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ABSTRACT 
 

Several methodologies have been proposed for modeling but most of them 

have had limited success in comprehensively incorporating the various aspects 

of the system. The various modeling techniques differ significantly in the extent 

to which they provide the ability to model different system perspectives. 

Petri net, a combination of the simulation and the mathematical numerical 

methods can be effectively used for describing and studying information 

processing systems that are characterized as being parallel, distributed, 

asynchronous, concurrent, deterministic and/or stochastic.  

This dissertation proposes to explore the capabilities of Petri nets, a novel 

mean of modeling and simulation analysis of a system. As there is hardly any 

professional, particularly in engineering, that has not been the user of computer 

communication networks, a good modeling technique will help in better 

describing and analyzing these systems The dissertation is an attempt to 

present models for Open Traffic Information System (OTIS), Aloha protocols 

with both pure and slotted versions and finally carrier sense multiple access 

protocols (CSMA) using high level Petri nets.  

Based on queueing theory systems and Markov Modulated Poisson arrival 

processes, Timed Petri nets have been used to analyze and develop Petri net 

models for various communication protocols. Slotted versions of persistent and 

non-persistent CSMA and special case of Markov modulated Poisson process 

also have been discussed. To validate the models and to analyze the behavior 

of communication protocols a simulation tool HPSim has been used. The results 

show that communication protocols that typically comprise several generally 

distributed delays and stochastic processes can be efficiently emulated using 

Petri net modeling techniques as they have proper constructs to effectively 

represent all these characteristics. 
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Chapter 1 

Introduction 

System design and modeling always has been a point of attention in scientific, 

engineering and industrial applications. System modeling techniques, using 

diagrams and pictorial representations, enable improved understanding and 

communication of the information to both the end users and the developers. 

The effectiveness and efficiency of the modeling technique greatly determines 

the quality of the implementation of a system. 

Petri nets offer a mathematically defined technique for the specification, 

design, analysis, verification and performance evaluation of a system with 

varied characteristics. In spite of being able to represent large system 

complexities, Petri nets use a limited number of symbols that make them fairly 

straightforward to employ. Petri nets have powerful abilities for representation of 

system dynamics like - entity arrival dynamics, resource availability, resource 

interdependency, start and termination of activities, queueing time, queue 

length, event firing conditions and other control mechanisms. 

It allows simulation of the system to measure performance characteristics 

and test results. Petri net tools for formal analysis and simulation of system are 

widely available. Such an advantage of closely tying the system model with its 

simulation is a major benefit that Petri nets have over other modeling 

techniques. 

Due to the generality and permissiveness inherent in Petri nets, they have 

been proposed for a very wide variety of applications. One of the application 

areas where Petri nets can be successfully used is computer communication 
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networks. Today, there is hardly any professional, particularly in engineering, 

that has not been the user of such a network. This proliferation requires the 

thorough understanding of the behavior of networks by those who are 

responsible for their operation as well as by those whose task is to design such 

networks. This is probably the reason for the large number of books, 

monographs, and articles treating relevant issues, problems, and solutions. 

Three major components characterize computer communication networks: 

switches, channels and protocols. The switches (or nodes) are the hardware 

entities that house the data communication functions; the protocols are the sets 

of rules and agreements among the communicating parties that dictate the 

behavior of the switches, and the channel is the physical medium over which 

signals, representing data, travel from one switch to another. 

To make a transmission successful interference must be avoided or at least 

controlled. The channel then becomes the shared resource whose allocation is 

critical for proper operation of the network. Multiple Access Protocols are 

nothing but channel allocation schemes that posses desirable performance 

characteristics. 

Petri nets that are combination of simulation and mathematical numerical 

methods can provide a greater environment to analyze these communication 

protocols as they capture all the elements important for process dynamics and 

system behavior presentation. The great advantage of simulation of Petri net 

models lies in transparency, availability and ease of making changes in 

configuration. 

1.1 Motivation 

For the analysis of communication networks, Kleinrock [1] mentions several 

directions: mathematical analysis, which yields explicit performance 

expressions or which yields a numerical evaluation procedure, simulation or 

measure the performance by building the system. Simulation which is a 

combination of programming and modeling is highly used for analysis purposes.  
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The basic Idea behind simulation is to acquire knowledge [2] and to reach 

some informed decisions regarding a real world system. But the system is not 

easy to study directly, so one has to proceed indirectly by creating and studying 

another entity (the simulation model), which is sufficiently similar to the real 

world system and ensure that the facts learned about the model will also be true 

for the system. 

Several methodologies have been proposed for modeling [2], [3] but most of 

them have had limited success in comprehensively incorporating the various 

aspects of the system. For example Data Flow Diagrams [3] have long been 

popular for design representation of a system. But the modeling remains 

incomplete due to the absence of any control flows. Most of the modeling 

techniques are unable to cope with stochastic elements that are so frequent to 

real world problems. 

However Petri net, a combination of the simulation and the mathematical 

numerical methods [4], [5] can be effectively used for describing and studying 

systems that are characterized as being parallel, distributed, asynchronous, 

concurrent, deterministic and/or stochastic. Petri nets are one of the most 

widely used methods in modeling because of their characteristics: simplicity, 

representation power comprising concurrency, synchronization and resource 

sharing. 

Petri nets have been used due to their advantage in quick construction and 

numerical analysis. They make possible to describe precisely and 

unambiguously detailed view of large and complex systems. Also Petri net 

models are flexible, scalable and easy to analyze. 

1.2 Objective 

Based on the above, it has been seen that several modeling methodologies 

have been proposed but most of them have had limited success in 

comprehensively incorporating the various aspects of a system. However Petri 

nets are effective to emulate a system with varied characteristics. This 

dissertation proposes to explore the capabilities of Petri nets, a novel mean of 
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modeling and simulation analysis of a system. As information processing 

systems and communication networks have a great role in scientific, 

engineering and industrial applications, a good modeling technique will help in 

better describing and analyzing these systems. The dissertation is an attempt to 

present models for Open Traffic Information System (OTIS), Aloha protocols 

with both pure and slotted versions and finally carrier sense multiple access 

protocols (CSMA) using high level Petri nets. Based on queueing systems and 

Markov modulated Poisson arrival processes, the dissertation proposes to 

develop timed Petri net models for persistent and non-persistent CSMA, their 

slotted versions, and also persistent CSMA as a special case of Markov 

modulated Poisson process by using primates provided by Petri nets. 

1.3 Organization 

The rest of the dissertation is organized as follows: Chapter 2 provides a brief 

introduction to Petri nets and gives a basis for Petri nets abbreviation necessary 

for analysis of Petri net models presented in consequent Chapters. Chapter 3 

discusses important fundamental result from queuing theory and statistics, 

Markovian arrival processes required for the modeling and analysis purpose. 

Chapter 4 discusses High Level Petri Nets and their application in information 

processing systems and explains the Petri net model of Open Traffic 

Information System (OTIS). Chapter 5 develops Petri net models of Aloha and 

carrier sense multiple access protocols and analyze them using simulator 

HPSim. Chapter 6 concludes the dissertation and gives some research 

directions. Chapter 7 lists the paper that has been published during the 

preparation of the dissertation. In last, the list of references is given which we 

have gone through during the project. 
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Chapter 2 

Petri Nets 

Petri net, introduced by C.A.Petri in 1962 [4], [5] is a method which enables 

graphical modeling of system behavior while simultaneously enabling 

introduction of mathematical formal rules for system behavior definition. 

Petri nets are one of the most widely used methods for modeling of 

concurrent, asynchronous, distributed, parallel, nondeterministic and/or 

stochastic systems. They have been proposed for a very wide variety of 

applications. This is due to the generality and permissiveness inherent in Petri 

nets.  

This chapter discusses basic definitions, special kinds and behavior of Petri 

nets, introductory modeling examples to give a basis for Petri nets abbreviation 

presented in consequent chapters. 

2.1 Basic Definitions and Notations 

A Petri net (PN) is a particular kind of directed graph [4], [6], together with an 

initial state called the initial marking M�. The underlying graph of a Petri net is a 

directed, weighted, bipartite graph consisting of two kinds of nodes, called 

places and transitions, where arcs are either from a place to a transition or from 

a transition to a place. 

In graphical representation, places are drawn as circles, transitions as bars 

or rectangles. Arcs are labeled with their weights (positive integers), where a k-

weighted arc can be interpreted as the set of k parallel arcs. Labels for unit 

weight are usually omitted.  
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A marking (state) assigns to each place a non negative integer. If a marking 

assigns to place P a non negative integer k, then P is said to be marked with k 

tokens. Pictorially, k black dots (tokens) are placed in place P. A marking is 

denoted by M, a |� |-vector, where | � | is the total number of places. The ith 

part of M, denoted by M(Pi) represents the number of tokens in place Pi. 

A transition (an event) has a certain number of input and output places 

representing the pre-conditions and post conditions of the event, respectively. 

Definition 2.1: Formal Definition of a Petri Net [4] 

A Petri net is a 5-tuple, PN = (PPPP, TTTT, FFFF, WWWW, 	
) where: 

PPPP = {P1, P2, . . , Pn} is a finite set of places, 

TTTT = {T1, T2, . . ., Tm} is a finite set of transitions, 

FFFF ⊆ (PPPP x TTTT) U (TTTT x PPPP) is a set of arcs (flow relation), 

WWWW: FFFF → {1, 2, 3, . . .} is a weight function, 

	
: PPPP → {0, 1, 2, 3, . . .} is the initial marking, 

A Petri net structure PN = (PPPP, TTTT, FFFF, WWWW) without any specific initial marking is 

denoted by �. A Petri net with the given initial marking M� is denoted by (N, M�). 

The following symbols are used for input and output sets of a place P and a 

transition T (FFFF is the set of arcs): 

●T = {P | (P, T) ∈ FFFF} = the set of input places of T 

T● = {P | (T, P) ∈ FFFF} = the set of output places of T 

●P = {T | (T, P) ∈ FFFF} = the set of input transitions of P 

P● = {T | (P, T) ∈ FFFF} = the set of output transitions of P 

This notation can be extended to a subset. For example, let S1 � PPPP, then ●S1 is 

the union of all ●P such that P ∈ S1. 

In the next section the rule for transition enabling and firing are given. 

Although this rule appears very simple, its implication in Petri-net theory is very 

deep and complex. 



7 

2.2 Transition Rules 

In order to simulate the dynamic behavior of a system, a state or marking in a 

Petri net is changed according to the following transition (firing) rules [6]: 

1. A transition T is said to be enabled if each input place P of T is 

marked with at least w(P,T) tokens, where w(P,T) is the weight of the 

arc from P to T. 

2. An enabled transition may or may not fire (depending on whether or 

not the event actually takes place). 

3. A firing of an enabled transition T removes w(P,T)  tokens from each 

input place P of T, and adds w(T, P) tokens to each output place P of 

T, where w(T, P) is the weight of the arc from T to P. 

4. The marking of the other places which are neither input nor output of 

T remains unchanged. 

A transition without any input place is called a source transition, and one without 

any output place is called a sink transition. Note that a source transition is 

unconditionally enabled, and that the firing of a sink transition consumes tokens, 

but does not produce any. 

 

Figure 2.1: Petri Net Model of a Critical Section 

A Petri Net model of two processors and critical section is described in figure 

2.1. Transitions T1, and T3 represent entering the critical section and place P3 

represents semaphore. Transitions T1 and T3 are in conflict, because the 

transition T3 will be disabled if the left processor enters the critical section and 

T4 T2 

T3 T1 

P5 P4 P3 P2 P1 
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vice versa. Places P2 & P4 represent autonomous processing of each 

processor. Transitions T2 & T4 represent leaving the critical section. 

