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Chapter -1 

Introduction And Overview

1.1 Introduction :



Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics They combine survival of the fittest among structures with a structured yet randomised information exchange to form a search algorithm with some of the innovative flair of human search. GA have been developed by John Holland his colleagues and his students at the university of Michigan.The goals of their search have been two fold (i) To abstract and rigorously explain the adaptive processes of natural systems (ii) To design artificial systems software that retains the important mechanisms of natural systems.

1.2 Goals of Optimization


Man’s longing for perfection finds expression in the theory of optimization. It studies how to describe and attain what is best, once one knows how to measure and alter what is Good or Bad … Optimization theory encompasses the quantitative study of optima and methods for finding them.

Thus optimization seeks to improve performance toward some optimal point or points. This definition has two parts (i) we seek improvement to approach some (ii) Optimal Point .

There is a clear distinction between the process of improvement and the destination or optimum itself. Yet , in judging optimization procedures we commonly focus solely upon convergence and forget entirely about interim performance.

1.3 How Are Genetic Algorithm Different From Traditional Methods.

Classical Algorithm
It generates a single point at each iteration. The sequence of points approaches an optimal solution. It also selects the next point in the sequence by a deterministic computation

Genetic Algorithm
It generates a population of points  at each iteration. The best point in the population approaches an optimal solution. GA work with a coding of the parameter set not the parameter themselves. GA use payoff ( objective function ) information, not derivatives or other auxiliary knowledge.

GA use probabilistic transition rules not deterministic rules.

1.4 Definitions for Natural Terms

Chromosome :  It is build of DNA . Chromosomes in humans forms pairs  Genetic information is stored in the chromosomes. There are 23 pairs

Genes : The chromosome is divided in parts called genes. Genes code for properties.

Allele : The possibilities of the genes for one trait is called Allele.

Locus : Every gene has an unique position on the chromosome is called locus.
1.5 Research Objectives And Methodology
Genetic algorithms are search algorithms based on natural selection and natural genetics. It helps to get the global optimum points.  We have understood its effectiveness by solving various problems  with GA tool box in MATLAB R2006b and by hand. We are interested to attain the following objectives in Genetic Algorithms.

I Exploring the Tools of Genetic Algorithm in Matlab R2006b


In Matlab GA operations are explored in many ways to get the global optimal points like,
Running the GA from the Command prompt for constrained , unconstrained and parameterized functions.

GAtool is executed by opening it in a separate window for solving constrained and unconstrained problems.

II Analysis of Genetic Algorithm :


We have varied different parameters in Genetic Algorithm to understand its influence in getting the accuracy and Final Generation. Here Final Generation stands for the generation where we get the global optimal points. Different parameters like Population Size, Initial range, Initial Population , Stopping conditions etc are varied and the corresponding graphs are drawn between these parameters and the ( accuracy of the optimal points and final generation ) for predicting the results.
III Design of Genetic Algorithm :


A comprehensive programming work have been successfully completed for two generations to overcome the pitfalls in GA tools in MATLAB ( R2006b ) like

(i)  Adjusting the string size according to user’s wish , because string size plays a vital role in getting the optimal points.

(ii) Getting the population of points in each iteration (or) generation
1.6 Dissection of Thesis :


The material of this dissertation has been arranged in six chapters, references. The contents of the chapter are briefly outlined  as indicated below :

Chapter 1 discusses the introduction to Genetic Algorithm and Research objectives of the thesis.
Chapter 2 Presents the  historical development of Genetic Algorithms and its applications.
Chapter 3 Explores the concepts of Genetic Algorithm in Matlab R2006b.

Chapter 4 Gives the analysis of Genetic Algorithm.

Chapter 5 gives the Design of Genetic Algorithm.

Chapter 6 presents the application of Genetic Algorithms to Economic Load dispatch problem.
Chapter 7 presents the conclusion and scope of further work.
 References at the end of the chapter






Chapter -2 
2.1 History of Genetic Algorithms :

Computer simulations of evolution started as early as in 1954 with the work  of Nils Al Barricelli who was using the computer at the Institute for Advanced Study in Princeton, New Jersey. His 1954 publication was not widely noticed. Starting in 1957 , the Australian quantitative geneticist Alex Fraser published a series of papers on simulation of artificial selection of organisms with multiple loci controlling a measurable trait. From these beginnings, computer simulation of evolution by biologists became more common in the early 1960s, and the methods were described in books by Fraser and Burnell (1970) and Crosby (1973). Fraser's simulations included all of the essential elements of modern genetic algorithms. In addition, Hans Bremermann published a series of papers in the 1960s that also adopted a population of solution to optimization problems, undergoing recombination, mutation, and selection. Bremermann's research also included the elements of modern genetic algorithms. Other noteworthy early pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are reprinted by Fogel (1998).

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability to play a simple game, artificial evolution became a widely recognized optimization method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the 1960s and early 1970s - his group was able to solve complex engineering problems through evolution strategies. Another approach was the evolutionary programming technique of Lawrence J. Fogel, which was proposed for generating artificial intelligence. Evolutionary programming originally used finite state machines for predicting environments, and used variation and selection to optimize the predictive logics. Genetic algorithms in particular became popular through the work of John Holland in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata, conducted by Holland and his students at the University of Michigan. Holland introduced a formalized framework for predicting the quality of the next generation, known as Holland's Schema Theorem. Research in GAs remained largely theoretical until the mid-1980s, when The First International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania.

As academic interest grew, the dramatic increase in desktop computational power allowed for practical application of the new technique. In the late 1980s, General Electric started selling the world's first genetic algorithm product, a mainframe-based toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the world's second GA product and the first for desktop computers. The New York Times technology writer John Markoff wrote about Evolver in 1990.
2.2 Some Applications of Genetic Algorithms :
(i) Pattern Recognition Applications

(ii) Robotics and Artificial life applications

(iii) Expert system applications

(iv) Electronic and Electrical applications

(v) Cellular Automata Applications

(vi) Applications in Biology and Medicine





Chapter – 3

Exploring The Tools of Genetic Algorithm in Matlab   





R2006b

3.1 Running the GA From The Command Prompt


To run the GA with the default options we have to call the GA with the syntax [ x fval ] = ga(@fitness function, nvars) where fitness function stands for the function which we want to optimize, nvars is the no:of variables of the fitness function. The fitness function must be written in a separate M-file. It should be imported at the command prompt when we use the GA from the command line.
The fitness function  used  here is Rosenbrok function. The M-file for Rosenbrok function is saved in a Matlab path. It is imported for running GA as and when required.  
The M-file for Rosenbrok’s Function is as follows

function value = rosen(x)
value =  100*(x(2) - x(1)^2)^2 + ( 1 - x(1))^2;
This is demonstrated by running the Ga from the command line

>> [ x fval ] = ga(@rosen , 2 )

Optimization terminated: average change in the fitness value less
 than options.TolFun.

x =    0.9272    0.8525

fval = 0.0106
Additional Output Arguments
To get more information about the performance of the genetic algorithm,
We  can call ga with the syntax  [x fval reason output population scores] = ga(@fitnessfcn, nvars)
Besides the optimal values, and the objective function values it can return the following as follows

Reason – Reason the algorithm is terminated.

Output – It gives the total no : of generations GA took to get the optimal point.

Scores – This gives fitnessfunction values for the final population.
Population – It gives the population of the final generation.

This is demonstrated for the Rosenbrok’s function
 [ x fval reason output population  ] = ga(@rosen ,2)
Optimization terminated: average change in the fitness value less than options.TolFun.

 x =    0.9240    0.8453           fval =    0.0128
Reason = Optimization terminated: average change in the fitness value less than options.TolFun.

Output =randstate: [35x1 double]

             randnstate: [2x1 double]

            generations: 65

             funccount: 1300

             message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'

    population =

    0.9240    0.8453

    0.9240    0.8453

    0.6054    1.1376

    0.9240    0.8453

    0.9240    0.8453

    0.9240    0.8453

    0.9240    0.8453

    0.9240    0.2648

    0.9240    0.8453

    0.9240    0.8453

    0.8434    0.8453

    0.3187    0.8453

    1.3695    0.8453

    0.9240    0.8453

    0.9240    0.8453

    0.8434    1.4053

    0.8266    0.9213

    1.0933    0.6174

    1.0043    0.9697

    1.1064    0.6297
   3.2 Setting Options For GA at The Command Line

You can specify any of the options that are available in the Genetic

    Algorithm Tool by passing an options structure as an input argument to GA  using the syntax

    [x fval] = ga(@fitnessfun, nvars, [],[],[],[],[],[],[],options)

    This syntax does not specify any linear equality, linear inequality,

    or nonlinear constraints. 

