.43 8.83 
107 0.603 2.125 39 4.304 1.338 10.193 0.254 1758.36 8.56 
108 0.603 2.151 38 4.389 1.324 10.193 0.254 1704.03 8.30 
109 0.603 2.176 37 4.476 1.310 10.193 0.254 1650.41 8.03 
110 0.603 2.202 36 4.563 1.294 10.193 0.254 1597.43 7.78 
111 0.603 2.228 35 4.650 1.278 10.193 0.254 1545.07 7.52 
112 0.603 2.254 34 4.738 1.261 10.193 0.254 1493.26 7.27 
113 0.603 2.281 33 4.826 1.242 10.193 0.254 1441.98 7.02 

 
 



Table-26, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 38o and δ = 25o) 
Angle of  Radius of log-spiral               

Log-spiral ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 
θ                 Qu/qu 

52 0.635 1.289 90 1.000 1.289 13.901 0.217 9861.03 23.23 
53 0.635 1.307 89 1.046 1.307 13.901 0.217 9459.94 22.28 
54 0.635 1.325 88 1.092 1.324 13.901 0.217 9082.49 21.40 
55 0.635 1.343 87 1.141 1.341 13.901 0.217 8726.86 20.56 
56 0.635 1.362 86 1.190 1.358 13.901 0.217 8391.39 19.77 
57 0.635 1.380 85 1.241 1.375 13.901 0.217 8074.57 19.02 
58 0.635 1.399 84 1.293 1.392 13.901 0.217 7775.02 18.32 
59 0.635 1.419 83 1.346 1.408 13.901 0.217 7491.48 17.65 
60 0.635 1.438 82 1.400 1.424 13.901 0.217 7222.80 17.01 
61 0.635 1.458 81 1.456 1.440 13.901 0.217 6967.91 16.41 
62 0.635 1.478 80 1.513 1.455 13.901 0.217 6725.84 15.84 
63 0.635 1.498 79 1.572 1.471 13.901 0.217 6495.70 15.30 
64 0.635 1.519 14.79 78 1.631 1.485 13.901 0.217 6276.66 
65 0.635 1.539 77 1.693 1.500 13.901 0.217 6067.96 14.29 
66 0.635 1.561 76 1.755 1.514 13.901 0.217 5868.89 13.83 
67 0.635 1.582 75 1.819 1.528 13.901 0.217 5678.82 13.38 
68 0.635 1.604 74 1.884 1.542 13.901 0.217 5497.12 12.95 
69 0.635 1.626 73 1.951 1.555 13.901 0.217 5323.26 12.54 
70 0.635 1.648 72 2.019 1.567 13.901 0.217 5156.70 12.15 
71 0.635 1.671 71 2.088 1.580 13.901 0.217 4996.97 11.77 
72 0.635 1.694 70 2.159 1.592 13.901 0.217 4843.61 11.41 
73 0.635 1.717 69 2.231 1.603 13.901 0.217 4696.22 11.06 
74 0.635 1.740 68 2.304 1.614 13.901 0.217 4554.39 10.73 
75 0.635 1.764 67 2.379 1.624 13.901 0.217 4417.77 10.41 
76 0.635 1.789 66 2.455 1.634 13.901 0.217 4286.02 10.10 
77 0.635 1.813 65 2.533 1.643 13.901 0.217 4158.81 9.80 
78 0.635 1.838 64 2.611 1.652 13.901 0.217 4035.86 9.51 
79 0.635 1.863 63 2.692 1.660 13.901 0.217 3916.87 9.23 
80 0.635 1.889 62 2.774 1.668 13.901 0.217 3801.59 8.96 
81 0.635 1.915 61 2.857 1.675 13.901 0.217 3689.78 8.69 
82 0.635 1.941 60 2.941 1.681 13.901 0.217 3581.19 8.44 
83 0.635 1.968 59 3.027 1.687 13.901 0.217 3475.62 8.19 
84 0.635 1.995 58 3.114 1.692 13.901 0.217 3372.85 7.95 
85 0.635 2.022 57 3.203 1.696 13.901 0.217 3272.70 7.71 
86 0.635 2.050 56 3.293 1.699 13.901 0.217 3174.98 7.48 
87 0.635 2.078 55 3.384 1.702 13.901 0.217 3079.52 7.25 
88 0.635 2.107 54 3.476 1.704 13.901 0.217 2986.15 7.03 
89 0.635 2.136 53 3.570 1.705 13.901 0.217 2894.72 6.82 
90 0.635 2.165 52 3.666 1.706 13.901 0.217 2805.09 6.61 
91 0.635 2.195 51 3.762 1.705 13.901 0.217 2717.12 6.40 
92 0.635 2.225 50 3.860 1.704 13.901 0.217 2630.68 6.20 
93 0.635 2.255 49 3.959 1.702 13.901 0.217 2545.63 6.00 
94 0.635 2.286 48 4.060 1.699 13.901 0.217 2461.87 5.80 
95 0.635 2.318 47 4.161 1.695 13.901 0.217 2379.29 5.60 
96 0.635 2.349 46 4.264 1.690 13.901 0.217 2297.77 5.41 
97 0.635 2.382 45 4.368 1.684 13.901 0.217 2217.22 5.22 
98 0.635 2.414 44 4.473 1.677 13.901 0.217 2137.53 5.04 
99 0.635 2.447 43 4.580 1.669 13.901 0.217 2058.62 4.85 