Two events e1 and e2 are in conflict if either e1 or e2 can occur but not both 

and they are concurrent if both events can occur in any order without conflicts. 

A situation where conflict and concurrency are mixed is called confusion. 

A pair of a place P and a transition T is called a self-loop if P is both an input 

and output place of T. A Petri net is said to be pure if it has no self-loops. A 

Petri net is said to be ordinary if all of its arc weights are 1’s. Note that a self-

loop can be refined or transformed into a loop by introducing a dummy pair of a 

transition and a place, as is illustrated in FIGure 2.2. 

 

Figure 2.2: Transformation of a Self-loop to a loop . 

2.3 Inhibitor Arc Petri Nets (Extended PNs) 

The inhibitor arc was introduced to Petri nets to allow testing of zero. The 

inhibitor arc disables the transition when input place has tokens and enables it 

when the input place has no token [4], [5]. Graphically, an inhibitor arc is a 

dashed line, which ends with an empty circle. 

2.4 Firing Sequence 

A firing sequence is an ordered set of transition firings, which has associated a 

characteristic vector S�� (also the firing count vector {Murata [4 pp. 552]}). ith part 

of S�� indicates the number of times the transition Ti was fired in the sequence. 

From marking in figure 2.1 one can have, for example, firing sequence A=T1 

T2, B=T3 T4 T3 T4, or C=T1 T2 T1 T2 T3 T4 T1 T2. The firing vectors 

P1 

P2 

T2 T1 

P1 

T1 
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associated to the firing sequences are: S�� A= (1,1,0,0) ;  S�� B= (0,0,2,2) ;  S�� c = 

(3,3,1,1). 

A characteristic vector may correspond to several firing sequences. For 

example (1,1,1,1) corresponds both to T1 T2 T3 T4, and T4 T1 T3 T2. But not 

all the characteristic vectors S�� whose parts are positive or zero integers are 

possible: For example there is no firing sequence with characteristic vector S�� = 

(0,1,1,1) reachable from the initial marking because the transition T2 can not be 

fired before firing of T1. 

2.5 Incidence Matrix 

Let a Petri net � with PPPP = P1,..., Pm and TTTT = T1,..., Tn be given. A Matrix � = 

(a��) where (1 ≤ i ≤ m, 1 ≤ j ≤ n) is called the incidence matrix of � if and only if: 

(2.1) � � �� � ��  

where a�� �  a��
�  �  a��

�  

Where a��
� is the weight of the arc from place Pi to transition Tj and a��

� is the 

weight of the arc from transition Tj to place Pi. �� is Pre-condition matrix of size 

[|PPPP|,|TTTT|] having a��
�  as (i,j)th element, and ��  is Post-condition matrix of size 

[|PPPP|,|TTTT|] having a��
� as (i,j)th element. E.g. following are the pre-condition, post-

condition and incidence matrix for the Petri net of figure 2.1: 

�� �  

�
�
�
�
�
�
�

0100

1000

0101

0010

0101

 

�
�
�
�
�
�
�

               �� �  

�
�
�
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�
�
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� �  
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�
�

 

1100

1100

1111

0011

0111

−
−
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−
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�
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It is easy to see from the transition rules described before that Pre-condition, 

Post-condition and incidence matrix respectively represent the number of 

tokens removed, added and changed in any place. 

Sometimes incidence matrix is also represented as difference of pre-

condition matrix and post condition matrix (i.e. � � �� � �� ). In that case 

incidence matrix represents the difference of number of tokens consumed and 

tokens fired by a transition. 
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Chapter 3 

Queueing Theory and Petri Net Simulation 

In this chapter some important fundamental results from queueing theory, 

Probability distributions and Markovian Processes which forms the basis for 

modeling the communication networks using Petri nets have been discussed. 

Also, the simulation properties of simulator HPSim used for analysis of 

communication protocols have been explained. 

3.1 Queueing models 

The basic queueing model is shown in figure 3.1. It can be used to model, e.g., 

machines or operators processing orders or communication equipment 

processing information. Depending on the specific network model or device 

operation, the queueing system has an arrival process, a departure process and 

a recycle process, a queue size and a service discipline [7]. 

 

Figure 3.1: Basic Queueing Model 

In the basic model, customers arrive one by one and they are always allowed to 

enter the system, there is always room, there are no priority rules and 

customers are served in order of arrival. 
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Following are some factors using which a queueing model is characterised: 

� The arrival process of customers 

� The behavior of customers 

� The service times 

� The service discipline 

� The service capacity 

� The waiting room 

There is a shorthand notation introduced by Kendall to characterize a range of 

these queueing models describrd in the next section. . 

3.2 Kendall's Notation for Classification of Queue Types 

There is a standard notation for classifying queueing systems into different 

types. This was proposed by D.G.Kendall [7]. Systems are described by five 

part code A / B / C / D / E 

where: 

A : Distribution of inter arrival times of customers 

B : Distribution of service times 

C : Number of servers 

D : Maximum total number of customers which can be accommodated in the 

system 

E : Calling population size 

A and B can take any of following distribution types: 

M : Exponential Distribution (Memory Less) 

Ek : Erlang Distribution (k = shape parameter) 

G : General Distribution (arbitrary distribution) 

Some examples are M/M/1, M/M/c, M/G/1, G/M/1 and M/D/1. E.g., M/M/m/K/N - 

would describe a queueing system with an exponential distribution for the inter 

arrival times of customers and the service times of customers, m servers, a 
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maximum of K customers in the queueing system at once, and N potential 

customers in the calling population. 

3.3 Performance Measures 

The whole idea behind performance analysis of a queueing system is to 

quantify the network behavior in terms of some meaningful numerical 

measures. Relevant performance measures in the analysis of queueing models 

are: 

� The distribution of the waiting time and the sojourn time of a 

customer. The sojourn time is the waiting time plus the service time. 

� The distribution of the number of customers in the system (including 

or excluding the one or those in service). 

� The distribution of the busy period of the server. This is a period of 

time during which the server is working continuously. 

� The distribution of the amount of work in the system. That is the sum 

of service times of the waiting customers and the residual service time 

of the customer in service. 

3.4 Probability Distributions 

This section discusses various probability distribution required for the statistical 

analysis of Petri net models with stochastic elements and to understand 

modeling of various arrival processes (network traffic) in communication 

protocols. 

3.4.1 Poisson Distribution 

The Poisson distribution arises in many situations. It is one of the most 

important discrete probability distributions. Consider a random variable X, which 

counts the number of occurrences happening randomly in a given time interval. 

Let occurrence rate is given by λ and is assumed to be independent in two non-
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overlapping time intervals. Then the distribution of random variable X is given 

by equation 3.1 [8] 

(3.1) P X � k# �  λ%
k!  e�( ,  k � 0, 1, 2, … 

The above distribution is the Poisson distribution for which it holds that 

(3.2) E X# �  σ0 X# �  λ  

where E X# and  σ0 X# are expected value and variance of the random variable 

X respectively. 

For example consider the occurrences of incoming telephone calls to a police 

station in a large city. Now to have a hope of computing the probabilities of 

events such as more than 10 phone calls occurring in a 5-minute time interval, it 

must be assumed that the average rate i.e. the average number of occurrences 

per minute is a constant. This is the rate which is denoted by λ above (Thus, in 

a given 5-minute time interval, there are about 5λ occurrences). 

Presumably, in this example, there would be more incoming calls between 6 

to 7 P.M. than between 4 to 5 A.M., and this fact would certainly affect the 

above probability. So now two different rates for the two time periods given 

above would be used thereby obtaining two different probabilities for the given 

event. 

3.4.2 Exponential Distribution 

The density of an exponential distributed random variable X with parameter λ [8] 

is given by  

(3.3) f x# �  3    λ e�(4,
0,             0 5 x 5 ∞

otherwise        >  

Here λ is any positive constant, depending on the experiment. The exponential 

density is often used to describe experiments involving a question of the form: 

How long until something happens? For example, the exponential density is 

often used to study the time between emissions of particles from a radioactive 

source.  
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If x ≥ 0, then the distribution function equals 

(3.4) F x# �  P?X 5 x@ � 1 � e�(4  

Also expected mean and variance are given by 

(3.5) E X# � 1 λA , σ0 X# �  1 λ0A   

There is a very important relationship between the exponential density and the 

Poisson distribution [9]. Suppose X is a Poisson random variable. with 

parameter λ, so that the expected number of occurrences per unit time is equal 

to λ. Then the random variable T representing the time between successive 

occurrences follows an exponential distribution with parameter λ. 

3.5 Law of Large Numbers 

Let XB,  X0, ..., XC be an independent trials process with finite expected value µ = 

E(X�) and finite variance σ0 = V (X�). Let SC = XB D X0 D... + XC 

Then for any ε F 0 , 

(3.6) P GHSC
n � µH K εL M 0 as n M ∞ 

Equivalently 

(3.7) P GHSC
n � µH N OL M 1 as  n M ∞ 

For example consider the special case of tossing coin n times with SC  the 

number of heads that turn up. Then the random variable SC/n represents the 

fraction of times heads turns up and will have values between 0 and 1. The Law 

of Large Numbers predicts that the outcomes for this random variable will, for 

large n, be near 1/2. 

3.6 Markov Chain 

When a sequence of chance experiments forms an independent trials process, 

the possible outcomes for each experiment are the same and occur with the 
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same probability. Further, knowledge of the outcomes of the previous 

experiments does not influence our predictions for the outcomes of the next 

experiment. 

In 1907, A. A. Markov began the study of an important new type of chance 

process [9]. In this process, the outcome of a given experiment can affect the 

outcome of the next experiment. For example, this should be the case in 

predicting a student’s grades on a sequence of exams in a course. This type of 

process is called a Markov chain. 

A Markov chain is described as follows: S = {sB, s0, …, sQ} is a set of states. 

The process starts in one of these states and moves successively from one 

state to another. Each move is called a step. If the chain is currently in state s�, 

then it moves to state s� at the next step with a probability denoted by p�� and 

this probability does not depend upon which states the chain was in before the 

current state. The probabilities p�� are called transition probabilities. 

Markov chain can be described as a frog jumping on a set of lily pads. The 

frog starts on one of the pads and then jumps from lily pad to lily pad with the 

appropriate transition probabilities. 

3.7 Markov-Modulated Poisson Processes 

A Markov Modulated Poisson Process (MMPP) of order m consists of an m 

state Markov Chain in which each state s� (i = 1, 2, …, m) is associated with a 

Poisson process of rate (λ�). In other words, MMPP is a time varying Poisson 

process, the rate of which is changed (modulated) according to the Markov 

chain. The Markov chain can therefore be said to modulate the Poisson 

process, hence the name. This modulation introduces correlations between 

successive inter arrival times in the process. The MMPP can be identified as a 

special case of the Markovian arrival process (MAP). 

An example of MMPP is a process where requests arrive with different rates 

in different time periods. An MMPP can be classified by the number of states 

the modulating Markov chain contains, e.g. a Markov chain with two states and 
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two (different) intensities is denoted as MMPP-2, or sometimes Switched 

Poisson Process (SPP). 

 

Figure 3.2: Two State MMPP 

If the two intensities are equal the model becomes an ordinary Poisson process. 

The special case when one intensity is zero is called Interrupted Poisson 

process (IPP). 

3.8 Petri Net Simulation Using HPSim 

HPSim supports the design and simulation of high level Petri nets, both in a 

graphical and intuitive manner [10]. 

 

Figure 3.3: Simulator HPSim 

SB0 S0B 

λ1 

λ2 
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The actual simulation is visualized as a Token Game Animation. This can be 

executed in single step or continuous mode. Besides that, a fast forward mode 

is also available, in which the graphical representation of the token is not 

synchronized with the simulated actual position. 