    It can create the options structure using the function gaoptimset.  options = gaoptimset

    This returns the structure options with the default values for its fields.  

    options = 

          PopulationType: 'doubleVector'

          
PopInitRange: [2x1 double]

          PopulationSize: 20

    
EliteCount: 2

     
CrossoverFraction: 0.8000

    
MigrationDirection: 'forward'

     
MigrationInterval: 20

    
MigrationFraction: 0.2000

          Generations: 100
          TimeLimit: Inf

          FitnessLimit: -Inf

          StallGenLimit: 50

          StallTimeLimit: 20

           TolFun: 1.0000e-006

           TolCon: 1.0000e-006

           InitialPopulation: []

           InitialScores: []

       
 InitialPenalty: 10

         
 PenaltyFactor: 100

       
 PlotInterval: 1

 CreationFcn: @gacreationuniform

 FitnessScalingFcn: @fitscalingrank

 SelectionFcn: @selectionstochunif

 
 CrossoverFcn: @crossoverscattered

  
 MutationFcn: @mutationgaussian
           HybridFcn: []

           Display: 'final'
           PlotFcns: []

           OutputFcns: []

           Vectorized: 'off'

3.3 How to change the options

The function GA uses these default values if you do not pass in options as an input argument. The value of each option is stored in a field of the options structure,such as options.PopulationSize. You can display any of these values by entering options followed by the name of the field. For example, to display the size of the population for the genetic algorithm, 
enter  options.PopulationSize 

ans =    20

To create an options structure with a field value that is different from the default — for example to set PopulationSize to 100 instead

of its default value 20 —  enter
options = gaoptimset ('PopulationSize', 100)

This creates the options structure with all values set to their defaults except for PopulationSize, which is set to 100. If you now enter,ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

GA runs the genetic algorithm with a population size of 100.
3.4 Reproducing Your Results
Because the genetic algorithm is stochastic — that is, it makes random choices , we get slightly different results each time when we run the genetic algorithm. The algorithm uses the MATLAB uniform and normal random number generators, such as  rand and randn, to make random choices at each iteration. Each time GA calls rand and randn, their states are changed, so that the next time when they are called, they return different random numbers. That is why the output of GA differs each time when we run it.
If you need to reproduce your results exactly, you can call GA   with an output argument that contains the current states of rand and randn and then reset the states to these values before running ga again.

For example to reproduce the output of GA applied to Rosenbrok function , Call ga with the syntax

[ x fval reason output ] = ga(@rosen , 2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =  0.9272    0.8525  fval = 0.0106

reason = Optimization terminated: average change in the fitness value less than options.TolFun.

output = randstate: [35x1 double]

     randnstate: [2x1 double]

     generations: 51

     funccount: 1020

     message: 'Optimization terminated: average change in the fitness value
     less than options.TolFun.'

     problemtype: 'unconstrained'

Then, reset the states, by entering 

rand('state', output.randstate);

randn('state', output.randnstate);

If you now run ga a second time, you get the same results.

 [ x fval ] = ga(@rosen,2)

Optimization terminated: average change in the fitness value less than options.TolFun.
x =   0.9272    0.8525

fval =    0.0106
3.5 Resuming GA From the Final Population of a Previous  
      Run

By default, ga creates a new initial population each time you run it. However, you might get better results by using the final population from a previous run as the initial population for a new run. To do so, you must have saved the final population from the previous run by calling ga with the syntax

[x, fval, reason, output, final_pop] = ga(@fitnessfcn, nvars);

Resuming ga from the Final Population of a Previous Run - continued

The last output argument is the final population. To run ga using final_pop as the initial population, enter

options = gaoptimset('InitialPop', final_pop);

[x, fval, reason, output, final_pop2] = ... 

   ga(@fitnessfcn, nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial population for a third run.

Resuming ga from the Final Population of a Previous Run - Demonstration

[ x fval reason output final_pop ] = ga(@rosen,2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =    0.9535    0.9109

fval = 0.0025

reason =Optimization terminated: average change in the fitness value less than options.TolFun.

output = randstate: [35x1 double]

     randnstate: [2x1 double]

     generations: 51

     funccount: 1020

     message: 'Optimization terminated: average change in the  fitness value
     less than options.TolFun.'

     problemtype: 'unconstrained'

    final_pop =

    0.9535    0.9109

    0.9535    0.9109

    0.9535    0.9109

    0.2626    0.9109

    0.9535    0.9109

    0.9535    0.9109

    0.9535    0.9109

    0.8812    1.1647

    0.9535    0.9109

    1.5744    0.8528

    0.9535    0.9109

    0.9535    0.9109

    1.2981    1.8526

    0.9535    0.9109

    0.0162    0.1448

    0.0162    1.8526

    1.1997   -0.0224

    0.8484    0.6102

    0.1052    1.1879

    0.7340    1.1005

Resuming ga from the Final Population of a Previous Run – Demonstration continued

options = gaoptimset('Initialpop',final_pop);

[x, fval, reason, output, final_pop2] = ga(@rosen, 2,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =    0.9535    0.9109

fval =    0.0025
3.6 Constrained Minimization Using ga

The ga function assumes the constraint function will take one  input x, where x has as many elements as the number of variables in the problem.  The constraint function computes the values of all the  inequality and equality constraints and returns two vectors, c and ceq, respectively.

To minimize the fitness function, you need to pass a function handle to the fitness function as the first argument to the ga function,as well as specifying the number of variables as the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

The syntax to implement the constraint minimization is as follows.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB, UB,ConstraintFunction)

Suppose you want to minimize the simple fitness function of two variables x1 and x2, min f(x) = 100*(x1^2 – x2)^2 + ( 1 – x1)^2.

subject to the following nonlinear inequality constraints and bounds 

X1.x2 + x1 – x2 + 1.5 <= 0

10 – x1.x2 <= 0

0 <= x1 <= 1

0 <= x2 <= 13

Begin by creating the fitness and constraint functions. First, create an M-file named simple_fitness.m as follows:

function y = simple_fitness(x)

y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

The genetic algorithm function, ga, assumes the fitness function will take one input x, where x has as many elements as the number of variables in  the problem. The fitness function computes the value of the function and  returns that scalar value in its one return argument, y.

Then create an M-file, simple_constraint.m, containing the constraints

function [c, ceq] = simple_constraint(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2);

-x(1)*x(2) + 10];

ceq = [];
Note  For the constrained minimization problem, the ga function changed the mutation function to @mutationadaptfeasible.The default mutation function, @mutationgaussian, is only appropriate for unconstrained minimization problems.

Specify mutationadaptfeasible as the mutation function for the minimization problem by using the gaoptimset function.

options = gaoptimset('MutationFcn',@mutationadaptfeasible);

ObjectiveFunction = @simple_fitness;

nvars = 2;    % Number of variables

LB = [0 0];   % Lower bound

UB = [1 13];  % Upper bound

ConstraintFunction = @simple_constraint;

Next run the ga solver. [x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB, UB,ConstraintFunction,options)

Optimization terminated: current tolerance on f(x) 1e-007 is less than options.TolFun and constraint violation is less than options.TolCon.

x =    0.8122   12.3122

fval =  1.3578e+004
3.7 Parameterizing Functions Called by ga
Sometimes you might want to write functions that are called by ga that have additional parameters to the independent variable. For example, suppose you want to minimize the following function:

f(x) = ( a – bx1^2 + x1^4/3)*x1^2 + x1.x2 + ( -c + cx2^2)*x2^2

for different values of a, b, and c. Because ga accepts a fitness function that depends only on x, you must provide the additional parameters a, b, and c to the function before calling ga.
Parameterizing Functions Using Anonymous Functions with ga

To parameterize your function, first write an M-file containing the following code:      
       function y = parameterfun(x,a,b,c)

   y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

         (-c + c*x(2)^2)*x(2)^2;

Save the M- file as parameterfun.m in a directory on the MATLAB path.

Now, suppose you want to minimize the function for the parameter values a = 4, b =2.1,and c = 4. To do so, define a function handle to an anonymous function by entering the following commands at the MATLAB prompt:
>> a = 4; b = 2.1; c = 4;    % Define parameter values

fitfun = @(x) parameterfun(x,a,b,c);

NVARS = 3;

>> [x fval ] = ga(fitfun , 3)

Optimization terminated: average change in the fitness value less than options.TolFun.

x = -0.1302    0.7170    0.2272

fval =   -1.0254

3.8 GAtool
Gatool is one of the features available in the Matlab. It performs the same functions as the ga from the command line. But the difference between them is gatool is not operated in the command prompt. 

Instead , once if we type the gatool at the command prompt, a new window is opened , where we can adjust the options and we can get the optimal points.

 Basic Operation of GA tool

Write a simple M-file which computes the objective function value, and import it in the gatool as follows @filename in the fitness function column.

Specify the no:of variables in the nvars column .

Then click the start button, you will get the output in the same window.
Possible Outputs to be Obtained in the GA tool

Linear inequalities of the form A*x = b are specified by the matrix A and the vector b.
Linear equalities of the form Aeq*x = beq are specified by the matrix Aeq and the vector beq.
Bounds are lower and upper bounds on the variables.                   
Lower = specifies lower bounds as a vector.

Upper = specifies upper bounds as a vector.

Nonlinear constraint function defines the nonlinear constraints. Specify the function as an anonymous function or as a function handle of the form @nonlcon, where nonlcon.m is an M-file that returns the vectors c and ceq. The nonlinear equalities are of the form ceq = 0, and the nonlinear inequalities are of the form c = 0.
3.9 Demonstration of the constraints  in GA tool
M-file of constraints

function [c, ceq] = nonlcon(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2);

-x(1)*x(2) + 10];

ceq = [];

Import it in the nonlinear constraint column.

Then start running the gatool as same as the basic operation of the gatool.

Rosenbrok eqn is solved with the nonlinear constraints specified in the M-file

We got the output as follows

Fitness function value: 13578.18005695581

Optimization terminated: average change in the fitness value less than options.TolFun. and constraint violation is less than options.TolCon.

X = 0.8122  12.3122

3.10 Plot functions in the GA tool
Plot functions enable you to plot various aspects of the genetic algorithm as it is executing. Each one will draw in a separate axis on the display window. Use the Stop button on the window to interrupt a running process.

Plot interval specifies the number of generations between successive updates of the plot.
Best fitness plots the best function value in each generation versus iteration number.

Score diversity plots a histogram of the scores at each generation.

Stopping plots stopping criteria levels.

Best individual plots the vector entries of the individual with the best fitness function value in each generation.
Genealogy plots the genealogy of individuals. Lines from one generation to the next are color-coded as follows:
Red lines indicate mutation children.

Blue lines indicate crossover children.