100 0.635 2.481 42 4.688 1.660 13.901 0.217 1980.40 4.67 
101 0.635 2.515 41 4.796 1.650 13.901 0.217 1902.79 4.48 
102 0.635 2.550 40 4.906 1.639 13.901 0.217 1825.70 4.30 
103 0.635 2.585 39 5.017 1.627 13.901 0.217 1749.07 4.12 
104 0.635 2.620 38 5.129 1.613 13.901 0.217 1672.81 3.94 
105 0.635 2.656 37 5.243 1.599 13.901 0.217 1596.87 3.76 
106 0.635 2.693 36 5.357 1.583 13.901 0.217 1521.16 3.58 
107 0.635 2.730 35 5.472 1.566 13.901 0.217 1445.64 3.41 
108 0.635 2.767 34 5.588 1.547 13.901 0.217 1370.25 3.23 
109 0.635 2.805 33 5.705 1.528 13.901 0.217 1294.91 3.05 

 
 



Table-27, The variation of BCR with normalized shell height (h/D) & shell Diameter for different 
shell diameter & heights. 

For Coulomb wall (φ = 42o and δ = 25o) 
Angle of  Radius of log-spiral               

Log-spiral ro r1 45-φ/2 d/D h/D Kp Ka Qu BCR 
θ                 Qu/qu 

48 0.673 1.431 90 1.000 1.431 19.758 0.183 12186.29 13.12 
49 0.673 1.453 89 1.051 1.453 19.758 0.183 11664.17 12.56 
50 0.673 1.476 88 1.103 1.475 19.758 0.183 11175.56 12.03 
51 0.673 1.500 87 1.157 1.498 19.758 0.183 10717.66 11.54 
52 0.673 1.523 86 1.213 1.520 19.758 0.183 10287.91 11.08 
53 0.673 1.547 85 1.270 1.542 19.758 0.183 9884.02 10.64 
54 0.673 1.572 84 1.329 1.563 19.758 0.183 9503.89 10.23 
55 0.673 1.597 83 1.389 1.585 19.758 0.183 9145.63 9.85 
56 0.673 1.622 82 1.452 1.606 19.758 0.183 8807.51 9.48 
57 0.673 1.648 81 1.516 1.628 19.758 0.183 8487.96 9.14 
58 0.673 1.674 80 1.581 1.649 19.758 0.183 8185.53 8.81 
59 0.673 1.700 79 1.649 1.669 19.758 0.183 7898.92 8.50 
60 0.673 1.727 78 1.718 1.690 19.758 0.183 7626.90 8.21 
61 0.673 1.755 77 1.789 1.710 19.758 0.183 7368.38 7.93 
62 0.673 1.783 76 1.862 1.730 19.758 0.183 7122.33 7.67 
63 0.673 1.811 75 1.937 1.749 19.758 0.183 6887.81 7.42 
64 0.673 1.839 74 2.014 1.768 19.758 0.183 6663.96 7.18 
65 0.673 1.869 73 2.093 1.787 19.758 0.183 6449.97 6.94 
66 0.673 1.898 72 2.173 1.805 19.758 0.183 6245.10 6.72 
67 0.673 1.928 71 2.256 1.823 19.758 0.183 6048.66 6.51 
68 0.673 1.959 70 2.340 1.841 19.758 0.183 5860.02 6.31 
69 0.673 1.990 69 2.426 1.858 19.758 0.183 5678.58 6.11 