3.8.1 Simulation Stop Condition 

An important issue in simulations is the selection of stop condition, because 

correctly selected stop condition saves the computational power. The simulation 

has to be long enough to ensure the confidence of simulated results, but the 

simulation must stop in reasonable time. The simulation stop condition should 

be exact, but its evaluation should be fast and simple. To ensure that all the 

cases of transition firings & their conflicts, cases of dead locks have exploited, 

the simulation time should be carefully chosen. 

 

Figure 3.4: Setting Simulation Properties in HPSim 

3.8.2 Simulation Output 

The occurrence of an event in the simulation system relates to the firing of a 

transition in the Petri net model. The state of the system is represented by the 
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current marking which is being changed by the processing of an event i.e. the 

firing of a transition [11]. In terms of the Petri net model, the changes that occur 

when a transition fires are: 

1. The input places of the transition lose tokens. 

2. The output places of the transition gain tokens. 

3. The clock in the simulated system advances by the firing time of the 

transition. 

4. The total number of times the transition has fired gets incremented by 

1. 

In the simulation, each time a transition fires, the above changes are monitored 

and stored in suitably chosen data structures. At the end of the simulation, 

performance measures are computed by looking at the values contained in 

these data structures. Below are some data structures used in simulation of the 

Petri net models: 

� Firings: 'Firings' is a vector with one element for every transition. At 

any given point in simulation, it gives the total number of times the 

transition T has fired from the start of the simulation. 

� Token Loss: 'Token loss' is a vector with one element for every place. 

For place P, token loss [P] gives the total number of times P has lost a 

token during the simulation so far. 

� Transition Name Vector: It represents the set of all transitions in the 

net and provides the name information about them. 

� Position Name Vector: It represents the set of all places in the net and 

provides their names description. 

� Arc Type Matrix: it is two dimensional array whose rows corresponds 

to position name vector and columns corresponds to transition name 

vector and gives the information about the type of arc used based on 

whether arc is ordinary or inhibitor. 

� Marking Vector: it gives the number of tokens in any place P at given 

instance of time. 
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� Incidence Matrix: it is a two dimensional array whose rows and 

columns corresponds to position name vector and transition time 

vector respectively and elements gives the difference between the 

total number of tokens consumed and the total number of tokens fired 

by a transition. 
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Chapter 4 

High Level Petri Nets 

Petri nets can be applied informally to any area or system that can be described 

graphically like flow charts and that needs some means of representing parallel 

or concurrent activities. But basic Petri nets are not concise and convenient 

enough to be useful in modeling high level, complex processes. To counter this, 

a number of Petri nets extensions have been developed to add special 

modifications or restrictions suited to particular applications. These include the 

notion of ‘color’, ‘time’ and ‘hierarchy’. High Level Petri Nets collectively refers to 

these extensions. 

This chapter discusses Petri Nets with time and their application to 

information processing systems. First Stochastic Petri nets (SPNs) and some 

extensions of SPNs have been discussed and then discrete event simulation of 

Petri nets has been described. To expose the features of Petri nets over other 

modeling techniques, a Petri net model of Open Traffic Information System 

(OTIS) has been presented and analyzed. 

4.1 Timed Petri Nets 

Many ways of incorporating time have been introduced in Petri nets to evaluate 

system performance and to integrate stochastic elements that are so frequent in 

real world problems. Time can be associated with transitions, places, tokens 

and/or arcs. 

In most timed Petri nets, transitions have associated time which determines 

the delay between the moment the transition becomes enabled and the moment 
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the transition becomes fireable [12], [13]. Some examples are Stochastic Petri 

Nets (SPNs), Stochastic Timed Petri Nets (STPNs), Deterministic and 

Stochastic Petri Nets (DSPNs), Generalized Stochastic Petri nets (GSPNs), 

Extended Stochastic Petri Nets (ESPNs) and others. 

A stochastic Petri net (SPN) is a Petri net where each transition is associated 

with an exponentially distributed random variable that expresses the delay from 

the enabling to the firing of the transition [4]. In a case where several transitions 

are simultaneously enabled, the transition that has the shortest delay will fire 

first.  

Suppose the delay d�  associated with transition Ti is a non negative 

continuous random variable X with the exponential distribution function 

(4.1) F4 X# � Pr?X 5 x@ � 1 � e�(U4  

(or the probability density function, f4 (x) =λ�e�(U4). 

Then, the average delay is given by 

(4.2) dVW �  X ?1 � F4 X#@ dx �  X e�(U4 dx �  1
λ�

Y

�

Y

�
  

Where λ� is the firing rate of transition Ti. 

SPNs have been extended to a class of Generalized Stochastic Petri nets 

(GSPN) [4]. A GSPN has two types of transitions (timed and immediate). A 

timed transition has an exponentially distributed firing rate, and an immediate 

transition has no firing delay. It is used to represent a logical control or an 

activity whose delay is negligible compared with those associated with timed 

transitions. 

There are many more classes of Petri nets, Deterministic and Stochastic 

Petri nets (DSPN)] where transitions can be fired either in zero time or after a 

constant (deterministic time transitions) or exponentially distributed time delay 

(stochastic time transitions), Extended Stochastic Petri nets (ESPN) have 

generally distributed stochastic transitions delay (the distribution of transitions 
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time is general e.g. the superposition of two distributions), Stochastic Timed 

Petri Nets (STPN) where transitions have zero, deterministic or stochastic time 

interval. Stochastic time interval is generally distributed. 

Note that in “non time” Petri nets the enabled transitions are always fireable 

transitions. From here onwards, the only non-zero time objects in Petri nets will 

be transitions. 

4.1.1 Policies Associated with Transition Firings 

Different policies may be assumed for transition firings. Following are two basic 

policies differing in treatment of tokens in incoming places [12], [13]: 

1. Three-phase firing: in this policy tokens are reserved during the 

transition delay. More precisely, 

a) tokens are consumed from input places when the transition is 

enabled, 

b) the delay elapses, 

c) tokens are generated in output places. 

A conflict cannot arise after the reservation of tokens, because they 

are invisible for the rest of the model.  

 

2. Atomic firing: tokens remain in input places for the transition delay; 

they are consumed from input places and generated in output places 

when the transition fires. A transition T is fireable if and only if it has 

been continuously enabled during its associated time. The transition is 

called a time-waiting transition during this time. 

Each firing policy has its own field of scope. Three phase firings are more 

appropriate for modeling of resource sharing and atomic firings suit better for 

example for modeling and analysis of communication protocols. 

The main contrast between the three phase firing and atomic firing policies is 

that in atomic firing, the tokens may be consumed by another transition during 

the time delay. 
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4.1.2 Conflicts among Transition Firings 

When more than one transition with atomic firing is enabled, the behaviour is 

similar, but a problem arises: Which one of the enabled transitions is going to 

fire? 

A conflict (when a firing of one transition disables the other) between two 

immediate transitions is resolved by some pre defined rule e.g. priority, 

probability, inhibitor arc etc. A conflict between a time waiting transition and a 

fireable transition, the fireable is fired and time waiting transition becomes 

disabled. A conflict among fireable transitions or fireable transitions and 

immediate transitions is resolved in the same way as a conflict among 

immediate transitions. To resolve conflicts between two simultaneously enabled 

timed transition there are two alternative selection rules [12]: 

1. Preselection: The enabled transition that will fire is chosen when the 

marking is entered, according to some metric (priority, probability, ...) 

2. Race Condition: The enabled transition that will fire is the one whose 

firing delay is minimum. During the delay, the transition has to be 

continuously enabled. 

4.1.3 Memory Policies 

When a time-waiting timed transition becomes disabled and enables again, 

there are two possibilities what happens with the “state of its time”. After 

becoming enabled again, the transition may continue, where it stopped or it 

always starts from the beginning. Although both of the definitions have its 

importance, only the second one will be used for the analysis purposes because 

it better suits for modeling time constants like packet transmission time or 

channel idle period in communication protocols. 

4.1.4 Multiple Transition Enabling 

The enabling degree of a transition is the number of times the transition could 

fire in the given marking before becoming disabled. When the enabling degree 

of a transition is greater than one, attention must be paid to the firing semantics. 
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Following are three definitions differentiating by overlapping or non-overlapping 

of time delay [13]. 

1. Single server semantics: A firing delay is set when the transition is 

first enabled and new delays are generated upon transition firing if the 

transition is still enabled in the new marking. The transition cannot be 

enabled again during its time delay. 

 

2. Infinite server semantics: If the transition becomes enabled again 

during its time waiting period, a new independent firing process can 

be initiated which will overlap with previous firing processes. There is 

no limit of simultaneous firings of the same transition. If a transition is 

enabled several times it may start, several independent firings or time 

waiting period at the same moment. 

 

3. Multiple server semantics or n-limited semantics: Enabling sets of 

tokens are processed as soon as they form in the input places of the 

transition up to a maximum degree of parallelism (say n) which allows 

the transition to be in n states simultaneously. 

4.1.5 Transition States 

A non-zero time transition immediately moves to time-waiting state after 

enabling. Here it may be disabled or it may become a fireable. A fireable may 

be fired or may be disabled (removing the tokens from its precondition places). 

After firing, a transition becomes either disabled or enabled. 

 

Figure 4.1: Transition State Diagram 

Disabled 
 

Enabled 
 

Wait State 
 

Fireable 
 

Firing 
 



26 

4.2 Types of Network Traffic 

In this section various types of network traffic have been considered and shown 

that how to model these packet arrivals by timed Petri nets. 

Deterministic Packet Arrival Process 

Deterministic process of packet arrivals applies for traffic generated by an 

automatic process e.g. information packets in some routing protocols. Such 

type of packet traffic can be modeled by a deterministic time source transition. 

Time associated to the transition represents the time between two consecutive 

packet arrivals. 

Poisson Packet Arrival Process 

In the Poisson packet arrival process number of packets generated per one 

time unit, is given by the Poisson distribution. It is modeled by a transition with 

exponential distribution. The mean time associated to the transition represents 

the mean value of time between two consecutive packet arrivals. 

In queueing systems, the users requesting the service are either satisfied 

without any delay or they are placed in a queue or in retrial queueing systems, 

they retry the service again after some period.  

 

Figure 4.2: Poisson Arrival Processes in Petri Nets  
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Markov Modulated Poisson Packet Arrivals Process 

An example of MMPP is a process, which switches between silent periods and 

periods in which the requests arrive with rate λ. Such example applies in 

modeling of finite population systems (like real computer networks) when the 

nodes have output buffers of capacity one. In such case, new packet cannot 

arrive when there is a packet in output buffer of transmitter.  

 

Figure 4.3: Two state MMPP Arrival 

In figure 4.3, a new packet may arrive during transmission of previous one but 

will not be transmitted. The sending buffer is full until transmission of packet is 

finished (the capacity of both output queue and sending buffer equals to one). 

Arrival process is disabled until the request is either transmitted or rescheduled. 

Immediate transition T2 shown by black box represents starting of packet 

transmission and time of deterministic time transition T3 corresponds to 

completion time of the transmission. An example of a queueing system with 

such an arrival process is a G/D/1 system. 

 

Figure 4.4: Two State MMPP Retrial Arrival 
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Only difference in figure 4.4 from the previous one is that when a packet arrive 

during transmission of another packet it is rescheduled for retransmission after 

a random period given by exponentially distributed time of transition T4 until it is 

successfully transmitted. A new packet can not arrive during retrials of 

previously unsent packets. 