Black lines indicate elite individuals.

Max constraint plots the maximum nonlinear constraint violation.
Distance plots the average distance between individuals at each generation.

Range plots the minimum, maximum, and mean fitness function values in each generation.

Selection plots a histogram of the parents. This shows you which parents are contributing to each generation.
Run Solver in GA tool

To run the solver, click Start under Run  solver. When the algorithm terminates, the Status and results pane displays the reason the algorithm terminated. The Final point updates to show the coordinates of the final point.

Options in GA tool #
Populations
Fitness scaling

Selection

Reproduction

Mutation 

Crossover

Stopping criteria

Output functions

Display to the command window

Vectorize

3.11 Population Option in GA tool
Population options specify options for the population of the genetic algorithm.
Population type specifies the type of the input to the fitness function. You can set Population type to be Double vector, or Bit string, or Custom. If you select Custom, you must write your own creation, mutation, and crossover functions that work with your population type, and specify these functions in the fields Creationfunction, Mutation function, and Crossover function, respectively.

Important Note : Matlab uses the default population type as double vector, whereas all the standard textbooks use Bit string as the population type
Population size specifies how many individuals there are in each generation. If you set Population size to be a vector of length greater than 1, the algorithm creates multiple subpopulations. Each entry of the vector specifies the size of a subpopulation.
Creation function specifies the function that creates the initial population. The default creation function Uniform creates a random initial population with a uniform distribution. Custom enables you to provide your own creation function, which must generate data of the type that you specify in Population type.
Initial population enables you to specify an initial population for the genetic algorithm. If you do not specify an initial population, the algorithm creates one using the Creation function.
Initial scores enables you to specify scores for initial population. If you do not specify Initial scores,the algorithm computes the scores using the fitness function.

Initial range specifies lower and upper bounds for the entries of the vectors in the initial population. You can specify Initial range as a matrix with 2 rows and Initial length columns. The first row contains lower bounds for the entries of the vectors in the initial population, while the second row contains upper bounds. If you specify Initial range as a 2-by-1 matrix, the two scalars are expanded to constant vectors of length Initial length.
3.12 Fitness Scaling Option in GAtool
The scaling function converts raw fitness scores returned by the fitness function to values in a range that is suitable for the selection function. 

Scaling function specifies the function that performs the scaling. You can choose from the following function:
Rank scales the raw scores based on the rank of each individual, rather than its score. The rank of an individual is its position in the sorted scores. The rank of the fittest individual is 1, the next fittest is 2, and so on. Rank fitness scaling removes the effect of the spread of the raw scores.
3.13 Selection Option in GAtool
The selection function chooses parents for the next generation based on their scaled values from the fitness scaling function.

You can specify the function that performs the selection in the Selection function field. 

The Roulette wheel selection  is explained below
Roulette simulates a roulette wheel with the area of each segment proportional to its expectation. The algorithm then uses a random number to select one of the sections with a probability equal to its area.
3.14 Reproduction Option in gatool
Reproduction options determine how the genetic algorithm creates children at each new generation.
Elite count specifies the number of individuals that are guaranteed to survive to the next generation. Set Elite count to be a positive integer less than or equal to Population size.
Crossover fraction specifies the fraction of the next generation, other than elite individuals, that are produced by crossover.

Set Crossover fraction to be a fraction between 0 and 1, either by entering the fraction in the text box or moving the slider.
3.15 Mutation Option in GA tool
Mutation functions make small random changes in the individuals in the population, which provide genetic diversity and enable the Genetic Algorithm to search a broader space.You can specify the function that performs the mutation in the Mutation function field.  The default option in Mutation function field is gaussian. Gaussian is normally used for unconstrained problems.For constrained problems adapt feasible option is used. 
3.16 Stopping Criteria Option in gatool
Stopping criteria determines what causes the algorithm to terminate.
Generations specifies the maximum number of iterations the genetic algorithm performs.
Time limit specifies the maximum time in seconds the genetic algorithm runs before stopping.
Fitness limit — If the best fitness value is less than or equal to the value of Fitness limit, the algorithm stops.
Stall generations — If the weighted average change in the fitness function value over Stall generations is less than Function tolerance, the algorithm stops.
Stall time limit — If there is no improvement in the best fitness value for an interval of time in seconds specified by Stall time limit, the algorithm stops.
Function tolerance — If the cumulative change in the fitness function value over Stall generations is less than Function tolerance, the algorithm stops.
Nonlinear constraint tolerance specifies the termination tolerance for the maximum nonlinear constraint violation.
3.17 Output Function Option in GAtool

History to new window outputs the iterative history of the algorithm to a separate window.
Interval specifies the number of generations between successive outputs.
Custom enables you to write you own output function.
Display option in gatool

Level of display specifies the amount of information displayed in the MATLAB Command Window when you run the algorithm. Choose from the following:

Off — Display no output.
Iterative — Display information at each iteration of the algorithm. 
Diagnose — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that are changed from the defaults.
Final — Display only the reason for stopping at the end of the run.
Vectorize Option in GAtool

The vectorize option specifies whether the computation of the fitness function is vectorized.

Set Objective function is vectorized to On to indicate that the fitness function is vectorized.

When Objective function is vectorized is Off, the algorithm calls the fitness function on one individual at a time as it loops through the population.
Chapter – 4

ANALYSIS OF GENETIC ALGORITHM
 Manual Calculation Is Performed To Fulfill The Following Objectives  :
(i) To study the influence of Bit string size in getting the accuracy of the optimal points.

(ii)To study the impact of randomly chosen initial population for getting the optimal points.

4.1 To study the influence of Bit string Size in getting the   
      accuracy of the optimal points
Hand calculations are performed with different string sizes for Rosenbrok’s function.  To show how the points are moving towards the optimum, We have drawn the various graphs after computing the optimal points for Rosenbrok function with Bit string size – 12 

In all the graphs of Bit String Size – 12 we have used the two points ( 0, 0 ) and ( 2, 2 ) to have a uniform scale.
Plot of ( x1,x2) for Rosenbrok function .

X – axis – X1: Y _ axis – X2.
	X1
	x2

	0.5626
	0.3159

	0.3907
	0.4244

	0.1641
	0.1328

	0.1406
	0.2915

	0.4376
	0.5347

	1.0000244
	1.0192

	1.066
	1.1296

	0.2935
	0.77411

	1.0344
	1.0349

	0.2422
	0.8913
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Generation – 2: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2

	X1
	x2

	1.0666
	1.1296

	1.000244
	1.0192

	1.1643
	1.136508

	0
	0.015629

	1.0627
	1.0632

	0.5665
	0.3824

	0.5313
	0.2847

	1.0656
	1.0661

	0.6876
	0.44102

	1.1594
	1.1599
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Generation – 3: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2
	X1
	x2

	1.066
	1.129

	1.0002
	1.0192

	1.0627
	1.1882

	1.0666
	1.00464

	0.5313
	0.4097

	0.56654
	0.2573

	1.315
	1.3162

	0.9377
	0.1909
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Generation – 4: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2
	X1
	x2

	1.066
	1.129

	1.0002
	1.019

	1.0666
	1.192

	1.062
	1.1257

	1.0627
	1.019

	1.0041
	1.0046

	1.2532
	1.2537

	0.8752
	0.1284
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Generation – 5: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2
	X1
	x2

	1.0627
	1.1257

	1.00415
	1.00464

	1.0666
	1.1296

	1.0627
	1.1257

	1.00024
	1.0163

	1.004151
	1.00757

	1.3167
	1.4422

	1.3128
	1.269
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Generation – 6: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2
	X1
	x2

	1.0666
	1.0046

	1.0666
	1.129

	1.0627
	1.1257

	1.0666
	1.1326

	1.000244
	1.000732

	1.0627
	1.0788
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Generation – 7: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2
	X1
	x2

	1.000244
	1.000732

	1.0627
	1.1413

	1.0666
	1.067

	1.0666
	1.1326

	1.0627
	1.1257
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Generation – 8: Plot of ( X1, X2) for Rosenbrok with Bit size – 12. X axis – x1; Y- axis – X2 . The optimal point is obtained in this generation . The point is X1 = 1.000244,  X2 = 1.000732

	X1
	x2

	1.000244
	1.000732

	1.09401
	1.17264

	1.0979
	1.1638

	1.094
	1.15702
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X1
This the final generation , it means that we have reached the optimum, here the algorithm terminates because the f(x) value reduces to zero, it indicates that the function is optimized. If we neglect the points (0,0) and (2,2) we can see the two points around optimum of x1 = 1 and x2 = 1. In the first generation we have taken a randomly chosen initial population size of 10, by the application of the GA operators we have reached the eighth generation with two points, because only these two are the survival of the fittest.
Results of the Rosenbrok function for different bit string sizes are tabulated as follows
	X1
	X2
	f(x) = 1/ ( 1 + F(x) )
	F(x) =         100*( X2 - X1^2 )^2 +  ( 1-X1 )^2  
	At which generation it stops
	Reason
	No : of bits

	1.0666
	1.2000
	0.7186
	0.39333
	       3
	Elite child dominated the population for 2  generations
	4

	0.9098
	0.7058
	0.4011
	1.4949
	       6
	Population size reduces to 2
	8

	1.00488
	0.92472
	0.5802
	0.002405
	       2
	Elite child dominated the population
	10

	1.000244
	1.000732
	1.0000
	0.00014903
	       8
	***
	12


*** Without mutation we are unable to improve the points, Even in the last generation mutation fraction is more than crossover. So let us stop, because mutation alone cannot be done. Moreover the population size reduces to  4.

Inference : After performing the calculations for different Bit sizes with initial population size of 10 for Rosenbrok’s function, we have narrated the merits and demerits.
Merits of increasing the Bit string size :

Accuracy of the optimal point can be improved.