70 0.673 2.021 68 2.514 1.874 19.758 0.183 5503.79 5.93 
71 0.673 2.053 67 2.605 1.890 19.758 0.183 5335.14 5.74 
72 0.673 2.086 66 2.697 1.906 19.758 0.183 5172.14 5.57 
73 0.673 2.119 65 2.791 1.920 19.758 0.183 5014.34 5.40 
74 0.673 2.152 64 2.887 1.935 19.758 0.183 4861.33 5.23 
75 0.673 2.187 63 2.985 1.948 19.758 0.183 4712.70 5.07 
76 0.673 2.221 62 3.086 4568.10 4.92 1.961 19.758 0.183 
77 0.673 2.256 61 3.188 1.973 19.758 0.183 4427.17 4.77 
78 0.673 2.292 60 3.292 1.985 19.758 0.183 4289.58 4.62 
79 0.673 2.328 59 3.398 1.996 19.758 0.183 4155.02 4.47 
80 0.673 2.365 58 3.507 2.006 19.758 0.183 4023.22 4.33 
81 0.673 2.403 57 3.617 2.015 19.758 0.183 3893.88 4.19 
82 0.673 2.441 56 3.730 2.024 19.758 0.183 3766.75 4.06 
83 0.673 2.480 55 3.844 2.031 19.758 0.183 3641.59 3.92 
84 0.673 2.519 54 3.961 2.038 19.758 0.183 3518.16 3.79 
85 0.673 2.559 53 4.080 2.043 19.758 0.183 3396.24 3.66 
86 0.673 2.599 52 4.200 2.048 19.758 0.183 3275.62 3.53 
87 0.673 2.640 51 4.323 2.052 19.758 0.183 3156.10 3.40 
88 0.673 2.682 50 4.448 2.055 19.758 0.183 3037.49 3.27 
89 0.673 2.725 49 4.575 2.056 19.758 0.183 2919.61 3.14 
90 0.673 2.768 48 4.704 2.057 19.758 0.183 2802.28 3.02 
91 0.673 2.812 47 4.835 2.056 19.758 0.183 2685.34 2.89 
92 0.673 2.856 46 4.968 2.055 19.758 0.183 2568.64 2.77 
93 0.673 2.901 45 5.103 2.052 19.758 0.183 2452.01 2.64 
94 0.673 2.947 44 5.240 2.047 19.758 0.183 2335.32 2.51 
95 0.673 2.994 43 5.379 2.042 19.758 0.183 2218.43 2.39 
96 0.673 3.042 42 5.521 2.035 19.758 0.183 2101.20 2.26 
97 0.673 3.090 41 5.664 2.027 19.758 0.183 1983.50 2.14 
98 0.673 3.139 40 5.809 2.017 19.758 0.183 1865.21 2.01 
99 0.673 3.188 39 5.956 2.006 19.758 0.183 1746.22 1.88 

100 0.673 3.239 38 6.104 1.994 19.758 0.183 1626.40 1.75 
101 0.673 3.290 37 6.255 1.980 19.758 0.183 1505.66 1.62 
102 0.673 3.342 36 6.408 1.965 19.758 0.183 1383.88 1.49 
103 0.673 3.395 35 6.562 1.947 19.758 0.183 1260.95 1.36 
104 0.673 3.449 34 6.719 1.929 19.758 0.183 1136.80 1.22 
105 0.673 3.504 33 6.877 1.908 19.758 0.183 1011.31 1.09 
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