4.3 Simulation of Timed Petri Nets 

Developing and analyzing stochastic models of complex computer, 

manufacturing, telecommunication, workflow, or transportation systems is 

almost always a challenging task. Such systems are often viewed as being 

discrete-event stochastic systems, i.e., as making stochastic state transitions at 

a strictly increasing sequence of random times. Real-world systems are often so 

complicated that simulation is the only available analysis tool. Simulation, 

however, cannot be applied blindly, or misleading results will ensue. Key issues 

include: 

1. How to model the system of interest, 

2. How to determine whether the system is stable, so that long-run 

performance measures of interest are well defined, 

3. How to efficiently generate sample paths of the system process on a 

computer, and 

4. How to analyze the output of a simulation in order to draw statistically 

meaningful conclusions. 

Stochastic Petri nets (SPNs) with general firing times are an ideal theoretical 

and practical framework for addressing these challenges. Since the use of 

SPNs as an analytical tool is based on the generation of the entire state space, 

the technique becomes intractable for large systems. In such cases, discrete 

event simulation (DES) is the preferred tool for analysis. 

Discrete Event Simulation of Petri Net Models 

When executed DES sequentially and repeatedly processes the occurrence of 

events in simulated time maintaining a time ordered event list. There is a natural 
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correspondence between events and transition firings. The occurrence of an 

event in the simulation system relates to the firing of a transition in the Petri net 

model [11]. 

The event list hence carries transitions and the time instant at which they will 

fire, given that firing does not become obsolete in the mean time. The state of 

the system is represented by the current marking which is being changed by the 

processing of an event i.e. the firing of a transition: the transition with the 

smallest time stamp is withdrawn from the event list; tokens are removed from 

its input places and deposited in its output places. 

However, the new marking can enable new transitions or disable enabled 

transitions such that event list has to be corrected accordingly: new enabled are 

scheduled with their firing time to occur in the future by inserting them into the 

event list while disabled transitions are removed. Finally the simulated time is 

set to the timestamp of the transition just simulated. It is obvious that always the 

transition with smallest timestamp is simulated first; otherwise the future of the 

simulation could have an impact onto the past which could yield causality 

errors. 

There may be situations where several transitions have identical smallest 

time stamps. This happens when there are two or more events (potentially) can 

occur or (actually) do occur simultaneously. Then conflicts are resolved by 

priorities, probabilistic functions, pre-selection rules or race conditions. 

The checking, after firing any transition, of transitions which are affected i.e. 

which one is now enabled and which one is disabled can be simplified as 

compared to checking for all transitions. 

This is based on the idea that firing of a transition Ti: Ti ∈ T may influence 

those transitions, which are in structural conflict with Ti {(●Ti)●}, or causally 

connected transitions of Ti {(Ti●)●} After firing of Ti, the conflict transitions may 

become disabled and the causally connected transitions may become enabled. 

Thus, after firing of Ti, one has to check |(●Ti)●| + |(Ti ●)●| transitions whether 

they are enabled or not. 
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The checking causally dependent and conflict transitions may be simplified 

for some Petri net models. For example, all conflict transitions of Ti become 

disabled after firing of transition Ti in safe Petri nets (in safe Petri nets each 

place at any time instant can have at most one token). In pure safe Petri nets 

also Ti becomes disabled. All causally connected transitions become enabled in 

state machines. All transitions Tj: |●Tj| = 1, Tj ∈ (Ti●)● become enabled after 

firing of Ti. 

4.4 Example: Modeling of Open Traffic Information S ystem 

Petri nets have received considerable attention for describing and studying 

information processing systems. Next, an example, Open Traffic Information 

System (OTIS) [14] is modeled using Petri net. The reason why OTIS is chosen 

is due to its dynamic requirements and concurrent, asynchronous and 

stochastic properties that would efficiently expose the potential of Petri nets. It 

has shown that systems with such dynamic properties cannot be efficiently 

emulated using modeling techniques DFD while Petri nets have proper 

constructs to effectively represent all these characteristics. 

4.4.1 Open Traffic Information System (OTIS) 

The OTIS model [14] has been proposed as a means to generate and 

disseminate traffic information to mobile users. It allows any mobile user to 

provide traffic information through Short Message Service (SMS). The 

information gathered is in the form of an update SMS containing a <keyword> 

<location> pair so that each location in the underlying database of the system 

can be appropriately updated with the traffic status. The keywords signify the 

level of traffic congestion. For instance, 1- smooth, 2- slow, 3- jam etc. The 

second type of message that the user may send to the system is a request SMS 

to get traffic information about a particular location. On receipt of such a 

message, the system accesses the information database and sends back the 

current traffic information against the requested location. 

This system is concurrent and asynchronous as any number of messages 

can be received or sent by the system simultaneously. Moreover, there are real 
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time constraints on the system as it has to be ensured that only up-to-date 

traffic information is sent to the user. 

4.4.2 OTIS Model 

This section discusses both the approaches to model the information system 

OTIS: Data Flow Diagram (DFD) approach and Petri Net (PN) approach. 

Data Flow Diagram Approach 

A data flow diagram (DFD) is a modeling technique that models the flow of 

information in the system by tracking various processes and entities that input 

information to the system and gain output from the system. Figure 4.5 [14] 

depicts the DFD of the information system OTIS. 

 

Figure 4.5: Data Flow Diagram of OTIS 

The mobile station is the external entity that supplies information to the system 

as well as consumes from it. The figure also shows the data store that contains 

the database of locations and traffic information and is queried while sending 

traffic updates to the users. 
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Petri Net Approach 

In Petri net model of OTIS, as depicted in figure 4.6, transitions follow infinite 

server semantics and atomic firings. There are no capacity restrictions on 

places. To represent databases used in the system, doubled line circles have 

been used. 

 

Figure 4.6: Petri Net Model of OTIS  

To resolve conflicts a binary priority relation on conflicting transitions 

represented by a dashed line going from the less priority transition to the 

transition with higher priority has been used. The relation is assumed to be non-

reflexive and anti-symmetric. An enabled transition can fire only if no other 

transition with higher priority fires. 

In the model, all transitions are deterministic transitions with non-zero time 

delay except transitions T1 and T5. Transition T1 is a stochastic transition while 

T5 is a zero-time delay deterministic transition. The various places and 

transitions depicted in figure 4.6 are defined in the Table 4.1. Following is a 

step-by-step description of the OTIS functioning as depicted in the figure 4.6: 

1. T1 transition signals the random arrival of messages as multiple users 

may send messages to the system in any arbitrary order. 

2. Next, the incoming message needs to be processed for validation. If 

the message was found to be valid, transition T3 signals a valid 

message and forwards the message for further processing. Otherwise 
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T2 sends back a reply to the user indicating that the message sent 

was in an invalid format.  

3. A valid message is further processed by transition T4 to determine its 

type. If it is an update message T4 fires otherwise transition T5 

processes the message. 

4. If location mentioned in request and update messages does not 

match with those in the location database, Transitions T7 and T9 

respectively send “location not found” messages to the user. 

5. If location is matched then transition T8 performs a traffic update in 

the information database while transition T6 will query the information 

database to get the traffic status and reply appropriately to the user. 

6. To prevent the database from giving back old information to the users, 

the transition T10, a deterministic transition with some non-zero time 

delay, keeps updating the database periodically, say every 10 

minutes. 

Table 4.1: Explanation of Petri Net Model of OTIS 

Pi Explanation  TI Explanation 

P1 Message received  T1 Shows event of  message arrival 

P2 Received message is 
valid 

 T2 Sends “ Invalid Format” message to 
user 

P3 Received message is an 
update message 

 T3 Valid message is received 

P4 Received message is a 
request message 

 T4 Received message is update message 

P5 Location Database  T5 Received message is request message 

P6 Information Database  T6 Sends traffic information status to user 

   T7 Sends “location not found” message to 
user 

   T8 Message has valid location, information 
database updated 

   T9 Sends “location not found” message to 
user 

   T10 Update database for each time slot 
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4.4.3 Analysis and Results 

The transition T10 in figure 4.6 can simultaneously fire for any number of times. 

This represents the real time constraints of the system which was not easily 

deducible from the earlier DFD approach. Transition T1 has exponentially 

distributed time association which depicts the random arrival of user messages. 

Here more than one transition in place of single transition can also depict 

concurrent arrival of messages. 

The source transition T1 and sink transitions like T2, T7 and T9 represent 

respectively the start and end points of the main process which wasn’t visible in 

the earlier approach. The model also depicts system processes of deterministic 

durations. For instance, transition T8 updates the database and transition T4 

checks the nature of incoming message, both are examples of deterministic 

transitions. 

The transition pairs like (T4 and T5) and (T6 and T7), examples of decision 

sequences, are clearly modeled using priority relation. Although both transitions 

are enabled simultaneously, only one of them may fire. Such control flow and 

decision constructs that are inherent to OTIS are unambiguously depicted by 

the Petri net model. 

For a system like OTIS that needs to deal with aspects like communication, 

concurrency, synchronization and resource sharing is especially well modeled 

by Petri nets as they have powerful abilities for representation of system 

dynamics like - entity arrival dynamics, resource availability, resource 

interdependency, unique representation of causal relations, start and 

termination of activities, event firing conditions and other control mechanisms. 

Moreover, Petri nets are highly extensible and any further modifications that 

may come up in the system can be easily incorporated in the model. 
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Chapter 5 

Modeling and Analysis of Carrier Sense Multiple 

Access Protocols 

Computer communication networks have come of age. Today, there is hardly 

any professional, particularly in engineering, that has not been the user of such 

a network. This proliferation requires the thorough understanding of the 

behavior of networks by those who are responsible for their operation as well as 

by those whose task is to design such networks. 

The Aloha family of protocols is probably the richest family of multiple access 

protocols. Its popularity is first of all due to seniority, as it is the first random 

access technique introduced. Second, many of these protocols are so simple 

that their implementation is straightforward. But the Aloha schemes exhibited 

fairly poor performance which can be attributed to the “impolite” behavior of the 

users namely, whenever one has a packet to transmit he does so without 

consideration of others. 

Consider a behavior that is generically characterize as “listen before talk”, 

that is, every user before attempting any transmission listens whether 

somebody else is already using the channel. If this is the case the user will 

refrain from transmission to the benefit of all; his packet will clearly not be 

successful if transmitted and, further, disturbing another user will cause the 

currently transmitted packet to be retransmitted, possibly disturbing yet another 

packet. 

Carrier sensing does not, however, relieve us from collisions. Suppose the 

channel has been idle for a while and two users concurrently generate a packet. 
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Each will sense the channel, discover it is idle, and transmit the packet to result 

in collision. “Concurrently” here does not really mean at the very same time; if 

one user starts transmitting it takes some time for the signal to propagate and 

arrive at the other user. Hence concurrently actually means within a time 

window of duration equal to signal propagation time. This latter quantity 

becomes therefore a crucial parameter in the performance of these protocols. 

5.1 Traffic Model: Assumptions and Notation 

The channel, through which data is to be transferred from its source to its 

destination, is errorless without capture: whenever a transmission of a packet 

does not interfere with any other packet transmission, the transmitted packet is 

received correctly while if two or more packet transmissions overlap in time, a 

collision is caused and none of the colliding packets is received correctly and in 

most protocols have to be retransmitted. 

The traffic source consists of an infinite number of users who collectively 

form an independent Poisson source with an aggregate mean packet 

generation rate of λ packets/sec. This is an approximation to a large but finite 

population in which each user generates packets infrequently and each packet 

can be successfully transmitted in a time interval much less than the average 

time between successive packets generated by a given user. Each user in the 

infinite population is assumed to have at most one packet requiring 

transmission at any time (including any previously blocked packet). 