Suppose if the no : of bits in a string are 10 or 12. Then we are able to get 1024 or 4096 types of strings. If these strings are decoded with the chosen interval then it is possible to get 2^n different floating point values. So we can get a cloud of floating point values around the optimal point.

Demerits of increasing the Bit Size :

    Only few strings correspond to the optimal point with guaranteed  accuracy. If those strings or possibility of  getting those strings by applying GA operators are not available in the chosen initial population , then few problems are encountered.


1.)More iterations to be performed. It is time Consuming.


2.) To get the new points mutation fraction have to be drastically improved. (i.e) mutation fraction is set to 0.9 It is not a good practice while applying GA operators.
4.2 Impact of Randomly Chosen Initial Population :
Randomly chosen initial population play a vital role to get the optimal point. After solving lot of problems , It is observed as follows

Only few Bit strings can give the accurate answer with +/- 1%        tolerance . If those strings or possibility of getting those strings through GA operators are available in the randomly chosen initial population, then it takes less generations to get the optimal point. Otherwise it is time consuming , Moreover to get those corresponding Bit strings, reproduction options need to be modified. ( i.e ) Crossover & Mutation fractions have to be corrected, Mutation fraction must dominate to get the new points.

4.3 Impact of Population Size With the Accuracy Of The   
        Optimal points
With different population sizes we have calculated the optimal points of Rosenbrok’s equation, by keeping the rest of the parameters at default in gatool. Five readings are calculated with each population size, and the average is calculated. Average values of the optimal points are plotted.
The results are drawn as a separate graph for both x1 and x2  as follows .
Plot of population size vs x1
	Pop size
	x1

	100
	0.960934

	500
	0.995836

	800
	0.982382

	1000
	0.989168

	1200
	0.994046
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Plot of population size vs x2
	P size
	x2

	100
	0.922892

	500
	0.992058

	800
	0.965146

	1000
	0.978472

	1200
	0.988454
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4.4 Impact of initial range of the population with the accuracy of the optimal points 
By varying the Initial range of the population, value of the Rosenbrok’s function is calculated. During the calculation rest of the parameters are kept at default in gatool.
Optimal points obtained in different range of the initial population are plotted .
Initial Range ( 0 – 2 )
	X1
	X2

	0
	0

	0.90693
	0.81131

	0.92684
	0.87887

	0.67865
	0.43378

	0.98051
	0.94465

	0.93299
	0.88763

	2
	2
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Initial Range ( 0 – 3 )
	X1
	X2

	0
	0

	1.75767
	3.10971

	1.3117
	1.72798

	1.07381
	1.15343

	1.25336
	1.60234

	0.97903
	0.97062

	2
	2
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Initial Range ( -1 to 3 )
	X1
	X2

	0
	0

	1.5816
	2.49639

	0.27507
	0.05082

	1.28478
	1.67404

	1.70391
	2.88656

	0.1492
	0.02978

	2
	2
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Initial Range ( -1 to 1 )
	X1
	X2

	0
	0

	1.21993
	1.53965

	0.79217
	0.63037

	1.00943
	0.99431

	1.02998
	1.07328

	0.98758
	0.99051

	2
	2
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Initial Range ( 0.5 – 1 )
	X1
	X2

	0
	0

	0.93095
	0.87256

	0.91227
	0.83056

	0.98361
	0.96617

	0.96896
	0.94549

	0.97721
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	2
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Initial Range ( 0.8 – 1.1 )
	X1
	X2

	0
	0

	1.02395
	1.04531

	1.02001
	1.041

	1.03772
	1.07457

	0.94412
	0.88939

	0.96965
	0.94151

	2
	2
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Inference about the initial range in getting the accuracy of the optimal points

Initial range of the population play a vital role in getting the accuracy of the optimal points.

If you observe the previous graphs, Range of ( 0.8 – 1.1 ) have a cloud of points around the optimal point of 1. This because the population have to fall in a narrow range. So we are getting more points in and around the optimal point of 1. This increases the accuracy of the answer.
If you observe the graph of range ( -1 to 3 ) The points are scattered. You are not having a single point with +/- 1% tolerance near the optimum. This is because the points have to encompass a wide range.
 We have taken five readings in each of the limits, no:of points around the optimum for each of the limits are listed in the tabular column.
	S.No
	Limits
	Range
	No:of points around the optimum(1,1)

	1.
	(0 – 2)
	2
	3

	2.
	(0 – 3)
	3
	1

	3
	(-1 – 3)
	4
	0

	4.
	(-1 – 1)
	2
	3

	5
	(0.5 – 1)
	0.5
	5

	6
	(0.8 - 1.1)
	0.3
	5


Impact of variation of both (i.e) Population size and Initial Range

 Few readings are taken by varying both of these quantities , the graph resembles the same as population size and initial range. (i.e) your are getting more cloud of points near the optimum when the population size is more and the initial range is less.

4.5 Impact of Population Size on getting the Final Generation
By using the GAtool we have performed certain test by varying the stopping criteria and the population Size. 

In order to ensure that GA must stop because of fitness function value less than function tolerance. Rest of the parameters are varied as follows

Stall Generations = Generations = 10000;

Stall time limit = 100; Fitness limit = 1e-003;

Initial Range ( 0 – 2 )
By keeping the fitness limit and function tolerances at 3 different values 1e-003, 1e-004, 1e-005, a set of readings are taken by varing the population size. Then average of the readings are calculated at each value of fitness limits.
Graphs are drawn taking the population size on x- axis, and log of average value of final generation. To get the clear graph Log values are taken for average of the final generation.
4.6 Plot of Population size vs  Final Generation with Function Tolerances 1e-003

	PopSize
	Final Generation

	20
	3986.25

	100
	1177.25

	200
	463.25

	500
	279.25

	1000
	79

	2000
	35

	3000
	37.75

	5000
	2

	6000
	1.5
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Inference : Impact of Population Size with Final generation for fitness limit function tolerance of 1e-003 If you observe the graph, as the population size increases the final generation to get the optimal points decreases. we can approximate it as a Rectangular Hyperbola.
 Plot of Population size vs Log of Final Generation with Function Tolerances 1e-003. This plot is to get a clear picture.
	PopSize
	Log of Final Gen

	20
	3.6

	100
	3.07

	200
	2.67

	500
	2.45

	1000
	1.9

	2000
	1.54

	3000
	1.57

	5000
	0.301

	6000
	0.18
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4.7 Plot of Population size vs Final Generation with Function 
   Tolerance 1e-004

	PopSize
	Final Gen

	20
	5470

	50
	7961

	100
	4249

	1000
	1684

	2000
	530

	4000
	116

	8000
	88

	9000
	2.75
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Similarly the Graph with function tolerance 1e-004 resembles the characteristic of the graph with function tolerance 1e-003. But here the final generation doesnot declines as it does with function tolerance 1e-003. This is because of the increase in function tolerance.

Plot of Population size vs Log of Final Generation with Function Tolerances 1e-004.  This plot is to get the clear picture
	PopSize
	Log of Final Gen

	20
	3.74

	50
	3.9

	100
	3.62

	1000
	3.23

	2000
	2.72

	4000
	2.06

	8000
	1.94

	9000
	0.44
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4.8 Plot of Population size vs  Final Generation with Function 
        Tolerances 1e-005
	Popsize
	Final Generation

	20
	3.98

	50
	3.89

	100
	3.89

	1000
	3.59

	2000
	3.42

	4000
	3.29

	8000
	2.34
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If you observe the graph with function tolerance 1e-005, in slide no 34 it cannot be approximated neither as a linear one nor as a Rectangular hyperbola. It conveys that you cannot get the steep decrease in final generation with the increase in population size. Here we cannot get the optimal points in less than 10 generations even when the population size is 7000 or more.
Plot of Population size vs Log of Final Generation with Function Tolerances 1e-005. This plot is to get a clear picture.
	PopSize
	Log of Final Gen 

	20
	3.98

	50
	3.89

	100
	3.89

	1000
	3.59

	2000
	3.42

	4000
	3.29

	8000
	2.34
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4.9 Impact of initial population on getting the final generation :
By varing the initial population , final generation to get the optimal points are observed. Five readings are taken , and the average is computed to draw the graph. 

While taking readings, parameters in the stopping criteria is kept as follows,

Stall generations = generations = 10000;

Fitness limit = fun tolerance = 1e-004;

Stall time limit = 100; 

Initial range = ( 0 – 2 );

Plot of  Initial Population Vs Final generation

	Initialpop
	FinalGen

	50
	5913.5

	100
	5047

	200
	5886.75

	500
	4861.5

	1000
	4414.25

	2000
	8310

	5000
	5332

	10000
	4191.5

	20000
	5245.75

	50000
	4790.25

	100000
	5323
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Plot of Log of Initial population Vs Final generation

 This plot is to get a clear picture

	Initialpop
	Log of Final gen

	50
	1.69

	100
	2

	200
	2.3

	500
	2.7

	1000
	3

	2000
	3.3

	5000
	3.7

	10000
	4

	20000
	4.3

	50000
	4.7

	100000
	5
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Chapter – 5

DESIGN OF GENETIC ALGORITHM
5.1 Pitfalls of GAtools in Matlab R2006b :

After exploring the commands in Matlab for GA , we have found that we are unable to get the population in each stage and also we are not able to adjust the string size according to our wish.  As we know  string size play a vital role in getting the accuracy of the optimal points. So have written our own coding in M-files and we have succeeded to run the program for 2 generations to get the population in each generation . Moreover we can set the string size according to our wish. The coding and the results of the program has been documented in the following pages.
5.2 % progrm to find the accuracy of the answer with the string size.
population_size = input ( ' Enter the population size :');
disp(population_size)
string_size = input(' Enter the no:of bits in a string : ');
disp(string_size)
lb = input('Enter the lower bound : ');
ub = input(' Enter the upper bound : ');
correction_factor = ( lb + ( ub - lb )/(2^string_size - 1));
disp(correction_factor)
i = 1;
% Getting the Bit strings from the Keyboard
 while( i <= population_size )
    x1 = input('input the Bit string for the variable x1 = ');
    x2 = input('input the bit string for the variable x2 = ');
    var1(i) = bin2dec([x1]);
    var2(i) = bin2dec([x2]);
   % fprintf('The integer value of variable 1 = %d \n',var1(i))
   % fprintf('The integer value of variable 2 = %d \n',var2(i))
    var1(i) = var1(i)*correction_factor;
    var2(i) = var2(i)*correction_factor;
    fprintf('The corrected value of variable 1 = %f \n',var1(i)) 
    fprintf('The corrected value of variable 2 = %f \n',var2(i))
    i = i + 1;
 end
 % calculation of objective function value by calling a Function
 i = 1;
 sum = 0;
 Avg1 = 0;
 obj_val = 0;
 while ( i <= population_size )
     value = Rosenbrok( var1(i),var2(i))
     obj_val(i) = value;
     sum = sum + obj_val(i);
     fprintf(' The value of Rosenbrok Equation = %f \n', obj_val(i))
     i = i + 1;
 end
 % calculation of First Generation Average Value
 Avg1 = sum/population_size;
 fprintf( ' The value of Initial population fitness function value = %f \n ',Avg1 )
 % Initialising the no : of generations
 main_counter = 1;
 Avg2 = Avg1 + 0.1; % Initially to enter into the loop
 % Going for the loop having 2 conditions (i) Average fitness function
 % value and (ii) Main_counter.
 while ( Avg2 > Avg1 && main_counter <= 2 )
 Descend_objval = sort(obj_val,'descend');
 disp(' The sorted Rosenbroks value in Descending order ')
 disp(Descend_objval)
 % Get the firsr 2 variables value corresponding to the maximum value of objfun
 i = 1;
  while ( i <= population_size )
     value = Rosenbrok( var1(i),var2(i))
     if( value == Descend_objval(1) )
         var = var1(1);
         var1(1) = var1(i);
         var1(i) = var;
         var = var2(1);
         var2(1) = var2(i);
         var2(i) = var;
         disp(var1(1))
         disp(var2(1))
     elseif( value == Descend_objval(2) )
         var = var1(2);
         var1(2) = var1(i);
         var1(i) = var;
         var = var2(2);
         var2(2) = var2(i);
         var2(i) = var;
         disp(var1(2))
         disp(var2(2))
     else
         disp('......')
     end
     i = i + 1;
  end
 % Elite count is set to 2 as per the Matlab and standard textbook      rules
 % display of Elite children in string format
 Elite_count = 2;
 i = 1;
  while(i <= Elite_count )
      var1(i) = var1(i)/correction_factor;
      Elite_children1 = dec2bin(var1(i));
      var2(i) = var2(i)/correction_factor;
      Elite_children2 = dec2bin(var2(i)); 
      disp('Elite_children of variable 1 ')
      disp(Elite_children1)
      disp('Elite_children of variable 2 ')
      disp(Elite_children2);
         i = i + 1;
  end
% sort the remaining variables other than Elite child in descending order
% with respect to objective function value.
k = 3;
while ( k <= population_size )
    j = 3;
    while ( j <= population_size )
        value = Rosenbrok( var1(j),var2(j))
        if ( value == Descend_objval(k) )
            dummy_var1(k) = var1(j);
            dummy_var2(k) = var2(j);
        end
        j = j + 1;
    end
    k = k + 1;
end
k = 3;
while ( k <= population_size )
    var1(k) = dummy_var1(k);
    var2(k) = dummy_var2(k);
    k = k + 1;
end
% Display of corrected variables other than Elites in Bit string format.
i = 3;
while ( i <= population_size )
    var1(i) = var1(i)/correction_factor;
    var2(i) = var2(i)/correction_factor;
    variable1 = dec2bin(var1(i));
    variable2 = dec2bin(var2(i));
    disp('display the string for variable 1')
    disp(variable1);
    disp('display the string for variable 2')
    disp(variable2);
    i = i + 1;
end
% Display of all the variables for verification according to objective
% function value.
k = 1;
while ( k <= population_size )
    disp('The variable 1 in floating point form')
    %var1(k) = var1(k)*correction_factor;
    disp(var1(k))
    disp(' The variable 2 in floating point form')
    %var2(k) = var2(k)*correction_factor;
    disp(var2(k))
    k = k + 1;
end
% conversion according to calculation purposes. Because we are unable to
% get the individual bits in bin2dec operation.
% crossover operation
population_size = 0.8 * population_size;
population_size = round(population_size);
disp(population_size)
multiple_copies = 0.32 * population_size;
multiple_copies = round(multiple_copies);
disp(multiple_copies)
upcounter = 1;
downcounter = population_size;
m = 1;
while(upcounter <= multiple_copies )
    a = var1(upcounter);
    b = var2(upcounter);
    c = var1(downcounter);
    d = var2(downcounter);
    disp(' the First number ')
     disp(a)
     disp('The second number')
     disp(b)
    % conversion according to calculation purposes. Because we are
    unable to  get the individual bits in bin2dec operation.
    % for first variable
        num = a;
        disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       a = y;
       disp('The converted first no ')
       disp(a)
        % for second variable
        num = b;
       disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
           disp(width)
       else
           disp(width)
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       disp(' The first var 2 number')
        b = y;
        disp(b)
        % for third variable
        num = c;
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       disp(' The converted last variable 1 number')
        c = y;
        disp(c)
        % for fourth variable
        num = d;
         disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       disp('The converted last variable 2')
        d = y;
        disp(d)
   % end of conversion of numbers according to calculation purposes.
    e = c;
    f = d;
    crossover_point = round(string_size/2);
    l = crossover_point + 1;
    disp('The crossover point' )
    disp(l)
    if( upcounter <= 2)
        while(l <= string_size )
            c(l) = a(l);
            d(l) = b(l);
            disp(d(l))
            a(l) = e(l);
            b(l) = f(l);
            disp(b(l))
            l = l + 1;
        end
        % for converting bin to decimal the number must be converted into
        % string
        disp( 'The crossed child 1')
        disp(a)
        disp('The crossed child 2')
        disp(b)
        disp('The crossed child 3')
        disp(c)
        disp('the crossed child 4')
        disp(d)
        c = num2str(c);
        d = num2str(d);
        a = num2str(a);
        b = num2str(b);
        % for displaying purpose
        g = bin2dec(c);
        h = bin2dec(d);
        i = bin2dec(a);
        j = bin2dec(b);
        %newvar1(1) = a;
        %newvar1(2) = var1(2);
        %newvar2(1) = b;
        %newvar2(2) = var2(2);
        newvar1(m) = g;
        newvar2(m) = h;
        newvar1(m+1) = i;
        newvar2(m+1) = j;
        downcounter = downcounter - 1;
        m = m + 1;
    end
    if( upcounter > 2 )
        % because of multiple copies of strings
        t = 1;
        while( t <= 2 )
             a = var1(upcounter);
             b = var2(upcounter);
             c = var1(downcounter);
             d = var2(downcounter);
             % conversion according to calculation purposes. Because we
 

are unable to get the individual bits in bin2dec operation.
        num = a;
        disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
        a = y;
        % for second variable
        num = b;
        disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
        b = y;
        % for third variable
        num = c;
         disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
        c = y;
        % for fourth variable
        num = d;
       disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
        d = y;
   % end of conversion of numbers according to calculation purposes.
             e = c;
             f = d;
             l = crossover_point + 1;
            while( l <= string_size )
                c(l) = a(l);
                d(l) = b(l);
                a(l) = e(l);
                b(l) = f(l);
                l = l + 1
 end
           % for storing the variables
                k = size(newvar1);
                k1 = k(2);
                k1 = k1 + 1;
 % for converting bin to decimal the number must be