A node may, at any one time, either be transmitting or receiving (but not both 

simultaneously). However the delay incurred to switch from one mode to the 

other is negligible. The traffic is characterized as follows: each packet is of 

constant length requiring T seconds for transmission. Let S (= λ T) is the 

average number of packets generated per transmission time, i.e., it is the input 

rate normalized with respect to T. Under steady-state conditions, S can also be 

referred to as the channel throughput rate. 

If there is no overlap or gaps between the packets, one can achieve a 

maximum throughput equal to 1; therefore S sometimes also referred as the 
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channel utilization. But because of the interference problem inherent in the 

random nature of the access modes, the achievable throughput will always be 

less than 1. 

Since conflicts can occur, some acknowledgment scheme is necessary to 

inform the transmitter of its success or failure. An acknowledgment packet is 

created only when a packet is correctly received (a positive acknowledgment 

scheme) is followed by the network. The channel for acknowledgment is 

assumed to be separate from the channel under study i.e. acknowledgement 

arrive reliably and at no cost. If within some specified delay (an appropriate 

time-out period) after the transmission of a packet, a user does not receive an 

acknowledgment, he knows he has conflicted. If he now retransmits 

immediately, and if all users behave likewise, then he will definitely be interfered 

with again. Consequently, each user delays the transmission of a previously 

collided packet by some random time whose mean is XZ. 

The traffic offered to the channel from the collection of users consists not 

only of new packets but also of previously collided packets: this increases the 

mean offered traffic rate which is denoted by G (packets per transmission time 

T) where G ≥ S. Following are the four further assumptions considered in the 

models: 

1. The average retransmission delay XZ is large compared to T. 

2. The interarrival times of the requests for packet transmission defined 

by the start times of all the packets plus retransmissions are random, 

independent and exponentially distributed. 

3. The acknowledgment packets are always correctly received with 

probability one. 

4. The processing time needed to perform the sumcheck and to 

generate the acknowledgment packet is negligible. 

Without loss of generality, T can be chosen equal to 1. This is equivalent to 

expressing time in units of T. ‘a’, the propagation delay in normalized time units, 

is identical for all source-destination pairs and has very small value as 

compared to the packet transmission time. 



38 

5.2 Modeling and Analysis of Communication Protocol s 

The modeling is based on queueing theory and probabilistic arguments 

requiring independence of random variables provided by assumption 2. The 

packet arrival from whole population is approximated by a single packet 

Poisson arrival process with corresponding mean value (law of large numbers). 

All the parameters considered are normalized with respect to the packet 

transmission time T which is assumed to be constant. In practice, T is given by 

the length of the packet and by the channel transmission rate. Inter-arrival times 

between consecutive packets form an exponentially distributed random variable 

with mean 1 G⁄ . 

Three types of transitions have been used in Petri net models: immediate 

transitions, deterministic transitions and stochastic transitions which are 

associated with exponentially distributed random variable. Transitions follow 

infinite server semantics and atomic firing policy i.e. tokens are not reserved 

during transition delay. A transition which is enabled or fireable may be disabled 

by another transition. Whenever a disabled timed transition enables again, its 

delay period starts from beginning. 

To run simulation, simulator HPSim is used where simulation can be 

visualized as a token game animation. In Table 5.1, description of various 

notations that are used during simulation of Petri net models of communication 

protocols is given. 

Table 5.1: Description of Various Notations used in  the Petri Net Simulation 

Notation Description  Notation Description 

 
Place with no token 

 
 An immediate transition 

 

Place with a single 
token 

 
 A fireable transition 

 

Place with n number of 
tokens 

 
 An enable transition 

    A timed transition 

n 
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Two more additional data structures (section 3.8.2) used in simulation of timed 

Petri nets are: 

1. Global Clock: This is a global real variable with initial value zero. It 

gets incremented each time a timed transition fires, by an amount 

equal to the firing time of the transition. When an immediate transition 

fires, the global clock is not incremented. 

2. Transition Time Model Vector: This gives the information about the 

type of transition used in the model. 

5.3 Aloha Protocols 

Aloha refers to a simple communications scheme in which each source 

(transmitter) in a network sends data whenever there is a packet to send. If the 

packet successfully reaches the destination (receiver), the next packet is sent. If 

the packet fails to be received at the destination, it is sent again. 

There are two versions of Aloha: pure and slotted. They differ with respect to 

whether time is divided into discrete slots into which all packets must fit. 

5.3.1 Pure Aloha 

The pure Aloha protocol considers a single hop system with an infinite 

population generating packets of equal length T according to a Poisson process 

with rate λ packets/sec. The users can transmit at any time they need. If the 

users fail to hear their successful transmission after a propagation delay, they 

know that a collision occurred and retransmit the packets according to 

retransmission delay function. A given packet will overlap with another packet if 

there exists at least one start of transmission within T seconds before or after 

the start time of the given packet. The channel throughput of pure Aloha is [16] 

(5.1) S � G e�0]  

Successful transmission of a packet means that there was exactly one 

transmitting user on the channel during the interval 2T. Pure Aloha achieves a 

maximal channel throughput of 1  2e#⁄ � 0.1839 at G � 1 2⁄ . Pure Aloha packet 
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timing is shown in figure 5.1 [17] (arrow below time axis denotes arrivals of 

packets). 

 

Figure 5.1: Pure Aloha: Packet Timing 

Petri Net Model of Pure Aloha 

Vulnerable interval equals to the packet transmission time under condition that 

all nodes, never starts their transmission when their receiver part is receiving a 

packet. Otherwise vulnerable interval is a sum of propagation delay a (given by 

physical properties of the channel) and packet transmission time. 

 

Figure 5.2: Petri Net Model of Pure Aloha 

The stochastic time transition T1 represents the packet arrival process in Petri 

net model of pure Aloha because the transition is associated with exponentially 

distributed random variable. T1 is a source transition. Transition T5 represents 

P4 

Collision 

t=1 

t=1 

Free 

Busy 

t=1, Exp 

P5 

P3 

P2 

P1 

T7 

T6 T5 

T4 

T3 

T2 

T1 

Retransmissions 

t-T t+T t 

T 
Vulnerable 

Period 

Time 



41 

packet transmission delay Transition and T6 represents time elapsed between 

the arrival time of the last packet participated in collision and the time when 

collision resolved. Both transitions are deterministic time transitions with time 

delay t = 1. 

Table 5.2: Explanation of the Petri Net Model of Pu re Aloha 

Pi Explanation  Ti Explanation 

P1 A request for packet 
transmission 

 T1 Represent packet arrivals process 

P2 Channel is free  T2 Transmission of the packet started 

P3 Packet is being 
transmitted 

 T3 A collision occurred 

P4 A collision occurred  T4 A packet arrived during collision 

P5 A packet arrived during 
collision 

 T5 Transmission of the packet 
completed 

   T6 Channel is free from collision 

Table 5.3: Description of the Transitions in the Pe tri Net Model of Pure Aloha 

Transition Transition Type Associated Delay 

T1 Exponential Variable depending on number of 
nodes or requests for transmission 
per unit transmission time 

T2, T3, T4, 
T7 

Immediate 0 

T5, T6 Deterministic T (the packet transmission time) 

Table 5.2 gives the explanation of various places and transitions while table 5.3 

describes about the type and associated delay of these transitions of the Petri 

net model of pure Aloha in figure 5.2. Following is the net description of the 

model in terms of various data structures: 

// Transition Name Vector: 

(T1 ;T2 ;T3 ;T4 ;T5 ;T6 ;T7 ;) 

// Position Name Vector: 

(P1;P2;P3;P4;P5;) 
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// Marking Vector: 

(0 1 0 0 0 ) 

// Incidence Matrix: 

{ 

(-1  1  1  1  0  0  0 ) 

( 0  1  0  0 -1 -1  0 ) 

( 0 -1  1  0  1  0  0 ) 

( 0  0 -1  1  0  1 -1 ) 

( 0  0  0 -1  0  0  1 ) 

} 

// Transition Time Model Vector: 

// Code:1 = Immediate; 2= Delay;3 = Exponential 

(3 ;1 ;1 ;1 ;2 ;2 ;1 ;) 

Simulation of the Petri Net Model of Pure Aloha 

When a request arrives for transmission (a token in place P1) and channel is 

free (presence of token in place P2) packet transmission will not result in 

collision (figure 5.3). 

 

Figure 5.3: Petri Net Model of Pure Aloha: the chan nel is free and packet 
transmission will not result a collision 
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Place P5 and transition T7 avoid self-loop between P4 and T4. This has been 

done just to avoid any inconvenience due to presence of self-loops during 

simulation. The token resides in P3 until the deterministic time transition T5 is 

fired or until a new packet arrives. In latter case, the transition T3 is fired and 

the channel changes its state to collision (figure 5.4). 

 

Figure 5.4: Petri Net Model of Pure Aloha: a new pa cket arrive before completion 
of transmission of previous packet, which results i n a collision 

If the channel is in collision state at time t and a new packet is offered to 

channel, the collision persists until time t + 1. This is modeled as follow: if no 

other packet arrives during the time of the collision, the channel returns to the 

idle state (the transition T6 is fired), otherwise the transition T4 is fired (figure 

5.5) and the token in place P4 is moved to P5 and transition T6 is disabled. 

From place P5 token is again moved to place P4 by transition T7 which enables 

transition T6 again so that transmission delay starts from beginning. 

Firing frequencies of transitions have the following meaning: Firing count of 

transition T1 means the offered traffic G. Firing frequency of transition T2 

represents the frequency of initiations of the transmission on the previously 
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inactive channel. Firing frequency of transition T3 represents the number of 

collisions arising on the channel being previously in active but non-collision 

state and the firing frequency of transition T4 (same as T7) represents the 

number of collisions arising on the channel being previously in collision state. 

The number of successfully transmitted packets equals to the firing count of the 

transition T5. Thus, firing count of T6 represents the number of collision 

resolutions. 

 

Figure 5.5: Petri Net Model of Pure Aloha: a new pa cket request for transmission 
before the collision is resolved 

Petri Net Model of Pure Aloha with Finite Number of  Users 

To make the previous model more realistic, the case of an Aloha system with a 

finite number of users has been analyzed here. The model consisting of finite 

number of users (say k) can be viewed as finite population queueing system 

with a single packet output buffer. Such a model with two users is shown in 

figure 5.6. All packets are of the same size, requiring T seconds for 

transmission. 

Arrival process generated by whole population is sum of Poisson processes; 

each of them is packet arrival process to one of k nodes. It is assumed that 
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there is no correlation between random variables generated by firings of 

transitions. Mean value of offered traffic is given by the sum of reciprocals of 

mean times of transitions representing packet arrival processes. 

 

Figure 5.6: Petri Net Model of Pure Aloha: finite p opulation 

Transitions T8, T9, places P7 and P8 (and similarly transition T10, T11, & 

places P10, P11) ensure, that a node does not transmit during its own 

transmission. Transition T9 and T11 are deterministic time transitions with t = 1. 

 

Figure 5.7: Petri Net Model of Pure Aloha (Finite P opulation): packet transmitted 
by second node (T12) will collide with the packet s ent by first node (T1) 
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Transition T9 and T11 are deterministic time transitions with value just larger 

than the packet transmission time, which has been done to avoid the collision of 

the transmitted packet with the last bit of the previously transmitted packet. 

5.3.2 Slotted Aloha 

In Slotted Aloha [16] the time is slotted into segments, whose duration exactly 

equals to the packet transmission time T. The packet transmission always starts 

at the beginning of a time slot. 

A slot will be successful if and only if exactly one packet was scheduled for 

transmission sometime during the previous slot. The throughput equation is 

given by  

(5.2) S � G e�]  

In slotted Aloha, the maximum channel throughput is equal to 1 e⁄ � 0.368 

at G � 1. 