 converted into string
        c = num2str(c);
        d = num2str(d);
        a = num2str(a);
        b = num2str(b);
                  g = bin2dec(c);
                  h = bin2dec(d);
                  i = bin2dec(a);
                  j = bin2dec(b);
                    newvar1(k1) = g;
                    newvar2(k1) = h;
                    newvar1(k1+1) = i;
                    newvar2(k1+1) = j;
                downcounter = downcounter - 1;
                t = t + 1;
        end
    end
    upcounter = upcounter + 1;
end
% mutation operation
downcounter = downcounter + 1;
strings_muted = downcounter - upcounter;
disp(' The strings to be muted ' )
disp(strings_muted)
bit_muted = round(string_size/2) ;
m = bit_muted - 1;
disp( ' the bit to be muted ')
disp(m)
while ( upcounter < downcounter )
    a = var1(upcounter);
    b = var2(upcounter);
        num = a;
        disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
       else
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       a = y;
       disp('The converted first no ')
       disp(a)
        % for second variable
        num = b;
       disp(num)
        width = string_size;
        disp(width)
        while ( num > 1)
            y(width) = rem(num , 2);
            num = num/2;
            num = fix(num);
            width = width - 1;
        end
       if( width == 1)
           y(width) = num;
           disp(width)
       else
           disp(width)
           y(width) = num;
           while( width > 1)
               width = width - 1;
               y(width) = 0;
           end
           y(1) = 0;
       end
       disp(' The first var 2 number')
        b = y;
        disp(b)
        a(m) = ~a(m);
        b(m) = ~b(m);
        a = int2str(a);
        b = int2str(b);
        a = bin2dec(a);
        b = bin2dec(b);
        k = size(newvar1);
        k1 = k(2);
        k1 = k1 + 1;
       newvar1(k1) = a;
       newvar2(k1) = b;
       disp(' The muted variable ')
        disp(newvar1(k1))
        disp(newvar2(k1))
       upcounter = upcounter + 1;
end
% Including the Elite child in the Next Generation
k = size(newvar1);
k1 = k(2);
k1 = k1 + 1;
newvar1(k1) = var1(1);
newvar2(k1) = var2(1);
newvar1(k1 + 1) = var1(2);
newvar2(k1 + 1) = var2(2);
% displaying the new population values in floating point format
k = size(newvar1);
k1 = k(2);
disp(' The new generation population size' )
disp(k1)
n = 1;
while ( n <= k1 )
    disp('The variable 1 in Floating point form')
    newvar1(n) = newvar1(n)* correction_factor;
    disp(newvar1(n))
    var1(n) = newvar1(n);
    disp(' The variable 2 in Floating point form')
    newvar2(n) = newvar2(n)* correction_factor;
    disp(newvar2(n))
    var2(n) = newvar2(n);
    n = n + 1;
end
% calling the function to calculate the objective function value
s = size(newvar1);
s1  = s(2);
population_size = s1;
i = 1;
while(i <= population_size )
     value = Rosenbrok( var1(i),var2(i))
     obj_val(i) = value;
     sum = sum + obj_val(i);
     fprintf(' The value of Rosenbrok Equation = %f \n', obj_val(i))
     i = i + 1;         
end
 %calculating the Next Generation Average value
Avg2 = (sum/population_size);
disp(' The Average value of Next Generation')
disp(Avg2)
 %Incrementing the no :of Generations
main_counter = main_counter + 1;
 end
% closes the loop under the two given conditions.
 %end
 % Displaying the optimal point and the optimal function value.
 % Get the firsr 2 variables value corresponding to the maximum value of objfun
  Descend_objval = sort(obj_val,'descend');
 i = 1;
  while ( i <= population_size )
     value = Rosenbrok( var1(i),var2(i))
     if( value == Descend_objval(1) )
         var = var1(1);
         var1(1) = var1(i);
         var1(i) = var;
         var = var2(1);
          var2(1) = var2(i);
         var2(i) = var;
         disp(var1(1))
         disp(var2(1))
     elseif( value == Descend_objval(2) )
         var = var1(2);
         var1(2) = var1(i);
         var1(i) = var;
         var = var2(2);
         var2(2) = var2(i);
         var2(i) = var;
         disp(var1(2))
         disp(var2(2))
     else
         disp('......')
     end
     i = i + 1;
  end
 x1 = var1(1);
 x2 = var2(1);
 disp(' The optimal point of First Design Variable x1 =')
 disp(x1)
 disp(' The optimal point of second Design Variable x2 = ')
 disp(x2)
 disp('The corresponding Objective function value = ')
 disp(Descend_objval(1))
 % End of the Major Project done by Mr. N.L Venkatesan 
5.3 Result of the Programming work done
Main_counter = 2;

Enter the population size :4

     4

 Enter the no:of bits in a string : 4

     4

Enter the lower bound : 0

 Enter the upper bound : 1

    0.0667

input the Bit string for the variable x1 = '1000'

input the bit string for the variable x2 = '0111'

The corrected value of variable 1 = 0.533333 

The corrected value of variable 2 = 0.466667 

input the Bit string for the variable x1 = '1001'

input the bit string for the variable x2 = '0111'

The corrected value of variable 1 = 0.600000 

The corrected value of variable 2 = 0.466667 

input the Bit string for the variable x1 = '1001'

input the bit string for the variable x2 = '1110'

The corrected value of variable 1 = 0.600000 

The corrected value of variable 2 = 0.933333 

input the Bit string for the variable x1 = '1111'

input the bit string for the variable x2 = '1110'

The corrected value of variable 1 = 1.000000 

The corrected value of variable 2 = 0.933333 

value =

    0.2203

 The value of Rosenbrok Equation = 0.220348 

value =

    0.4352

 The value of Rosenbrok Equation = 0.435203 

value =

    0.0294

 The value of Rosenbrok Equation = 0.029385 

value =

    0.6923

 The value of Rosenbrok Equation = 0.692308 

 The value of Initial population fitness function value = 0.344311 

  The sorted Rosenbroks value in Descending order 

    0.6923    0.4352    0.2203    0.0294

Elite_children of variable 1 

1111

Elite_children of variable 2 

1110

Elite_children of variable 1 

1001

Elite_children of variable 2 

111

 The new generation population size

     5

The variable 1 in Floating point form

    0.7333

 The variable 2 in Floating point form

    0.4000

The variable 1 in Floating point form

    0.8000

 The variable 2 in Floating point form

     1

The variable 1 in Floating point form

    0.0667

 The variable 2 in Floating point form

     1

The variable 1 in Floating point form

     1

 The variable 2 in Floating point form

    0.9333

The variable 1 in Floating point form

    0.6000

 The variable 2 in Floating point form

    0.4667

value =

    0.3368

 The value of Rosenbrok Equation = 0.336770 

value =

    0.0714

 The value of Rosenbrok Equation = 0.071429 

value =

    0.0099

 The value of Rosenbrok Equation = 0.009903 

value =

    0.6923

 The value of Rosenbrok Equation = 0.692308 

value =

    0.4352

 The value of Rosenbrok Equation = 0.435203 

 The Average value of Next Generation

    0.5846

 The sorted Rosenbroks value in Descending order 

    0.6923    0.4352    0.3368    0.0714    0.0099

value =

    0.3368

......

value =

    0.0714

......

value =

    0.0099

......

value =

    0.6923

     1

    0.9333

value =

    0.4352

    0.6000

    0.4667

Elite_children of variable 1 

1111

Elite_children of variable 2 

1110

Elite_children of variable 1 

1001

Elite_children of variable 2 

111

 The new generation population size

     9

The variable 1 in Floating point form

     1

 The variable 2 in Floating point form

    0.9333

The variable 1 in Floating point form

    0.8000

 The variable 2 in Floating point form

     1

The variable 1 in Floating point form

    0.0044

 The variable 2 in Floating point form

    0.0667

The variable 1 in Floating point form

    0.0667

 The variable 2 in Floating point form

    0.0622

The variable 1 in Floating point form

    0.0400

 The variable 2 in Floating point form

    0.0311

The variable 1 in Floating point form

    0.0667

 The variable 2 in Floating point form

     1

The variable 1 in Floating point form

    0.2000

 The variable 2 in Floating point form

    0.9333

The variable 1 in Floating point form

     1

 The variable 2 in Floating point form

    0.9333

The variable 1 in Floating point form

    0.6000

 The variable 2 in Floating point form

    0.466
value =

    0.6923

 The value of Rosenbrok Equation = 0.692308 

value =

    0.0714

 The value of Rosenbrok Equation = 0.071429 

value =

    0.4106

 The value of Rosenbrok Equation = 0.410625 

value =

    0.4535

 The value of Rosenbrok Equation = 0.453527 

value =

    0.4978

 The value of Rosenbrok Equation = 0.497837 

value =

    0.0099

 The value of Rosenbrok Equation = 0.009903 

value =

    0.0123

 The value of Rosenbrok Equation = 0.012278 

value =

    0.6923

 The value of Rosenbrok Equation = 0.692308 

value =

    0.4352

 The value of Rosenbrok Equation = 0.435203 
 The Average value of Next Generation

    0.6887

......

 The optimal point of First Design Variable x1 =

     1

 The optimal point of second Design Variable x2 = 

    0.9333

The corresponding Objective function value = 

    0.6923
(ii) Completed Design to optimize the objective function and to draw the maxfit and avgfit of the generations :

n. Five readings are taken for each parameter and the average is cal% Genetic Algorithm
% Function 'genetic' is created in this program to find the 
% optimum parameters for the system whose fitness function
% is stored in 'objfunction'. For a parameter optimization problem,
% functions 'genetic' and 'objfunction' must first be created as m-files
% INPUT VARIABLES
% popsize: Population size (even integer)
% objfunction: Function to be maximized; a valid existing M-file
% N- no. of variables in objfunction
% minmax: Nx2 matrix; jth row contains minimum and maximum values of the
% jth variable
% nbit : 1xN row vector; jth element contains number of bits 
% for coding jth variable
% pc: Probability of cross over (pc<1)
% pm : Probability of mutation (pm<1)
% maxg : Maximum number of generations
% OUTPUT VARIABLE
% opt_param : Optimal parameters
function [opt_param]=genetic(popsize,objfunc,N,minmax,nbit,pc,pm,maxg)
% Initialize generation counter, 'gc', and stopping flag 'stop'.
gc=1;
stop=0;
% select random initial decimal values of parameters in the
% popsize x N matrix (refer Note 1)
for i=1:popsize
    for j=1:N
        inivar(i,j)=round(rand*(2^nbit(j)-1));
    end
end
% convert decimal values to binary bits and generate
% popsizexlchrom
% bitmatrix where lchrom is the length of a chromosome
% (refer Note 2)
lchrom=sum(nbit);
bitmat=zeros(popsize,lchrom);
for i=1:popsize
    k=lchrom;
    for j=N:-1:1
        x=inivar(i,j);
        for m=1:nbit(j)
            bitmat(i,k)=rem(x,2);
            x=fix(x/2);
            k=k-1;
        end
    end
end
% MAIN LOOP STARTS HERE
while (stop==0)
    gc
    % Calculate actual parameter values from bitmatrix 
    % refer ( Note 3)
    for j=1:N
        for i=1:popsize
            param(i,j)=minmax(j,1)...
                +(minmax(j,2)-minmax(j,1))/...
                (2^nbit(j)-1)*inivar(i,j);
        end
    end
    % calculate fitness values
    sumfit=0;
    for i=1:popsize
        argu=param(i,1:N);
        fitness(i)=feval(objfunc,argu);
        sumfit=sumfit+fitness(i);
    end
    avgfit=sumfit/popsize;
    % Parameters giving max fitness are given out as
    % optimum parameters
    [maxfit,index]=max(fitness);
    opt_param=param(index,:);
    % fit ratio to be used in termination criteria
    fit_ratio=avgfit/maxfit;
    % Build an array of avg & max fitness values and
    % record them generation wise
    af(gc)=avgfit;
    mf(gc)=maxfit;
    % Generate mating pool through Roulette wheel selection
    sum1=0;
    for i=1:popsize
        %Compute propability of selection of the ith chromosome
        ps=fitness(i)/sumfit;
        % Obtain cumulative sum of the selection probabilities
        sum1=sum1+ps;
        csum(i)=sum1;
    end
    % randperm returns random sequencing of numbers from 1 to
    % popsize
    mplocation=randperm(popsize);
    % The randomly spun RW selects jth chromosome & places it at
    % a random location in mating pool. (refer Note 4)
    for i=1:popsize
        rwspin=rand;
        for j=1:popsize
            if(rwspin<=csum(j))
                for k=1:lchrom
                    mpool(mplocation(i),k)=bitmat(j,k);                    
                end
                break;
            else
            end
        end
    end
    % crossover operator
    % Number of crossovers nc
    nc=round(pc*popsize/2);
    for i=1:2:nc
        xsite=round(rand*lchrom);
        for j=1:xsite
            temp=mpool(i,j);
            mpool((i+1),j)=temp;
        end
    end
    % Mutation operator
    % number of mutations nm
    nm=round(pm*lchrom*popsize);
    while(nm>0)
        for i=1:nm
            msite=round(rand*lchrom*popsize);
            % msite is being worked out not just within a
            % particular chromosome but over the entire bitmatrix
            if(msite==0)
                msite=1;
                % since nm>0 make the 0 msite as 1 so that atleast
                % one mutation does takes place
            end
            % location of the bit to be mutated
            colm=rem(msite,lchrom);
            if (colm==0)
                colm=lchrom;
                row=fix(msite/lchrom);
            else
                row=fix(msite/lchrom)+1;
            end
            if (mpool(row,colm)==0)
                mpool(row,colm)=1;
            else
                mpool(row,colm)=0;
            end
        end
        nm=0;
    end
    % Decoding
    % Identify the bits in a string corresponding to a
    % parameter (refer note 6)
    for i=1:popsize
        b1=0;
        bn=0;
        for j=1:N
            sum1=0;
            n=nbit(j);
            if (j==1)
                b1=1;
            else
                b1=b1+nbit(j-1);
            end
            bn=bn+nbit(j);
            % Calculate the Decimal value
            for k=b1:bn
                n=n-1;
                sum1=sum1+(mpool(i,k))*(2^n);
            end
            var(i,j)=sum1;
        end
    end
    % Increment the generation counter
    gc=gc+1;
    inivar=var;
    bitmat=mpool;
    % Stopping Criteria
    if((gc>maxg)|(fit_ratio > 0.9999))
        stop=1;
    else
        stop=0;
    end
end
% MAIN LOOP  ENDS
if (gc > maxg)
    disp('GOAL NOT REACHED');
end
kf=1:gc-1;
plot(kf,mf,'b',kf,af,'r')
legend('maxfit','avgfit')
% create objective function objfunctionPC11.m and
% call function: (from command window)
% [param]=genetic(20,'objfunction',2,[0 6;0 6],[10 10],0.8,0.05,100)
Here the ‘objfunction’ in the last line of the program stands for the function which is modeled for any application.

Apart from that the parameters in GA like bit string size, limits(LB,UB), no:of Generations, mutation ratio, crossover ratio can be set. 




Chapter – 6
Application of Genetic Algorithms for the Economic Load Dispatch problem in Power System:
6.1 Purpose of Economic Load dispatch :


The purpose of economic dispatch or optimal dispatch is to reduce fuel costs for the power system. Minimum fuel costs are achieved by the economic load scheduling of the different generating units or plants in the power system. By economic load scheduling we mean to find the generation of the different generators or plants so that the total fuel cost is minimum, and at the same time the total demand and the losses at any instant must be met by the total generation.

6.2 Mathematical Modeling of Economic Load Dispatch Problem:

From the unit commitment table of a given plant, the fuel cost curve of the plant can be determined in the form of a polynomial of suitable degree by the method of least squares fit.

Mathematically, the problem is defined as

Minimize   F(Pi) = ∑ ( aiPi2 + biPi + ci )  Rs/hr  where i is from 1 to n no : of generators.
Subject to (i) Energy balance equation  ∑ Pi  = PD  + PL , where i is from 1 to n no : of generators.
(ii) the inequality constraints  Pimin ≤ Pi ≤ Pimax ( I = 1,2 … NG ) NG is the no: of generators.

ai, , bi , ci  are the cost coefficients.
PD is the load demand.

Pi is the real power generation and will act as decision variable.

PL is power transmission loss.

NG is the no: of generators.

One of the most important , simple but approximate methods of expressing transmission loss as a function of generator powers is through B- coefficients. This method uses the fact that under normal operating condition, the transmission loss is quadratic in the injected real powers. The general form of the loss formula using B-coefficients is

PL = ∑iNG∑jNG PiBijPj   MW

Where Pi, Pj  are the real power injections at the ith, jth buses.
Bij are loss coefficients which are constant under certain assumed conditions.

NG is number of generation buses.

The above constrained optimization problem is converted into an unconstrained one. Lagrange multiplier method is used in which a function is minimized ( or maximized ) subject to side conditions in the form of equality conditions. Using Lagrange multipliers, an augmented function is defined as

L(Pi, λ) = F(Pi) + λ( PD + PL - ∑iNG Pi ) where λ is the Lagrange multiplier.

Necessary conditions for the optimization problem are

∂L(Pi,λ)/∂Pi = ∂F(Pi)/∂Pi + λ(∂PL/∂Pi – 1) = 0 ………………..(1)
Rearranging the above equation 

∂F(Pi)/∂Pi = λ(1- ∂PL/∂Pi)

Where ∂F(Pi)/∂Pi is the incremental cost of the ith generator (Rs/Mwh).
∂PL/∂Pi represent the incremental transmission losses.

By differentiating the transmission loss equation with respect to Pi, the incremental transmission loss can be obtained as

∂PL/∂Pi = ∑jNG 2BijPj  ( i = 1,2 …, NG ) ……………..(2)

By differentiating the cost function with respect to Pi, the incremental cost can be obtained as

∂F(Pi)/∂Pi  = 2aiPi + bi  ………………………………..(3)

Substituting (2) and (3) in eqn (1)
2aiPi + bi = λ( 1 - ∑jNG 2BijPj )

Here the λ is obtained using genetic algorithms.

6.3 Calculation for Generation and Transmission Losses:

When the incremental cost λj is known for whole population, then the generation can be obtained as follows

                             NG

2(ai + λjBii)Pji  + λj ∑ 2BikPki = λj – bi . ( I = 1,2 …. NG; j = 1,2,… L )
                                              k = 1

                                              k ≠ i

The above equation can be rewritten as

                            NG

∑ Aikj Pkj = Cij  ( i = 1,2…NG , j = 1,2…L )

                            k = 1

where 

           Aiij = 2(ai + λj Bii) , Aikj = 2λjBik   (  i ≠ k ) ,  Cij = λj - bi
Transmission Loss for whole population can be obtained as

                              NG NG
                      PLj = ∑   ∑ Pij Bik Pkj   ( j = 1,2,… L )
                              i = 1  k = 1
6.4 Fitness Function and parent selection:


Implementation of a problem in genetic algorithm is realized within the fitness function. Since the proposed approach uses the equal incremental cost criterion as its basis, the constraint can be rewritten as

                             NG

As εj = | PD + PLj - ∑ Pij  |
                             i = 1
Then the converging rule is when ε decreases to within a specified tolerance.
In order to emphasize the best chromosomes and speed up convergence of the iteration procedure, fitness is normalized into range between 0 and 1. 