 

Figure 5.8: Slotted Aloha: Packet Timing 

Note that, in contrast to pure Aloha, if two packets conflict, they will overlap 

completely rather than partially providing an increase in channel efficiency. 

Slotted Aloha achieves larger maximal throughput than pure Aloha (see figure 

5.9) by reducing of time wasted by collisions. While in pure Aloha the time 

wasted by a collision is up to two time units long (two packet transmission 

times), a collision in slotted Aloha wastes exactly one time unit. 

Since a node has at most one packet in its queue, for infinite population, the 

average delay between the moment of arrival of a packet and the moment when 

its transmission begins equals to 1/2 time slot. 
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Figure 5.9: Throughput(S) - Offered load (G) of Pur e and Slotted Aloha 

Petri Net Model of Slotted Aloha 

The model in figure 5.10 is almost similar as model of pure Aloha. To ensure 

that every transmission starts in slots transitions T8, T10, T11, T12, and places 

P6, P9, P10, P11 have been used. Transitions T11 and T10 are deterministic 

time transitions. 

 

Figure 5.10: Petri Net Model of Slotted Aloha Proto col 

Transition T1 is associated with exponentially distributed random variable to 

ensure that the number of tokens produced is a random variable with Poisson 

distribution. Transition T12 and place P9 are used to avoid self loop. 
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Table 5.4: Explanation of the Petri Net Model of Sl otted Aloha 

Pi Explanation  Ti Explanation 

P1 A request for packet 
transmission 

 T1 Represent packets arrival process 

P2 Channel is free  T2 Transmission of the packet started 

P3 Packet is being 
transmitted 

 T3 A collision occurred 

P4 A collision occurred  T4 A packet arrived during collision 

P5 A packet arrived during 
collision 

 T5 Transmission of the packet completed 

P6 Represent output  buffer  T6 Channel is free from collision  

P10 Transmission of packet 
can begin. 

 T8 Sends packet to the output buffer at 
the start of a new slot 

   T10 Represents starting of the new slot 

   T11 Avoids transmission of new packet in 
the middle of a slot 

Table 5.4 gives the explanation of various places and transitions while table 5.4 

describes about the type and associated delay of these transitions of the Petri 

net model of slotted Aloha in figure5.10. 

Table 5.5: Transition Description in the Petri Net Model of Slotted Aloha 

Transition Transition Type Associated Delay 

T1 Exponential Variable depending on number of 
nodes or requests for transmission 
per unit transmission time 

T2, T3, T4, 
T7, T8, T12 

Immediate 0 

T5, T6, T10 Deterministic T (the packet transmission time) 

T11 Deterministic Infinitesimal small so that transition T8 
has the priority over T11 

Time of transition T11 is equal to 0.00001, which is the little delay ensuring that 

a conflict does not occur exactly at the end of the transmission. The place P6 

represents a transmission buffer from which the data is directly transmitted to 

the channel. 
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Following is the net description of the Petri net model of slotted Aloha in terms 

of various data structures: 

// Transition Name Vector: 

(T1 ;T2 ;T3 ;T4 ;T5 ;T6 ;T7 ;T12 ;T10 ;T11 ;T8 ;) 

// Position Name Vector: 

(P1;P2;P3;P4;P5;P6;P10;P11;P9;) 

// Incidence Matrix: 

{ 

( 0  1  1  1  0  0  0  0  0  0 -1 ) 

( 0  1  0  0 -1 -1  0  0  0  0  0 ) 

( 0 -1  1  0  1  0  0  0  0  0  0 ) 

( 0  0 -1  1  0  1 -1  0  0  0  0 ) 

( 0  0  0 -1  0  0  1  0  0  0  0 ) 

(-1  0  0  0  0  0  0  0  0  0  1 ) 

( 0  0  0  0  0  0  0 -1 -1  1  1 ) 

( 0  0  0  0  0  0  0  0  1 -1  0 ) 

( 0  0  0  0  0  0  0  1  0  0 -1 ) 

} 

// Marking Vector: 

(0 1 0 0 0 0 1 0 0 ) 

// Arc Type Matrix: 

// Code:0 = None; 1 = Normal; 2 = Inhibitor; 3 = Test  

{ 

(0 1 1 1 0 0 0 0 0 0 1 ) 

(0 1 0 0 1 1 0 0 0 0 0 ) 

(0 1 1 0 1 0 0 0 0 0 0 ) 

(0 0 1 1 0 1 1 0 0 0 0 ) 

(0 0 0 1 0 0 1 0 0 0 0 ) 

(1 0 0 0 0 0 0 0 0 0 1 ) 

(0 0 0 0 0 0 0 1 1 1 1 ) 

(0 0 0 0 0 0 0 0 1 1 0 ) 

(0 0 0 0 0 0 0 1 0 0 1 ) 

} 
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// Transition Time Model Vector: 

// Code:1 = Immediate; 2= Delay;3 = Exponential;  

(3 ;1 ;1 ;1 ;2 ;2 ;1 ;1 ;2 ;2 ;1 ; 

Simulation of the Petri net model of Slotted Aloha 

Transition T5 and T6 are deterministic transitions with time equal to 1. The 

mean time, associated to the transition T1 represents the reciprocal of offered 

traffic G.  

 
Figure 5.11: Petri Net Model of Slotted Aloha: begi nning of the new slot, packet 

can be transmitted 

Firing frequency of transition T2 represents the number of time slots in which 

channel is not idle. The number of packets which caused a collision and the 

number of packets which find channel in collision state are represented by 

transitions T3 and T4 respectively. The sum of firing frequencies of transitions 

T3 and T4 represent the channel collision ratio, the number of collided packets 

versus number of offered packets, which is low for small values of G. 

Transition T8 is deterministic time transition with time equal to the packet 

transmission time T. Note that the time associated to transition T11 acts also as 

a priority function which makes transition T8 a higher priority transition over 
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T11. This ensures that all the packets waiting for transmission in output buffer 

(represented by the tokens in place P6) are sent at the beginning of the time 

slot (see figure 5.12) 

 

Figure 5.12: Petri Net Model of Slotted Aloha: more  than one packet scheduled 
for transmission in previous slot, both will be tra nsmitted and will result in 

collision 

Petri Net Model of Slotted Aloha with Finite Number  of Users 

The Petri net model of slotted Aloha considered as M/D/1/∞/k is similar to model 

of pure Aloha and is represented in figure 5.13 for k=2. Transitions T8, T9, 

places P7 and P8 (and transition T14, T16 & places P13, P14) ensure that a 

node does not transmit during its own transmission. Transitions T9 and T14 are 

deterministic time transitions with delay t = 1. 

Note that transitions T10, T11 and place P11 are shared by all the users. 

Time delay of transition T11 which is very small ensures that two packets sent 

by the same node do not collide. 

In slotted Aloha, as the collided packets overlap completely, the same 

number of collisions wastes less channel capacity than in pure Aloha. In slotted 

Aloha, a packet is always stored in the outgoing buffer (place P6, P12) until the 

beginning of next time slot.  
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Figure 5.13: Petri Net Model of Slotted Aloha: fini te population 

5.4 Carrier Sense Multiple Access Protocol 

All the carrier sense multiple access (CSMA) protocols share the same 

philosophy: when a user generates a new packet the channel is sensed and if 
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All packets are of constant length and are transmitted over an assumed 

noiseless channel (i.e., the errors in packet reception caused by random noise 

are not considered to be a serious problem and are neglected in comparison 

with errors caused by overlap interference). The system assumes noncapture 

(i.e., the overlap of any fraction of two packets results in destructive interference 

and both packets must be retransmitted). The propagation delay is identical for 

all source destination pairs and is very small as compared to the packet 

transmission time. 

There are two basic types of CSMA methods [16]: The persistent CSMA 

(also called 1-persistent CSMA), which enters the transmission of packet 

immediately when the channel becomes free and the non-persistent CSMA, 

which defers the packet transmission by random delay beginning immediately 

after the channel becomes free. 

Petri Net Model for CSMA Protocols 

The origin of collisions in the CSMA methods is the propagation delay ‘a’ which 

is assumed to be constant for all nodes. The model used for CSMA protocols 

(figure 5.14) is much similar to previous models of Aloha protocols. Places P1, 

P2, P3, P4, P5, and transitions T2, T3, T4, T5 T6 have the same meaning as 

they had before.  

 

Figure 5.14: Petri Net Model of CSMA Protocol 
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The model displays its state by two places P10 and P11. A token in place P11 

represents a free state and a token in place P10 represents busy state. The 

channel becomes busy a seconds after an arbitrary node enters the 

transmission (represented by firing of the transition T2). The channel becomes 

again free, a seconds after the currently transmitting node finishes its 

transmission (firing of T5).  

The transitions are fired according to infinite server semantics. Tokens are 

not reserved during transition delays i.e. atomic firings. Timed transition which is 

enabled again does not remember its past status. 

Table 5.6: Explanation of the Petri Net Model of CS MA Protocol 

Pi Explanation  Ti Explanation 

P1 Represent output buffer   T2 Transmission of the packet 
started 

P2 Channel is free  T3 A collision occurred 

P3 Packet is being transmitted  T4 A packet arrived during collision 

P4 A collision occurred  T5 Transmission of the packet 
completed 

P5 A packet arrived during 
collision 

 T6 Channel is free from collision and 
ready for new transmission 

P6 Vulnerable period started   T8 End of the vulnerable period 

P7 Packet is being propagated  T9 End of the busy period 

P8 Vulnerable period ended  T10 Channel enters  in busy state 

P10 Channel is busy  T11 Channel enters in free state 

P11 Channel is in free state    

When the channel is in collision, it will be free ‘a’ seconds after the completion 

of transmission of last packet participated in collision shown by firing of 

transition T6 and then firing of transition T9. Thus, a token in place P10 appears 

‘a’ seconds after the beginning of the transmission and a token in place P11 

appears ‘a’ seconds after completion of the transmission. Transitions T10 and 

T11 ensure, that the time state of the transitions T8 and T9 is not reset each 

time a node reads the state of channel. 
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Table 5.7: Description of the Transitions in the Pe tri Net Model of CSMA 

Transition Transition Type Associated Delay 

T1 Exponential Depends on number of nodes or 
requests for transmission per unit 

transmission time 

T2, T3, T4, T7, 
T10, T11 

Immediate 0 

T5, T6 Deterministic T (the packet transmission time) 

T8, T9 Deterministic a (the propagation delay) 

When reading the state, a token in place P10 or P11 is removed and returned 

back in zero-time. In a steady state, it holds, that firing counts of transition T2 

equals to sum of firing counts of transitions T5 and T6. And firing count of 

transition T6 equals to firing count of transition T3. When two or more nodes 

seem to start their transmission at the same time i.e. there are more than one 

token in place P1, the channel changes its state from free state to state of 

collision. 

5.4.1 Non-Persistent CSMA 

In the non-persistent versions of CSMA (NP-CSMA) a user that generated a 

packet and found the channel to be busy and operates as follows [17], [18]: 

1. If the channel is sensed to be idle, the node transmits the packet 

immediately. 

2. When the node senses the channel being busy, it schedules the 

retransmission of the packet according to the retransmission delay 

distribution, and the procedure repeats at this new point in time.  

There is an infinite population of users aggregately generating packets 

according to a Poisson process with parameter λ. All packets are of the same 

length and require T seconds for transmission. When observing the channel, 

packets (new and retransmitted) arrive according to a Poisson process with 

parameter G packets/sec. ‘a’ is the propagation delay between every pair of 

users. 
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Figure 5.15: Non-persistent CSMA: Packet Timing 

Consider an idle channel and a user scheduling a transmission at some time t 
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packets arriving in (t, t + Y) will be completed at time t + Y + 1. Only ‘a’ second 

later, the channel will be sensed free by all the nodes. Now, any node becoming 

ready between t+a and t+Y+1+a  will sense the channel busy and hence it will 

reschedule its packet. The interval between t and t+Y+1+a is the transmission 

period (TP) (in this case also the busy period). Note that there can be at most 

one successful transmission during a TP. 