The fitness function adopted is 

Is f j  = 1 /  ( 1 + εj / PD )   ( j = 1,2,…., L )

6.5 M-file for the Economic Load dispatch problem:
(i) M-file for Initialization of the Parameters like constant terms of the polynomial equation , Generator limits , etc
% Get the total Load demand
global PD NO A B C Pmin Pmax BL;
PD = input('Enter the load demand in mega watts');
disp(PD)
% Get the no:of Generators in the power system
NO = input('Enter the no:of Generators');
disp(NO)
% Enter the constants
A = input('Enter the constant of square term i.e P1^2 in one dimensional form');
disp(A)
% Enter the constant of P1 term
B = input('Enter the constant of P1 term in one dimensional form');
disp(B)
% Enter the constant values
C = input('Enter the constant values of the polynomial');
disp(C)
% Get the minimum and Maximum limits of Generators.
Pmin = input('Enter the minimum power limit of N Generators');
disp(Pmin)
Pmax = input('Enter the maximum power limit of N Generators');
disp(Pmax)
% Get the Transmission Loss coefficients 
BL = input('Enter the Transmission Loss Coefficients as a square matrix')
disp(BL)
% Frame it in the form of linear equations 
%k = N*2;
%l = N;
(ii) M-file for the Mathematical modeling of N- Generators:

function 
f = Economic1(lambda)
 % Application of Genetic Algorithms to Economic Load dispatch problem
% Get the total Load demand
%PD = input('Enter the load demand in mega watts');
%disp(PD)
% Get the no:of Generators in the power system
%N = input('Enter the no:of Generators');
%disp(N)
% Enter the constants
%A = input('Enter the constant of square term i.e P1^2 in one dimensional form');
%disp(A)
% Enter the constant of P1 term
%B = input('Enter the constant of P1 term in one dimensional form');
%disp(B)
% Get the minimum and Maximum limits of Generators.
%Pmin = input('Enter the minimum power limit of N Generators');
%disp(Pmin)
%Pmax = input('Enter the maximum power limit of N Generators');
%disp(Pmax)
% Get the Transmission Loss coefficients 
%BL = input('Enter the Transmission Loss Coefficients as a square matrix')
%disp(BL)
% Frame it in the form of linear equations 
%k = N*2;
%l = N;
i = 1;
j = 1;
%lambda = 10.11509;
global PD NO A B Pmin Pmax BL;
for i = 1:NO
    for j = 1:NO
    if ( i == j )
    E(i ,j) =  2*(A(i) + lambda*BL(i,j));
    disp( E(i,j))
    else
        E(i,j) = 2*lambda*BL(i,j);
        disp(E(i,j))
    end
    %disp(j)
    end
    %disp(i)
end
%size(E)
% Encode the value of E(i) in the form of square matrix.
% determine the value of constants
i  = 1;
while ( i <= NO )
    c(i) = lambda - B(i);
    disp(c(i))
    i = i + 1;
end
% Form the matrices
% first matrix to calculate the value of P1
m = 1; 
n = 1;
for m = 1:NO
    P1(m,n) = c(m);
end
p =2;
k =1;
for p = 2:NO
    for k = 1:NO
    P1(k,p) = E(k,p);
    end
end
disp(P1)
% matrix to calculate the value of P2
m = 1; 
n = 2;
for m = 1:NO
    P2(m,n) = c(m);
end
p =1;
k =1;
for p = 1:2:NO
    for k = 1:NO
    P2(k,p) = E(k,p);
    end
end
disp(P2)
% matrix to calculate the value of P3
m = 1; 
n = 3;
for m = 1:NO
    P3(m,n) = c(m);
end
p =1;
k =1;
for p = 1:2
    for k = 1:NO
    P3(k,p) = E(k,p);
    end
end
disp(P3)
% calculate the value of determinant of the matrices 
Real_power1 = det(P1)/det(E);
Real_power2 = det(P2)/det(E);
Real_power3 = det(P3)/det(E);
% Condition to check the limits of Generator Power 1.
if ( Real_power1 < Pmin(1) )
    Real_power1 = Pmin(1);
elseif ( Real_power1 > Pmax(1) )
    Real_power1 = Pmax(1);
end
% condition to check the limits of Generator power 2.
if ( Real_power2 < Pmin(2) )
    Real_power2 = Pmin(2);
elseif ( Real_power2 > Pmax(2) )
    Real_power2 = Pmax(2);
end
% condition to check the limits of Generator power 3
if ( Real_power3 < Pmin(3) )
    Real_power3 = Pmin(3);
elseif ( Real_power3 > Pmax(3) )
    Real_power3 = Pmax(3);
end
% display the values of Real Powers of Generators.
disp(Real_power1);
disp(Real_power2);
disp(Real_power3);
RP(1) = Real_power1;
RP(2) = Real_power2;
RP(3) = Real_power3;
% Calculate the Value of Transmission Losses.
x = 1;
y = 1;
Total_Loss = 0;
for x = 1:NO
    for y = 1:NO
        Total_Loss = Total_Loss + (RP(x)*BL(x,y)*RP(y));
    end
end
% Calculate the difference of generation - transmission loss + Power demand 
e = abs( PD + Total_Loss - ( RP(1) + RP(2) + RP(3)));
f = 1 / ( 1 + e/PD);
disp(f)
% m-file to get the input data of Economic Load dispatch problem:
% Get the total Load demand
global PD NO A B Pmin Pmax BL;
PD = input('Enter the load demand in mega watts');
disp(PD)
% Get the no:of Generators in the power system
NO = input('Enter the no:of Generators');
disp(NO)
% Enter the constants
A = input('Enter the constant of square term i.e P1^2 in one dimensional form');
disp(A)
% Enter the constant of P1 term
B = input('Enter the constant of P1 term in one dimensional form');
disp(B)
% Get the minimum and Maximum limits of Generators.
Pmin = input('Enter the minimum power limit of N Generators');
disp(Pmin)
Pmax = input('Enter the maximum power limit of N Generators');
disp(Pmax)
% Get the Transmission Loss coefficients 
BL = input('Enter the Transmission Loss Coefficients as a square matrix')
disp(BL)
% Frame it in the form of linear equations 
%k = N*2;
%l = N;
% main program to call the Economic Load dispatch problem with all the Genetic Algorithm parameters.
[param] = genetic(20,'Economic1',1,[10 12.5],[16],0.8,0.1,10);
disp(param)
6.6 Results of the Economic Load dispatch Problem

Enter the load demand in mega watts 300

   300

Enter the no:of Generators 3

     3

Enter the constant of square term i.e P1^2 in one dimensional form[0.00525 0.00609 0.00592]

    0.0053    0.0061    0.0059

Enter the constant of P1 term in one dimensional form[8.663 10.040 9.76]

    8.6630   10.0400    9.7600

Enter the constant values of the polynomial[328.13 136.91 59.16]

  328.1300  136.9100   59.1600

Enter the minimum power limit of N Generators[50 5 15]

    50     5    15

Enter the maximum power limit of N Generators[250 150 100]

   250   150   100

Enter the Transmission Loss Coefficients as a square matrix[0.000136 0.0000175 0.000184; 0.0000175 0.000154 0.000283; 0.000184 0.000283 0.000161]

BL =

  1.0e-003 *

    0.1360    0.0175    0.1840

    0.0175    0.1540    0.2830

    0.1840    0.2830    0.1610

  1.0e-003 *

    0.1360    0.0175    0.1840

    0.0175    0.1540    0.2830

    0.1840    0.2830    0.1610

Generation 1:

The Generation schedule of the N Generators :

P1 = 

  124.4787

P2 = 

   15.6332

P3 = 

    15

The minimum value of Objective function:

    0.6697

The optimized value of Fuel Cost in Rs/hr

  1.9901e+003

Generation 2:

The Generation schedule of the N Generators :

P1 = 

   250

P2 = 

  123.2360

P3 = 

   39.1593

The minimum value of Objective function:

    0.7616

The optimized value of Fuel Cost in Rs/hr

  4.7391e+003

Generation 3:

The Generation schedule of the N Generators :

P1 = 

  175.8737

P2 = 

   58.6211

P3 = 

   18.9509

The minimum value of Objective function:

    0.8485

The optimized value of Fuel Cost in Rs/hr

  3.0068e+003

Generation 4:

The Generation schedule of the N Generators :

P1 = 

  212.5986

P2 = 

   89.5270

P3 = 

   29.8736

The minimum value of Objective function:

    0.9376

The optimized value of Fuel Cost in Rs/hr

  3.8477e+003

Generation 5:

The Generation schedule of the N Generators :

P1 = 

  226.9002

P2 = 

  101.6185

P3 = 

   33.5240

The minimum value of Objective function:

    0.8627

The optimized value of Fuel Cost in Rs/hr

  4.1771e+003

Graph of Average fit and Maxfit:
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Chapter 7

Conclusion and Scope For Further Work :

7.1 Conclusion :


Following are the definite contributions of the research work presented in this dissertation.

(i) Exploring the GA tools in Matlab R2006b :


Separate M-file is written for Rosenbrok’s function and it is imported in the GA tools for calculating the optimal points. The Ideal optimal point  of RosenBrok’s function are x1 = 1 and x2 = 1. For constrained optimization separate M-file is written for Constraints, and it is imported along with the Rosenbrok’s function for calculating the optimal points. The detailed results are displayed in Chapter 3.

(ii) Analysis of Genetic Algorithm :

We have analysed the genetic algorithm by varying its parameters like population size, Initial population, Initial Range, Stopping conditions etc in getting the accuracy of the optimal points and final generatio culated for plotting the graphs. The graphs are plotted between each parameter and the ( accuracy of the optimal points  & Final generation separately ). All the graphs are presented in a neat manner in Chapter – 4. From the graphs we can predict the results.
(iii) Design of Genetic Algorithm :

The Genetic algorithm is designed by executing a programming in M-file for overcoming the pitfalls in MATLAB R2006b like (i) adjusting the string size according to user’s wish and (ii) to display the population of points in each generation. The program  runs successfully for two iterations by serving the desired purpose . The results are displayed in chapter – 5.

(iv)   Application of Genetic Algorithms to Economic Load dispatch problem:

After modeling the Economic load dispatch problem , the incremental cost coefficient is optimized by using the Genetic Algorithm. The optimized parameter lambda is then used to calculate the generation schedule of the N-generators. This schedule is then checked for the constraints, (i.e) whether the corresponding schedule is within the individual generator limits. The results and the max-fit and average fit graphs are displayed in chapter – 6.
7.2 Scope for further work :


In my thesis GA has been thoroughly understood to get the global optimal points. Further work can be done by applying it to the practical systems. Some of the topics related to its applications are as follows
1. Tuning of PID Controllers

2. Economic Operation of  Hydro-Thermal coordination
3. Pattern Recognition Applications

4. Robotics and Artificial life applications

5. Expert system application.
6. Cellular Automata Applications

7. Applications in Biology and Medicine.
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