The equation for the throughput S is expressed in terms of a (the ratio of 

propagation delay to packet transmission time) and G (the offered traffic rate) 

can be given as [15], [16] 

(5.3) S �
Ge�c]

G 1 D 2a# D e�c]  

Petri Net Model of Non-Persistent CSMA 

When a node senses the channel to be busy it reschedules its packet and tries 

again after a random period. Here the rescheduling delay of the packet is 

assumed to be ‘large’ compared to the packet transmission time and so to 

simplify the model the rescheduled packet can be treated as a new packet. 

 

Figure 5.16: Petri Net Model of NP-CSMA 
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The transitions T12, T13 and the places P12, P13 are used only to avoid the 

self-loops. Note that the firing count of transition T1 equals to the firing count of 

transition T14 plus the firing count of transition T15. 

Table 5.8: Explanation of the Petri Net Model of NP -CSMA 

Pi Explanation  Ti Explanation 

P7 Packet is being 
propagated 

 T9 End of the busy period 

P6 Vulnerable period started  T8 End of the vulnerable period 

P8 Vulnerable period ended  T10 Channel is busy: A packet is being 
transmitted 

P10 Channel is in busy state  T11 Transmission of the current packet 
completed 

P11 Channel is in free state  T14 Transmits the packets to the 
channel 

P14 Packets waiting for 
transmission 

 T15 Reschedules the packet when 
channel is sensed busy 

Table 5.9: Description of the Transitions in Petri Net Model of NP-CSMA 

Transition 
Transition 

Type 
Associated Delay 

T1 Exponential Depends on number of nodes or 
requests for transmission per unit 
transmission time 

T2, T3, T4,T7, T10, 
T11, T12, T13, T14, 

T15 

Immediate 0 

T5, T6 Deterministic T (the packet transmission time) 

T8, T9 Deterministic a (the propagation delay) 

Net description of the Petri net model of non-persistent CSMA in terms of data 

structures 

// Transition Name Vector: 

(T1 ;T2 ;T5 ;T6 ;T7 ;T9 ;T10 ;T11 ;T8 ;T14 ;T12 ;T4 ;T3 

;T13 ;T15 ;) 

// Position Name Vector: 

(P1;P2;P3;P4;P5;P6;P7;P8;P9;P10;P11;P12;P14;P13;) 
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// Incidence Matrix: 

{ 

( 0  1  0  0  0  0  0  0  0 -1  0  1  1  0  0 ) 

( 0  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0 ) 

( 0 -1  1  0  0  0  0  0  0  0  0  0  1  0  0 ) 

( 0  0  0  1 -1  0  0  0  0  0  0  1 -1  0  0 ) 

( 0  0  0  0  1  0  0  0  0  0  0 -1  0  0  0 ) 

( 0 -1  0  0  0  0  0  0  1  0  0  0  0  0  0 ) 

( 0  0 -1 -1  0  1  0  0  0  0  0  0  0  0  0 ) 

( 0  0  0  0  0  0  1  0 -1  0  0  0  0  0  0 ) 

( 0  0  0  0  0 -1  0  1  0  0  0  0  0  0  0 ) 

( 0  0  0  0  0  0 -1  1  0  0  0  0  0 -1  1 ) 

( 0  0  0  0  0  0  1 -1  0  1 -1  0  0  0  0 ) 

( 0  0  0  0  0  0  0  0  0 -1  1  0  0  0  0 ) 

(-1  0  0  0  0  0  0  0  0  1  0  0  0  0  1 ) 

( 0  0  0  0  0  0  0  0  0  0  0  0  0  1 -1 ) 

} 

// Marking Vector: 

(0 1 0 0 0 0 0 0 0 0 1 0 0 0 ) 

// Transition Time Model Vector: 

// Code:1 = Immediate; 2= Delay;3 = Exponential; 

(3 ;1 ;2 ;2 ;1 ;2 ;1 ;1 ;2 ;1 ;1 ;1 ;1 ;1 ;1 ;) 

Simulation of Petri Net Model of NP-CSMA 

When there is a token in place P11 indicating channel is in free state, all the 

packets in output buffer will be transmitted (figure 5.17).  

If a packet arrives for transmission period in the vulnerable period (presence 

of a token in place P6) then channel will be sensed free and packet will be 

transmitted resulting in a collision (figure 5.18). 

When a new packet arrives (tokens into place P14 increases by one) and the 

channel is in busy state the transmission is rescheduled (see figure 5.19). 
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Figure 5.17: Petri Net Model of NP-CSMA: Channel is  in free state, packet can be 
transmitted 

 

 

Figure 5.18: Petri Net Model of NP-CSMA: If a new p acket arrives in the 
vulnerable period it will sense channel in free sta te and will interfere with the 

current packet in transmission 
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The transition T15 represents rescheduling of a packet and removes a token 

from place P14 when fires. The transition T15 fires if a new packet arrives for 

transmission and another packet is also being transmitted on the channel. 

Transition T14 fires if only there is a token in place P11 i. e. only if the channel 

is in free state.  

 

Figure 5.19: Petri Net Model of NP-CSMA: channel is  sensed busy, reschedule 
the packet 

Petri Net Model of NP-CSMA with Retrial Mechanism 

The non-persistent CSMA, instead of assuming a rescheduled packet as a new 

packet, with rescheduling mechanism of unsent packets is modeled in figure 

5.20. The model is similar to the non-retrial model in figure 5.16. Both models 

just differentiate in retrial mechanism. Note that for small values of the mean 

retrial delay, the throughput approaches to the throughput of persistent CSMA. 

For large values of the mean retrial time and large values of offered traffic G, 

the number of packets in retransmission buffer (place P18) counts to infinity. 

Instead of being dropped as in the non-retrial system, an unsuccessful 

packet is returned back to the queue. T18 which is a stochastic transition 
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represent retransmission delay function. It reschedules the packet according to 

its probability distribution. 

 

Figure 5.20: Petri Net Model of NP-CSMA with Resche duling Mechanism 

 

Figure 5.21: Petri Net Model of NP-CSMA: if the cha nnel is sensed busy Packet 
will not be transmitted. 
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When there is a token in place P10 and a new packet arrives in output buffer 

(place P14), transition T15 is enabled (figure 5.21). After firing of transition T15 

token will be returned in place P10 and one token will be added to place P18 

(figure 5.22). The stochastic timed transition T18 retries the packets from the 

buffer and places them to output buffer P14. The packet is consequently 

transmitted or rescheduled again. 

 

Figure 5.22: Petri Net Model of NP-CSMA: packet is rescheduled after a random 
period of time when channel is sensed busy. 

Petri Net Model of Slotted Version of NP-CSMA 

A slotted version of the NP-CSMA [16] is modeled in figure 5.23 in which the 

time axis is slotted and the slot size is ‘a’ seconds (the propagation delay). All 

terminals are synchronized and are forced to start transmission only at the 

beginning of a slot. When a packet's arrival occurs during middle of a slot, the 

terminal senses the channel at the beginning of the next slot and operates 

according to the protocol described above. 

The model in figure 5.23 is almost similar to the model of previous model of 

non-persistent CSMA. To ensure that every transmission starts in slots 

transitions T16, T17, T18 and places P15, P16, P17 have been used. 
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Transitions T16 and T17 are deterministic time transitions. Time of transition 

T17 is just greater than the time of the packet transmission time (say 1.0001) 

which ensure that a conflict does not occur exactly at the end of the 

transmission. Transition T14 is deterministic time transition with time equal to 

the packet transmission time T. 

 

Figure 5.23: Petri Net Model of Slotted NP-CSMA  

Note that the time of transition T17 acts also as a priority function which makes 

transition T14 a higher priority transition over T17. This ensures that all the 

packets, represented by the tokens in place P14 are sent at the beginning of the 

time slots. Transition T18 and place P15 are used to avoid self loop. 

5.4.2 1-Persistent CSMA 

With NP-CSMA there are situations in which the channel is idle although one or 

more users have packets to transmit. The 1-persistent CSMA or persistent 
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always used if there is a user with a packet. More precisely, a node, which has 

data for transmission, operates as follows [18]: 

1. If the channel is sensed idle, it transmits the packet with probability 

one. 

2. When the channel is sensed busy, the node waits until the channel 

becomes idle, and then transmits the packet (with probability one-

hence, the name of 1-persistent). 

Let t be the time of arrival of a packet which senses the channel to be idle with 

no other packet in the process of transmission (figure 5.24). Any packet arriving 

in the time interval [t+a, t+Y+1+a]  will sense the channel busy and hence it 

waits until the channel is sensed idle (at time t+Y+1+a). At this time, the packet 

is transmitted. The number of packets accumulated at the end of transmission 

period (TP) is the number of the arrivals during 1+Y seconds. If this total equals 

to or is greater than two, then a conflict sure occurs in the next TP. 

 

Figure 5.24: Persistent CSMA: Packet Timing 
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During a type 0 transmission period no packets are transmitted and during 

type 2 transmission periods two or more packets are transmitted and collide. 

Consequently, only type 1 transmission periods may result in a successful 

transmission. Yet, for a type 1 transmission period to be successful, it is 

necessary that no packets arrive during its first a seconds that constitute the 

vulnerable period. 

Define the state of the system at the beginning of a transmission period to be 

the type of that transmission period. These states (0, 1 and 2) correspond to a 

three-state Markov chain embedded at the beginning of the transmission 

periods. The knowledge of the system state at the beginning of some 

transmission period (together with the scheduling points of packets during this 

transmission period) is sufficient to determine the system state at the beginning 

of the successive transmission period. The possible transitions among the three 

states of the embedded Markov chain are depicted in figure 5.25. 

 

Figure 5.25: State Transitions of 1P CSMA 

The channel throughput S achieved by 1-Persistent CSMA is given by 
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G 1 D 2a# �  1 � e�c]# D  1 D aG#e�] B�c#  

Petri Net Model of 1P-CSMA 
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Whenever a new request for packet transmission arrives, it increases the 

marking of place P14 by one (figure 5.26). When the channel is in free state, the 

transition T14 becomes enabled and the token moves from place P14 to the 

place P1. Firing of the transition T14 represents starting of the transmission of a 

packet. 

 

Figure 5.26: Petri Net Model of Persistent CSMA 

Note that the transition T12 and the place P12 are used only to avoid self-loop 

between the transition T14 and the place P11. 
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Due to the stochastic nature of firing process of transition T1, the marking of 

place P14 is unbounded because each token in place P14 represents a node, 

which has a packet for transmission. The throughput of CSMA methods is 

dependent on the propagation delay a. 

Net Description of the Petri net model of persistent CSMA in terms of various 

data structures 

 

// Transition Name Vector: 

(T1 ;T2 ;T5 ;T6 ;T7 ;T9 ;T10 ;T11 ;T8 ;T14 ;T12 ;T4 ;T3 ;) 

 

// Position Name Vector: 

(P1;P2;P3;P4;P5;P14;P6;P7;P8;P9;P10;P11;P12;) 

 

// Incidence Matrix: 

{ 

( 0  1  0  0  0  0  0  0  0 -1  0  1  1 ) 

( 0  1 -1 -1  0  0  0  0  0  0  0  0  0 ) 

( 0 -1  1  0  0  0  0  0  0  0  0  0  1 ) 

( 0  0  0  1 -1  0  0  0  0  0  0  1 -1 ) 

( 0  0  0  0  1  0  0  0  0  0  0 -1  0 ) 

(-1  0  0  0  0  0  0  0  0  1  0  0  0 ) 

( 0 -1  0  0  0  0  0  0  1  0  0  0  0 ) 

( 0  0 -1 -1  0  1  0  0  0  0  0  0  0 ) 

( 0  0  0  0  0  0  1  0 -1  0  0  0  0 ) 

( 0  0  0  0  0 -1  0  1  0  0  0  0  0 ) 

( 0  0  0  0  0  0 -1  1  0  0  0  0  0 ) 

( 0  0  0  0  0  0  1 -1  0  1 -1  0  0 ) 

( 0  0  0  0  0  0  0  0  0 -1  1  0  0 ) 

} 

 

// Marking Vector: 

(0 1 0 0 0 0 0 0 0 0 0 1 0 ) 
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// Transition Time Model Vector: 

// Code:1 = Immediate; 2= Delay;3 = Exponential;  

(3 ;1 ;2 ;2 ;1 ;2 ;1 ;1 ;2 ;1 ;1 ;1 ;1 ; 

Table 5.11: Description of the Transitions in the P etri Net Model of 1P-CSMA 

Transition Transition Type Associated Delay 

T1 Exponential Depends on number of nodes or 
requests for transmission per unit 
transmission time 

T2, T3, T4, T7, 
T10, T11, T12, T14 

Immediate 0 

T5, T6 Deterministic T (the packet transmission time) 

T8, T9 Deterministic a (the propagation delay) 

Simulation of the Petri Net Model of 1P-CSMA 

The token in place P14 represents a new request by a node (figure 5.27). Now 

the node senses the channel and found channel free (presence of a token in 

place P11) and so it will transmit with probability 1. 

 
Figure 5.27: Petri Net Model of 1P- CSMA: channel i s in free state, new 

transmission can take place 
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Figure 5.28: Petri Net Model of Persistent CSMA: st art of the vulnerable period, if 

a new packet arrives it will sense channel free and  will result in collision 

 

Figure 5.29: Petri Net Model of Persistent CSMA: tw o or more packets, waiting 
for transmission, will result in collision. 
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The vulnerable period begins after the firing of transition T2 which adds a token 

in place P6 (figure 5.28). Any ready terminal in this case will sense the channel 

free and will transmit resulting into a collision. 

If there are two or more requests waiting for transmission in the busy period 

(figure 5.29) then both will be transmitted when the channel becomes free (a 

token will be added at place P11) and both will be collided. 

5.4.3 p-Persistent CSMA 

The 1-persistent and non-persistent protocols differ by the probability (one or 

zero) of not rescheduling a packet which upon arrival finds the channel busy. In 

the case of a 1-persistent CSMA, whenever two or more terminals become 

ready during a transmission period (TP), they wait for the channel to become 

idle (at the end of that transmission) and then they all transmit with probability 

one. A conflict will also occur with probability one. The idea of randomizing the 

starting time of transmission of packets accumulating at the end of a TP 

suggests itself for interference reduction and throughput improvement. 

More precisely, the protocol consists of the following: the time axis is finely 

slotted where the (mini) slot size is ’a’ seconds [16] For simplicity of analysis, 

the system is synchronized such that all packets begin their transmission at the 

beginning of a (mini) slot. A node, which has data for transmission operates as 

follows: 

1. When the channel is sensed idle, it transmits the packet with a 

probability p. With the probability (1 - p), the node delays the 

transmission of the packet by ‘a’ seconds (i.e. one slot size). At this 

new point in time, if the channel is still sensed idle, the same 

procedure is repeated otherwise the node schedules the 

retransmission of packet according to the retransmission delay 

distribution (as some packet must have started transmission). 

 

2. When the channel is sensed busy, the node waits until the channel 

becomes idle, and then operates as above. 



72 

The parameter p will be chosen so as to reduce the level of interference while 

keeping the idle periods between any two consecutive non overlapped 

transmissions as small as possible.  

Note that both persistent and non-persistent CSMA methods exist in slotted 

and un-slotted modifications. Obviously, only slotted version of p-persistent 

CSMA exists. 

 

Figure 5.30: Petri Net Model of p-Persistent CSMA 
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seconds (firing of transition T19). If the channel is in busy state and there is a 

delayed packet (presence of a token in place P20), then transition T15 
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is added to Place P1. Here it is assumed that the retransmission delay is very 

large than the packet transmission delay. Transition T16, T17 and places P16, 

P17 restricts the transmissions only at the beginning of a slot. Transition T16 is 

a deterministic transition with delay ‘a’. 

Table 5.12: Transition Description of the Petri Net  Model of p Persistent CSMA 

Transition Transition Type Associated Delay 

T1 Exponential Depends on number of nodes or 
requests for transmission per unit 
transmission time 

T3, T4, T7, T10, 
T11, T12, T13, 

T14, T15,  

Immediate 0 

T5, T6 Deterministic T (the packet transmission time) 

T8, T9, T16, T19 Deterministic a (the propagation delay) 

T2, T17, T20 Deterministic Infinitesimal small value 

T18 Stochastic Depends on  probability (1-p) 

 
Table 5.13: Explanation of the Petri Net Model of p -Persistent CSMA 

Pi Explanation  Ti Explanation 

P6 Vulnerable period started  T9 End of the busy period 

P7 Packet is being 
propagated 

 T10 Channel is busy: A packet is being 
transmitted 

P8 Vulnerable period ended  T11 New packet now can be transmitted 

P10 Channel is busy  T12 Avoids self loop in the model 

P11 Channel is free: new 
packet can be transmitted 

 T14 Transmits the packets to the 
channel 

P14 Packets waiting for 
transmission 

 T15 Denotes retransmission delay 
function 

P20 Packet have been delayed 
for next slot 

 T16 Fires at the beginning of the slot 

   T18 Reschedules the packets with 
probability 1- p 
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Petri Net Model of Persistent CSMA modeled as MMPP 

In figure 5.31, the persistent CSMA is modeled when a node has outgoing 

buffer of capacity one. The packets arrive only when the outgoing buffer of the 

node is free.  

 

Figure 5.31: Petri Net Model of Persistent CSMA Mod eled as Markov Modulated 
Poisson Process Arrivals 

 

Figure 5.32: Petri Net Model of Persistent CSMA: st art of idle period, no new 
request can arrive until there is an unsent packet in output buffer. 
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The packet arrival process is assumed to be Poisson when output buffer have 

no packet. The overall packet arrivals process, defining arrivals of packets to a 

node, is a special kind of the MMPP, known as two state MMPP which 

alternates between the idle periods when buffer is full and the regular Poisson 

arrival process when the buffer is empty. 

When the initial marking of P18 is one, a token in the place represents empty 

outgoing buffer. When there is a token in place P14, no new request will be 

generated by transition T1 (figure 5.32). 

The Petri net model of 1P-CSMA with finite number o f user 

The Petri net model of 1P-CSMA with finite number of user has been modeled 

using M/D/1/∞/k queueing system (see figure 5.33 for k=2). Note that the time of 

transition T17 has taken to be longer than the transmission time. Otherwise, the 

node could collide its own transmission by firing of the sequence of T17 and 

thenT14. 

 

Figure 5.33: Petri Net Model of Persistent CSMA: fi nite population 
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Each node can thus send at most one packet per packet transmission time. The 

packets arrived to node during this time are buffered in place P14. Every node 

has output buffer of infinite capacity. 

Petri Net Model of Slotted persistent CSMA 

A slotted version of this 1-persistent CSMA can also be considered by slotting 

the time axis and synchronizing the transmission of packets in much the same 

way as for the slotted version of NP-CSMA [15]. 

 

Figure 5.34: Petri Net model of Persistent CSMA: Sl otted version 
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Figure 5.35: Petri Net Model of Persistent CSMA(slo tted version): beginning of 
the new slot, packet can be transmitted 

This also gives higher priority to transition T14 and so all the packets scheduled 

during the previous slot are transmitted simultaneously at the beginning of the 

time slot. Transition T18 and place P15 are used to avoid self loop. 
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Chapter 6 

Conclusion and Future Work 

Petri net, a combination of the simulation and the mathematical numerical 

methods represents a graphical modeling tool applicable to many systems in 

similar way as flow charts, block diagrams and graphs. In this dissertation, a 

novel approach to modeling and analysis of carrier sense multiple access 

protocols (CSMA) using high level Petri nets has been described. 

In the dissertation, models for Open traffic information system (OTIS), Aloha 

protocols with both pure and slotted versions and finally CSMA protocols using 

timed Petri nets have been presented. Based on queueing systems and Markov 

modulated Poisson arrival processes, the dissertation proposed timed Petri net 

models for persistent and non-persistent CSMA, their slotted versions, and also 

persistent CSMA as a special case of Markov modulated Poisson process. To 

validate the models and to analyze the behavior of communication protocols a 

simulator HPSim have been used. 

Throughout the discussion of communication protocols communication 

channels are considered errorless without capture. In case of infinite large 

population networks each user is assumed to have at most one packet requiring 

transmission at any time (including any previously blocked packet).  

The results show that communication protocols that typically comprise 

several generally distributed delays or stochastic processes can be efficiently 

emulated using Petri net modeling techniques as they have proper constructs to 

effectively represent all these characteristics. The elementary phenomenon of 

these protocols has been modeled just by using primates provided by Petri 
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nets. Moreover, Petri nets are highly extensible and flexible and any further 

changes or modifications that may come up in the system can be easily 

incorporated in the model. Petri nets are also very conducive for simulation 

which is a vital pre-requisite for analysis of communication networks that are 

known for their complex characteristics to allow analytical study for their 

performance analysis. 

The Petri net models presented in the dissertation can be further used for 

performance evaluation of communication protocols. All the time delays 

associated with transitions in the models either were deterministic or 

exponentially distributed. This is not always true in a real system. The solution 

methods for Markov regenerative process can be used to analyze the non-

exponentially distributed stochastic Petri nets. When a Petri net contains a large 

number of tokens, the number of reachable state explodes. In such cases 

continuous and hybrid Petri nets can be used.  
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Chapter 7 

Publications  

During the period of working over this project we interacted with several other 

people around the globe working on Petri nets. We collected the reviews and 

worked over the suggestions send by them. We communicated our approach 

for developing Petri net specifications to the International conference on 

Information Processing, 2008 at Bangalore, India and the same was accepted for 

publication.  The paper presents the applications of timed Petri nets in the 

information processing systems.  

Conference Details 

Conference : International Conference on Information Processing, 2008 

at Bangalore, India. 

URL : http://icjip.org/main/ 

Paper Title : High Level Petri Nets - An Effective Modeling Tool for 

Information Processing Systems 

Authors : Manoj Sethi, Delhi College of Engineering,Delhi-42 

: Kailash Gupta, Delhi College of Engineering, Delhi-42 

: Ankur Gupta, Delhi College of Engineering, Delhi-42. 
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Glossary of Notation 
 

 PN Petri  net 

 � A Petri net model 

 P, Pi Place, ith place 

 T, Tj Transition, jth transition 

 d Set of transitions 

 � Set of places 

 e Set of arcs 

 M, M� Marking of Petri net, Initial Marking 

 � Incidence  matrix 

 ��, �� Pre-condition matrix, Post condition Matrix 

 SPN Stochastic Petri Net 

 MMPP Markov modulated Poisson process 

 OTIS Open Traffic Information System 

 CSMA Carrier sense multiple Access 

 E(X) Expected value of random variable X 

 σ0 X# Variance of random variable X 

 DES Discrete Event Simulation 

 λ Mean rate of arrival of queuing system 

 G Offered traffic 

 S Throughput of the channel 

 a The propagation delay 

 T The packet transmission time 

 TP Transmission Period 

 


